
PROOF THEORETIC APPROACH TO SPECIFICATIONLANGUAGESJAWAHAR LAL CHIRIMARA DISSERTATIONINCOMPUTER AND INFORMATION SCIENCEPresented to the Faculties of the University of Pennsylvania in Partial Ful�llment of theRequirements for the Degree of Doctor of Philosophy.1995Dale MillerSupervisor of DissertationMark SteedmanGraduate Group Chairman

c
 Copyright 1995byJawahar Lal Chirimar

ACKNOWLWDGEMENTSI would, �rst and foremost, like to thank my parents and my wife for their endless supportand love during my life as a Ph.D. student.My committee members, Dale Miller, Carl Gunter, Robert Harper, Jon Riecke, Val Tan-nen and Peter Buneman provided me with important feedback on this research. I wouldespecially like to thank Dale Miller who encouraged me to think independently and in ascienti�cally disciplined manner. I learned not only about technical matters from Carl, mysupervisor for the �rst three years, but also about the global picture and the way researchis done. From Andre Scedrov, who was on my committee in all but name, I learned thevalue of rigor { without rigor there is no mathematics and mathematics is not all rigor. Imust thank Anil Nerode specially for introducing me to proof theory, functional languagesand type theories. I have bene�ted from various technical discussions with Jean Gallier,Doug Howe, Jim Lipton and Chet Murthy.There are many people whom I met in my stay at University of Pennsylvania. The numerousdiscussions with Vijay Gehlot, Ramesh Subramanium, Anuj Dawar, Chuck Liang, SandeepBiswas, Jon Riecke, Teow Hin Ngair, and other fellow students helped shaped my conceptsand opinions. Jon Riecke, Sandeep Biswas and Ernesto Pimentel helped with proof readingthis dissertation. Nandini, my wife, helped me clean up the grammar and insert all theappropriate commas and articles, hopefully! The sta� of the graduate students o�ce andbusiness o�ce put up very patiently with my eccentric habits and got all my papers throughin time.
iii

ABSTRACTPROOF THEORETIC APPROACH TO SPECIFICATION LANGUAGESJawahar Lal ChirimarAdvisor: Dale MillerIn this thesis I study FORUM as a speci�cation language. FORUM is a higher-order logicbased on the logical connectives of Linear Logic. As an initial example, I demonstrate thatFORUM is well suited for specifying concurrent computations by specifying the higher-order � calculus. Next, I focus on the problem of specifying programming languages withhigher-order functions, and imperative features such as assignable variables, exceptions and�rst-class continuations. I provide a modular and declarative speci�cation of an untypedprogramming language, UML, which contains the above mentioned features. Further, I usethe proof theory of FORUM to study program equivalence for the functional core of UMLaugmented with assignable variables. Using my compositional speci�cations in FORUM, Iprove equivalence of programs that have been challenging for other speci�cation languages.Finally I study the operation semantics of DLX, a prototypical RISC machine. I specify thesequential and pipelined operational semantics of DLX with important optimizations such ascall-forwarding and early branch resolution, and prove them to be equivalent. Furthermore,I study the problem of code equivalence via the FORUM speci�cation, and, in particular,analyze the problem of code rescheduling for DLX.
iv

Contents1 Introduction 12 FORUM 62.1 FORUM | Logic programming with multiple heads : : : : : : : : : : : : : 72.2 Specifying HO� in FORUM : 133 Specifying UML 203.1 �v | Functional Core of UML : 213.2 �vs | State in UML : 303.3 �ve | Exceptions in UML : 393.4 �vc | Continuations in UML : 513.5 UML | Putting it together : 584 Program Equivalence for �vs in FORUM 604.1 De�ning Observational Equivalence : 614.2 Reduction in �vs preserves Observational Equivalence : : : : : : : : : : : : 67v

4.3 Observational Equivalence proofs in FORUM : : : : : : : : : : : : : : : : : 725 Specifying DLX - a RISC architecture 825.1 The DLX architecture : 835.2 Sequential speci�cation for DLX architecture : : : : : : : : : : : : : : : : : : 855.3 Pipelining DLX - facing the hazards : 945.4 Call-forwarding and early branch resolution : : : : : : : : : : : : : : : : : : 1165.5 Program equivalence for DLX | Correctness of code scheduling : : : : : : : 1276 Conclusion and Future Work 1326.1 Conclusion : 1326.2 Future Work : 134A Proofs from chapter 3 138Bibliography 153
vi

List of Figures2.1 Proof Rules for Forum : 102.2 Specifying inequality of natural numbers in FORUM : : : : : : : : : : : : : 112.3 Reduction semantics for HO�-calculus : 153.1 Syntax for �v : 213.2 Natural Semantics speci�cation for �v : 233.3 �v, Signature for �v evaluator : 243.4 �v : Valuesv ! vl, Hv : �v ! tm : 253.5 v : vl! Valuesv, Lv : tm! �v : 253.6 Clauses in Ev - the evaluator for �v : 273.7 One step in the evaluation of (M N) : 283.8 Syntax for �vs : 313.9 Natural Semantics speci�cation for the new constructs in �vs : : : : : : : : 323.10 Constants for translating �vs terms : 333.11 Speci�cation in FORUM for new constructs in �vs : : : : : : : : : : : : : : 34vii

3.12 Syntax for �ve : 403.13 Natural Semantics speci�cation for the new constructs in �ve. : : : : : : : : 423.14 Constants for translating �ve terms : 453.15 Translating the new construct of �ve to FORUM : : : : : : : : : : : : : : : 453.16 Constants for exception management in FORUM : : : : : : : : : : : : : : : 473.17 Speci�cation in FORUM for new constructs in �ve : : : : : : : : : : : : : : 483.18 Syntax for �vc : 533.19 Constants for translating �vc terms : 543.20 Speci�cation in FORUM for new constructs in �vc : : : : : : : : : : : : : : 543.21 Cvc, translation of EvContvc to FORUM terms of type vl! o : : : : : : : : 563.22 Speci�cation for callcc in the presence of exceptions : : : : : : : : : : : : : : 574.1 Contexts in �vs : 634.2 Cvs, translation of EvContvs to FORUM terms of type vl! o : : : : : : : : 655.1 Semantics of example instructions in DLX. : : : : : : : : : : : : : : : : : : : 845.2 List of DLX instructions selected for speci�cation. : : : : : : : : : : : : : : : 855.3 Block diagram for the connectivity of functional blocks in the DLX. : : : : : 865.4 Signature for speci�cation of DLX : 895.5 Grammar for DLX programs : 905.6 Sequential speci�cation of DLX : 915.7 Example program in DLX : 92viii

5.8 DLX pipeline structure : 955.9 Signature for speci�cation of DLX : 1005.10 DLX pipeline state transition functions for clock : : : : : : : : : : : : : : : : 1015.11 �1 - table for hazard detection in the DLX pipeline : : : : : : : : : : : : : : 1025.12 Speci�cation for the DLX pipeline { clock, bg, IF and ID. : : : : : : : : : : : 1045.13 Speci�cation for the DLX pipeline { EX. : 1055.14 Speci�cation for the DLX pipeline { MEM. : : : : : : : : : : : : : : : : : : : 1065.15 Speci�cation for the DLX pipeline { WB. : 1075.16 Changes in the DLX pipeline to reduce branch penalty. : : : : : : : : : : : : 1175.17 �2 { new table for hazard detection in DLX pipeline : : : : : : : : : : : : : 1195.18 DLX pipeline state transition functions in the presence of call-forwarding andearly branch resolution : 1205.19 ' { Call forwarding functions : 1215.20 Speci�cation for the DLX pipeline { IF and ID. : : : : : : : : : : : : : : : : 1235.21 Speci�cation for the DLX pipeline { clock, bg, EX. : : : : : : : : : : : : : : 1245.22 Speci�cation for the DLX pipeline { MEM and WB. : : : : : : : : : : : : : : 125A.1 Constants in �ml used in translating UML to FORUM : : : : : : : : : : : : 139A.2 Translating UML to FORUM : 140A.3 Translating answers in UML to FORUM : 140A.4 Translating FORUM terms to UML : 141ix

A.5 Matching �nal con�gurations of computations in FORUM : : : : : : : : : : 145

x

Chapter 1IntroductionEver since we have had programming languages, we have had to specify the computationalbehaviors of the languages. In the most naive sense, we specify the actions of if M then Nelse P | a typical phrase in a programming language | by saying that �rst execute M,and if the result is true then evaluate N , otherwise evaluate P. Even in this simple example,there are many ambiguities inherent in the above speci�cation. For example, it is not clearwhether P is to be computed only when M evaluates to false, or even if M evaluates tosome other value, say 3. On the one hand, we would like a speci�cation to be precise in asmuch as we would like di�erent implementations of the same speci�cation to have identicalcomputational behavior. On the other hand, if a speci�cation is as precise as an actualimplementation of a programming language, then the entire purpose of a speci�cation as atool to understand the language independently of its implementation is defeated.Rigorous speci�cations which de�ne the grammar and meaning of programming languagesare indispensable in the present context for a variety of reasons. These include verifyingsafety of programs, developing optimizing compilers, and maintaining programs as languagedesign evolves. Unfortunately, very few widely used programming languages have such arigorous speci�cation, the only two I know of being [HMT89, BR90]. In this thesis, I use1

FORUM [Mil94] as a speci�cation language. Speci�cations in FORUM convert computa-tions into proofs | formal objects amenable to logical analysis within the meta-theory ofFORUM. I call this style of speci�cation proof-theoretic for the key emphasis placed uponproofs and their analysis.Precise speci�cation provides the sound basis on which one builds implementations of thelanguage and programs. To quote [HMT89] :: : : for a robust program written in an insecure language is like a house builtupon sand.The main point is that a programming language is di�erent from its implementation |speci�cations are a way of making precise the behavior that an implementation must exhibitin order to implement a given programming language. Speci�cations play a crucial role inthe present software environment where di�erent commercial vendors are implementing thesame language. It will be highly undesirable if programs written in a programming languagehave di�erent behaviors in two implementations of the same language!I expect speci�cation languages to play a variety of roles. The most important among theseare :� a speci�cation language should be rich enough to specify imperative, functional andconcurrency features modularly� provide modular speci�cation of di�erent features of the programming language, re-sulting in better and easier understanding of the programming language itself, and� should be able to use the meta-theory of the speci�cation language to study theprogram transformations and verify the correctness of implementations of the speci-�cations.In this thesis I use FORUM to specify the operational semantics of programming languages.I specify the operational semantics of UML, a prototypical functional language, and the2

sequential and pipelined operational semantics of the DLX machine [HP90]. I take UML {an untyped higher-order functional language with exceptions, state and callcc, i :e: �rst-classcontinuations { as a prototypical functional language. UML is the same as the untypedcore Standard ML (SML) [HMT89], excluding data-types and pattern matching, augmentedwith callcc. UML is a signi�cant language in as much as it contains both the functionaland imperative features of SML, and thus provides a simpler setting to study the problemsthat arise due to these features in SML. UML supports �rst- class continuations becauseof the rich programming paradigm they provide. The DLX machine is representative ofthe eminently successful and popular RISC architectures of the last decade including Inteli860, MIPS R2000/R3000, Motorolla 88000, SPARC, PowerPC. The speci�cation of DLXresolves data and structural hazards, and implements optimizations characteristic of modernpipelined machines. The speci�cation of pipelined DLX underlines the fact that FORUMprovides the appropriate framework to specify a variety of computational processes { fromas high-level and abstract as UML to as low-level and concrete as DLX.Many attempts have been made at specifying the operational semantics of fragments of UML[Lan64, FF86, WF91, HMT89, MP92, HM92, Han90]. In this thesis I am able to addressmany issues regarding the speci�cation of UML which the above semantics could not addresssatisfactorily. Firstly, I am working in a rich meta-theory where concurrency, higher-orderfunctions and imperative features can be speci�ed. This is a mixture of features whichhas traditionally been very di�cult to specify. Secondly, in my translation computationsbecome proofs | formal objects | which I analyze using proof transformations. Usingthis analysis I am able to prove many program equivalences in [MS88, OT93, SF92, MT92].Finally, declarative and modular descriptions of imperative features such as mutable state,�rst-class continuations, and exceptions has been an elusive goal for speci�cation languages,which I believe is satisfactorily answered by the speci�cations in FORUM.Although the extant formal presentations of pipelines specify the temporal behavior of thepipeline [TK93], they are unable to provide a concurrent computational speci�cation of thepipelined operational semantics. The FORUM speci�cation of the DLX pipeline is a concur-rent executable logic program { one obtains a simulation tool for free. In my thesis, I specify3

the sequential and pipelined operational semantics for DLX, with important optimizationssuch as call-forwarding and early branch resolution [HP90]. Since
oating-point operationsand interrupts introduce unilluminating details to the speci�cation, I have excluded themfrom the DLX instruction set that I specify. I prove the crucial equivalence theorem assert-ing the equivalence of the sequential and pipelined speci�cations of DLX. Furthermore, Ide�ne notions of program equivalences for DLX programs, and prove the correctness of thecode rescheduling typically done for RISC machines [HP90]. The declarative speci�cationof pipelined DLX operational semantics and the proofs of correctness of code reschedulingunderlines the richness of FORUM as a speci�cation language.The point behind the speci�cations of imperative features is to extract the logical essenceof imperative extensions of programming languages. The speci�cation of state in naturalsemantics, higher order logic or other similar meta-theories [HMT89, MT92] representsstate by non-logical means, such as a �nite function, making the extension of state non-modular. In FORUM state is represented by logical propositions and is maintained in thesequent by logical rules. Thus, one can reason about state variables using cut-elimination.The understanding of this logical nature of imperative features underlines the richness ofFORUM and its meta-theory.The thesis has �ve main parts. In the �rst part I explain the logic programming methodologyof FORUM, and then specify Higher-Order � Calculus (HO�-calculus), a typical calculus forconcurrent processes, [MPW92a, MPW92b] substantiating the idea that FORUM providesan appropriate framework for specifying concurrent processes. In the second part, I specifyUML in stages starting from the functional part of UML, and adding exceptions, mutablestore and callcc modularly in separate steps. I prove that the FORUM speci�cation ofUML without callcc is the same as the speci�cation in [HMT89]. In the third part, Ide�ne a notion of program equivalence induced by the translation into FORUM, and provethat it coincides with the standard de�nition of program equivalence. Furthermore, usingFORUM speci�cations I prove several of the program equivalences involving mutable storein [MS88, Sie93, SF92, OT93]. In the fourth part, I specify the sequential and pipelinedoperational semantics for DLX. I also prove that the sequential and pipelined operational4

semantics are equivalent. Furthermore, I formulate a notion of program equivalence forDLX programs, and prove correctness of code-rescheduling for the DLX machine. In the�nal section, I explain the extensions that I seek of my current research and how I intendto carry those out.

5

Chapter 2FORUMIn this chapter I introduce FORUM, a new meta-logic proposed in [Mil94]. FORUM canencode linear logic [Gir87] without using any non-logical constants. On the one hand, prov-ability in FORUM is the same as provability in linear logic. On the other hand, in FORUMall right hand rules permute with each other | a property which is not true of the proof sys-tems for linear logic in [Gir87]. The novelty of FORUM is in the choice of connectives whichmakes all right hand rules permute. Since uniform proofs are complete for FORUM, follow-ing [MNPS91] a logic programming language can be designed for FORUM. FORUM extendsearlier work in designing logic programming languages from linear logic [HM91, AP90] inthe sense that the provability in FORUM is the same as the provability in linear logic.Clauses in FORUM can have multiple heads. I show some programming examples whichexploit multiple heads to represent synchronization in FORUM. The basic intuition is thatconcurrent computations can be represented in FORUM. I substantiate this claim by trans-lating a particular presentation of a fragment of Higher-Order � (HO�-calculus) calcu-lus [San92a] which is rich enough to encode Lazy Lambda calculus [San92b, San92a, Chi94].The parallel combinator of HO�-calculus is mapped to } , the multiplicative disjunction ofLinear Logic. This identi�cation of concurrency with proof search in a multiple conclusion6

logic where all the right-hand rules permute with each other makes the intuitions techni-cally precise. The handling of names using the restriction opreator in HO�-calculus and theuniversal quanti�er in FORUM are quite di�erent, and consequently the translation intoFORUM is sound but not complete. The computational mechanism of FORUM providesa new
avor of process theories which are very expressive, and the translation shows howcomputations maybe mapped from HO�-calculus to FORUM.In the �rst section, I introduce FORUM and de�ne its syntax and proof rules precisely. Iillustrate the programming style in the presence of multiple heads via some examples. In thesecond section, I introduce the syntax, structural equivalence, and reduction semantics ofHO�-calculus. I translate HO�-calculus into FORUM and prove that if process P reducesto Q, then the translation of Q entails the translation of P . Furthermore, I illustrate thedi�erence between the restriction operator of HO�-calculus and the universal quanti�er inFORUM.2.1 FORUM | Logic programming with multiple headsFORUM [Mil94], is best explained as a particular presentation for Linear Logic whichgives us access to the entire Linear Logic as a logic programming language in the sense of[MNPS91, AP90]. Linear logic was introduced in [Gir87] as a new logic which decomposedthe connectives of the familiar classical and intuitionistic logics. This �ner analysis ofconnectives had immediate implications in the design of logic programming languages whichanalyzed connectives as directions for proof search [MNPS91]. LO[AP90] and Lolli [HM91]were two new logic programming languages which resulted from di�erent sets of connectivesof linear logic. However, the logical constants in neither of these languages were rich enoughto encode the entire linear logic. In [Mil94] classical linear logic is encoded in FORUMwithout using any non-logical constants. The logical connectives in FORUM are �� ,),} , & , 8, ? and >. �� , } , & , 8, ? and > are linear logic connectives as de�nedin [Gir87]. Instead of the modalities of linear logic, FORUM has), the intuitionisticimplication. In [Mil94] it was proved that the proof system of FORUM has the uniform7

proof and focussing property [MNPS91, AP90]. FORUM can be thus thought of LinearLogic and Church's simple theory of types [Chu40] put together. I begin by de�ning thesyntax of FORUM.De�nition 2.1 [Types, Terms and Formulas in FORUM] Let � be a set of base types ando 2 � the type of propositions. The set of well formed types is de�ned as� if � 2 � then � is a type, and� if �1 and �2 are types then so is �1 ! �2.Let � be a set of pairs whose �rst component is a term, and the second component is thetype of the term, written as f : � , if f is a term with type � in �. �� : o ! o ! o,): o ! o ! o, } : o ! o ! o, & : o ! o ! o, 8� : (� ! o) ! o, ? : o and > : o arethe logical constants in �.) denotes intuitionistic implication and the in�x symbol ��denotes the converse of �� . The set of terms over � is de�ned as :� If c : � 2 � then c is a term of type � .� If f : � ! � and t : � then (f t) is a term of type �.� If x is a variable of type � and t : � then �x: t is of type � ! � .Terms of type o are de�ned to be formulas. The order of a type �1 ! �2 ! : : :! �n ! �0is the one plus the max of the orders of �1 : : : �n, and �0 2 �. The order of the elements of� is 0. For a non-logical constant c : �1 ! �2 ! : : :! �n ! �0 2 �, �0 is a member of �,and if �0 is o then c is called a predicate.I follow [Bar84] in conventions regarding free and bound variables and � conversion. Asusual,! associates to the right and application to the left. The logical constants are writtenin the familiar in�x form, and I write 8��x: t as 8x : �: t. Let t = s, for �-terms t and smean that t and s are � equivalent. If the variable x and term s are of the same type, then8

t[x := s] denotes the capture-free substitution of s for x in t. Besides � conversion, termsare also related by the following rules of � and � conversions:� The term s1 �-converts to the term s2 if s1 contains a subformula occurrence ofthe form ((�x: t1) t2) and s2 arises from replacing that subformula occurrence witht1[x := t2].� The term s1 �-converts to the term s2 if s1 contains a subformula occurrence of theform �x: (t x), in which x is not free in t, and s2 arises from replacing that subformulaoccurrence with t.The proof system for FORUM as presented in �gure 2.1 is a minor variation on the one in[Mil94]. The sequents comprise of �ve parts, �, 	, �, B and �. The signature of the termsin the sequent is given by �. The intuitionistic part of the sequent, 	, is treated like a set,i :e: contraction, weakening and exchange are allowed on formulas in 	. The linear parts ofthe sequent, � and �, are treated as multisets of formulas, allowing only exchange on theseparts of the sequent. In the sequent � : 	 ; � B�! �, one applies left rules to the formulaB. By abuse of notation I write B;	 to mean fBg[, and �1;�2 to stand for the multisetunion of the multisets �1 and �2, and B;�2 to stand for the multiset union of the multisetsfBg and �2. 	[c := t] denotes the capture-free substitution of t for c in all formulas in theset 	 and �[c := t] denotes the capture-free substitution of t for c in all formulas in themultiset �. I write A �� B as an abbreviation for the statement that both � : ; A �! Band � : ; B �! A are provable in FORUM. I say that A is logically equivalent to B whenA �� B. One can prove a cut-elimination theorem for FORUM, which states that CutL,CutI, and CutS are redundant in FORUM [Mil94]. Also note that if � : 	 ; � �! � isprovable, � � �1 and 	 � 	1, then �1 : 	1 ; � �! � is also provable.Following the line of reasoning in [MNPS91], logic programs can be viewed as collectionsof formulas specifying the meaning of non-logical constants, and computation is identi�ed9

