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Introduction

The announcement for this workshop begins with a passage about the utility of higher-order hered-
itary Harrop formulas for many applications, and the very existence of the workshop is a partial
correctness proof of the passage. Nevertheless, there are applications for which the intuitionistic
management of proof contexts (or, concretely, program databases) provided by AProlog has been
unable to provide natural, logical solutions. Many such problems, such as how to program the
Prolog bag of predicate — which would require a way of augmenting the database such that the
changes survive a failure — seem unlikely to yield to logical analysis in any system related to
hereditary Harrop formulas. Others, however, can be addressed by relatively simple modifications
of the logic underlying AProlog.

In 1990 two problems motivated Dale Miller and me to examine the possibility of designing a
logic programming language based on a fragment of Girard’s linear logic [2] similar to the hereditary
Harrop formula fragment of intuitionistic logic.

The first problem involved representing the notion of mutable object state within logic pro-
gramming [4]. While it is simple to use representative predicates to store the state of an object in
the database (or proof context), it is not possible to model the modification of state, since the only
change to the database allowed in AProlog is that of stack-like augmentation through the use of
implications in goals. Thus, if the state of a switch is stored using the predicates off and on, and
the program I includes the (slightly) higher-order clauses:

r— { VG.[toggle(G) C (on A (off D G))]
VG.[toggle(G) C (off A (on D G))]

*This paperappears in the proceedings of the 1992 Workshop on the AProlog Programming Language. The entire
proceedings is available electronically at http://www.cis.upenn.edu/"dale/1Prolog/workshop92.html.



then the proof of the goal off —o toggle(G) might proceed as follows:

T, off, on — G
Lof — off T,off — on DG
T, off — off A (on D G)
T, off — toggle(Q)
' — off D toggle(Q)

So, rather than being toggled, the switch has indeterminate state during the proof of G. The
problem is the implicit use of the contraction rule of intuitionistic logic which allows the original
state of the switch to be copied to both sides of the proof tree.

By considering linear management of proof contexts, in which the use of contraction and weak-
ening is restricted to formulas marked with the ! operator, this and several other similar problems
can be properly modeled. For instance, if the horn clauses above are replaced with the following
linear logic formulas:

- { {VG.[toggle(G) o— (on ® (off — G))]}
| HVG.[toggle(G) o= (off @ (on — G))]}

then the proof of the equivalent goal, off D toggle(G) proceeds as:

I, on —a
Loff — off T—> on—oG
T, off — off ® (on — Q)
T, off — toggle(Q)
' — off —o toggle(Q)

with the desired result that the switch is in the toggled position during the proof of G.

In two recent papers Miller and I have discussed at length the design of a logic programming
language based on such formulas [6, 5]. Inference rules for the operators of the language are given
in Figure 1. While these rules are not the standard ones of linear logic, they are equivalent to a
fragment of linear logic. In this system a proof context consists of two parts: the intuitionistic part
(on the left of the semi-colon), in which arbitrary implicit contraction and weakening are allowed,
and the linear part (on the right of the semi-colon), in which those rules are barred.

Concrete Syntax and the Relationship with AProlog

An important aspect of the Lolli project was the hope that the language could be designed as
a modular refinement of AProlog. That is, any purely AProlog program should run ‘unmodified’
within Lolli' and behave in the expected way.

Since the logical operators of the two languages are different, this embedding requires defining
a mapping of formulas of intuitionistic logic into the new system. Girard gave such a mapping in

!The current implementation of Lolli is an essentially first-order language (ie., while it allows quantification over
predicates, formulas, and terms, it does not implement A-terms or higher-order unification), so this section should be
read as referring to the similar fragment of AProlog.
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provided that y is not free in the lower sequent.
Figure 1: A proof system for the connectives T, 1, &, —o, =, !, ®, ¢, V, and 3.

the first paper on linear logic [2]. However, given that we are working in the restricted setting of
hereditary Harrop formulas it is possible to define a more parsimonious, albeit more complicated,
one. This translation, which was introduced in [5], is in the form of two mutually recursive functions,
one applied to formulas in negative positions (ie. program clauses), and the other to formulas in
positive positions (ie. queries).

