
Focused proof systems for Intuitionistic and Classical
Logics:

Handouts for some lectures on during 11-15 April 2011

ISCL 2011, Bertinoro, Italy
Dale Miller, INRIA Saclay

Abstract: This handout contains a few, specific focused proof systems for intu-
itionistic logic as well as for classical logic with and without equality and fixed
points. These notes are not meant to be self-contained: rather, they will provide
some details and references that will be useful during the lectures.

Contents

1 Focusing in intuitionistic logic LJF 2

2 Focusing in classical logic LKF 4

3 Equality as a logical connective 7

4 Fixed points 8

5 Induction and co-induction 10

1

1 Focusing in intuitionistic logic LJF

[The material in this section is taken from the paper [4].]
A second aspect of focusing proofs is that the synchronous/asynchronous clas-

sification of non-atomic formulas must be extended to atomic formulas. The ar-
bitrary assignment of positive (synchronous) and negative (asynchronous) bias to
atomic formulas can have a major impact on, not the existence of focused proofs,
but the shape of focused proofs. For example, consider the Horn clause specifica-
tion of the Fibonacci series:

fib(0, 0) ∧ fib(1, 1) ∧ ∀n∀ f∀ f ′[fib(n, f) ⊃ fib(n + 1, f ′) ⊃ fib(n + 2, f + f ′)].

If all atomic formulas are given a negative bias, then there exists only one focused
proof of fib(n, fn): this one can be classified as a “backward chaining” proof and
its size is exponential in n. On the other hand, if all atomic formulas are given a
positive bias, then there is an infinite number of focused proofs all of which are
classified as “forward chaining” proofs: the smallest such proof is of size linear in
n.

Polarity in intuitionistic logic is defined as follows.

Definition 1 Atoms in LJF are arbitrarily divided between those that are positive
and those that are negative. Positive formulas are of the following forms: positive
atoms, true, false, A ∧+ B, A ∨ B and ∃xA. Negative formulas are among negative
atoms, A ∧− B, A ⊃ B and ∀xA.

Notice that if we consider only the “negative connectives” ∧−, ⊃, ∀ and assign
all atoms a negative bias, then LFJ proofs are uniform proofs (with backchaining).
Here, goal reduction is the “negative” phase while backchaining is the “positive”
phase.

If we allow ∨ and ∃ in the restricted setting that we described before (in fohh),
then LJF can derive the completeness of uniform proofs as well.

Describe term representations choices here. Consider simple types only (only
implication).

• If the atoms have only negative basis, then simply typed λ-terms are proofs
with the familiar “head-normal form”: λx1 . . . λxn. (h t1 . . . tm) (n,m ≥ 0).

• If the atoms have only positive basis, then simply type λ-terms are essentially
in “administrative normal form”: letx1 = f1ȳ1 and . . . xn = fnȳnint. Here,
x1, . . . , xn are distinct variables and f1, . . . , fn are constants.... (** what about
higher-order variables for f s?).

2

Decision and Reaction Rules

[N,Γ]
N
−→ [R]

[N,Γ] −→ [R]
L f

[Γ] −P→

[Γ] −→ [P]
R f

[Γ], P −→ [R]

[Γ]
P
−→ [R]

Rl [Γ] −→ N
[Γ] −N→

Rr

[C,Γ],Θ −→ R
[Γ],Θ,C −→ R

[]l
[Γ],Θ −→ [D]
[Γ],Θ −→ D

[]r

Initial Rules

[P,Γ] −P→
Ir, atomic P [Γ]

N
−→ [N]

Il, atomic N

Introduction Rules

[Γ],Θ, f alse −→ R
f alseL

[Γ],Θ −→ R
[Γ],Θ, true −→ R trueL [Γ] −true→

trueR

[Γ]
Ai
−→ [R]

[Γ]
A1∧

−A2
−→ [R]