� : 	 ; �1 �! B;�1 � : 	 ; �2; B �! �2� : 	 ; �1;�2 �! �1;�2 CutL� : 	 ; �! B � : 	; B ; � �! �� : 	 ; � �! � CutIt is a �-term of type � �; c : � : 	 ; � �! �� : 	[c := t] ; �[c := t] �! �[c := t] CutS� : 	 ; � �! >;� >-R � : 	 ; � �! �� : 	 ; � �! ?;� ?-R� : 	 ; � �! B;� � : 	 ; � �! C;�� : 	 ; � �! B & C;� & -R� : 	 ; B;� �! C;�� : 	 ; � �! B �� C;� �� -R � : B;	 ; � �! C;�� : 	 ; � �! B) C;�) -R� : 	 ; � �! B;C;�� : 	 ; � �! B }C;� } -R y: �;� : 	 ; � �! B[y=x];�� : 	 ; � �! 8x : �: B;� 8-R� : 	 ; � B�! �� : 	 ; B;� �! � decide1 � : B;	 ; � B�! �� : B;	 ; � �! � decide2� : 	 ; A�! A initial � : 	 ; ?�! ?-L� : 	 ; � B�! �� : 	 ; � B & C�! � & -L � : 	 ; � C�! �� : 	 ; � B & C�! � & -L� : 	 ; �1 �! B;�1 � : 	 ; �2 C�! �2� : 	 ; �1;�2 B��C�! �1;�2 �� -L� : 	 ; �! B � : 	 ; � C�! �� : 	 ; � B)C�! �) -L� : 	 ; �1 B�! �1 � : 	 ; �2 C�! �2� : 	 ; �1;�2 B}C�! �1;�2 } -Lt is a �-term of type � � : 	 ; � B[t=x]�! �� : 	 ; � 8x:�:B�! � 8-LFigure 2.1: The rule 8-R has the proviso that y is not declared in the signature �.10

(neq (s X) z) �� 1(neq z (s X)) �� 1(neq (s X) (s Y)) �� (neq X Y)Figure 2.2: Specifying inequality of natural numbers in FORUMwith the search for uniform proofs. The key feature of FORUM is that the right-hand sideof the sequent can now have more than one formula. How does one interpret uniform proofsin the presence of more than one goal formula ? The answer in [Mil94] comes from theconcept of permutabilities in proof theory [Kle64]. Informally, it is required that the orderin which goal formulas are processed does not a�ect the success of the proof search. Thisnovelty lets us represent concurrent computations in FORUM, as was exhibited in [Mil94]by specifying Algol-like implementations of CML, and First-order �-Calculus in [Mil93].I illustrate the computational mechanism of FORUM with a simple example. I begin byspecifying the natural numbers in FORUM. I introduce a new type in FORUM called natand two new constants z : nat and a function s : nat ! nat. The intended meaning isthat nat is the type of natural numbers, z denotes 0, and s denotes the successor function.I now want to de�ne a predicate neq : nat ! nat ! o, which should be provable of thetwo terms m and n of type nat, if m is not equal to n. The meaning of neq is speci�edby the universal closure of the clauses in �gure 2.2, called Cneq. The collection of clausesis called the program for the non-logical constant neq. In the speci�cation I use a newlogical connective 1. It can be de�ned as ? �� ?, and the proof rule can be derivedcorrespondingly. I show the right-hand side rule below.� : 	 ; �! 1 1� RTo check neq for (s z) and (s s z), I try to construct a proof ofz : nat; s : nat! nat : Cneq ; �! (neq (s z) (s s z)):11

If the sequent is provable then the two numbers are not equal. For the example at hand,the proof is constructed below. The �rst rule I apply is the backchain rule. The backchainrule is an abbreviation, instead of constructing the following proof�� : 	; C �� B ; � �! C;� � : 	; C �� B ; � B�! B initial� : 	; C �� B ; � C��B�! B;� �� �L� : 	; C �� (B1 } :: }Bn) ; � �! (B1 } :: }Bn);�1;�2; : : : ;�n;�n+1 decide2� : 	; C �� (B1 } : : : }Bn) ; � �! �1; B1;�2; : : : ;�n; Bn;�n+1 exchange; } � RI abbreviate it as �� : 	; C �� (B1 } : : : }Bn) ; � �! C;�1;�2; : : : ;�n;�n+1� : 	; C �� (B1 } : : : }Bn) ; � �! �1; B1;�2; : : : ;�n; Bn;�n+1 backchainB is an abbreviation for B1 } : : : }Bn, and � is an abbreviation for �1; : : : ;�n+1.The formula on the right hand side uni�es the head of the clause (neq (s X) (s Y)) ��(neq X Y). So I then have to prove (neq z (s z)). The goal now uni�es with the head of theclause (neq z (s X)) �� 1, leaving me to prove 1. I complete the proof using the 1 rule. Inthis manner, proof search for cut-free proofs is identi�ed with computation.z : nat; s : nat! nat : Cneq ; �! 1 1z : nat; s : nat ! nat : Cneq ; �! (neq z (s z)) backchainz : nat; s : nat! nat : Cneq ; �! (neq (s z) (s s z)) backchainThe novelty of FORUM lies in the fact that the clauses can contain multiple heads, i :e:formulas like A}B. I want to specify a predicate inc: (nat ! o) ! o, which takes apredicate of type nat ! o as an argument, such that every time inc is executed in a proofa new number is returned. Let ctr: nat ! o be a non-logical constant, denoting a memorycell in the environment storing the next number to be used by inc. Suppose ctr is initializedto some number, then the only clause required will be the universal closure of the followingclause called Inc.[(inc P)} (ctr X)] �� [(P X)} (ctr (s X))]:12

Both (inc P) and (ctr X) must be on the right hand side of the sequent before one canbackchain on the clause. In this sense, clauses with multiple heads enforce synchronizationbetween various predicates. The last step in the uniform proof ofinc : (nat! o)! o; ctr : nat ! o; P : nat! o : Inc ; �! (inc P)} (ctr (s z))is shown below. ...ctr; inc; P : Inc ; �! (P (s z))} (ctr (s s z))ctr; inc; P : Inc ; �! (inc P)} (ctr (s z)) backchainTo use the clause Inc, I need to have both (inc P) and (ctr (s z)), or, in other words, (inc P)and (ctr (s z)) synchronize with each other. Now, by backchaining on Inc the goal becomes(P (s z))} (ctr (s s z)). Note that because ctr is linear it is destructively read by the Incclause | the number stored in ctr is increased by one as a result of backchaining.The examples above point towards a relationship between concurrency and proof search inmultiple conclusion logic where the right hand side rules permute. The idea is that all theprocesses on the right hand side are free to compute concurrently and synchronize with eachother. Some of these intuitions will be made precise in the next section, where I specify aparticular presentation of a fragment of HO�-calculus in FORUM.2.2 Specifying HO� in FORUMIn this section I specify a fragment of HO�-calculus as de�ned in [San92a] to makeconcrete my claim that FORUM can be used to represent both abstraction and concur-rency. I begin with a brief presentation of HO�-calculus, and refer the interested readerto [Mil89, MPW92a, MPW92b, San92b, San92a] for a detailed introduction to, and analysesof HO�-calculus and �-calculus. The motivating idea of HO�-calculus is to provide higherorder communication in the framework of synchronous mobile process algebras. The frag-ment of HO�-calculus that I consider can encode call-by-value and call-by-name lambda13

calculus [Mil90, San92b, San92a]. I use x; y; : : : possibly subscripted, to stand for Namesand their capitalized versions to range over Vars. Moreover, K stands for a process or aname, and U stands for a variable or a name.De�nition 2.2 [Syntax for HO�-calculus.] The processes in HO�-calculus are de�ned byP and the pre�xes by �.P ::= 0j (X)j (P j P)j (�x(P))j (�:P)� ::= x(U) j xhKi0 is the inactive process | not capable of any action or interaction. x(U):P accepts inputfor variable U along the channel x, while xhKi:P transmits K along the channel x. �x(P)makes the name x private to the process P , and P jQ places the two processes P and Q inparallel. The variable U is bound in x(U):P , and x is bound in �x(P). I often abbreviate�:0 as �. The reduction relation for HO�-calculus is divided in two parts, the structuralequivalence and the reduction relation. We illustrate the reduction semantics and explainthe syntax conceptually with some examples.Example 2.3 Examples of reductions in HO�-calculus.1. xhQi:P j x(Y):R !� P jR[Y := Q]2. �x(whxi:P jQ) j w(y):R !� �x(Q jR[y := x]) j P , x 62 FV(P) and x 62 FV(w(y):R).3. xhQi:0 j x(Y):(Y j P) !� Q j P 14

xhQi:P j x(Y):R)� P jR[Y := Q] ComPxhyi:P j x(z):R)� P jR[z := y] ComNP)� Q�x(P))� �x(Q) �RP)� P1P jQ)� P1 jQ ParP �� P1 P1)� Q1 Q1 �� QP)� Q StructP)� P Re
P)� Q1 Q1)� QP)� Q TransFigure 2.3: Reduction semantics for HO�-calculusIn example 2.3.1, xhQi:P transmits Q along the channel x and x(Y):R receives Q onthe x. The rule underlines one key feature of the calculus | the communications aresynchronous, i :e: a process, e:g : xhQi:P , that wants to send a message waits until thereis a process, e:g : x(Y):P , in the environment which will accept that message, hence thename synchronous message passing. This also ensures a
avor of sequencing in the process,e:g : in �1:�2:P the action corresponding to �1 must happen before the action for �2 canoccur. Another basic feature of HO�-calculus is the capability of changing the connectivityamongst processes during computation. In example 2.3.2, the channel x in �x(whxi:P jQ)is a private channel between whxi:P and Q. However, it is possible for x to extrude itsscope and be sent to w(y):R. In this sense, the connectivity of the processes can changeduring the computation, and hence the name mobile processes. Example 2.3.3 illustratesthe novelty of Higher- order processes. x(Y):(Y j P) can be viewed as a process that willexecute whatever process it receives from the environment in parallel with P . Higher-order communications provides the familiar substitution of �-calculus in the context ofHO�-calculus. [San92b, San92a] gave a nice encoding of Lazy �-calculus in HO�-calculus15

and showed the correspondence betweenHO�-calculus and First Order �. [Chi94] comparesthe encoding of Lazy �-calculus in HO�-calculus to the Continuation-passing semantics.Now, I de�ne the structural equivalence and reduction semantics of HO�-calculus formally.De�nition 2.4 [Structural Equivalence, ��] �� is de�ned as the least congruence con-taining the following rules.1. P j 0 �� P .2. P jQ �� Q j P .3. (P jQ) jR �� P j (Q jR).4. �x(P) jQ �� �x(P jQ), x 62 FV(Q).5. �x(P) �� P , x 62 FV(P).6. �x(�y(P)) �� �y(�x(P)).The reduction semantics for HO�-calculus is speci�ed as an unlabeled system in termsof proof rules. One notable feature is that the separation of structural equivalence fromreduction rules enables a concise presentation of the latter. It should be noted that reductionis built as a congruence for all term constructors except pre�xing, as seen in the rules �R,Par , agentR and Struct ; this feature forces a strict order of evaluation on pre�xed processes,as we saw in example 2.3.1.De�nition 2.5 [Translation of HO�-calculus in FORUM] Let i be a new basic type, thetype of names, and �� be the set consisting of the following constants needed to describethe translation of HO�-calculus into FORUM.16

sendnm : i! i! o! oreceivenm : i! (i! o)! osendpr : i! o! o! oreceivepr : i! (o! o)! oThe translation ()o takes a process in HO�-calculus to a formula, i :e: terms of type o, inFORUM. 0o = ?Xo = X(P jQ)o = P o }Qo(�x(P))o = 8x : i: P o(xhQi:P)o = sendpr x Qo P o(x(Y):P)o = receivepr x �Y: P o(xhyi:P)o = sendnm x y P o(x(z):P)o = receivenm x �z: P oLet E� be the set consisting of the universal closure of the following clause, which describesthe meaning of the non-logicals in ��.(receivenm x R)} (sendnm x y P) �� (Ry)}P; NameCl(receivepr x R)} (sendpr x Q P) �� (RQ)}P; ProcessClSynchronization for processes exchanging names, i :e: terms of type i, is speci�ed byNameCl , while ProcessCl speci�es synchronization for processes exchanging processes, i :e:terms of type o. For the clauses in E� to make sense, I need to show that the translationcommutes with substitution. The proof is a straightforward induction on the structure ofthe process P .Lemma 2.6 (Substitution Lemma for ()o) Let P and Q be processes, then17

� P o[x := y] = P [x := y]o� P o[X := Qo] = P [x := Q]oThis translation is a simple extension of the one in [Mil93] to the case of HO�-calculus.Although I cover a small fragment of the calculus here, it is easy to extend these ideas alongthe line of reasoning in [Mil93] to handle richer versions of HO�-calculus. However, speci-fying HO�-calculus augmented with constants and agents, i :e: abstractions over variablesor names in processes is rather subtle. The translation is fairly simple, and gives concreteintuition about the nature of concurrency in FORUM. Concurrency is identi�ed with proofsearch in a multiple conclusion logic, where all the right-hand rules permute with eachother. The usage of } as the translation of the parallel combinator of HO�-calculus in theabove translation makes this intuition technically precise. The fact that the intention of theHO�-calculus is captured by the translation is underlined by lemma 2.7 and theorem 2.8.Lemma 2.7 states that if two processes are structurally equivalent, then their translationsare logically equivalent. The proof for lemma 2.7 follows from the logical equivalences in[Gir87]. Let P � =def 8~x: P o, where ~x are all variables of type i in the signature of P o.Theorem 2.8 states that if P reduces to Q, then Q� entails P �. In the proof of theorem 2.8,going from left to right, the proof for theorem 2.8 is an induction on the height of reductionin HO�-calculus.Lemma 2.7 Given two processes P and Q in HO�-calculus, if P �� Q then P o ��� Qo.Theorem 2.8 Let P and Q be HO�-calculus processes, and � contain the names andprocess variables in P and Q.if P)� Q then ��;� : E� ; Q� �! P �is provable in FORUM.The reductions in translated processes have a simple shape. One essentially reorganizesthe shape of the process using structural equivalences until either NameCl or ProcessCl18

is applicable. Although it is an interesting topic, I do not consider the issue of explaininginteresting equivalence relations onHO�-calculus in FORUM, because the above translationmakes my point | concurrent computations can be represented in FORUM. In [Mil93]bisimulations and trace equivalences for First Order �-calculus without � are analyzed inthe framework of a FORUM like language.The translation of HO�-calculus into FORUM is proved sound by theorem 2.8, but is itcomplete ? This question was answered a�rmatively in [Mil93] for the �-calculus withoutthe restriction operator. However, in FORUM� : ; 8x: 8y: Q[c := x][d := y] �! 8z: Q[c := z][d := z]is provable, where Q is the translation of some process into FORUM. If the translation iscomplete, then for any process Q, this would imply that�x(Q))� �x(�y(Q)):This is false. Hence, the universal quanti�er has a logical nature which is richer thanthat of the restriction operator in HO�-calculus. In the later chapters, I explore variousspeci�cations in the \process theory" obtained from FORUM, and its expressive powerand abstraction mechanisms are made clear. Nonetheless, the question of a proof theoreticanalogue of HO�-calculus remains, and there is some work in progress with new quanti�erswhich might shed more light on the restriction operator.
19

Chapter 3Specifying UMLIn this chapter I specify UML (Untyped ML) | untyped core SML excluding patternmatching and data-types, augmented with callcc | in FORUM. I prove that a program Pin UML without callcc evaluates to a value V as per the speci�cation in FORUM, if and onlyif P evaluates to V as per the speci�cation in [HMT89]. The correspondence between thetwo operational semantics is restricted to core UML without callcc because [HMT89] doesnot provide a speci�cation for callcc. The main point of this section is that FORUM allowsus to specify imperative features | exceptions, mutable state, �rst-class continuations |in a modular and declarative way. In particular, I �rst specify the functional core of UML,and then specify exceptions, mutable state, and �rst-class continuations independently. If Ineed the speci�cation for the functional core, and any combination of the imperative partsof UML, I just put the corresponding speci�cations together. For example, if I want thespeci�cation for the functional core of UML with exceptions, all I have to do is put myspeci�cation for the functional core of UML together with the speci�cation for exceptions!Modularity of speci�cations is as helpful in understanding the design of a programminglanguage as it is in the design of the language itself. However, modularity is crucial notonly for such esoteric purposes as `understanding' and `designing' languages, but also formany practical concerns including proving correctness of implementations [HM92], verifying20

M ::= V (�v)j (f M M) f 2 Oj (M M)j (if M M M)j (let val x =M inM)j (let fun f x =M inM)V ::= x x 2 Vars; (Valuesv)j n n 2 Zj b b 2 Bj (�x:M)j �E ::= [] (EvContv)j E[f []M] f 2 Oj E[f V []] f 2 Oj E[[]M]j E[V []]j E[if []M M]j E[let val x = [] inM]Figure 3.1: Syntax for �vcorrectness of optimizations in compilers, understanding program equivalences, and provingmeta-theoretic properties such as type soundness in statically typed languages [WF91].The plan for this chapter is to introduce the separate parts of UML in stages, and providetheir speci�cations. I �rst introduce the syntax and operational semantics for �v, thefunctional core of UML, which is most familiar and similar to the language considered in[HM92, MP92]. Next, I specify �v in FORUM, and de�ne when a translated program inFORUM evaluates to a value. I then prove the correspondence theorem between the FORUMspeci�cation and the speci�cation in [HMT89]. The program is extended modularly to thefunctional core with exceptions, state, and continuations.3.1 �v | Functional Core of UMLThe syntax of �v - the functional core of UML - is very similar to the functional part of21

