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Lecture 6: Equality and fixed points in proof systems.
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“Least and greatest fixed points in linear logic” LPAR 2007, LNCS
4790, pp. 92-106.
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Classical logic and one-sided sequents

We shall now restrict our attention to classical logic.

We follow two conventions when dealing with classical logic.

• We shall assume that formulas are always placed into negation
normal form: that is, negation will have only atomic scopes.

• Sequents will be one-sided. In particular, the two sided sequent

Σ : B1, . . . ,Bn − C1, . . . ,Cm

will be converted to

Σ : − ¬B1, . . . ,¬Bn,C1, . . . ,Cm.
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Equality as logical connective

“It’s a logical connective when it has introduction rules and
satisfies cut-elimination.”

Introductions in an unfocused setting.

− Θ, t = t − Θ, s 6= t
‡ − Θσ

− Θ, s 6= t
†

Introductions in a focused setting.

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

‡ s and t are not unifiable.
† s and t to be unifiable and σ to be their mgu

N.B. Unification was used before to implement inference rules.
Here, it is in the definition of the inference rule.
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Some theorems about equality

Equality is an equivalence relation...

• ∀x [x = x ]
• ∀x , y [x = y ⊃ y = x ]
• ∀x , y , z [x = y ∧ y = z ⊃ x = z ]

and a congruence.

• ∀x , y [x = y ⊃ (f x) = (f y)]
• ∀x , y [x = y ⊃ (p x) ⊃ (p y)]

Let 0 denote zero and s denote successor.

• ∀x [0 6= (s x)]
• ∀x , y [(s x) = (s y) ⊃ x = y ]
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A hint of model checking

Encode a non-empty set of first order terms S = {s1, . . . , sn}
(n ≥ 1) as the one-place predicate

Ŝ = [λx . x = s1 ∨ · · · ∨ x = sn]

If S is the empty set, the set Ŝ to be [λx . ⊥]. Notice that

s ∈ S if and only if `C Ŝ s.

Now let T = {t1, . . . , tm}. S ⊆ T if and only if `c ∀x .[Ŝx ⊃ T̂ x ].

• What does this proof look like in a focused setting (suggestion:
polarize the disjunctions positively).

• Can you encode n-ary relations instead just sets? Labelled
transition systems?
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Now let T = {t1, . . . , tm}. S ⊆ T if and only if `c ∀x .[Ŝx ⊃ T̂ x ].
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Fixed Points as connectives

Of course, the sets and relations we can encode in this style are
finite. Let us introduce the fixed point operator. It simply does
unfolding.

` Θ ⇑ Γ,B(µB)t̄

` Θ ⇑ Γ, µBt̄

` Θ ⇓ B(µB)t̄

` Θ ⇓ µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n
terms.

Here, µ denotes neither the least nor the greatest fixed point.
That distinction arises if we add induction and co-induction.
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Examples of fixed points

Natural numbers: terms over 0 for zero and s for successor. Two
ways to define predicates over numbers.

nat 0 :- true.

nat (s X ) :- nat X .

leq 0 Y :- true.

leq (s X ) (s Y ) :- leq X Y .

Above, as a logic program and below, as fixed points.

nat = µ(λpλx .(x = 0) ∨+ ∃y .(s y) = x ∧+ p y)

leq = µ(λqλxλy .(x = 0)∨+∃u∃v .(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clauses can be made into fixed point specifications (mutual
recursions requires standard encoding techniques).
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Putting computation into an inference rule

Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m, n are natural numbers and N1,N2 are negative formulas.
There are exactly two possible macro rules:

` Θ ⇓ N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇓ N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro inference rule can contain an entire Prolog-style
computation.
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One step transitions in CCS

As inference rules in SOS (structured operational semantics):

A.P
A−→ P

P
A−→ R

P + Q
A−→ R

Q
A−→ R

P + Q
A−→ R

P
A−→ P ′

P|Q A−→ P ′|Q
Q

A−→ Q ′

P|Q A−→ P|Q ′

These can easily be written as Prolog clauses and as a fixed point
definition.
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The engineering of proof systems (cont)

Consider proofs involving simulation.

sim P Q ≡ ∀P ′∀A[ P
A−→ P ′ ⊃ ∃Q ′ [Q

A−→ Q ′ ∧ sim P ′ Q ′]].

Typically, P
A−→ P ′ is given as a table or as a recursion on syntax

(e.g., CCS): hence, as a fixed point.
The body of this expression is exactly two “macro connectives”.

• ∀P ′∀A[P
A−→ P ′ ⊃ · ] is a negative “macro connective”. There

are no choices in expanding this macro rule.

• ∃Q ′[Q
A−→ Q ′ ∧+ · ] is a positive “macro connective”. There

can be choices for continuation Q ′.
These macro-rules now match exactly the sense of simulation.
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