∧−L [Γ],Θ −→ A [Γ],Θ −→ B
[Γ],Θ −→ A ∧− B ∧−R

[Γ],Θ, A, B −→ R
[Γ],Θ, A ∧+ B −→ R ∧

+L
[Γ] −A→ [Γ] −B→

[Γ] −A ∧+B→
∧+R

[Γ],Θ, A −→ R [Γ],Θ, B −→ R
[Γ],Θ, A ∨ B −→ R ∨L

[Γ] −Ai→

[Γ] −A1∨A2→
∨R

[Γ] −A→ [Γ]
B
−→ [R]

[Γ]
A⊃B
−→ [R]

⊃ L [Γ],Θ, A −→ B
[Γ],Θ −→ A ⊃ B ⊃ R

[Γ],Θ, A −→ R
[Γ],Θ,∃yA −→ R ∃L

[Γ] −A[t/x]→

[Γ] −∃xA→
∃R

[Γ]
A[t/x]
−→ [R]

[Γ]
∀xA
−→ [R]

∀L [Γ],Θ −→ A
[Γ],Θ −→ ∀yA ∀R

Figure 1: The Intuitionistic Sequent Calculus LJF. Here, P is positive, N is nega-
tive, C is a negative formula or positive atom, and D a positive formula or negative
atom. Other formulas are arbitrary. Also, y is not free in Γ, Θ, or R.

3

2 Focusing in classical logic LKF

[The material in this section is taken from the paper [4] and from [5].]
The inference rules for the LKF focused proof system [4] for classical logic is

given in Figure 2.

Structural Rules

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C S tore
` Θ ⇑ N
` Θ ⇓ N Release

` P,Θ ⇓ P
` P,Θ ⇑ · Focus

` ¬P,Θ ⇓ P
Id (literal P)

Introduction of negative connectives

` Θ ⇑ Γ, t−
` Θ ⇑ Γ, A ` Θ ⇑ Γ, B
` Θ ⇑ Γ, A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ, A, B
` Θ ⇑ Γ, A ∨− B

` Θ ⇑ Γ, A
` Θ ⇑ Γ,∀xA

Introduction of positive connectives

` Θ ⇓ t+
` Θ ⇓ A ` Θ ⇓ B
` Θ ⇓ A ∧+ B

` Θ ⇓ Ai

` Θ ⇓ A1 ∨
+ A2

` Θ ⇓ A[t/x]
` Θ ⇓ ∃xA

Figure 2: The focused proof system LKF for classical logic. Here, P is positive,
N is negative, C is a positive formula or a negative literal, Θ consists of positive
formulas and negative literals, and x is not free in Θ, Γ. Endsequents have the form
` · ⇑ Γ.

Sequents for LKF are divided into negative sequents ` Θ ⇑ Γ and positive
sequents ` Θ ⇓ B, where Θ and Γ are multisets of formulas and B is a formula.
(These sequents are formally one-sided sequents: formulas on the left of ⇑ and ⇓
are not negated as they are in two-sided sequents.) Notice that in this focused proof
system, we have reused the term “structural rule” for a different set of rules which
formally contains instances of weakening (Id) and contraction (Focus). Notice

4

also that in any proof that has a conclusion of the form ` · ⇑ B, the only formulas
that are to the left of an ⇑ or ⇓ occurring in that proof are either positive formulas
or negative literals: it is only these formulas that are weakened (in the Id rule).
The only formulas contracted (in the Focus rule) are positive formulas. Thus,
although linear logic is not used here directly, non-atomic negative formulas are
treated linearly in the sense that they are never duplicated nor weakened in an LKF
proof.

Let B be a formula of first-order logic. By a polarization of B we mean a
formula, say B′, where all the propositional connectives are replaced by polarized
versions of the same connective and where all atomic formulas are assigned either
a positive or negative polarity. Thus, an occurrence of the disjunction ∨ is replaced
by an occurrence of either ∨+ or ∨−; similarly with ∧ and with the logical constants
for true t and false f . For simplicity, we shall assume that polarization for atomic
formulas is a global assignment to all atomic formulas. Properly speaking, focused
proof systems contain polarized formulas and not simply formulas.

Theorem LKF is sound and complete for classical logic. More precisely, let B
be a first order formula and let B′ be a polarization of B. Then B is provable in
classical logic if and only if there is an LKF proof of ` · ⇑ B′ [4].