SML without data-types. The syntax of �v is de�ned formally in �gure 3.1. The languagecontains integers, Z , and booleans, B, as constants. Arithmetic operators and equality testfor integers are included in the language as term constructors in the set O. Functionalabstraction in the form of � abstraction and application are represented by �x: M and(M N) respectively. I include in the language let val x = M in N which is treated like((�x: N)M). let fun f x =M in N allows recursive de�nitions in �v. � is a token, like theonly value of type unit in SML [HMT89]. The evaluation contexts, EvContv in �gure 3.1,are a way of parsing a given �v-term to �nd out the next redex to be contracted duringevaluation. One can write standard functional programs in this language. The followingprogram, exp, calculates m raised to the power n for non-negative numbers m and n. Theconstant � stands for subtraction and � for multiplication.let fun f x = �y; z: if (= x 1) y (f (�x 1) (�y z) z)in�y; x: if (= x 0) 1 (f x y y)The operational semantics for �v as presented in �gure 3.2 is culled out from the speci�-cation for SML in [HMT89] by using substitutions instead of environments. This style ofpresentation is called natural semantics following [Kah87]. The evaluator is presented as aseries of rules, all of which have a simple format | to evaluate an expression �rst evaluatethe subexpressions and then put the results together as per the outermost term constructor.For example, to evaluate (M N), �rst evaluate M to a function, �x: P , and N to a valueU , then �nally evaluate P [x := U] to a value V | the value of (M N). The evaluator thusspeci�ed is call-by-value, as the argument to a function is evaluated before it is passed tothe function. f V U denotes the constant in �v, which is obtained as a result of performingf viewed as an arithmetic operator on the numbers denoted by V and U , e:g : +5 4 denotesthe constant 9.The order of evaluation of the subterms is not a part of the syntax | it is an additionalrequirement that the hypothesis to the rules should be read from left-to-right. In a languagewith partial arithmetic operations such as �, division, the order of evaluation is crucial.22

c + c c 2 Z [B�x:M + �x:MM + �x: P N + U P [x := U] + VM N + VM + U N [x := U] + Vlet val x =M in N + VN [f := �x: let fun f x =M in N] + Vlet fun f x =M in N + VM + V N + Uf M N + f V U f 2 OM + true N + Vif M N P + VM + false P + Vif M N P + VFigure 3.2: Natural Semantics speci�cation for �vFor example, consider the program (+P (� 5 0)), where P is any non-terminating program.In a language with exceptions, evaluating the program left-to-right will cause it to diverge.However, evaluating the program right to left may raise a division-by-0 exception. Using thegiven speci�cation, left to right evaluation will result in an in�nite search for a computationtree re
ecting the non-termination of P , whereas right-to-left evaluation will cause a �niteevaluation tree in which one can detect the division-by-0 error.The speci�cation of �v in FORUM requires that one translates �v terms into the higherorder abstract syntax of FORUM. The translation reveals the binding structure of thelanguage. Issues such as capture free substitution and �-conversion in the object language,i :e: �v , are taken care of by substitution and the binding mechanism of the meta-language,i :e: FORUM. The terms and types required to de�ne the translation comprise the set �v,and are de�ned in �gure 3.3. I de�ne two basic types, vl and tm, along with a coercionfunction, h:i, mapping terms of type vl to terms of type tm. vl is the type of values, and tmis the type of terms. I then introduce terms at appropriate types to encode the terms of �v,23

abs : (vl! tm)! vlc : vl c 2 B [Z [f�gh:i : vl! tmf : tm! tm! tm f 2 Oapp : tm! tm! tmcond : tm! tm! tm! tmletval : (vl! tm)! tm! tmletfun : (vl! tm)! (vl! vl! tm)! tmifbr : vl! tm! tm! tmapply : tm! tm! oeval : tm! (vl! o)! oFigure 3.3: �v, Signature for �v evaluatore:g : app is a term construct which will be the target of application terms in the translation.For every integer and boolean, I introduce a constant of vl type. For every operator f , Iintroduce a constant f in the signature of type tm! tm! tm.Following is the translation of exp into a term of type tm in FORUM.letfun �f: (abs �y: (abs �x: cond (= x h0i) h1i (app (app (app f x) y) y)))�f; x: (abs �y: (abs �z: cond (= x h1i) y (app (app (app f (� x 1)) (� y z)) z)))The �rst argument of letfun is the body of the let fun declaration, and the second argumentis the function declaration. The body is parameterized over the function variable de�nedby the let fun as made explicit by the meta-level �-binding of f in the �rst argument ofletfun. The example also illustrates how the � bindings in the object language get convertedinto �-bindings in the meta-language. For example, �x: M is translated as (abs �x: Mo),Mo is the translation of M , and the � binding in abs is at the meta-level. Other thanthis clean explanation of variable bindings, the translation, although heavy on usage ofnew syntax, is similar in spirit to parsing concrete terms into abstract syntax trees. Thetranslation of �v terms to FORUM is rather cumbersome, but it is crucial to the statementof the correspondence theorem between FORUM speci�cation and the natural semantics24

�v(x) = x�v(�x:M) = abs �x : vl:Hv(M)�v(c) = c c 2 Z [B [f�gHv(V) = h�v(V)iHv(f M N) = f Hv(M) Hv(N)Hv(M N) = app Hv(M) Hv(N)Hv(if M N P) = cond Hv(M) Hv(N)Hv(P)Hv(let val x =M in N) = letval (�x:Hv(N))Hv(M)Hv(let fun f x =M in N) = letfun (�f:Hv(N)) (�f; x:Hv(M))Figure 3.4: �v : Valuesv ! vl, Hv : �v ! tm v(x) = x v(abs �x:M) = �x:Lv(M) v(c) = c c 2 Z [B [f�gLv(hV i) = v(V)Lv(f M N) = f Lv(M) Lv(N) f 2 OLv(appM N) = Lv(M) Lv(N)Lv((ifbr V N P)) = if v(V) Lv(N) Lv(P) b 2 BLv(condM N P) = if Lv(M) Lv(N) Lv(P)Lv(letval R N) = let val x = Lv(N) in Lv(Rx) x freshLv(letfun R1 R2) = let fun f x = Lv(R2 f x) in Lv(R1 f) f; x freshFigure 3.5: v : vl! Valuesv, Lv : tm! �vspeci�cation. I provide the details in �gure 3.4. ifbr and apply are constants which are notused in the translation Hv , but arise during evaluation of translated �v-terms in FORUM.There are some rather subtle issues in the translation in �gure 3.4. For instance, on whatbasis do I choose abs �x: x over ((�u: u)(abs �x: x)) as the encoding of �x: x? The choicecomes from the fact that there are unique ��-long normal forms in FORUM terms. SoI pick the ��-long normal form as the encoding of the given �v term. The translationsfrom FORUM to �v, and vice versa, in �gures 3.5 and 3.4 respectively, are straightforwardrecursions on the structure of the terms.I would like to evaluate with the translated programs. Hence, I need to check whether25

substitution commutes with the two translations Hv and Lv . The following lemma statesthese identities precisely; proofs are deferred to the appendix.Lemma 3.1 Let M 2 �v, V 2 Valuesv, N and U be FORUM terms of types tm and vlrespectively :� Hv(M [x := V]) = Hv(M)[x := �v(V)].� Lv(N [x := U]) = Lv(N)[x := v(U)].Armed with the precise de�nitions, I am now in a position to de�ne the evaluator and thecorrespondence theorem. Keeping in mind that �v is to be evaluated left-to-right, and infact, considering this as a part of the speci�cation of �v operational semantics, I would liketo specify the evaluator such that left-to-right evaluation is enforced on implementationscomplying with my speci�cations. Hence, a natural choice is to use a continuation-passing-style semantics for �v [Plo76, Rey72]. How is my speci�cation then di�erent from thestandard continuation-passing-style semantics for �v [Plo76, Rey72]? The main point isthat just the translation of programs to continuation-passing semantics does not yield theoperational semantics. One also needs a strategy for executing the resulting programs. Asmy speci�cations are logic programs, search for cut-free proofs corresponds to computation| I get an evaluator for �v from very simple clauses.The evaluator is presented as a set of universally quanti�ed clauses de�ning the meaningof the non-logical constants I used in translating �v into FORUM. (eval M K) is a twoplace predicate, the �rst argument being of type tm and the second being of type vl ! o,the type of continuations, with the intended meaning that the term M is to be evaluatedwith K being the continuation. The computational paradigm is that I evaluate M , andwhatever is its result, I pass it to K which then completes the evaluation. The evaluatorEv is de�ned in �gure 3.6. The order of evaluation for the terms in �v does not matter asfar as one is concerned only with the values produced by the evaluations. In this sense,specifying the exact evaluation order may seem to be an overkill. However, the failure26

(eval hV i K) �� (K V)(eval (appM N)K) �� (evalM �v: (eval N �u: (apply v u K)))(apply (abs R) U K) �� (eval (RU) K)(eval (f M N)K) �� (evalM �v: (eval N �u: (K f v u))) f 2 O(eval (condM N P) K) �� (evalM �v: (eval (ifbr v N P) K))(eval (ifbr trueM N)K) �� (evalM K)(eval (ifbr falseM N)K) �� (eval N K)(eval (letval R M) K) �� (evalM �v: (eval (R v) K))(eval (letfun R1 R2) K) �� (eval (R1 (abs �x: letfun (�f: R2 f x) R2)) K)Figure 3.6: Clauses in Ev - the evaluator for �vto produce a value may be for two reasons. Firstly, the evaluator may get stuck, or thearithmetic operators may be unde�ned for some values, and secondly, the evaluation maynever terminate. Suppose P is a divergent program. The program (+P (� 5 0)) will have anin�nite evaluation tree under left-to-right evaluation, whereas under right-to-left evaluationit will result in a �nite failure caused by a division by 0 error.Now I have to de�ne when a term evaluates to a value in FORUM. As computation corre-sponds to search for cut-free proofs, the de�nition will involve statements about existenceof proofs of sequents in FORUM.De�nition 3.2 [Evaluating �v terms in FORUM] M : tm evaluates to V : vl, written asevalv(M;V), if�v : Ev ; �! 8K : vl! o: (K V) �� (evalM K)is provable in FORUM.I compare the evaluation of programs using Ev to the natural semantics evaluator to high-light some key aspects of Ev. Lets look at the computation of (app P Q) and (M N) whereP and Q are Hv(M) and Hv(N) respectively.In �gure 3.7 I use the backchain rule. This is essentially a composite rule in which I choose aclause from the evaluator clauses such that a right-hand side formula uni�es with the head of27

�v; K : Ev ; (K V) �! (eval P �v: (eval Q �u: (apply v u K)))�v; K : Ev ; (K V) �! (eval (app P Q) K)M + �x: L N + U L[x := U] + VM N + VFigure 3.7: One step in the evaluation of (M N)the clause. The justi�cation of the rule follows with use of �� -L followed by the observationthat the right sub-proof of �� -L will trivially follow from initial, as the head of the clauseand right-hand side formulas uni�ed. The key point of the above example is the role ofthe continuation. The natural semantic proof has three sub-proofs, whereas the Ev proofis linear | this corresponds to the idea that the evaluation order is completely speci�ed.Furthermore, notice the structure of the continuation �v: (eval Q �u: (apply v u K)) | thisterm encodes the fact that the value of P , (abs R), will be bound to v, and then Q willbe evaluated and its value, W , will be bound to u, and �nally (R W) will be evaluated.Hence, continuations provide notation within the syntax for the incomplete parts of naturalsemantics evaluation trees. This capability of representing incomplete proofs within thesyntax plays a crucial role in the speci�cation of exceptions and callcc. In fact, it seemsthat it is problematic to specify callcc in the natural semantics framework because of thisde�ciency in its syntax.Ev and the natural semantics in �gure 3.2 are two speci�cations of �v. I prove that thetwo speci�cations are identical to the extent that the values computed are identical. Thecomplete proof is deferred to the appendix.Theorem 3.3 (Correspondence theorem for �v) For all closed �v terms M and val-ues V ,M + V if and only if evalv(Hv(M); �v(V)).The proof of theorem 3.3 is rather interesting. Going from left-to-right I induct on theevaluation tree for the term, i :e:, I build computations for larger terms using computationsof the subterms. I illustrate the general strategy by showing the case for M = (N P).28

Suppose (N P) + V , then the only way this may happen is by the use of rule for applicationterms, which implies that� N + �x: Q,� P + U and� Q[x := U] + V .The evaluation trees of N , P and Q[x := U] are smaller than the evaluation tree of (N P).Let N1 =def Hv(N), P1 =def Hv(P), Q1 =def Hv(Q), U1 =def �v(U) and V1 =def �v(V).By induction hypothesis I get proofs �1, �2 and �3 in FORUM respectively for� �v; K1 : Ev ; (K1 (abs �x: Q1)) �! (eval N1 K1),� �v; K2 : Ev ; (K2U1) �! (eval P1 K2) and� �v; K3 : Ev ; (K3 V1) �! (eval Q1[x := U1] K3).In the proof �3 I use lemma 3.1 to rewrite Hv(Q[x := U]) as Q1[x := U1]. Using the aboveproofs I need to construct a proof for the sequent�v; K : Ev ; (K V1) �! (eval (app N1 P1) K):I show below how to construct the required proof. To keep the proof readable, I do notwrite Ev in the intuitionistic context and the signature which is �v; K in all the sequentsshown in the proof. In the proof let C1 =def �v: (eval P1 �u: (apply v u K)) and C2 =def�u:(apply (abs �x:Q1) u K). It is interesting to note that the CutL rules are needed exactlyat those points in the computation when a term passes its values to its continuation. TheCutL passes the value of N1 to C1, the continuation of N1.
(K V) �! (eval P1 C2) �1(C1 (abs �x: Q1)) �! (eval N1 C1)(K V) �! (eval N1 C1) CutL(K V) �! (eval (app N1 P1) K) backchain29

 is constructed as shown below. The CutL passes the value of P1 to C2, the continuationof P1. �3(K V) �! (eval Q1[x := U1] K)(K V) �! (apply (abs �x: Q1) U1 K) backchain �2(C2U1) �! (eval P1 C2)(K V) �! (eval P1 C2) CutLEach �i, i 2 [1; 3] is constructed from �i using CutS. Note that�v; K1; K : Ev ; (K1 (abs �x: Q1)) �! (eval N1 K1)is provable by �1 as �v ; K1 � �v; K1; K. Hence �1 can be completed by cutting on K1 withC1. Similarly, one can build �2 and �3.This completes the proof for the case M = (N P). The important point is that proofs inFORUM are built using various cut rules rather than analyzing the structure of the proof,as one would expect for the left-to-right direction. Computation in FORUM is representedby search for cut-free proofs. However, since the proofs constructed above have cuts, I amimplicitly using the cut-elimination theorem for FORUM. In the other direction, I analyzethe proofs in FORUM and construct the natural semantics evaluation trees from FORUMproofs. The proofs are detailed in chapter A.3.2 �vs | State in UMLIn this section I specify �vs, �v extended with state. �v is a higher-order functional languagewhere values are associated to variables via � binding. For example, let val x = 2 in Massociates the value 2 with the variable x in the term M . The salient property of suchvariable bindings is that it cannot be changed - x will remain bound to 2 throughout theevaluation of M . Although in principle, one can program only with � bindings, in practicethere are many situations where one would like to update the binding of a variable. Forexample, in �v, I cannot write a function, inc, such that it takes a dummy argument and30

M ::= : : : (�vs)j ref Mj deref Mj asgM ME ::= : : : (EvContvs)j E[ref []]j E[deref []]j E[asg []M]j E[asg V []]Figure 3.8: Syntax for �vsgenerates a new number every time it is called. Assignable variables introduce a notion ofstate in the programming language. The state of the computation is the current bindingfor the assignable variables. As I can update the binding for the assignable variables, thestate may change during the computation.The syntax for �vs is formally de�ned in �gure 3.8. The de�nitions ofM and E in �gure 3.1are extended with the clauses in �gure 3.8 to obtain �vs and EvContvs, respectively. Thede�nition for V in �gure 3.1 remains unchanged for Valuesvs. However, the non-terminalM ranges over the extended de�nition. The result of evaluating (ref M) is a fresh locationin the state which is bound to the value of M . (deref M) evaluates M to a location andthen returns the contents of the state at that location. (asgM N) assigns the value of N tothe location resulting from evaluating M , if that location is already de�ned in the currentstate. The inc function described above may be implemented in �vs as:let val x = ref 0 in�y: (�z: deref x) (asg x (+ (deref x) 1))Evaluating M in store S may create a new location, say l. What should I do with l? Oneapproach would be to extend S with l, and let l be in the state at the end of evaluatingM . Another approach would be to treat l as a variable local to M , which must not bein the state at the end of evaluating M . While the �rst approach results in a global view31

hl; S0i + hl; S0i l 2 dom(S0)hM;S0i + hV; S1ihref M;S0i + hl; S1[l 7! V]i l 62 dom(S1)hM;S0i + hl; S1ihderef M;S0i + hS1(l); S1i l 2 dom(S1)hM;S0i + hl; S1i hN; S1i + hV; S2ihasgM N;S0i + h�; S2[l 7! V]i l 2 dom(S1)Figure 3.9: Natural Semantics speci�cation for the new constructs in �vsof state as taken by SML [HMT89], the second approach is adopted by block-structuredlanguages like ALGOL [Rey81a, Rey81b]. State is thought of as a �nite function from Varsto Valuesvs. dom(S) for a state S is the set of variables which are bound in the state, i :e:the set of assignable variables currently de�ned. If l 2 dom(S) then S[l 7! V] denotes thestate which maps l to V . If l 62 dom(S) then S[l 7! V] denotes a new state, say S1, suchthat dom(S1) is the union of dom(S) and flg, and S1(l) = V .I specify �vs in natural semantics in the style of [HMT89]. The speci�cation for the newconstructs is in �gure 3.9. In the evaluation of (ref M) the side condition | l 62 S1 | causesthe creation of a new location in the state which is bound to V . deref reads the value of thestate at a location l; the side condition l 2 S1 ensures that S1 is de�ned for l. (asg M N)rede�nes the binding of S2 at the location l to be V , only if l is a variable already de�ned inS2. Note that all currently de�ned assignable variables are treated as values. The changesto state are cumulative, e:g :, in the rule for (asgM N), evaluation ofM results in the stateS1 which is then passed along as the starting state for the computation of N . If I de�nesome new locations in the process of evaluating M , they will be in dom(S1), and hence�nally in S2[l 7! V]. Thus the rules specify a global view of state.Unfortunately, the evaluator for �vs is not simply the union of rules in �gure 3.9 and�gure 3.2. Although no new rules are needed for the constructs of �v due to the additionof state, the existing rules in �gure 3.2 need to be modi�ed. In this sense, the speci�cationof �v is not modularly extended to the speci�cation of �vs. However, the damage is mild32

cell : tm! tmread : tm! tmwrite : tm! tm! tmget : vl! (vl! o)! oset : vl! vl! (vl! o)! oFigure 3.10: Constants for translating �vs termscompared to the situation in section 3.3, where extending �v with exceptions will createnew rules for the constructs in �v. The modi�cation to the rules in �gure 3.2 is obtainedby applying the state convention in section 3.3 to states. For exampleM + �x: P N + U P [x := U] + VM N + Vis considered to be an abbreviated form ofhM;S0i + h�x: P; S1i hN; S1i + hU; S2i hP [x := U]; S2i + hV; S3ihM N;S0i + hV; S3iThus the natural semantics speci�cation for �vs is obtained by taking the rules in �gure 3.9and the rules obtained by applying the state convention to the rules in �gure 3.2. I willfreely use the abbreviated form of the natural semantics rules, because using the stateconvention I can always recover the full form.I want to specify state in FORUM not as a �nite function, but as some form of concurrentcomputation. I think of every location in the state as a separate process storing a value,which interacts with its environment only via read and write messages. Interaction on a readmessage causes the process to transmit the value it stores to the environment. Interactionon a write message causes the process to accept a value from the environment which replacesthe value it stores. Adopting the paradigm used in section 2.1 to specify HO�-calculus inFORUM, I directly specify the above process-style reading of state in FORUM.The signature for the translation, �vs, is the union of �v and the constants in �gure 3.10.33