(A)T = (A)” = A, where A is atomic

(true)™ =1
(true)” =T
(Bi A Ba)* = (B1)" @ (B2)*
(Bi A Bp)™ = (B1)” & (B2)™
(B1 D By)* = (B1)” = (B2)*
(Bl D) Bg)f = Bl)+ —0 (Bg)f
(Vz.B)t =Vz.(B)*

The intuitionistic sequent (over just these operators) ' — G is then mapped to the sequent
;0 — G, which has a proof if and only if the original sequent did.

Given the AProlog syntax for hereditary Harrop formula programs, this mapping suggests a
concrete syntax for the operators of the language, which is given in the table on the next page.



H Operator ‘ Parity ‘ Syntax H

T + erase
1 + true
& + &
- &
® + s
S, + ;
—o + -0
= + =>
! + {...}
Vx.B + forall x\B?
- forall x\B*
dz.B + exists x\B*

As with AProlog, terms and atoms are written in a curried form and the standard quantifier
assumptions are made. It is straightforward to confirm that existing Prolog and AProlog programs
are written, and run, as expected. For instance, the AProlog query:

pi X\ pi Y\

(memb X (X::Y)) =>
pi X\ pi Y\ pi Z\

(memb X (Y::Z) :- neq X Y, memb X Z) =>
memb G (a::b::nil).

represents the formula:

AG.[(VX.VY.memb(X,X :Y)) D
(VX VYNVZ.(memb(X,Y = Z) C (neq(X,Y) A memb(X, Z)))) D
memb(G, a :: b :: nil))

which, when translated into the new system becomes:

AG.[(VX.VY.memb(X, X :Y)) =
(VXVYNZ.(memb(X,Y : Z) o— (neq(X,Y) @ memb(X, Z)))) =
memb(G, a :: b :: nil))

which has the concrete syntax:

forall X\ forall Y\

(memb X (X::Y)) =>
forall X\ forall Y\ forall Z\

(memb X (Y::Z) :- neq X Y, memb X Z) =>
memb G (a::b::nil).

2The use of forall and exists as syntax for the explicit quantifiers represents a personal preference of this author.



And, when run, this query will have the same execution profile as the original AProlog query.

In contrast, programs which take advantage of the linear features of the system will of necessity
make use of the new elements of the syntax. So, for instance, the ill-performing intuitionistic
formulas defining the toggle predicate would be written (in AProlog and Lolli) as:

toggle G :- on, off => G.
toggle G :- off, on => G.

while the well-performing linear logic formulas would be written as:

toggle G :- on, off -o G.
toggle G :- off, on -o G.

In order for existing programs to work properly, it is assumed that the clauses in a module
are loaded into the unbounded (intuitionistic) portion of the proof context. The programmer can
override this assumption by preceding individual clauses with the LINEAR declaration. Thus, it is
possible to specify an initial setting for the switch within the program file, as in:

LINEAR on.

Note that the use of all uppercase for LINEAR, is not optional. Since the system uses curried
notation, this is the only way (short of ruling out its use in other forms) of recognizing that it is a
declaration, and not a predicate name. For consistency, and improved readability, this restriction
is also applied to the LOCAL and MODULE declarations described below.

Modules

Lolli programs are divided into modules in the same way as AProlog programs. By convention,
enforced by the interpreter, files carry the extension ‘.11’ and are loaded using the operator ‘--o’,
or at the top level, with ‘load modulename’, which is equivalent to ‘modulename --o top’.

A module may begin with a list of local constant declarations, such as:

LOCAL a B c.
LOCAL d.

with multiple constants separated by spaces, or listed in separate declarations. Because Lolli is
essentially first-order, types and kinds, and their declarations, are not needed or supported. A
future release of Lolli may support Ly-unification, but will likely still be type-free. Note that since
constants are untyped, predicate names may be reused at different arities, as in ordinary Prolog.