Notice that polarization does not affect provability but it does affect the shape
of possible LKF proofs. To illustrate an application of the correctness of LKF, we
show how it provides a direct proof the following theorem.

Herbrand’s Theorem Let B is quantifier-free formula and let x̄ be a (non-
empty) list of variables containing the free variables of B. The formula ∃x̄B is
classically provable if and only if there is a list of substitutions θ1, . . . , θm (m ≥ 1),
all with domain x̄, such that the (quantifier-free) disjunction Bθ1 ∨ · · · ∨ Bθm is
provable (i.e., tautologous).
Proof. The converse direction is straightforward. Thus, assume that ∃x̄B is prov-
able. Let B′ be the result of polarizing all occurrences of propositional connectives
negatively. By the completeness of LKF, there is an LKF proof Ξ of ` ∃x̄B ⇑ ·.
The only sequents of the form ` Θ ⇑ · in Ξ are such that Θ is equal to {∃x̄B′} ∪ L
for L a multiset of literals. Such a sequent can only be proved by a Decide rule by
focusing on either a positive literal in L or the original formula ∃x̄B′: in the latter
case, the synchronous phase above it provides a substitution for all the variables in
x̄. One only needs to collect all of these substitutions into a list θ1, . . . , θm and then
show that the proof Ξ is essentially also a proof of ` B′θ1 ∨

+ · · · ∨+ B′θm ⇑ ·.

Macro inference rules Focused proof systems such as LKF allow us to change
the size of inference rules with which we work. Let us call individual introduc-
tion rules “micro-rules”. An entire phase within a focused proof can be seen as a

5

“macro-rule”. In particular, consider the following derivation.

` Θ,D ⇑ N1 · · · ` Θ,D ⇑ Nn

` Θ,D ⇓ D
` Θ,D ⇑ ·

Here, the selection of the formula D for the focus can be taken as selecting among
several macro-rules: this derivation illustrates one such macro-rule: the inference
rule with conclusion ` Θ,D ⇑ · and with n ≥ 0 premises ` Θ,D ⇑ N1, . . . , ` Θ,D ⇑
Nn (where N1, . . . ,Nn are negative formulas). We shall say that this macro-rule is
positive.

Example 2 Two extremes in proof sizes within LKF. Negative (small size but au-
tomatic and exponential) and postive (larger, interactive, smaller).

Similarly, there is a corresponding negative macro-rule with conclusion, say,
` Θ,D ⇑ Ni, and with m ≥ 0 premises of the form ` Θ,D,C ⇑ ·, where C is a
multiset of positive formulas or negative literals.

In this way, focused proofs allow us to view the construction of proofs from
conclusions of the form ` Θ ⇑ · as first attaching a positive macro rule (by focusing
on some formula in Θ) and then attaching negative inference rules to the resulting
premises until one is again to sequents of the form ` Θ′ ⇑ ·. Such a combination of
a positive macro rule below negative macro rules is often called a bipole [1].

Focusing can be broken at any point via delays. Within LKF, we can define the
delaying operators

∂+(B) = B ∧+ t+ and ∂−(B) = B ∧− t−.

Clearly, B, ∂−(B), and ∂+(B) are all logically equivalent but ∂−(B) is always neg-
ative and ∂+(B) is always positive. If one wishes to break a positive macro rule
resulting from focusing on a given positive formula into smaller pieces, then one
can insert ∂−(·) into that formula. Similarly, inserting ∂+(·) can limit the size of a
negative macro rule. By inserting many delay operators, a focused proof can be
made to emulate an unfocused proof.

6

3 Equality as a logical connective

Consider the two set of introduction rules for equality given in Figure 3: the first
set presents (unfocused) left and right introduction rules for = while the second set
of rules is formulated as one-sided and focused.

Γσ ` ∆σ
Γ, s = t ` ∆

†
Γ, s = t ` ∆

‡
Γ ` ∆, t = t

` Θσ ⇑ Γσ

` Θ ⇑ Γ, s , t
†

` Θ ⇑ Γ, s , t
‡

` Θ ⇓ t = t

Figure 3: Introduction rules for =: the first set of inference rules uses two-sided,
focused sequents and the second set of rules uses one-sided, unfocused sequents.
Here, t̄ is a list of n terms. The † proviso requires the terms s and t to be unifiable
and σ to be their most general unifier. The ‡ proviso requires that the terms s and
t are not unifiable.