(eval (cellM) K) �� (evalM �v: 8P; l: getC(P; l)) setC(P; l)) [(K l)} (P v)])(eval (readM) K) �� (evalM �v: (get v K))(eval (writeM N)K) �� (evalM �v: (eval N �u: (set v u K)))where getC(P; l) =def 8K;U: [(get l K)} (P U)] �� [(KU)} (P U)]setC(P; l) =def 8K; V; U: [(set l V K)} (P U)] �� [(K �)} (P V)]Figure 3.11: Speci�cation in FORUM for new constructs in �vsI de�ne translations �vs : Valuesvs ! vl, Hvs : �vs ! tm, vs : vl ! Valuesvs andLvs : tm! �vs in the appendix. For example, Hvs(ref M) = cell Hvs(M). The followinglemmas regarding the translations and substitution are proved in the appendix.Lemma 3.4 Let M 2 �vs, V 2 Valuesvs, N and U be a FORUM terms of types tm and vlrespectively:� Hvs(M [x := V]) = Hvs(M)[x := �vs(V)].� Lvs(N [x := U]) = Lvs(N)[x := vs(U)].The evaluator for �vs, Evs, is the union Ev and the clauses in �gure 3.11. (cell M) isevaluated by �rst evaluating M to a value V . Next, a new predicate P is created andplaced in the environment storing V as (P V). The process identi�er, l, for the process P ,is passed to the continuation K. Along with the creation of the process, two more clausesare introduced, namely getC and setC. getC speci�es the handling of read messages passedalong the process identi�er l, while setC speci�es the handling of write messages passed alongthe identi�er l. A read message, (get l K), synchronizes with the process identi�ed by l,reads its value, and passes the value to the continuation K. A write message, (set l V K),synchronizes with the process identi�ed by l, sets its value to V , and passes the token �to the continuation K, indicating the successful completion of the write message. (read l)issues the read message to the process identi�ed by l, and (write l V) issues the writemessage to the process identi�ed by l. I now prove the correspondence theorem between the34

two speci�cations, namely Evs and natural semantics, for �vs. Before I can do this, I haveto de�ne when a term evaluates to a value in FORUM and translate state into FORUM.Remark 3.5 I de�ne notation that I use in describing evaluation in FORUM. Let S be astate, and m be the number of elements in dom(S).� PS =def P1; : : : ; Pm.� lS =def l1; : : : ; lm, li 2 dom(S); i 2 [1; m].� �S =def fP1; : : : ; Pmg [fl1; : : : ; lmg.� CLS =def fgetC(P1; l1); : : : ; getC(Pm; lm)g [fsetC(P1; l1); : : : ; setC(Pm; lm)g.� �S =def (P1 V1)} : : : } (Pm Vm).� Vi =def �vs(S(li)), i 2 [1; m].� FV(S(li)) � dom(S), i 2 [1; m].� A term M is closed in a state S, written as close(S;M), if FV(S(li)) � dom(S),i 2 [1; m] and FV(M) � dom(S).De�nition 3.6 [Translating state into FORUM] The translation of state S, written as So,is a FORUM term of type o! o.So =def �u : o:8 PS ; lS: getC(P1; l1)) setC(P1; l1)) : : :)getC(Pm; lm)) setC(Pm; lm)) [u}�S]The application of a term M to So would require that the free variables in M be namedapart from the bound variables in So including lS . I abuse notation because I want thelocation names to be \captured" by the substituion. Suppose S is �u: 8l: getC(P; l))35

setC(P; l)) [u}�S] and M is hli, then (S hli) is 8l: getC(P; l)) setC(P; l)) [hli}�S].Note that l is free in hli but in (S hli) it gets captured by the universal quanti�cation on l.This abuse of syntax comes in very handy, and should not be confusing.De�nition 3.7 [Evaluating �vs terms in FORUM] LetM be a �vs-term, and S0 be a statesuch that close(S0;M). M with S0 evaluates to V with S1, written evalvs(M;S0; V; S1), if�vs : Evs ; �! 8K : vl! o: S1o(K V) �� S0o(eval Hvs(M) K)is provable in FORUM.Theorem 3.8 (Correspondence theorem for �vs) Let M be a �vs term, and S0 astate such that close(S;M).hM;S0i + hV; S1i if and only if evalvs(M;S0; V; S1)The proof of theorem 3.8 is deferred to the appendix. It is along the same lines as the prooffor theorem 3.3. Given the fact that �vs has an imperative state, it is not a priori clearwhether I can use Cut rules to compose proofs - the richer proof-theory of FORUM permitsme to use Cut rules essentially because environments are maintained using logical constants.I illustrate the proof strategy going left-to-right when hasgM N;S0i + h�; S2[l 7! V]i. Thelast rule in the evaluation tree has to be for asg, which implies that� hM;S0i + hl; S1i,� hN; S1i + hV; S2i, and� l 2 dom(S2).The evaluation trees of M and N are smaller than the evaluation tree of (asg M N). LetM1 =def Hvs(M), N1 =def Hvs(N), S3 =def S2[l 7! V] and V1 =def �vs(V). By inductionhypothesis I get proofs �1 and �2 in FORUM respectively for36

� evalvs(M;S0; l; S1), and� evalvs(N; S1; V; S2).Further, note that l 2 �S2 . Using the above proofs, I need to construct a proof for thesequent�v; K;�S3 : Evs ; S3o(K �) �! S0o(eval (writeM1 N1) K):Below, I construct the required proof. To keep the proof readable, I do not write Evs inthe intuitionistic context, and �vs; K in the signature part of the sequent, as these partsare present in all the sequents in the part of the proof shown. Furthermore, I do not showthe introductions of �S and CLS in the sequents below, because these can be deduced fromthe context. Let C1 =def �v: (eval N1 �u: (set v u K)) and C2 =def �u: (set l u K).In the proof, I �rst do a bunch of right 8 introductions followed by a bunch of right)introductions to introduce �S0 and CLS0 . Next, I backchain on the clause for asg clause,and then I do a CutL. I am left with the construction of
 and �1.
S3o(K �) �! S1o(eval N1 C2) �1S1o(C1 l) �! (evalM1 C1)}�S0S3o(K �) �! (evalM1 C1)}�S0S3o(K �) �! (eval (writeM1 N1) K)}�S0 backchain...; 8R;) RS3o(K �) �! S0o(eval (writeM1 N1) K)The construction of
 is given below. I �rst do a bunch of right 8 introductions followedby a bunch of right) introductions to introduce �S1 and CLS1 . Next, I do a CutL.
1S3o(K �) �! S2o(set l V1 K) �2S2o(C2 V1) �! (eval N1 C2)}�S1S3o(K �) �! (eval N1 C2)}�S1...; 8R;) RS3o(K �) �! S1o(eval N1 C2)37

Suppose dom(S2) =def l1; : : : ; ln. As l 2 dom(S2), for some i 2 [1; n], l is li. Constructionof
1 is shown below. I start the proof with a bunch of right 8 introductions followed bya bunch of right) introductions to introduce �S2 and CLS2 . Now I backchain over thesetC(Pi; li) to change the value stored as Pi to be V1. I am left with the construction of
2.
2S3o(K �) �! (K �)} (PiV1)} (P1U1) : : : } (Pn Un)S3o(K �) �! (set li V1 K)} (PiUi)} (P1U1) : : : } (PnUn)S3o(K �) �! (set li V1 K)} (P1U1)} : : : (PiUi) : : : } (PnUn)...; 8R;) RS3o(K �) �! S2o(set li V1 K)The construction of
2 is rather interesting. I start a proof with a bunch of left 8 intro-ductions. The purpose of these is to identify the location names in the �nal state with thelocations created during the evaluation of the term. Next, I perform a bunch of left)introductions. The purpose of these is to constrain the substitution for the P variables.Essentially, the getC and setC clauses for each location are matched o� against each other.I then reorganize the memory on the right-hand side to match the order in �S3 , and useidentity. (K �)}�S3 �! (K �)}�S3...(K �)}�S3 �! (K �); } (Pi V1)} (P1U1) : : : } (PnUn)...; 8L;) LS3o(K �) �! (K �)}�S3The construction of �1 and �2 from �1 and �2 is straightforward. Note that CutL is onlyused when terms pass values to their continuations. The novelty of this proof lies in theway the cell l is updated to store V1. The proof makes crucial use of multiple heads tosynchronize between the set instruction and Pi, the process identi�ed by l. Values can beupdated by backchaining, because memory cells are linear objects in FORUM. When a cellsynchronizes with a message from the environment, it is consumed, and thus needs to berefreshed. When refreshed, it may be updated as the setC clause does.38

3.3 �ve | Exceptions in UMLIn this subsection I specify �ve - �v with exceptions. Exceptions are a very important featureof any programming language, and especially indispensable in programs which accept inputsfrom users or external programs. The openin function of SML is a good example. Giventhe name of a �le, the function opens a stream for reading the data in the �le. However, ifthere does not exist a �le with the speci�ed name, then openin is faced with an exceptionalsituation. At this point openin has two acceptable strategies. The �rst strategy is thatopenin returns some value indicating the fact that the �le does not exist - the path taken byC. The shortcoming of this strategy is that the programmer must check the value returnedby openin to see whether the �le was actually opened or not. If the programmer forgets todo so, one may get some obscure error in a possibly unrelated part of the program, and thenhave to trace the error back to the non-existence of the �le. The second strategy is to senda signal to the function which invoked openin. Now, if the programmer does not check forthe signal intentionally, it will cause the program to stop, and print an error message sayingthat the speci�ed �le did not exist. However, if not checking the signal was an oversight,then the error will be reported as being caused by the fact the speci�ed �le did not exist,and hence is easily detectable.The SML exception mechanism makes possible the second of the two choices outlined above.There is no restriction on the number of exceptions that one may have in a SML program|exceptions can be created on the
y. Furthermore, exception handlers are scoped, i :e: I candeclare a handler for an exception for any given sub-part of my program. These featuresmake the exception mechanism of SML rich and elaborate. I begin by extending the syntaxof �v for exceptions in �gure 3.12. The de�nitions ofM , V and E in �gure 3.1 are extendedwith the clauses in �gure 3.12 to obtain �ve, Valuesve and EvContve respectively. Declaredexception names are also values. For this, I introduce a new countable syntactic class ofExnNames ranged over by l. The result of a computation now may not be a value, e:g : anuncaught exception. I introduce a new syntax class called answers for this purpose, andthe natural semantic clause M + A will now read as M evaluates to the answer A. [pk l V]39

M ::= : : : (�ve)j exception l M l 2 ExnNamesj handle M M Mj raiseM MV ::= : : : (Valuesve)j l l 2 ExnNamesA ::= V (Answersve)j [pk l V] l 2 ExnNamesE ::= : : : (EvContve)j E[raise []M]j E[raise V []]j E[exception x []]j E[handleM []M]j E[handleM V []]j E[handle [] V V]Figure 3.12: Syntax for �veis a called a packet, raising the exception l with the value V .(exception l M) binds the exception name l, in the scope of M . It is entirely conceivableto write a program such as (exception l ((exception l N) M)). This scoping of exceptionscreates the need for renaming of exception names, i :e: �-conversion. This problem is han-dled in [HMT89] by evaluating the exception l to a new exception name, and carrying thisbinding around in the environment. (raise l V) indicates that the exceptional circumstanceas indicated by l has occurred, and the function handling this exception should be calledwith the value V . (handle M l N) declares that during the evaluation ofM , if the exceptionl is raised and uncaught within M , then N will be the handling function. Furthermore, ifthe evaluation of M to a value is completed without raising l, then N is removed as thefunction handling the exception l. This semantics of installing handlers locally provides
exibility during programming.I illustrate the point with the following example. Let xn be some exception name resultingfrom the declaration of some exception, and P some function de�ned in the environment.40

(handle(if (= x 0)(handle (P x) xn N1)M)xn N2)Now, which handler is used for the exception exn depends upon the value of x. Furthermore,if P is called and in P handlers are installed for xn, then those handlers take precedence overN1. There are some elements of dynamic binding in the mechanism for determining whichhandler catches a raised exception. It is rather tricky to specify this exception mechanismbecause of the above mentioned considerations.The speci�cation of exceptions in [HMT89] is presented in a very slick manner. The speci-�cation proceeds in two stages. First, the rules needed for the new constructs are speci�edas in �gure 3.13. The spirit of the rules remains the same as the rule for �v. The eval-uation of a term is a result of the synthesis of the evaluations of its subterms. However,now I need to keep track of the exception names which have been declared thus far, whichmeans that I need to carry along a state in the evaluation rules. The operational semanticsas presented here di�ers from [HMT89] to the extent that I use substitution instead ofmaintaining closures.Clearly, the mere addition of the above rules to Ev is not enough to specify �ve. One problemis that the propagation of exception names has to be handled for all the existing rules for�v terms. For this purpose, the state convention is adopted in [HMT89], which tells us howto restore exception states in a rule which omits them. According to this convention, if arule is presented as M1 + V1 : : : Mn + VnM + Vthen its full form is intended to be 41

hl; Exi + hl; Exi l 2 ExnNameshM [x := l]; Ex0 [li + hV;Ex1ihexception x M;Ex0i + hV;Ex1i l 62 Ex0hM;Ex0i + hl; Ex1i hN;Ex1i + hV;Ex2ihraiseM N;Ex0i + h[pk l V]; Ex2ihN;Ex0i + hl; Ex1i hP;Ex1i + hW;Ex2i hM;Ex2i + hV;Ex3ihhandle M N P;Ex0i + hV;Ex3i *hN;Ex0i + hl; Ex1ihP;Ex1i + hW;Ex2ihM;Ex2i + h[pk l U]; Ex3ih(W U); Ex3i + hV;Ex4ihhandle M N P;Ex0i + hV;Ex4ihN;Ex0i + hl0; Ex1i hP;Ex1i + hW;Ex2i hM;Ex2i + h[pk l1 U]; Ex3ihhandle M N P;Ex0i + h[pk l1 U]; Ex3i l0 6= l1, *Figure 3.13: Natural Semantics speci�cation for the new constructs in �ve.hM1; Ex0i + hV1; Ex1i : : : hMn; Exn�1i + hVn; ExnihM;Ex0i + hV;ExniAs I can always derive the full-form of a rule using the state convention, I will freely usethe abbreviated versions of natural semantic rules from now on. The speci�cation is stillnot complete. For example, what do I do if the evaluation of N in (raise M N) raises anexception? In fact, this question comes up in each and every rule speci�ed in �gure 3.2.Unfortunately, this leads to adding more clauses for all the rules. The description of theadditional rules needed can be done concisely along the lines of [HMT89]. An exceptionconvention de�nes new natural semantic rules based on the ones in �gures 3.2 and 3.13,except for the rules labeled * in �gure 3.13. Suppose the form of a rule is:M1 + V1 : : : Mn + VnM + VThen for every k, 1 � k � n, such that Vk is not a packet, we add another rule of the form42

: M1 + V1 : : : Mk + [pk l V]M + [pk l V]For example, the rule for application will now result in the following three new rules.M + [pk l V]M N + [pk l V]M + �x: P N + [pk l V]M N + [pk l V]M + �x: P N + U P [x := U] + [pk l V]M N + [pk l V]The natural semantics evaluator for �ve is speci�ed by the rules in �gure 3.13, 3.2 and theones created as a result of adopting the exception convention explained above. Thus, theexception convention causes the number of rules in the evaluator to increase from fourteento thirty-two!Let me present another way of looking at the operational semantics for exceptions. SupposeI am evaluating the term E[handle M l V] where (handle M l V) is the redex that I amreducing currently, and E is the current evaluation context or the part of the program thatwill take the value of (handle M l V) and complete the evaluation of the term, i :e: thecurrent continuation. Further, let us suppose l and l1 are two exception names, and nohandler is installed for l1. The evaluation of M , if it terminates, will yield1. a value U1, or2. a packet [pk l U2], or3. a packet [pk l1 U3]. 43