The AProlog module system has been extended to allow for parameterized modules. That is,
the module declaration is of the form:

MODULE modname param_1 ... param_n.

where modname matches the root of the file name, and the parameters are variables to be unified
placewise with the terms in the loading goal. Note that while the formal parameters are variables,
they are generally intended to be viewed as constants within the module, and as such may begin
with lowercase characters if the programmer so chooses. Thus, if the module is declared:



MODULE foo a B.

and is loaded with ‘foo ¢ d --o top’, then the clauses in foo.11 are loaded with all instances of
a and B instantiated to ¢ and d respectively.
The logical status of the module system can be summarized as follows:

MODULE mod Z1...Zp.
LOCAL y1...Ym-

Hixi...2pY1 . - Ym -

LINEAR H;x1...ZpY1---Ym-

Hpyxy .. 201 .. Y-

associates to mod the parameters x1 ... x,, the local constants ¥ ...y, and the clauses H; ... H),
which may contain free occurrences of the variables x; ...z, and constants yi ...¥y,,. When the
module is loaded within a goal formula, using the syntax mod t¢;...t,--o B, that goal is considered
only as short-hand for the goal

forall y\...forall y,,\

[(Hltl---tnyl---ym) => (Hztltnylym) _O---(Hptl---tnyl---ym) => B]
Here, we overload the symbols 1,...,%» to be constants in the LOCAL declaration and bound
variables in the displayed formula above. In general, this overloading should not cause problems.
Also, in this example, it is assumed that the formula B and the terms t1,...,¢, do not contain
occurrences of ¥1,..., Ym.

The implementation of parameterized modules was driven by the need to be able to handle
the object-oriented programming examples from an earlier paper [4], where they were used to pass
initialization information to objects. Nevertheless they have proved useful in a number of instances.
For example, the following module defines the shell of a multiset rewriting system, along the lines
of the example given in [6, 5]. The rewrite rules themselves, however, are in a separate module,
whose name is passed to this one as a parameter when this module is loaded. In order to ensure
the soundness of the rewriter, a local predicate name is used to store the multiset in the database.
That name is, in turn, passed to the rules module when it is loaded. The shell is given by:

MODULE rewrite rulemodule.
LOCAL hyp.

collect nil.
collect (X::L) :- hyp X, collect L.

unpack nil G :- G.
unpack (X::L) G :- hyp X -o unpack L G.

rewrite L K :- unpack L ((rulemodule hyp) --o (rewrite (collect K))).



while a rule module might be of the form:

MODULE rulesl hyp.

rewrite G :- G.

rewrite G :- hyp 4, ((hyp 2, hyp 2) -o rewrite G).
rewrite G :- hyp 4, ((hyp 3, hyp 1) -o rewrite G).
rewrite G :- hyp 3, ((hyp 2, hyp 1) -o rewrite G).
rewrite G :- hyp 2, ((hyp 1, hyp 1) -o rewrite G).

and a sample query would be:

?7- rewrite rulesl --o rewrite (3::nil) L.

70674 <- (3 :: nil) .;

70674 <- (2 :: 1 :: nil) .;

70674 <- (1 :: 2 :: nil) .;

?1674 <- (1 :: 1 :: 1 :: 1 :: nil) .;
70674 <- (1 :: 1 ::1 :: 1 :: nil) .
71674 <- (1 :: 1 :: 1 :: 1 :: nil) .;
701674 <- (1 :: 1 :: 1 :: 1 :: nil) .;
70674 <- (1 :: 1 :: 1 :: 1 :: nil) .;
70674 <- (1 :: 1 ::1 :: 1 :: nil) .
Implementation

Lolli is currently available in two implementations. The first is a simple Prolog meta-interpreter
given in [6, 5] and reproduced in Figure 2. The code as given implements only the propositional
fragment of the language (with a few differences from the concrete syntax described above), but
is useful for experimenting with the core of the underlying logic. The meta-interpreter could be
trivially extended to the first-order language by re-implementing it in AProlog. Other than the
change of syntax, that system would differ only in the addition of two clauses to handle quantifi-
cation. Unfortunately, the lack of op declarations in AProlog would make the system a little more
unwieldy.