Examples of what is provable: equivalence and congruence. Show that x = y is
logically equivalent to Leibniz’s equality relationship [∀P. Px ⊃ Py] (to prove the
latter, the higher-order predicate will need to be instantiate with a predicate using
equality.

Encoding finite sets: Encode B = {a1, . . . , an} as the predicate expression

B̂ = [λw.w = a1 ∨ · · · ∨ x = an].

Let B and C be two finite sets of objects of the same type. Show that in B ⊆ C if
and only if `C ∀w.B̂w ⊃ Ĉw.

Mention the problems with unification: usually unification is used to implement
proof systems: it has not been a rule in the proof system. An implementation
of this logic containing equality must now do unification for existential variables
(logic variables in the Prolog literature) and universal variables (eigenvariables in
the proof theory literature).

7

4 Fixed points

In order for capture more interesting computational problems, we introduce the
fixed point operator µ as a logical connective: in this way, we can define sets and
relations recursively. Consider the left and right introduction rules for µ given in
Figure 4. Notice that since the left and right introduction rules for µ are the same,
µ is self-dual: that is, the De Morgan dual of µ is µ. It is possible to have a more
expressive proof theory for fixed points that provides also for least and greatest
fixed points (see, for example, [3, 2]): in that case, the De Morgan dual of the least
fixed point is the greatest fixed point.

Γ, B(µB)t̄ ` ∆

Γ, µBt̄ ` ∆

Γ ` ∆, B(µB)t̄
Γ ` ∆, µBt̄

` Θ ⇑ Γ, B(µB)t̄
` Θ ⇑ Γ, µBt̄

` Θ ⇓ B(µB)t̄
` Θ ⇓ µBt̄

Figure 4: Two sets of introduction rules for µ. The first set is in a two-sided,
unfocused sequent calculus and the second set is in a one-sided, focused sequent
calculus. Here, B is a formula with n ≥ 0 variables abstracted and t̄ is a list of n
terms.

Example 3 Identify the natural numbers as terms involving 0 for zero and s for
successor. The following simple logic program defines two predicates on natural
numbers.

nat 0 ⊂ true.

nat (s X) ⊂ nat X.

leq 0 Y ⊂ true.

leq (s X) (s Y) ⊂ leq X Y.

The predicate nat can be written as the fixed point

µ(λpλx.(x = 0) ∨ ∃y.(s y) = x ∧ p y)

and binary predicate leq (less-than-or-equal) can be written as the fixed point

µ(λqλxλy.(x = 0) ∨ ∃u∃v.(s u) = x ∧ (s v) = y ∧ q u v).

In a similar fashion, any Horn clause specification can be made into fixed point
specifications (mutual recursions requires standard encoding techniques).

8

These two logical connectives can be added to LKF as follows. First, we clas-
sify both = and µ as positive connectives (this choice is forced for equality while µ
can be polarized either way). The (one-sided) focused versions of the introduction
rules above are given in Figures 3 and 4.

Example Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m and n are natural numbers and leq is the fixed point expression displayed
above but this time with all occurrences of ∧ and ∨ polarized with their positive
variants. If both N1 and N2 are negative formulas, then there are exactly two pos-
sible macro rules: one with premise ` Θ ⇑ N1 when m ≤ n and one with premise
` Θ ⇑ N2 when n ≤ m (thus, if m = n, either premise is possible). In this sense, a
macro inference rule can contain an entire Prolog-style computation.

Example Macro rules can be built to match many computational situations.
Consider, for example, defining simulation as the (greatest) fixed point of the equiv-
alence

sim P Q ≡ ∀P′∀A[P
A
−→ P′ ⊃ ∃Q′[Q

A
−→ Q′ ∧ sim P′ Q′]].