In case 1, the computation continues with E[U1]. In case 2, the computation continues withE[V U2]. But what should happen in case 3? A signal, l1, has been raised for which thereis no handler. The only reasonable thing to do is to throw away the current continuation,i :e: E, and report to the top level or the next outer handler, that the exception l1 wasraised with the value U3. What is clear from the explanation is that exceptions can causethe computation to discard its current continuation up to a handler.Consider the evaluation of the termE[handle ((raise l U)N) l V]. The program will evaluate(handle ((raise l U)N) l V) causing the handler V to be installed for the exception l, andthen proceed with the evaluation of ((raise l U)N), which in turn will cause it to evaluate(raise l U). Evaluating (raise l U) will result in a packet [pk l U], which can only be handledby V . However, notice that the answer computed by (raise l U) is passed not to the currentcontinuation at that point, but rather to the continuation at the time when the handler Vwas installed! Thus exceptions can also change the current continuation.My point is that a natural operational reading of the evaluation mechanism involves theidea of continuations, a concept which has no direct representation in the syntax of naturalsemantics. The clever presentation in [HMT89] is a way of overcoming this shortcomingof natural semantics. However, one has to pay a price for extending natural semantics tocope with exceptions | the blow up in the number of rules for �v terms from eight totwenty. Of particular concern is the fact that the evaluator has to be rede�ned for the termconstructs of �v, e:g : one has four rules for application now. In this sense, the speci�cationof exceptions in [HMT89] is not modular. An exception mechanism very similar to thatof UML has been speci�ed in [WF91] using term rewriting machines. The speci�cationis indeed modular | speci�cations for the existing term constructs do not change whenthe language with exceptions is considered. However, the style in [WF91] introduces twonew notions of contexts, one used to maintain the scope of exceptions and the other usedto match a raised signal with its handler | the basic intuition about manipulation ofcontinuations is not brought out very clearly.The speci�cation of �ve in FORUM follows the same pattern as the speci�cation of �v. I44

ex : ext! vlexn : (ext! tm)! tminstall : tm! tm! tm! tmsignal : tm! tm! tmuncaught : ext! vl! oFigure 3.14: Constants for translating �ve terms�ve(l) = (ex l) l 2 ExnNamesHve(exception l M) = exn �l:Hve(M)Hve(handle M N P) = install Hve(M) Hve(N)Hve(P)Hve(raiseM N) = signal Hve(M) Hve(N)Figure 3.15: Translating the new construct of �ve to FORUMintroduce a new type ext, the type of exception names in FORUM. First, I translate �veterms into FORUM syntax using �v augmented with the constants in �gure 3.14. Forexample, install : tm ! tm ! tm ! tm is the target of the translation of handle terms.[pk l V] is translated using uncaught : ext ! vl ! o. I de�ne translations �ve : Valuesve !vl, Hve : �ve ! tm, ve : vl! Valuesve and Lve : tm! �ve. I show the translation from �veto FORUM for the new constructs in �gure 3.15. The complete translations are deferredto the appendix. The following lemmas regarding the translations and substitutions areproved in the appendix.Lemma 3.9 Let M 2 �ve, V 2 Valuesve, N and U be a FORUM terms of types tm and vlrespectively:� Hve(M [x := V]) = Hve(M)[x := �ve(V)].� Lve(N [x := U]) = Lve(N)[x := ve(U)].Instead of specifying the semantics of catching raised exceptions in the style of [HMT89],I take the route of using the continuations explicitly. Consequently, I have to manage45

explicitly the installation and removal of handlers, and the matching of raised exceptionswith handlers. I �nd this description to be more enlightening because it highlights themanipulation of continuations by exceptions, and explains the maintenance of exceptionhandlers separately. I represent the exceptions via a predicate, exnst, which takes a list ofexception handlers as an argument. An exception handler is a term, (pkt l V K), where l isthe exception name, V is the function installed as the handler, and K is the continuationwhich will be invoked if this handler is chosen. To maintain exnst I need predicates pushand pop to add and remove handlers from the list of exception handlers. Further, I need apredicate lookup to search the list of handlers.(lookup l V) searches the list X in (exnst X) for the �rst packet whose exception nameis l. The search program for lookup would therefore need to check whether two exceptionnames are equal or not, i :e: I need an inequality predicate for exception names. Specifyinginequality in the presence of 8 is a rather delicate matter. Suppose I am able to prove8x; y: x 6= y, how can I then use it? Obviously, instantiating the proof for x = c andy = c, where c is a constant, will lead to inconsistencies. [HSH90, SH93, Gir92] analyzesuch situations. However, the results are not very conclusive as yet.The solution I adopt is to take the type ext to be nat of section 2.1, and as shown in sec-tion 2.1, inequality between numbers can be speci�ed in FORUM. I generate new exceptionnames using the paradigm of inc in section 2.1. The signature for the various constants isgiven in �gure 3.16. In the translation in �gure 3.15, l is translated to (ex l). Given thenew interpretation of ext, I have to rede�ne the translation. As ExnNames is a countableset, there is an isomorphism between ExnNames and ext. Hence, by abuse of notation Ilet l denote a term of type ext, which denotes the number to which l is mapped by theisomorphism.The signature for the additional constants is given in �gure 3.16. The signature for spec-ifying �ve, �ve, is de�ned as the set consisting of the elements of �v , the constants in�gure 3.16, and the constants in �gure 3.14.46

pkt : ext! vl! (vl! o)! packetpush : ext! vl! (vl! o)! tm! opop : o! onil : packet list:: : packet! packet list! packet listexnst : packet list ! oisexn : vl! (ext! o)! oz : exts : ext! extneq : ext! ext! osigctr : ext! oFigure 3.16: Constants for exception management in FORUMI consider handle as an instruction to store an exception handler with the current continu-ation, and raise as an instruction to search for the most recently installed handler for theraised exception. (handle M l V) will cause V to be pushed on the stack of handlers asthe handler for l before the execution of M begins, and if the execution of M terminateswithout raising l to the handler V , then V is removed from the stack of exception handlers.(raise l V) causes the system to look in the exception stack from top to bottom for a handlerfor l. If a handler is found for l, then control is passed to the handler and its continuation,or else the exception returns to the top-level as an uncaught exception. The speci�cationfor the new constructs along with the speci�cation for the auxiliary non-logical constantsis presented in �gure 3.17. The evaluator, Eve, is de�ned to be the universal closure of theclauses in �gure 3.17, the clauses in Ev .The clauses in �gure 3.17 highlight various aspects of the exception mechanism. The factthat new exceptions can be created on the
y is implicit in the usage of the sigctr to generatea new constants for exception names. The way continuations are handled by exceptionsis made explicit by handle storing the current continuation along with the handler in theexception stack. The search for a matching exception explains how exceptions can causea program to discard its current continuation and reinstate the continuation stored withthe handler. The issue of locally installing and removing handlers is a separate concern,managed by the stack like maintenance of exnst via push and pop. The clause for lookup47

(eval (exn R) K)} (sigctr Y) �� (eval (RY) K)} (sigctr (s Y))(eval (installM N P) K) �� (eval N �v : vl: isexn v �w : ext:(eval P �u : vl: (push w u K M)))(eval (signalM N) K) �� (evalM �v : vl: isexn v �w : ext:(eval N �u : vl: (lookup v u)))(isexn (ex L) K) �� (KL)(push L V K M)} (exnst X) �� (evalM �v: (pop (K v)))} (exnst (pkt L V K) :: X)(pop P)} (exnst (pkt L V K) :: X) �� P } (exnst X)(neq (s X) z) �� >(neq z (s X)) �� >(neq (s X) (s Y)) �� (neq X Y)(lookup L V)} (exnst (pkt L U K) :: X) �� (apply U V K)} (exnst X)(lookup L V)} (exnst (pkt L1 U K) :: X) �� (neq L L1)
 ((lookup L V)} (exnst X))(lookup L V)} (exnst nil) �� (uncaught L (signal L hV i))} (exnst nil)Figure 3.17: Speci�cation in FORUM for new constructs in �veuses a new constant
 . Although the use of
 makes the intention clear, it is not essentialbecause in FORUM: ; A �� B �� C �! (A
 B) �� Cis provable.The key point is that neither do I introduce any new clauses for the constructs in �v, nordo I modify the existing clauses in �v. The speci�cation of the exception mechanism isa modular extension to the speci�cation for �v. The fact that I can specify the stack inthe environment using a logical connective, i :e: } , is rather important. If I attempt tospecify �ve using non-logical constants in the spirit of abstract machines, then I will nothave to add new clauses for �v, but I will have to rede�ne the clauses for �v to explicitlycarry along the exception stack. However, because of the proof rules for } , I am ableto keep the stack passively in the environment, and interact with it only when I have todeal with exceptions. The rich proof theory of FORUM provides me the tools to specify themaintenance of the environment in a logical fashion. I now state the correspondence theorem48

between the two speci�cations, namely Eve and [HMT89]. If Ex is a set of exception names,let lEx be one plus the largest number to which any element of Ex is mapped. Further,G(l; P) =def P } (exnst nil)} (sigctr l).De�nition 3.10 [Translating Answersve to FORUM] Ave translates terms in Answersve toterms in FORUM of type o. Let K be a constant of type vl! o in FORUM.Ave(V;K) = (K �ve(V))Ave([pk l V]; K) = (uncaught l �ve(V))De�nition 3.11 [Evaluating �ve terms in FORUM] LetM be a �ve-term, A 2 Answersve,and Ex0 be an exception state such that all the free variables of M are in Ex0. M inexception state Ex0 evaluates to A with the exception state Ex1, written asevalvs(Hve(M); lEx0;Ave(A;K); lEx1), if�ve : Eve ; �! 8K : vl! o: G(lEx1;Ave(A;K)) �� G(lEx0; (evalHve(M) K))is provable in FORUM.Theorem 3.12 (Correspondence theorem for �ve) Let M be a �ve term, Ex0 be theexception state consisting of all the exception names in M , A 2 Answersve, and Ex1 be theexception state consisting of all the exception names in A. All the free variables of M arein Ex0.hM;Ex0i + hA;Ex1i if and only if evalvs(Hve(M); lEx0;Ave(A;K); lEx1)The proof of theorem 3.12 is deferred to the appendix. The proof is along the same linesas the proof for theorem 3.3. The logical maintainence of environments permits me to usecuts to compose proofs. I illustrate the proof strategy going left to right when hN P;E0i +h[pk l V]; E3i. One way this may happen is that49

� hN;E0i + h�x: Q;E1i,� hP;E1i + hU;E2i and� hQ[x := U]; E2i + h[pk l V]; E3i.The evaluation trees of N , P and Q[x := U] are smaller than the evaluation tree of (N P).Let N1 =def Hve(N), P1 =def Hve(P), Q1 =def Hve(Q), U1 =def �ve(U), V1 =def �ve(V)and A =def (uncaught l V). By induction hypothesis I get proofs �1, �2 and �3 in FORUMrespectively for� �v; K1 : Ev ; G(lEx1; (K1 (abs �x: Q1))) �! G(lEx0; (eval N1 K1)),� �v; K2 : Ev ; G(lEx2; (K2U1)) �! G(lEx1; (eval P1 K2)), and� �v; K3 : Ev ; G(lEx3; A) �! G(lEx2; (eval Q1[x := U1] K3)).In the proof �3 I use lemma 3.9 to rewrite Hv(Q[x := U]) as Q1[x := U1]. Using the aboveproofs I need to construct a proof for the sequent�v; K : Ev ; G(lEx3; A) �! G(lEx0; (eval (app N1 P1) K)):I construct the required proof below. To keep the proof readable, I do not write Eve inthe intuitionistic context, and the signature which is �ve; K. In the proof let C1 =def�v: (eval P1 �u: (apply v u K)), and C2 =def �u: (apply (�x: Q1) u K). Note that(C1 (abs �x: Q1)) is � equivalent to (eval P1 C2), and that (C2U1) is � equivalent to(apply (abs �x: Q1) U1 K). The last proof rule is CutL in the construction below.
G(lEx3; A) �! G(lEx1; (eval P1 C2)) �1G(lEx1; (eval P1 C2)) �! G(lEx0; (evalN1 C1))G(lEx3; A) �! G(lEx0; (evalN1 C1))G(lEx3; A) �! G(lEx0; (eval (app N1 P1) K)) backchainTo complete the proof I have to construct
 and �1. �1 is constructed from �1, by usingCutS on K1 with C1. I show the construction of
. I use a CutL followed by a backchainon the left sub-proof of CutL. 50

�3G(lEx3; A) �! G(lEx2; (eval Q1[x := U1] K))G(lEx3; A) �! G(lEx2; (eval C2 U1)) �2G(lEx2; C2U1) �! G(lEx1; (eval P1 C2))G(lEx3; A) �! G(lEx1; (eval P1 C2))The construction of �2 and �3 is along the lines of �1, using �2 and �3, respectively. Thesurprising fact is that the structure of the proof construction given above, and the construc-tion of �i,i 2 [1; 3] is identical to the construction given in the example for theorem 3.3. Thefact that I can use Cut rules to compose proofs and cut-elimination to obtain computationsin the presence of exceptions is a convincing argument for the claim that Eve is a declarativespeci�cation of �ve.3.4 �vc | Continuations in UMLIn this subsection I specify �vc - �v with continuations. A continuation is that part of aprogram which must be evaluated to obtain the �nal value of the computation. For example,consider the evaluation of (+ (+ 3 2) 4). When I am evaluating (+ 3 2), the remaining partof the computation is (+ � 4). The idea being that the value of (+ 3 2) will replace �, andthen computation will start once again, or, in other words, �x: (+ x 4) is the continuation.Informally, one may think of a continuation as a function which takes the value of the termbeing evaluated currently as its argument, and then continues the computation. If I canrepresent the continuation of a program in the program itself, then I can change the control
ow of the program during its evaluation. Thus, continuations provide a functional meansof representing the control
ow of the program.Continuations have been used widely in the semantics, compilation and design of program-ming languages [Gor79, Sto77, SW74, AJ89, App92, Ste78, RC86, SF92]. Many program-ming languages provide language constructs which allow the programmer to take controlof the continuation of the program during the computation and manipulate it, e:g : callccin SML of New Jersey, and call-with-current-continuation in scheme. Programming withcontinuations introduces a rich programming style. [Fri88, DH89, Wan80] implemented51

coroutines and process schedulers using scheme-style call-with-current-continuation. [Rep91]implemented CML, a concurrent higher order functional language with concurrency primi-tives, using callcc in SML of New Jersey.Continuations are not a part of the core SML [HMT89]. The reasons for not providinglanguage support for manipulating continuations are not presented in [HMT89]. However,given the obvious utility of continuations as a programming paradigm, I consider �rst-classcontinuations as an important aspect of a programming language. Moreover, SML of NewJersey does include callcc, a construct that allows the programmer to capture the currentcontinuation. We saw in section 3.1 that exceptions can be speci�ed in natural semantics,and that continuations are manipulated when exceptions are raised. Hence, some levelof continuation manipulation can be speci�ed in the natural semantics framework. Thusencouraged, I attempted to specify callcc in the natural semantics framework outlined in[HMT89]. The operational semantics of callcc is informally speci�ed as | �rst evaluateM toV , and then apply V to whatever the current continuation is. Hence, to specify callcc I needto formalize the notion of current continuation within the syntax of the language. Withoutchanging the essential nature of the natural semantics framework it seemed impossible tospecify callcc.In natural semantics, the continuation at any point of the computation is not a part of thesyntax. For example, let us look at the evaluation for (M N) in �gure 3.2.M + �x: P N + U P [x := U] + VM N + VThe continuation of M is a program which will take �x: P , compute N to U and thencompute P [x := U] to V . This information is encoded in the above rule by the threeseparate hypotheses of the rule, and demanding that the hypotheses be read from left toright. If I want to capture the current continuation in the program, then I must be able torepresent the continuation in the evaluation rule | it is not clear how to do this in naturalsemantics. Exceptions also manipulate continuations | how can exceptions be speci�edin natural semantics? Exceptions can be speci�ed in natural semantics because of two52

M ::= : : : (�vc)j callccMj throwM ME ::= : : : (EvContvc)j E[callcc []]j E[throw []M]j E[throw V []]Figure 3.18: Syntax for �vckey reasons. Firstly, exceptions do not allow the programmer to capture the continuationas a part of the program. Secondly, exceptions do not allow the programmer to use acontinuation more than once. Although the path taken in [CF94] is a beginning towardsusing a concurrent meta-theory with side-e�ects, it is however restricted by the fact thatthere are essentially two threads, the program evaluator and the administrator.The syntax for �vc is presented in �gure 3.18. The de�nitions of M and E in �gure 3.1are extended with the clauses in �gure 3.18 to obtain �vc and EvContvc respectively. Thede�nition for V in �gure 3.1 remains unchanged for Valuesvc. However, the non-terminalM ranges over the extended de�nition. I think of (callcc V) as creating a process out of thecurrent continuation, called the continuation process| the process identi�er for the createdprocess is passed to V . Unlike processes created in concurrent languages, the continuationprocess does not start computing on its own, in fact it lies dormant. The process identi�edby l is invoked by (throw l U). As �vc is a sequential language, only one process should beactive at any given time. Hence, the continuation process is dormant when created, andwhen a continuation process is invoked using throw, the evaluation thread terminates andthe continuation process becomes the evaluation thread. I �nd this view of callcc to be veryuseful, especially in light of the fact that one of the most signi�cant uses of callcc has been toimplement CML in SML of New Jersey [Rep91]. Adopting the paradigm used in section 2.1to specify the HO�-calculus in FORUM, I directly specify the above process-style readingof callcc in FORUM. 53

catch : tm! tmjump : tm! tm! tmresume : vl! vl! ocont : vl! (vl! o)! oFigure 3.19: Constants for translating �vc terms(eval (catchM) K) �� (evalM �v: 8l: contC(l; K)) [(apply v l K)} (cont l K)])(eval (jumpM N) K) �� (evalM �v: (eval N �u: (resume v u)))where contC(l; K) =def 8U: [(resume l U)} (cont l K)] �� [(KU)} (cont l K)]Figure 3.20: Speci�cation in FORUM for new constructs in �vcThe signature for the speci�cation, �vc, is de�ned to be �v extended with the constantsin �gure 3.19, e:g : callcc is translated to catch. I de�ne translations �vc : Valuesvc ! vl,Hvc : �vc ! tm, vc : vl ! Valuesvc and Lvc : tm ! �vc in the appendix. For example,Hvc(callcc M) = catch Hvc(M). The following lemmas regarding the translations andsubstitutions are proved in the appendix.Lemma 3.13 Let M 2 �vc, V 2 Valuesvc, N and U be a FORUM terms of types tm andvl respectively:� Hvc(M [x := V]) = Hvc(M)[x := �vc(V)].� Lvc(N [x := U]) = Lvc(N)[x := vc(U)].The evaluator Evc for �vc is the universal closure of the clauses in �gure 3.20 along with theclauses in Ev. Below, I outline the evaluation of (eval (catch M) K) to highlight the novelfeatures of this speci�cation.� To evaluate (eval (catch M) K), I �rst evaluate M to a value V , which is passed tothe continuation �v: 8l: contC(l; K)) [(apply v l K)} (cont l K)].54

� Evaluation of 8l: contC(l; K)) [(apply V l K)} (cont l K)] creates a new name l : vland makes contC(l; K) a part of the evaluator.� Finally, I proceed with the evaluation of (apply V l K)} (cont l K).Placing (cont l K) in the environment of (apply V l K) is the creation of the continua-tion process as a dormant entity | l is the process identi�er for the continuation process(cont l K). Every time I create a continuation process, I introduce the contC(l; K) clausewhich associates the process identi�er l to (cont l K), the continuation processes. When(resume l U) synchronizes with (cont l K), it results in the evaluation of (K V) with(cont l K) in the environment. (jumpM N) terminates the current evaluation thread andinvokes one of the dormant continuation processes. The main novelty lies in the way I cancreate new entities in the environment, e:g: (cont l K). The created processes lie in theenvironment dormant, and can be activated by passing control explicitly to them, e:g: thecontC(l; K) clause. This speci�cation provides a view of catch and jump as a restricted formof concurrency where it is possible to have more than one process. However, only one ofthe processes can compute at a given time. Given this basic understanding, it is naturalthat callcc in SML of New Jersey was the basis of the CML implementation in SML ofNew Jersey [Rep91] and call-with-current-continuation was used to implement co-routinesand process schedulers [Fri88, DH89, Wan80].I would like to de�ne when a termM evaluates to a value V . When computation starts, theremay be continuation processes de�ned in the environment in which M is to be evaluated.As the computation of M proceeds, new continuation processes may be created. Hence,the value V will have a continuation state, i :e: the continuation processes associated withit. In this sense continuations behave like a mutable store. Hence, to evaluate �vc termsone has to carry the continuation processes and the corresponding process identi�ers createdthus far, just as in evaluating programs with assignable variables one must carry along themutable store. A continuation state, written as �c, possibly subscripted, is de�ned to bea �nite function from variables to EvContvc. dom(�c) denotes the domain of the function�c. Let l�c denote a list of the variables in dom(�c) in any order. A key di�erence between55