The author has also developed a relatively rich implementation of Lolli in Standard ML of
New Jersey (which should port to any ML which can handle MLYACC and MLLEX). That im-
plementation supports the full language as described here, in addition to a reasonable selection
of evaluable predicates and one extra-logical control structure (guard expressions). That imple-
mentation was inspired by (and built on a core of code from) Elliott and Pfenning’s article on
implementing AProlog-like languages in a functional setting [1]. The full implementation of Lolli,
with documentation and copies of [6, 5] is available by anonymous ftp from add directions when
this is a reality later (by mid-summer)



% The logic being interpreted contains the following logical connectives:

% true/0
% erase/0
% bang/1

1= op(145,xfy,->). %
:- op(145,xfy,=>). %
:- op(140,xfy,x ). %
:— op(140,xfy,& ). %
:- op(150,xfy,::). %

a constant (empty tensor, written as 1 in the logic)
a constant (erasure, written as Top in the logic)

the modal, written as {} in the paper.

linear implication, written as -o in the paper
intuitionistic implication

multiplicative conjunction (tensor)

additive conjunction

non-empty list constructor

interp(G) :- prove(nil, nil, G).

isG(true). isR(erase).

isG(erase). isR(B) 1= isA(B).

isG(B) :- isA(B). isR(B1 & B2) :- isR(B1), isR(B2).

isG(B1 -> B2) :- isR(B1), isG(B2).
isG(B1 => B2) :- isR(B1), isG(B2).
isG(B1 & B2) :- isG(B1), isG(B2).
isG(B1 x B2) :- isG(B1), isG(B2).

isR(B1 -> B2) :- isG(B1), isR(B2).
isR(B1 => B2) :- isG(B1), isR(B2).

isG(bang(B)) :- isG(B).

prove(I,I, true).

prove(I,0, erase) := subcontext(0,I).

prove(I,0, Gl & G2) :- prove(I,0,Gl), prove(I,0,G2).
prove(I,0, R -> G) :- prove(R :: I, del :: 0,G).
prove(I,0, R => G) :- prove(bang(R) I, bang(R) :: 0,G).
prove(I,0, Gl x G2) :- prove(I,M,Gl), prove(M,0,G2).
prove(I,I, bang(G)) :- prove(I,I,G).

prove(I,0, A) :- isA(A), pickR(I,M,R), bc(M,0,A,R).

be(I,I,A, A).

bc(I,0,A, G -> R)
bc(I,0,A, G => R)
bc(I,0,A, R1 & R2)

:- bc(I,M,A,R), prove(M,0,G).
:- bc(I,0,A,R), prove(0,0,G).
:- bc(I,0,A,R1); bc(I,0,A,R2).

pickR(bang(R)::I, bang(R)::I, R).
pickR(R::I, del::I, R)
pickR(S::I, S::0, R)

subcontext(del::0, R ::I)
subcontext(S::0, S::I)
subcontext (nil, nil).

:= isR(R).
:— pickR(I,O0,R).

:- subcontext(0,I).

% The following code provides the hooks into application programs.
:— op(150,yfx,<-). % the converse of the linear implication

% Applications using this interpreter are specified using the <-/2 functor (denoting the converse
% of linear implication). We shall assume that clauses so specified are implicitly banged (belong
% to the unbounded part of the initial context) and that the first argument to -> is atomic. The
% following clause is the hook to clauses specified using <-.

prove(I,0, A) :- isA(A), A <- G, prove(I,0,G).

% A few input/output non-logicals.

prove(I,I, write(X)) :- write(X). prove(I,I, read(X)) :- read(X). prove(I,I, nl) :- nl.
% The following is a flexible specification of isA/1
notA(write(_)). mnotA(read( )). notA(nl). notA(erase). notA(true). mnotA(del).

notA(_ & _). mnotA(_ x _).
isA(A) :- \+(notA(A)).

notA(_ -> _). mnotA(_ => ). notA(bang(.)).

Figure 2: A Prolog implementation of Lolli

:- isR(R), subcontext(0,I).



Conclusion

The Lolli project is an ongoing one, and the language is by no means frozen. On the other hand,
the collection of program examples is growing [6, 5, 3], and this shows that the logic fragment
chosen represents a useful extension of the traditional hereditary Harrop formulas of AProlog.
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