Although the right-hand-side of this definition looks complex, we show how it is
possible to see proof search with this formula as being exactly two macro inference

rules. First, the expression P
A
−→ P′ is, presumably, given via some SOS (struc-

tured operational semantic) specifications. Such specifications are simple, syntax-
directed inference rules that can be captured as a least fixed point expression. As
above, we will view such fixed point expressions as purely positive formulas. Thus,

the expression ∀P′∀A[P
A
−→ P′ ⊃ ·] is a negative macro rule: since all possible

actions A and continuations P′ must be computed, there are no choices to be made
in building a proof for this expression. (Here, we are assuming that the implication
B ⊃ C is rendered as ¬B ∨− C in the polarized setting.) On the other hand, focus-

ing on the expression ∃Q′[Q
A
−→ Q′ ∧+ ·] yields a non-invertible, positive macro

rule. In this way, the focused proof system is aligned directly with the structure of
the actual (model-checking) problem. Notice that if one wishes to communicate a
proof of a simulation to a proof checker, no information regarding the use of the
negative macro rule needs to be communicated since the proof checker can also
perform the computation behind that inference rule (i.e., enumerating all possible
transitions of a given process P).

Discuss model checking problems more. Bedwyr’s architecture.

9

5 Induction and co-induction

Proposition. The following inference rules are derivable:

` P, P⊥
init

` Γ, B(νB)~t
` Γ, νB~t

νR

These results are standard, cf. [6]. The proof of the second one relies on
monotonicity and is obtained by applying the ν rule with B(νB) as the co-invariant.

Definition We classify as asynchronous (resp. synchronous) the connectives M, ⊥,
&, >, ∀, ,, ν (resp. ⊗, 1, ⊕, 0, ∃, =, µ). A formula is said to be asynchronous (resp.
synchronous) when its top-level connective is asynchronous (resp. synchronous).
A formula is said to be fully asynchronous (resp. fully synchronous) when all of
its connectives are asynchronous (resp. synchronous). Finally, a body λpλ~x.Bp~x
is said to be fully asynchronous (resp. fully synchronous) when the formula Bp~x
is fully asynchronous (resp. fully synchronous).

Notice, for example, that λpλ~x.p~x is fully asynchronous and fully synchronous.

Proposition The following structural rules are admissible provided that B is fully
asynchronous:

` Γ, νB~t, νB~t
` Γ, νB~t

νC ` Γ

` Γ, νB~t
νW

Hence, the following structural rules hold for any fully asynchronous formula P:

` Γ, P, P
` Γ, P C ` Γ

` Γ, P W

Proposition. The following structural rules are admissible provided that B is fully
asynchronous:

` Γ, νB~t, νB~t
` Γ, νB~t

νC ` Γ

` Γ, νB~t
νW

Fixed points (where S is closed, ~x is new)

` Γ, B(µB)~t
` Γ, µB~t

µ
` Γ, S~t ` BS ~x, (S ~x)⊥

` Γ, νB~t
ν

` µB~t, νB~t
µν

Figure 5: Inference rules for least µ and greatest ν fixed points.

10

Hence, the following structural rules hold for any fully asynchronous formula P:

` Γ, P, P
` Γ, P C ` Γ

` Γ, P W

The rules for equality are not surprising. The main novelty here is the treatment
of fixed points. Depending on the body, both µ and ν rules can be applied any
number of times — but not with any co-invariant concerning ν. Notice for example
that an instance of µν can be η-expanded into a larger derivation, unfolding both
fixed points to apply µν on the recursive occurrences. As a result, each of the fixed
point connectives has two rules in the focused system: one treats it as “an atom”
and the other one as an expression with “internal structure.”

Here, µ is treated during the synchronous phase and ν during the asynchronous
phase. (Other choices are possible.) Roughly, what the focused system implies is
that if a proof involving a ν-expression proceeds by co-induction on it, then this
co-induction can be done at the beginning; otherwise that formula can be ignored
in the whole derivation, except for the µν rule. Focusing on a µ-expression yields
two choices: unfolding or applying the initial rule for fixed points. If the body is
fully synchronous, the focusing will never be lost. For example, if nat is the (fully
synchronous) expression µ(λnat.λx. x = 0 ⊕ ∃y.x = s y ⊗ nat y), then focusing
puts a lot of structure on a proof of Γ ⇓ nat t: either t is a ground term representing
a natural number and Γ is empty, or t = snx for some n ≥ 0 and Γ is {(nat x)⊥}.