Cvc([]; K) = KCvc(E[f []M]; K) = �v: (eval Hvc(M) �u: K0 f v u)Cvc(E[f V []]; K) = �v: K 0 f �vc(V) vCvc(E[[]M]; K) = �v: (eval Hvc(M) �u: (apply v u K 0))Cvc(E[V []]; K) = �v: (apply �vc(V) v K 0)Cvc(E[if []M N]; K) = �v: (eval (ifbr v Hvc(M) Hvc(N))K 0)Cvc(E[let val x = [] inM]; K) = �v: (eval Hvc(M)[x := v] K0)Cvc(E[callcc []]; K) = �v: 8l: contC(l; K 0)) [(apply v l K 0)} (cont l K 0)]Cvc(E[throw []M]; K) = �v: (eval Hvc(M) �u: (resume v u))Cvc(E[throw V []]; K) = �v: (resume �vc(V) v)where K 0 =def Cvc(E;K : vl! o)Figure 3.21: Cvc, translation of EvContvc to FORUM terms of type vl! othe continuation state and the mutable store is that the process identi�ers in �c cannot bereassigned. Consequently, �c is cycle-free, i :e: there is an ordering on l�c, say li1 : : : limwhere dom(�c) has m elements, such that for all l 2 FV(�c(lij)), l < lij , j 2 [1; m]. Inparticular, l 62 FV(�c(l)), for all l 2 dom(�c) and FV(�c(li1)) = ;. By a continuationstate I will henceforth mean a cycle-free continuation state. Cvc in �gure 3.21 translatesE 2 EvContvc to the terms in FORUM of type vl! o.De�nition 3.14 [Translating continuation state into FORUM] The translation of �c, writ-ten as �co, is a FORUM term of type o! o.�co =def �u : o:8 l�c contC(l1; K1)) : : :)contC(lm; Km)) [u} (cont L K1)} : : : } (cont lm Km)]Where m is the number of elements of dom(�c) and Ki =def Cvc(�c(li); K), i 2 [1; m].Note the substitution of a term M for u in �co is treated like the substitution a term in inthe translation of a state. In particular, the free variables l�c in M will get \captured" bythe substitution. 56

(eval (catch M) K) } (exnst X) ��(evalM �v: 8P; l: contC(l; K;X)) [(apply v l K)} (cont l K X)} (exnst X)])where, contC(l; K;X) =def8U; Y: [(resume l U)} (cont l K X)} (exnst Y)] �� [(KU)} (cont l K X)} (exnst X)]Figure 3.22: Speci�cation for callcc in the presence of exceptionsDe�nition 3.15 [Evaluating �vc terms in FORUM] Let M be a �vc-term, and �c1 be acontinuation state such that all free variables of M are in dom(�c1). M with the continua-tion state �c1 evaluates to V with the continuation state �c2, written evalvc(M;�c1; V;�c2)if �vc : Evc ; �! 8K : vl! o: �c2o(K V) �� �c1o(eval Hvc(M) K)is provable in FORUM.A further issue arises when callcc and throw need to be speci�ed in the presence of exceptions,i :e: I am extending �ve with �rst-class continuations. The question is regarding the statusof exception handlers when I throw to a continuation process. In SML of New Jersey, theexception handlers are stored along with the continuation. Consequently, if I throw to acontinuation, then along with restoring the saved continuation as the current continuation, Iinstall the saved exception handlers as the currently installed exception handlers. Since thede�nition of the continuation is extended to include exception handlers, the clause for catchis changed to treat exceptions. The achievement here is that only the speci�cations for catchand contC need to be changed; everything else remains the same. The new speci�cationsfor catch and contC are given in �gure 3.22. Note that the type of cont is vl! (vl! o)!packet list! o. The integration of �rst-class continuations will be done in detail later, whenI put together the speci�cation for UML using all the pieces. As [HMT89] does not specifycallcc and throw, I cannot prove equivalence between the two semantics for �vc.57

3.5 UML | Putting it togetherIn this section I provide the speci�cation for UML | �v with state, exceptions and con-tinuations. The syntax for UML is obtained by putting together the syntax in �gures 3.1,3.8, 3.12, and 3.18. A natural semantic speci�cation for �v with state and exceptions isobtained in two steps. First, take the rules in �gures 3.2, 3.9, and 3.13. Now, apply thestate and exception convention to the rules thus obtained. The resulting set of rules is thenatural semantic speci�cation for �v with state and exceptions. As discussed in section 3.4,I do not have a natural semantics speci�cation of �rst-class continuations.In FORUM, it is possible to specify UML as evidenced by the speci�cations of its parts insections 3.1, 3.2, 3.3 and 3.4. The signature of the translation, �ml, is the union of �v,�vs, �ve and �vc. The translations from UML to FORUM and back, � : Values ! vl,H : � ! tm, A : Answers ! (vl ! o) ! o, C : EvCont ! (vl ! o), : vl ! Values,and L : tm ! �, are obtained by putting the translations for the fragments together.The de�nitions are deferred to the appendix. The evaluator for UML, E is de�ned asthe universal closure of the clauses in �gures 3.6, 3.11, 3.17, and 3.20 | I put togetherthe di�erent modules specifying di�erent pieces of FORUM. A con�guration is a triplet ofcontinuation state, state and the exception names with respect to which a UML term isevaluated. I now de�ne the translation of a con�guration in FORUM, and the evaluationfor UML terms in FORUM.De�nition 3.16 [Translating con�guration to FORUM] Let C =def h�c; S; Exi be acon�guration, where �c is a continuation state, S is a state and Ex a set of exceptionnames. The translation of C, written as Co, is a FORUM term of type o! o.Co =def�u : o:8 PS ; lS; p�c: getC(P1; l1)) setC(P1; l1)) : : :) getC(Pn; ln)) setC(Pn; ln))contC(p1; K1)) : : :) contC(pm; Km))[u}�S } (cont p1 K1)} : : : } (cont pm Km)} (sigctr lEx)} (exnst nil)]58

Where� n is the number of elements in dom(�c), and m is the number of elements in dom(S).� Ki =def C(�c(pi); K), i 2 [1; n].The domain of a con�guration C =def h�c; S; Exi, written as dom(C), is the union ofdom(�c), dom(S) and Ex. These are the variables which have been declared to be valuesby the con�guration C. Note that analogous to the case of So and �co, applying a term Mto Co causes the free occurances of lS and p�c in M , if any, to get captured.De�nition 3.17 [Evaluating UML terms in FORUM] Let M be a UML term, A 2Answersve, and C1 a con�guration such that FV(M) � dom(C1). M in the con�gura-tion C1 evaluates to A in the con�guration C2, written as eval(M;C1; A; C2), if�ml : E ; �! 8K : vl! o: CoA(A;K) �� Co(evalM K)is provable in FORUM.The part of UML speci�ed by natural semantics, �vse, does not contain �rst-class contin-uations. If I restrict the above de�nitions to UML without callcc and throw, then I canprove a correspondence theorem between the two speci�cations. For this fragment I con-sider con�gurations in which the continuation state is empty. The proof is deferred to theappendix.Theorem 3.18 (Correspondence theorem for �vse) Let M 2 �vse, A 2 Answersvse,C1 =def h;; S1; Ex1i and C2 =def h;; S2; Ex2i. Further, M is closed with respect to C1.hM;C1i + hA;C2i if and only if eval(H(M); C1;A(A;K); C2)59

Chapter 4Program Equivalence for �vs inFORUMIn this chapter, I study observational equivalence for �vs programs in FORUM. A programis treated like a black-box | the only way to determine the behavior of a program is togive it some inputs and watch the output it generates. In this paradigm, two programsare equivalent if whenever they are given identical inputs they generate identical outputs.Equivalence of programs is relative to what can be observed about their computation. Forexample, the two sorting routines, binary sort and quicksort [Set89], are equivalent if allI can observe is that the algorithms sort their inputs. However, if I can observe the timetaken to sort inputs by binary sort and quicksort, then they will not be equivalent.Understanding observational equivalence of programs is of fundamental importance for avariety of reasons. For example, the compiler for SML of New Jersey �rst transformsprograms into a continuation-passing-style (CPS) intermediate language, and then performsvarious transformations on the program in the intermediate language to improve its run-time performance [App92]. Let us assume that SML programs and their translations to CPSlanguage evaluate to the same value. Still, there is a question regarding the transformationsdone on the CPS programs | what is the relationship between the original CPS program60

and the transformed CPS program? Unfortunately, [App92] does not answer this question ina formally precise manner. Suppose I take a program P in the CPS language and transformit to Q following [App92]. What is the relationship between the observations I can make ofP and Q? If the observable properties of P and Q are identical, then up to our de�nition ofobservations the transformation maintains the essential nature of the program. However,if the observable properties of P and Q are not identical, then there will be situationsin which the observable results produced by Q will di�er from the ones produced by P .Such a transformation can only be justi�ed if Q is observationally equivalent to P in theenvironment in which Q is used. The claim is that observational equivalence provides aframework to study transformations performed by compilers. Along similar lines, one canwant to change pieces of existing programs as better algorithms and implementations aredeveloped. Observational equivalence provides a framework to verify whether two programscan be exchanged.The study of observational equivalence for functional languages with state has been partic-ularly di�cult [MS88, OT93, SF92, MT92, Sie93, OT92]. In specifying �vs, I have placedthe evaluator for �vs within the rich proof theory of FORUM. I use the meta-theory ofFORUM to analyze observational equivalence. I �rst de�ne observational equivalence for�vs programs with respect to the natural semantics and the speci�cation in FORUM, Evs.Next, using a theorem in [MT92], I prove that the two de�nitions are equivalent. I provethat reduction preserves observational equivalence. This is the basis for the equational the-ory for �vs in [SF92]. I also prove the observational equivalence for some of the examples in[MS88, OT92]. One of the main focuses of my future work will be to analyze proof-theoreticproperties of the transformations required for proving observational equivalences.4.1 De�ning Observational EquivalenceIn this section, I de�ne two notions of observational equivalence. Firstly, I de�ne whentwo �vs (de�ned in �gure 3.8) programs are observationally equivalent with respect totheir natural semantics speci�cation (de�ned in section 3.2). Secondly, I de�ne when two61

�vs programs are observationally equivalent with respect to Evs, the speci�cation of �vsin FORUM, de�ned in section 3.2. Next, I prove that the two notions of observationalequivalence are identical. This result lets me study the observational equivalence for �vsprograms in FORUM | the main aim of this chapter.The basic idea of observational equivalence is that one places a program in a context, andthen observes its behavior. Two programs are observationally equivalent if and only if inall contexts the observable behavior remains the same. There are two key concepts here |context and observable behavior. Suppose I have two programs,M and N , in �vs. In whatcontexts can I place M and N? If I think in terms of program transformations, then M isa part of a larger �vs program, and I am replacing it with N | the contexts must comefrom the syntax of �vs. Following the argument, a context would be a �vs program withone of its pieces missing. The idea would then be that programs M and N have identicalobservational behavior with respect to contexts of the given language, in this case �vs.What are the observable properties of a program? Many observations can be made about thecomputation of a program in a context. Some of the many observable properties of interestare | whether the evaluation of programs terminate, whether the programs evaluate tothe same answer, whether the programs yield the same answer with identical executiontime, whether the programs create identical number of new memory locations, etc. Themost primitive of the choices listed above is observing whether the programs evaluate tothe same answer. As the evaluator for the language is deterministic, observing whetherprograms evaluate to the same answer yields the same relation as observing whether twoprograms terminate. The other choices for observations are more re�ned versions of thesetwo primitive observations. If I transformM to N , the minimal property that I would wantof the resulting programs is that one terminates if and only if the other does | guaranteeingthe safety of the transformation. I take termination of the evaluation of programs as theobservation I make.Contexts, ranged over by C, are de�ned in �gure 4.1. I use � to denote the place in thecontext where the program will be placed. For example, �x: � is a context. Note that62

C ::= j � (Contextsvs)j x x 2 Varsj n n 2 Zj b b 2 Bj (�x: C)j �j (f C C) f 2 Oj (C C)j (if C C C)j (let val x = C in C)j (let fun f x = C in C)Figure 4.1: Contexts in �vsplacing a term,M , in the holes in a context, C, written as C[M], may cause binding of freevariables in the term. For example, if I place x in the hole in �x: �, then I get �x: x | thefree variable x gets captured by the context. I now de�ne when a program terminates in astate with respect to natural semantics.De�nition 4.1 [Termination of programs in �vs in natural semantics] Let M 2 �vs andS0 be a state such that close(S0;M). M in the state S0 terminates, written as (M;S0)#ns,if there exists a value V and a state S1 such that hM;S0i + hV; S1i.Observational equivalence using program contexts was �rst de�ned by [Mor68]. It has beenstudied extensively for call-by-name and call-by-value �-calculus, and its extensions withstate [Abr87, AO89, Abr90, Hoa69, MT92, MS88, OT93, Plo76, PS93, SF92]. The de�nitionof observational equivalence for �vs is an extension to the de�nition for �v [Mor68] alongthe lines of [MT92].De�nition 4.2 [Observational Equivalence with natural semantics] Let M and N be two�vs terms, and ; be the empty state. M is said to be observationally equivalent to N withrespect to the natural semantics, written as M �=ns N , if8C 2 Contextsvs such that C[M] and C[N] are closed terms, (C[M]; ;) #ns if and only if(C[N]; ;)#ns. 63

To determine whether two programs are equivalent, I have to check for their terminationin all contexts in Contextsvs. This obviously becomes a very di�cult problem because onehas no control over what the arbitrary contexts might do. [MT92] provides an alternatede�nition of observational equivalence in which they are able to reduce the contexts toEvContvs, the evaluation contexts. I use a slight variation of the de�nition of �=ciu in[MT92].De�nition 4.3 [�=ciu] Let M and N be two �vs terms. M is said to be observationallyequivalent to N with respect to natural semantics, written as M �=ciu N , iffor all E 2 EvContvs and for all states S, such that close(S;E[M]) and close(S;E[N]),(E[M]; S)#ns if and only if (E[N]; S)#ns.Going from arbitrary contexts to evaluation contexts, one loses the capability to bind vari-ables using � and state. Since we are only evaluating programs which are closed withrespect to the � bound variables, the main concern is the binding of assignable variables.Consider the two programs (asg l 5; 1) and (asg l 7; 1), where M ;N is syntactic sugar for((�d: N) M), d 62 FV(N). I evaluate the programs in a state which maps l to 0. Clearly,the two programs are not observationally equivalent with respect to the de�nition for �=ns.However, if in the de�nition of �=ciu I had insisted on E being closed, then the two pro-grams would have been equivalent! The point is that E[M] may have free variables whichare de�ned in the state in which E[M] will be evaluated. The testing of the program isdone by not only placing it in di�erent evaluation contexts, but also by altering the statein which it is evaluated. The following theorem showing the equivalence of �=ns and �=ciuwas proved in [MT92].Theorem 4.4 (Theorem ciu, [MT92]) Let M and N be two �vs terms.M �=ns N if and only if M �=ciu M .I translate the de�nition of �=ciu into FORUM. In order to do this, I have to generalize thede�nition of evalvs, because the initial continuation instead of being K, as in the de�nition64

Cvs([]; K) = KCvs(E[f []M]; K) = �v: (eval Hvs(M) �u: K 0 f v u)Cvs(E[f V []]; K) = �v: K 0 f �vs(V) vCvs(E[[]M]; K) = �v: (eval Hvs(M) �u: (apply v u K 0))Cvs(E[V []]; K) = �v: (apply �vs(V) v K 0)Cvs(E[if []M N]; K) = �v: (eval (ifbr v Hvs(M) Hvs(N))K 0)Cvs(E[let val x = [] inM]; K) = �v: (eval Hvs(M)[x := v]K 0)Cvs(E[cell []]; K) = �v: 8P; l: getC(P; l)) setC(P; l)) [(K 0 l)} (P v)]Cvs(E[read []]; K) = �v: (get v K 0)Cvs(E[write []M]; K) = �v: (eval Hvs(M) �u: (set v u K 0))Cvs(E[write V []]; K) = �u: (set �vs(V) u K0)where K 0 =def Cvs(E;K : vl! o)Figure 4.2: Cvs, translation of EvContvs to FORUM terms of type vl! oof evalvs, is now speci�ed by E. I �rst de�ne Cvs, the translation of E into FORUM in�gure 4.2. The de�nition of evalvs needs to be changed.De�nition 4.5 [Evaluation in FORUM given an initial continuation E] Let M 2 �vs,E 2 EvContvs and S0 be a state such that close(S0; E[M]). M with S0 in the initialcontinuation E evaluates to V with S1, written as evals(E;M; S0; V; S1), if�vs : Evs ; �! 8K : vl! o: S1o(K V) �� S0o(eval Hvs(M) Cvs(E;K))is provable in FORUM.It is quite obvious that evalvs will be true of E[M] exactly when evals is true of M in thecontinuation E. The following lemma states the relationship precisely, and follows from aneasy induction on the structure of E and the de�nition of Cvs.Lemma 4.6 Let M 2 �vs, E 2 EvContvs, V 2 Valuesvs, S1 be a state, and S0 be a statesuch that close(S0; E[M]).evalvs(E[M]; S0; V; S1) if and only if evals(E;M; S0; V; S1)65

I now de�ne the termination property, #f , for programs with respect to Evs using the notionof evaluation de�ned by evals. Next, I de�ne when two �vs programs are observationallyequivalent on the basis of their evaluation in FORUM.De�nition 4.7 [Termination of programs in �vs in FORUM] LetM 2 �vs, E 2 EvContvs,and S0 be a state such that close(S0; E[M]). M in the state S0 with the initial continuationE terminates, written as (E;M; S0) #f , if there exists a value V , and a state S1 such thatevals(E;M; S0; V; S1).De�nition 4.8 [Observational Equivalence with Evs] Let M and N be two �vs terms. Mis said to be observationally equivalent to N with respect to Evs, written as M �=f N , iffor all E 2 EvContvs and for all states S, such that close(S;E[M]) and close(S;E[N]),(E;M; S)#f if and only if (E;N; S)#f.In order to use the translation in FORUM to prove observational equivalence, I �rst needto prove that �=f de�nes the same relation as �=ciu.Theorem 4.9 (�=ciu and �=f coincide) Let M and N be two �vs terms.M �=ciu N if and only if M �=f N .Proof: To prove the above theorem, it is enough to prove that (E;M; S0) #f if and onlyif (E[M]; S0) #ns, for any state S0 and E 2 EvContvs, such that close(S0; E[M]) andclose(S0; E[N]).Unraveling de�nitions of #f and #ns, all I need to prove is that if for some V 2 Valuesvsand state S1, evals(E;M; S0; V; S1) then hE[M]; S0i + hV; S1i. Conversely, if for someV 2 Valuesvs and state S1, hE[M]; S0i + hV; S1i then evals(E;M; S0; V; S1).By the Correspondence theorem 3.8 in section 3.2evalvs(E[M]; S0; V; S1) if and only if hE[M]; S0i + hV; S1i:66

Further note that by lemma 4.6evalvs(E[M]; S0; V; S1) if and only if evals(E;M; S0; V; S1):Using these facts the proof is completed.Now suppose I want to prove that two programs M and N are observationally equivalent.Suppose, for someE 2 EvContvs, states S0 and S1, and V 2 Valuesvs such that FV(E[M]) �dom(S), evals(E;M; S0; V; S1) is true. I look at the resulting proof tree in FORUM andtransform it to a proof tree for evals(E;N; S0; V; S1). If I can exhibit such transformationto and fro, then I have established thatM is observationally equivalent to N . The problemof determining whether two programs are observationally equivalent has been reduced tospecifying proof transformations.4.2 Reduction in �vs preserves Observational EquivalenceIn this section, I use Evs to prove that if a program reduces to another program, then thetwo programs are observationally equivalent { the basis for the equational theory in [FH92].evals de�nes the evaluation of a termM in the state S, and continuation E to a value V andstate S. In this sense, evals is not specifying reductions, rather, it is specifying completeevaluations. However, using lemma 4.6 it can be easily proved thatevals(E;M; S0; V; S1) if and only if evals([]; E[M]; S0; V; S1):Using this basic intuition, I de�ne when M reduces to N .De�nition 4.10 [Reduction in �vs] Let M;N 2 �vs, S1 be state, and S0 be a state suchthat close(S0;M). M in state S0 evaluates to N in state S1, written as reds(M;S0; N; S1),if 67

�vs : Evs ; �! 8K : vl! o: S1o(eval Hvs(N)K) �� S0o(eval Hvs(M) K) is provable inFORUM.I would like to prove that reduction preserves observational equivalence, i :e: ifreds(M;S0; N; S1) then M �=f N . Unfortunately, as stated my claim would be false. Fol-lowing is a counter-example.Example 4.11 Let M =def ref 0, S0 =def ;, N =def l, and S1 =def hl; 0i. Clearlyreds(M;S0; N; S1) is true.However, ref 0 is not observationally equivalent to l. To distinguish the two terms, takeE = deref [] and S = hl; P i, where P is a divergent program.The problem is that evaluation of a program may create new memory cells and change theexisting state. However, the statementM �=f N throws away this information. In the aboveexample l is de�ned in the state S1, but this information was not used in the attemptedproof of ref 0 �=f l. On the other hand, (ref 0) is observationally equivalent to l with respectto all states which map l to 0. Suppose we had a way of representing state in the syntaxof �vs, then the situation can be repaired. I would change the succedent of my claim toM 0 �=f N 0, where M 0 and N 0 are �vs terms, such that M 0 incorporates the state S0 andM , while N 0 incorporates the state S1 and N . I will prove the new statement of my claimbelow. I de�ne the translation of a state into the syntax of �vs [MT92, SF92]. (M ;N) issyntactic sugar for (�d: N)M , d 62 FV(N).De�nition 4.12 Given a state S, I de�ne a �vs term S+, the encoding of state S in �vs.S+ =def ((�x1; : : : ; xn; y:asg x1 V1; : : : ; asg x1 V1; y)(ref 1) : : :(ref n))Where� lS = x1; : : : ; xn. 68

� y is distinct from all xi, i 2 [1; n].� S(xi) = Vi, i 2 [1; n].The proof of the following lemma is immediate from the construction of S+ for a state S.Lemma 4.13 Let N 2 �vs, and S a state such that close(S;N).reds((S+N); ;; N; S) is true.Theorem 4.14 Let M be a redex, N 2 �vs, S1 be a state, and S0 a state such thatclose(S0;M).If reds(M;S0; N; S1) then (S0+M) �=f (S1+N).Proof: Assume givenM;N 2 �vs, S0 a state such that close(S0;M), and reds(M;S0; N; S1)is true. LetM 0 =def (S0+M) andN 0 =def (S1+N). Unraveling the de�nition ofM 0 �=f N 0,I have to prove that for any arbitrary state S and E 2 EvContvs, such that close(S;E[M 0])and close(S;E[N 0]), (E;M 0; S)#f if and only if (E;N 0; S)#f .Going from right to left, I have to prove that if there exists V 2 Valuesvs, and a stateS0 such that evals(E1; N 0; S; V; S0), then evals(E1;M 0; S; V; S 0).Assume evals(E1; N 0; S; V; S 0). I have to construct a proof for evals(E1;M 0; S; V; S 0). Evsis in the intuitionistic part and �vs; K is in the signature of all the sequents shown inall the proofs that I construct. I start by constructing a proof below, called �1. In �1,�1 is obtained by unfolding the de�nition for reds(M;S0; N; S1) and lemma 4.13 gives me�2. Let M1 =def Hvs(M), N1 =def Hvs(N), M 01 =def Hvs(M 0), N 01 =def Hvs(N 0),K 0 =def Cvs(E;K), and V1 =def �vs(V). 69

�1S1o(eval N1 K) �! S0o(evalM1 K) �2S0o(evalM1 K) �! (evalM 01 K)S1o(eval N1 K) �! S0o(evalM 01 K) CutSBy de�nition of evals, and N 0 I must have the following proof in FORUM.
1�S ;�S1 ; K : CLS ; S 0o(K V1) �! (eval N1 K 0)}�S }�S1... backchain on ref clause; 8R;) R�S ; K : CLS ; S 0o(K V1) �! (eval N 01 K 0)}�S... 8R;) R�! 8K : vl! o: S 0o(K V1) �� So(eval N 01 K 0)Using
1 in the above proof, I construct �2 below.
1�S ;�S1 ; K : CLS ; S 0o(K V1) �! (eval N1 K 0)}�S }�S1... ;) R; 8R�S ; K : CLS ; S 0o(K V1) �! So1(eval N1 K 0)}�SUsing �2, I construct the required proof below. To keep the proof readable, I do not write�S ; K in the signature, and CLS in the intuitionistic part of some of the sequents.�2S0o(K V1) �! (eval N1 K 0)}�S �4S1o(eval N1 K 0) �! (evalM1 K 0)�S ; K : CLS ; S0o(K V1) �! (evalM 01 K 0)}�S CutS... 8R;) R�! 8K : vl! o: S 0o(K V1) �� So(evalM 01 K0)To complete the construction, I build �4 below. �3 is obtained from �1 by in
ating thesignature and the intuitionistic parts of the sequents in the proof.K 0 is a �S term �3�S ; K : CLS ; S1o(eval N1 K1) �! S0o(evalM1 K1)�S ; K : CLS ; S1o(eval N1 K0) �! (evalM1 K 0) CutS70

Going from left to right, I use the fact the Evs is deterministic, because there is exactlyone clause for every term constructor. Hence, if reds(M;S0; N; S1), then every evaluationof M that evaluates the term beyond N must pass through the reduction of M to N .Assuming evals(E1;M 0; S; V; S0), I have to construct a proof of evals(E1; N 0; S; V; S0). Theproof in evals(E1;M 0; S; V; S0) must have the following shape. To keep the proof readable,I do not write the signature and the intuitionistic part of the sequent in all the sequents inthe proof. ��S ;�S1 : CLS ;CLS0 ; S 0o(K V1) �! (eval N1 K 0)}�S }�S1... reduction of M1 in S0 to N1 in S1S0o(K V1) �! (evalM1 K 0)}�S }�S0... backchain on ref clause; 8R;) RS0o(K V1) �! (evalM 01 K 0)}�S... 8R;) RS 0o(K V1) �! So(evalM 01 K 0)Using � I construct the required proof below.��S ;�S1 : CLS ;CLS0 ; S 0o(K V1) �! (eval N1 K 0)}�S }�S1... backchain on ref clause; 8R;) R�S : CLS ; S 0o(K V1) �! (eval N 01 K 0)}�S... 8R;) RS0o(K V1) �! S0o (eval N 01 K 0)The above proof highlights some key aspects Evs. IfM reduces toN , thenN 0, the translationof N , entails M 0, the translation of M . Hence, whenever N 0 evaluates to a value, so willM 0. The proof going from right to left uses this fact and CutS to construct the requiredproof. Now, N 0 entails M 0. This does not necessarily imply that an evaluation ofM 0 has tohave N 0 as an intermediate state. Since Evs is deterministic, i :e: for every term constructof type tm there is exactly one clause, if M 0 evaluates to a value, and N 0 entails M 0, it71

necessarily follows that the evaluation has N 0 in some intermediate state. This observationyields the proof going from left to right in the above theorem.4.3 Observational Equivalence proofs in FORUMIn this section I present the Meyer-Sieber examples [MS88] in the UML, and prove thedesired equivalences, interpreting equivalence as �=f . I have converted the Algol-like no-tation of [MS88] into UML syntax following [MT92]. State introduces new nuances intothe programming language, and correspondingly into any theory which tries to study theequivalence of programs with state. The idea behind the examples was to highlight someof the novel issues that come up when state is added to a higher order language. Let
 bea divergent program in UML.Example 4.15 [Example 1] LetM 2 �vs, andM1 =def let val x = ref 0 inM , x 62 FV(M).M �=f M1The intuitive justi�cation is simple. As x 62 FV(M), the creation of x has no e�ect on thebehavior of M .The proof for this example follows from the following more general statement of the problem.The lemma is proved by a straightforward induction on the height of the evaluations of(S+3 M) and M in FORUM. The essential point is that the evaluation of (S+3 M) createsnew locations by picking new eigen-variables in FORUM. Hence, if (S+3 M) is placed in anevaluation context E, then E cannot access the newly created locations. The computationsof (S+3 M) and M are identical except for this di�erence.Lemma 4.16 (Elimination of inaccessible cells) LetM 2 �vs, L =def l1; : : : ; ln , andS1 be a state such that : 72

� close(S1;M).� L � dom(S1).� for all l 2 L, l 62 FV(M).� if l 2 FV(M), then for all l0 2 L, l0 62 FV(S1(l)).� S3 is the restriction of S1 to L.(S+3 M) �=f MI �rst point out some equivalences for which I do not need induction on the height of proofs.The proofs in FORUM for these terms are permuted to each other.Remark 4.17 Let M;N; P�vs, and V 2 �vs.1. let val x = V inM �=f (�x:M)V .2. E[M] �=f let val x =M in E[x], x 62 FV(E).3. E[let val x =M in N] �=f let val x =M in E[N], x 62 FV(E).4. let val x = ref M in E[�] �=f let val x = ref V in E[asg x M], x 62 FV(M).5. let val x = ref P in ((�z:M) N) �=f ((let val x = ref P in �z:M)N), x 62 FV(N)6. let val x = ref V in ((�z: M) N) �=f ((�z: let val x = ref V in M)N), x 62 FV(N),z 62 FV(M) [FV(V)Equivalence 1 is obvious from the interpretation of letval. Equivalence 2 and 3 follow fromlemma 4.6. For equivalence 4, observe that x is inaccessible from M , thus evaluating Mwith or without x declared in the environment makes no di�erence. Equivalences 5 and 6result from the permutation of proofs because of information about variable occurrences.Example 4.18 [Example 2] M 2 �vs. 73

� M1 =def
.� M2 =def let val x = (ref �) in ((asg x true) ; (M �) ; if (deref x)
 1), x 62 FV(M).Lemma 4.19 M2:1 �=f M2:2Proof: The strategy is to show that for any E 2 EvContvs, and any state S such thatclose(S;M2), (E;M2; S)#f is not true.On the contrary, suppose that (E;M2; S0) #f is true for some E0 2 EvContvs, and stateS0 such that close(S0; E0[M2]). Then there exists a value V and a state S1 such thatevals(E0;M2; S0; V; S1) is true. Now by the equivalence in remark 4.17,M2 �=f ((M �) ; let val x = (ref 0) in (if (deref x)
 1)):� V 0 =def �vs(V).� M 0 =def Hvs(M).�
0 =def Hvs(
).� Q =def (let val x = (ref 0) in (if (deref x)
 1)), Q0 =def Hvs(Q).� N =def ((M �) ;Q), N 0 =def Hvs(N).� C1 =def Cvs(EK).� C2 =def �u: (apply (abs �d: Q0) u C1), d 62 FV(Q).By de�nition of �=f I have a proof � of�vs; K;�S0 : Evs;CLS0 ; So1(K V 0) �! (eval N 0 C1)}�S74

in FORUM.The last rules of � must be as shown below. �1�vs; K;�S0 : Evs;CLS0 ; So1(K V 0) �! (eval (appM 0 �) C2)}�S0...�vs; K;�S0 : Evs;CLS0 ; So1(K V 0) �! (eval N 0 C1)}�S0Suppose h(M �); S0i diverges then there cannot exist a �1 because of theorem 3.8. There isa contradiction, hence I am done.Suppose h(M �); S0i + hU; S2i. Hence, by theorem 3.8 I would get �1 as shown below. LetU 0 =def �vs(U), S3 =def S2[l 7! 0], l 62 dom(S2).�2�vs; K;�S3 : Evs;CLS3 ; So1(K V 0) �! (eval
0 C1)}�S3...�vs; K;�S2 : Evs;CLS2 ; So1(K V 0) �! (eval Q0 C1)}�S2�vs; K;�S2 : Evs;CLS2 ; So1(K V 0) �! (apply (abs �d: Q0) U 0 C1)}�S2...�vs; K;�S0 : Evs;CLS0 ; So1(K V 0) �! (eval (appM 0 �) C2)}�S0Using theorem 3.8 and the fact that
 is divergent I get that �2 cannot exist in FORUM.Example 4.20 [Example 3] Let M 2 �vs.� M3:1 =def let val x = (ref 0) in (let val y = (ref 0) inM).� M3:2 =def let val y = (ref 0) in (let val x = (ref 0) inM).Lemma 4.21 M3:1 �=f M3:2 75

Proof: The idea is to show that given a proof for the evaluation of M3:1 I can transformit to an evaluation of M3:2, and vice versa.Let E be an arbitrary evaluation context and S0 any state such that close(S0; E[M3:1]).Suppose hE[M3:1]; S0i + hV; S1i, for some value V and state S1. Let V 0 =def �vs(V),C1 =def Cvs(E;K), N 01 =def Hvs(M3:1), N 02 =def Hvs(M3:2).By theorem 3.8, I have a proof in FORUM, �1, of�vs;�S0 ; K : Evs;CLS0 ; So1(K V 0) �! (eval N 01 C1)}�S0 :I need to transform �1, into a proof for the evaluation of N 02 in FORUM. The shape for �1is shown below. �2�vs;�S1 ; K : Evs;CLS1 ; So1(K V 0) �! (eval (app (app Q0 l1) l2) C1)}�S0 } (P1 0)} (P2 0)...�vs;�S0 ; K : Evs;CLS0 ; So1(K V 0) �! (eval N 01 C1)}�S0Using �2, I can trivially get the evaluation for M3:2 in FORUM. The proof in the otherdirection follows from a similar argument.The above proof shows the advantage of using eigen-variables to generate names of newassignable variables. The two terms in this example can essentially be renamed to eachother. This fact is made precise by the usage of the eigen-variables.Example 4.22 [Example 4] Let M 2 �vs.� M4:1 =def
.� M4:2 =def let val x = (ref 0) inlet val f = �d: (asg x (+ 2 (deref x))); (deref x) in(M f) ; (if (= 0 (mod (deref x) 2))
 1), x; f 62 FV(M).76

Lemma 4.23 M4:1 �=f M4:2Proof: The strategy is to show thatM4:2 will have no evaluation in FORUM. I only considerthe case when (M f) converges, as otherwise the argument is trivial. I introduce a newidea in this proof.The essential point of the example is that access to the local variable x is passed to Monly via f . Hence, the content of x can only be incremented by 2, and then read out |no other operation is possible on x. In a way, an abstract data type has been created withthe only interface function being f . The if statement checks whether this abstraction wasmaintained by M or not.Let F =def 8K; V; U: [(apply c V K)} (P U)] �� [(K 2 � (U=2 + 1))} (P 2 � (U=2 + 1))]:P and c are declared in the signature. F encapsulates the computational behavior of f .Note how it does away with the name of the cell (P U), and need for getC and setC clausesfor P .Suppose I have a proof, �, in FORUM of�vs;�S0 ; K; c; P; l : Evs;CLS0 ; F ; So1(K; V 0) �! (eval (appM 0 c) C1)}�S0 } (P 0);where E 2 EvContvs,� S0 is a state such that close(S0; E[M]).� V 0 =def �vs(V).� M 0 =def Hvs(M). 77

� C1 =def Cvs(E;K).In � the only interaction for P is via F as there are no getC and setC clauses for P and l inthe sequent above. Thus, it is trivially true that S1(l) is a multiple of 2.I construct �1 from � using CutS. Let F 0 =def F [c := Add2], andAdd2 =def Hvs(�d: (asg x (+ 2 (deref x))); (deref x)):Add2 is a �vs; l term �c; P; l : F ; So1(K; V 0) �! (eval (appM 0 c) C1)}�S0 } (P 0)P; l : F 0 ; So1(K; V 0) �! (eval (appM 0 Add2) C1)}�S0 } (P 0)I construct �2 below. Let CLl =def fgetC(P; l); setC(P; l)g. In this proof I have used theequation 2 � (U=2 + 1) = U + 2, which is true if the division is for real numbers.P; l;K; U; V : CLl; Evs ; (KU + 2)} (P U + 2) �! (KU + 2)} (P U + 2)... evaluate Add2P; l;K; U; V : CLl; Evs ; (KU + 2)} (P U + 2) �! (apply Add2 V K)} (P U)... 8R; �� RP; l;�vs : CLl; Evs ; �! F 0Using �1 and �2, I construct �3 below. �3 is the computation of (appM 0 Add2) in FORUM!By the observation regarding �1, S1(l) is a multiple of 2. Hence, it is clear that (if (=0 (mod (deref l) 2))
 1) will evaluate to the value of
. Using theorem 3.8 and the fact that
 is a divergent program, I have proved that M4:2 does not converge.�2P; l : CLl ; �! F 0 �1P; l : F 0 ; So1(K; V 0) �! (eval (appM 0 Add2) C1)}�S0 } (P 0)P; l : CLl ; So1(K; V 0) �! (eval (appM 0 Add2) C1)}�S0 } (P 0)To complete the proof I have to convert any evaluation of (app M 0 Add2) into an evaluationof (app M 0 c). I prove this by a straightforward induction on the height of the evaluationof (appM 0 Add2). 78

Example 4.24 [Example 5] Let M 2 �vs.� M5:1 =def (M �d: �)� M5:2 =def let val x = (ref 0) inlet val f = in �d: asg x (+ 1 (deref x))(M f)Lemma 4.25 M5:1 �=f M5:2Proof: The strategy is to show that an evaluation of M5:1 can be transformed to an eval-uation of M5:2, and vice versa. The essential point of this example is that incrementingachieved by f is useless for M because it can never read the contents of x. Hence, mightas well as use �d: � instead. This equivalence has been especially problematic for variousdenotational semantics [OT92].The proof strategy is the same as in example 4.Let F =def 8K; V: (8U: [(apply c V K)} (P U)] �� 8W: [(K �)} (P W)]).P and c are declared in the signature. F encapsulates the computational behavior of f and�d: �. Note how it does away with the name of the cell (P U), and need for getC and setCclauses for P .Suppose I have a proof, �, in FORUM of�vs;�S0 ; K; c; P; l : Evs;CLS0 ; F ; So1(K; V 0) �! (eval (appM 0 c) C1)}�S0 } (P 0);where E 2 EvContvs.� S0 is a state such that close(S0; E[M]).� V 0 =def �vs(V). 79

� M 0 =def Hvs(M).� C1 =def Cvs(E;K).I construct �i from � using CutS, i 2 [1; 2]. Let Fi =def F [c := Di], whereD1 =def Hvs(�d: asg l (+ 1 (deref l))), D2 =def Hvs(�d: �), and i 2 [1; 2].Di is a �vs; l term �c; P; l : F ; So1(K; V 0) �! (eval (appM 0 c) C1)}�S0 } (P 0)P; l : Fi ; So1(K; V 0) �! (eval (appM 0 Di) C1)}�S0 } (P 0)I construct �3 below. Let CLl =def fgetC(P; l); setC(P; l)g.P; l;K; U; V : CLl; Evs ; (K �)} (P U + 1) �! (K �)} (P U + 1)P; l;K; U; V : CLl; Evs ; 8W: (K �)} (P W) �! (K �)} (P U + 1)... evaluate D1P; l;K; U; V : CLl; Evs ; 8W: (K �)} (P W) �! (apply D1 V K)} (P U)... 8R; �� RP; l;�vs : CLl; Evs ; �! F 0I construct �4 below. Let CLl =def fgetC(P; l); setC(P; l)g.P; l;K; U; V : CLl; Evs ; (K �)} (P U) �! (K �)} (P U)P; l;K;U; V : CLl; Evs ; 8W: (K �)} (P W) �! (K �)} (P U)... evaluate D2P; l;K; U; V : CLl; Evs ; 8W: (K �)} (P W) �! (apply D2 V K)} (P U)... 8R; �� RP; l;�vs : CLl; Evs ; �! F 0Composing �1 and �3, I construct the evaluation of (app M 0 D1) in FORUM. Composing �2and �4, I construct �6. �6 fails to be the evaluation of (appM 0 D2) in FORUM, because ofthe extra cell P in the environment. However, I can use lemma 4.16 to get rid of this extracell. To complete the proof I have to convert proofs of evaluation of (appM 0 Di), i 2 [1; 2]to an evaluation of (app M 0 c). I prove this by a straightforward induction on the height ofthe evaluation of (app M 0 Di). 80

Using the meta-theory of FORUM, I have proved many of the Meyer-Sieber examples from[MS88] and an example from [OT92]. This style of reasoning bears a close resemblance tothe style in [OT93] using logical relations. The use was most remarkable in the fourth and�fth example where I was able to use CutS and CutL to get the proofs. One direction inthis proof still needed to induct on the height of evaluation proof tree, a weakness of theargument that I would like to get rid of in my future work. The �rst three proofs wereessentially arguments about permutations of evaluations in FORUM. I want to investigatewhether I can make these proofs compositional using resolution on the proof rules. Themeta-theory gives me distinct advantage in the above proofs. However, I would like todevelop the meta-theory so that composition, and permutation of resolution can be studiedin �ner detail.