Theorem. The focused system is sound and complete with respect to µMALL=.

Examples We shall now give a few theorems in µMALL=. Although we do not
give their derivations here, we stress that all of these examples are proved naturally
in the focused proof system. The reader will also note that although µMALL= is
linear, these derivations are intuitive and their structure resemble that of proofs in
intuitionistic logic.

We first define a few least fixed points expressing basic properties of natural
numbers. We assume two constants z and s of respective types n and n → n. Note
that all these definitions are fully synchronous.

nat
de f
= µ(λnatλx. x = z ⊕ ∃y. x = s y ⊗ nat y)

even
de f
= µ(λevenλx. x = z ⊕ ∃y. x = s (s y) ⊗ even y)

plus
de f
= µ(λplusλaλbλc. a = z ⊗ b = c

⊕ ∃a′∃c′.a = s a′ ⊗ c = s c′ ⊗ plus a′ b c′)

leq
de f
= µ(λleqλxλy. x = y ⊕ ∃y′. y = s y′ ⊗ leq x y′)

11

half
de f
= µ(λhalfλxλh. (x = z ⊕ x = s z) ⊗ h = z

⊕ ∃x′∃h′. x = s (s x′) ⊗ h = s h′ ⊗ half x′ h′)

The following statements are theorems, all of which can be proved by induc-
tion. The main insights required for proving these theorems involve deciding which
fixed point expression should be introduced by induction: the proper invariant is
not the difficult choice here since the context itself is adequate in these cases.

` ∀x. nat x(even x ⊕ even (s x)
` ∀x. nat x(∀y∃z. plus x y z
` ∀x. nat x(plus x z x
` ∀x. nat x(∀y. nat y(∀z. plus x y z(nat z

In the last theorem, the assumption (nat x)⊥ is not needed and can be weakened
(see earlier Proposition). In order to prove (∀x. nat x(∃h. half x h) one has to use
a complete induction, i.e., use the strengthened invariant (λx. nat x ⊗ ∀y. leq y x(
∃h. half y h).

A typical example of co-induction involves the simulation relation. Assume
that step : state → label → state → o is an inductively defined relation encoding
a labeled transition system. Simulation can be defined using the definition

sim
de f
= ν(λsimλpλq. ∀a∀p′. step p a p′ (∃q′. step q a q′ ⊗ sim p′ q′).

Reflexivity of simulation (∀p. sim p p) is proved easily by co-induction with the
co-invariant (λpλq. p = q). Instances of step are not subject to induction but are
treated “as atoms”. Proving transitivity, that is,

∀p∀q∀r. sim p q(sim q r (sim p r

is done by co-induction on (sim p r) with the co-invariant (λpλr. ∃q. sim p q ⊗
sim q r). The focus is first put on (sim p q)⊥, then on (sim q r)⊥. The fixed points
(sim p′ q′) and (sim q′ r′) appearing later in the proof are treated “as atoms”, as
are all negative instances of step.

Except for the totality of half, all these theorems seem simple to prove using a
limited number of heuristics. For example, one could first try to treat fixed points
“as atoms”, an approach that would likely fail quickly if inappropriate. Second,
depending on the “rigid” structure of the arguments to a fixed point expression,
one might choose to either unfold the fixed point or attempt to use the surrounding
context to generate an invariant.

12

References

[1] J.-M. Andreoli. Focussing and proof construction. Annals of Pure and Applied
Logic, 107(1):131–163, 2001.

[2] D. Baelde. A linear approach to the proof-theory of least and greatest fixed
points. PhD thesis, Ecole Polytechnique, Dec. 2008.

[3] D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In
N. Dershowitz and A. Voronkov, editors, International Conference on Logic
for Programming and Automated Reasoning (LPAR), volume 4790 of LNCS,
pages 92–106, 2007.

[4] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

[5] D. Miller. Finding unity in computational logic. In ACM-BCS-Visions Confer-
ence, Apr. 2010.

[6] A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University, May 2004.

13