81

Chapter 5Specifying DLX - a RISCarchitectureIn this chapter I specify the sequential and pipelined operational semantics for the DLX[HP90] architecture { a prototypical RISC (Reduced Instruction Set Computer) architec-ture { in FORUM. DLX is a generic load/store machine representative of the RISC machineswhich have become very popular since the late 1980's, e:g : Intel i860, MIPS R2000/R3000,Motorola 88000, SPARC, PowerPC. I will prove that the sequential and pipelined speci�ca-tions of DLX are identical, and using this equivalence give a simple proof of the correctness ofcode rescheduling. The main point of this chapter is that FORUM facilitates the declarativespeci�cation of the concurrent pipelined operational semantics of DLX with complex synchro-nizations. Furthermore, the framework allows me to handle structural and data-hazards,and specify optimizations such as call-forwarding and early-branch prediction declaratively.The key feature of the FORUM speci�cation is that it speci�es the computation of thepipeline as compared to the existing speci�cations in the literature which specify thepipeline's temporal behavior [AL93]. The speci�cations in FORUM are executable as logic82

programs yielding a prototype implementation of the pipeline which can be used for collect-ing statistics and experimentation. This seems to be a unique feature of the FORUM spec-i�cation amongst all the speci�cations for DLX style pipelines. Furthermore, the FORUMspeci�cation is concurrent { di�erent stages of the pipelines can be computed independentlyof each other. Moreover, the equivalence of sequential and pipeline operational semanticsprovides me with a tool to prove correct various optimizations done by the back-end opti-mizer and/or hardware such as code rescheduling. The proofs of program-equivalence areonce again achieved by proof transformations very much along the lines of chapter 4.In this chapter I �rst introduce the DLX architecture, and specify its sequential operationalsemantics. I specify only the integer part of DLX and as such, the discussion will berestricted to relevant parts of the architecture, the reader is referred to [HP90] for a detaileddescription. The speci�cation of the
oating-point operations and interrupts in the pipelinedo not require any new speci�cation techniques, and thus they have been left out from thepresent discussion. Next, I specify the operational semantics of DLX pipeline. I prove thatthe DLX pipeline speci�cation is equivalent to the sequential speci�cation. The program isthen extended to call-forwarding and early-branch prediction. Finally, I use the sequentialoperational semantics to prove the correctness of code scheduling.5.1 The DLX architectureThe architecture of the DLX machine { the user visible part of the instruction set of DLX{ emphasizes design for pipeline e�ciency, an easily decoded instruction set and e�ciencyas a compiler target. In this section, I describe the architecture for the integer part ofDLX, for a complete description and discussion of the entire DLX architecture the reader isreferred to [HP90]. I have left out the jump instructions because their introduction needsno new ideas { the presence of branch instructions causes all the complications that theymay cause.DLX has thirty-two 32 bit general-purpose registers (GPRs). Memory is word addressable83

Instruction Instruction name Meaninglw R1; I(R2) Load word R1 := M[I+ R2]add R1;R2;R6 Add R1 := R2+ R6sll R1;R2;R4 Shift left logical R1 := R2� R4seq R1;R2;R3 Set equal to if (R2 = R3) R1 := 1else R1 := 0beqz R4;]I Branch equal zero if (R4 = 0) PC := PC+ I + 4;((PC+ 4)� 215) � PC+ I � ((PC+ 4) + 215)Figure 5.1: Semantics of example instructions in DLX.in Big Endian mode with 32-bit address, and all memory references are through loadsor stores between memory and the GPRs. I treat memory as word addressable to avoidunilluminating details regarding byte and halfword addressability. All instructions are 32-bits and all memory accesses must be aligned. Since I am only specifying the integer partof DLX, I use the GPRs for integer multiply and divide instructions.There are three classes of instructions for the integer part of DLX : loads and stores,ALU operations, and branches. A load instruction is written as lw R1; I(R2) with theintended semantics being that R1 is assigned the contents of the memory array, M, fromthe address R2 plus the 16-bit integer I . A store operation written as sw I(R1);R2 resultsin M[I+ R1] := R2. The operands and results for all ALU operations are stored in registers.The operations include simple arithmetic and logical operations : add, subtract, and, or,exclusive or, shifts and compares. One of the arguments in the operations can be thenumber itself (called the immediate) instead of a register. However, to focus on the centralissues in the speci�cation, I do not consider these variants of the instructions. Typical ALUinstruction is written as op R1;R2;R3 with the intended semantics being that R1 is assignedthe value R2 op R3.The branch instructions can only test for equality with zero and the o�sets are limited to16-bit integers. To present the speci�cation in a more understandable way, I have chosena representative set of instructions from each class for the DLX [HP90]. I have addedinstructions end and begin, which cause the computation to halt and start, respectively.84

Data transfers Move data between registers and memorylw; sw Load-word, store word (to/from GPR).Arithmetic/Logical Operations on integer or logical data in GPRsadd; addu; sub; subu Add and subtract; signed and unsigned.mult; div;multu; divu Multiply and divide; signed and unsigned.and; or; xor And, or, exclusive or.sll; srl; sra Shifts: left and right logical, and right arithmetic.s Set conditional: \ " may be lt, le, eq, ne.Control Conditional branchesbeqz; bnez Branch GPR equal/not equal to zero;16-bit o�set from PC+ 1.end; begin Halt, start computation.Figure 5.2: List of DLX instructions selected for speci�cation.A sample of instructions from the di�erent classes along with their intended semantics isgiven in �gure 5.1. A list of the selected DLX instructions is given in �gure 5.2.5.2 Sequential speci�cation for DLX architectureIn this section, I specify the sequential semantics of the DLXmachine. The DLX instructionsare of a very simple nature. In particular, no instruction can both perform an arithmeticoperation and a memory operation. Consequently all instructions can be broken into �vedistinct parts: fetch the instruction to be executed, decode instruction, execute instruc-tion, perform required memory-access, and write-result. The block diagram detailing theconnectivity of the various units is shown in �gure 5.3. In the �gure only MAR (MemoryAddress Register) can set the address for a memory load/store, and only MDR (MemoryData Register), can send/receive data from memory. IR (Instruction Register), and PC(Program Counter), save the current instruction being executed and the address of thenext instruction to be executed, respectively. The latches A, B and AOUT provide storagefor the inputs and the outputs of the ALU. The block named CONTROL decodes the in-struction in IR, and sets all the switches to generate the appropriate
ow of data required85

FileRegisterALUCONTROLIR
CB �� PCMARMDR� �� � Data InMemoryData outAdress

A� �
S1 bus S2 bus

MUX

tt ttttt t

- - -��
�- ����

-
--

?
?? ?? ???-- ?� � -

?
-
AOUT Dest bus

Figure 5.3: Block diagram for the connectivity of functional blocks in the DLX.86

to execute the current instruction. The individual parts in the execution of an instructionare further elaborated below.1. Instruction fetch (IF): MAR := PC; IR :=M[MAR]Operation: Send out the PC and fetch the instruction from memory into the instruc-tion register, IR. PC is transferred to MAR because PC is connected to memory onlyvia MAR.2. Instruction decode/register fetch (ID): A := Rs1; B := Rs2; PC := PC+ 1Operation: Decode the instruction and access the source registers from the register�le. The PC is also incremented to point to the next instruction to be executed.Decoding is done in parallel with reading registers to the latches A and B, because ofthe �xed format of the DLX instructions. Moreover, as the immediate argument occursin the same bits in all DLX instructions, the sign-extended immediate, if needed, isalso calculated in this step.3. Execution/e�ective address (EX): The ALU operates on the operands, performingone of the following functions depending upon the DLX instruction type.� Memory reference: MAR := A + (IR16)16]]IR16:::31; MDR := RdOperation: The immediate is calculated by taking the upper 16-bits of the IRand �lling the lower 16-bits of the immediate with the 16th bit of the IR. Theimmediate is added to the latch A. The destination register Rd is stored in MDR,because GPRs can store data into memory only via MDR. IR16:::31 are the lower16 bits of IR, and (IR16)16 is the 16th bit of IR repeated 16 times.� ALU instruction: AOUT := A op BOperation: The ALU performs the operation speci�ed in the opcode on the valuein latch A and on the value in B. The result is stored in another latch calledAOUT.� Branch: AOUT := PC+ (IR16)16]]IR16:::31; cond := (A op 0)Operation: The ALU computes the branch target address by adding the PC tothe immediate. It then compares A to 0; op can be either = or 6=.87

4. Memory access/branch completion (MEM): The only DLX instructions active in thisstep are loads, stores and branches.� Memory reference: MDR := M[MAR] or M[MAR] := MDROperation: For a load data comes from memory to MDR, and for a store datafrom MDR goes to memory.� Branch: if (cond) PC := AOUTOperation: For branch instructions PC is updated if cond is 1.5. Write-back (WB): Rd := AOUT or MDROperation: Write the result into the register �le, whether coming from the memorysystem or from the ALU.The idea behind specifying DLX is pretty clear, given the above explanation of the operationsemantics of the instructions. I look at the various registers and the memory array asentities in some common pool. The evaluation of the program consists of a synchronizationbetween the PC, the registers, and the memory, which contains both the program and thedata. Memory is represented by a two place predicate, (mnV), the �rst argument is theaddress - an integer - of the memory cell and the second argument is the contents of the cell.Similarly, registers are represented by binary predicates (r i V) and program memory by(p i x). An instruction is represented as (ix X s1 s2 d I op), where X denotes the class of theinstruction, s1 the �rst register argument, s2 the second register argument, d the destinationregister, I is an immediate and op the particular function to calculate. It should be obviousthat all instructions can be represented with this representation, however, it is not necessarythat all �elds will have meaningful data for all the instructions.The signature, called �s, specifying the constants used in the sequential speci�cation of DLXis given in �gure 5.4. A function for every arithmetic/logical function of DLX is assumedin FORUM { I treat these functions as if they were in-built. Further, the type int isdeclared with all the integers as terms of type int. The built-in functions are representedby tokens which are members of func. Members of the type class represent the classes ofinstructions. The predicate cont signals that computation should continue, and num is a88

predicate whose argument counts the number of instructions executed. (eqN) is provableif and only N is 1, and (neN) is provable if and only if N is 0.cont : onum; eq; ne : int! oop : int! int! intr; m : int! int! oa; b; pc : int! op : int! inst! oix : class! int! int! int! int! func! instop : funcalu; br; ld; st; ht; bg; noop : classFigure 5.4: Signature for speci�cation of DLXThe speci�cation for DLX, called Es, is the set of universal closure of clauses in �gure 5.6.Di�erent kinds of parentheses have been used in �gure 5.6 to enhance readability. Note thatfor every instruction type { speci�ed by its class { there is exactly one clause in �gure 5.6with a matching head. The one subtlety in the speci�cation is that I cannot perform amulti-way synchronization amongst the operand registers, destination register, and PC forthe ALU operations. The problem is that there is only one Rn, while the instruction mayneed three copies { a deadlock would occur. The speci�cation thus decouples the readingof the two source registers into individual unsynchronized steps. The idea is that the twosource registers are read in any order into the latches A and B. Once the latches are loadedthe operation is performed and result is stored in the destination register. In this approachall of the register arguments may be identical or di�erent { a deadlock will not occur.The DLX programs in FORUM are de�ned by the terms parsed by the non-terminal Pl,l 2 nat in �gure 5.5. A program is loaded in program memory, and then evaluated withrespect to a state speci�ed by the contents of the special purpose registers, general purposeregisters, memory and PC { the data state. The de�nitions of program state and data stateare given below.De�nition 5.1 [Program State] Let P be an abbreviation for�m; x1; : : : ; xm: (p 1 x1)} : : : } (pmxm) for m 2 nat. For any dlx program Pl, (P l ~P) is a89

R ::= n n 2 [1; 32]C ::= ld j st j aluIl0;l;m;n ::= q q 2 [l0; l] [[0; m][[�n; 0]Ixl0;l;m;n ::= (ix brRRRIl0;l;m;n op)j (ix C RRRI0;0;q;q op) q = 215B1;l;m;n ::= Ixm;l�n�1;0;n+2Bl0;l;m;n ::= Ixm+l0�1;l�n�1;l0�1;n+2;Bl0�1;l;m;n+1 (l0 + n); m < l and 1 < l0A1;l;m;n ::= Ix�(l+1);�(m+n+2);0;n+1Al0;l;m;n ::= Ix�(l+2�l0);�(m+n+2);l0�1;�(n+1);Al0�1;l;m;n+1 (l0 + n); m < l and 1 < l0H1;l ::= Ix0;0;�1;lHl0;l ::= Ix0;0;l0�2;l�l0�1;Hl0�1;l 1 < l0 � lS ::= (ix bgRRRI0;0 op)E ::= (ix htRRRI0;0 op)Q2 ::= S : EQl+2 ::= S;Bl;l;0;0;E 1 � lQl+2 ::= S;Bl0;l;m;0;Hm;Al00;l;m;0;E l = l0 + l00+m; 1 � l0; l00; mPl ::= Ql j Ql0 ;Pl00 l = l0 + l00; and 2 � l0; l00Figure 5.5: Grammar for DLX programsprogram state. ~P are the instructions in Pl, and by de�nition l is the number of instructionsin ~P .De�nition 5.2 [Data State] (r 1) : : :(r 32) are the DLX registers, n 2 nat is the numberof memory cells, pc is the program counter, and num stores the number of instructionsexecuted. Let S be an abbreviation for�n; ~V ; ~U; L: (pcL)} (r 1V1)} : : : (r 32V32)} (m 1U1)} : : : (mnUn)} (numUn+1):The lengths of ~V and ~U { 32 and n + 1 respectively { if implicit, are assumed to be asrequired.For any n � 0, L; V1; : : : ; V32; U1; : : : ; Un+1 : int, (S n ~V ~U L) is a data state.It is worth pointing out that execution cannot start without executing bg as clauses for allinstructions other than bg synchronize with cont, and that the execution cannot terminate90

(pcL)} (pL (ix aluS1 S2D I O))} cont} (numM) ��[(pL (ix aluS1 S2D I O))} (num(M + 1)) ��[[(rS1V1) �� (rS1V1)} (aV1)]
 [(rS2V2) �� (rS2V2)} (bV2)]
 [(rDV3)} (aV1)} (bV2) �� (rD (V1 O V2))} cont} (pc (L+ 1))]]](pcL)} (pL (ix ldS1 S2D I O))} cont} (numM) ��[(pL (ix ldS1 S2D I O))} (num(M + 1)) ��[[(rS1V1) �� (rS1V1)} (aV1)]
 [(rDV2)} (aV1)} (m (V1+ I)V3) ��(rDV3)} cont} (pc (L+ 1))} (m (V1+ I)V3)]]](pcL)} (pL (ix stS1 S2D I O))} cont} (numM) ��[(pL (ix stS1 S2D I O))} (num(M + 1)) ��[[(rS1V1) �� (rS1V1)} (aV1)]
 [(rDV2)} (aV1)} (m (V1+ I)V3) ��(rDV2)} cont} (pc (L+ 1))} (m (V1+ I)V2)]]](pcL)} (pL (ix brS1 S2D I O))} (rS1V1)} cont} (numM) ��(pL (ix brS1 S2DI O))} (rS1V1)} cont} (num (M + 1))}[[(eq (V1 O 0))
 (pc (L+ 1 + I))]� [(ne (V1 O 0))
 (pc (L+ 1))]](pcL)} (pL (ix htS1 S2D I O))} cont} (numM) ��(pc (L+ 1))} (pL (ix htS1 S2DI O))} (num (M + 1))(pcL)} (pL (ix bgS1 S2D I O))} (numM) ��(pc (L+ 1))} (pL (ix bgS1 S2DI O))} cont} (num (M + 1))(eq 1) �� 1(ne 0) �� 1 Figure 5.6: Sequential speci�cation of DLX91

successfully without executing ht because the clause for ht is the only one that consumescont. Hence, the value of pc in the initial data state must address a bg instruction in theprogram state. The program state is static { its contents do not change during execution {it instructs the machine how to alter the data state. Thus, the evaluation, given a programstate, transforms one data state into another. The de�nition of evaluation is made precisebelow.De�nition 5.3 [Sequential evaluation in DLX, Es] Given data states S1 and S2, and(P l ~Pl), a program state. Pl evaluates in S1 to S2 written as S1} (P l ~Pl) 7!s S2} (P l ~Pl),if �s : Es ; S2 } (P l ~Pl) �! S1 } (P l ~Pl)is provable in FORUM.A small example of an evaluation will explain the speci�cation better. I consider a programthat adds the contents of second and third register, and places the result in the secondregister. The program is stored in the memory starting at the �rst cell. The data state,and the program state are described in �gure 5.7. I use S1 as an abbreviation for the entireexpression in the �gure. At the end of the computation the resultant state, S2 will have 9in the second register, 4 in the pc, 3 in the num and otherwise be identical to S1. The proofof the computation is detailed below.(pc 0)} (r 1 0)} (r 2 4)} (r 3 5)} : : : } (r 32V32)} ~(mnUn)} (num0)}(p 1 (ix bg 1 2 3 0+))} (p 2 (ix alu 2 3 2 I+))} (p 3 (ix ht 1 2 3 0+))} ~(pmWm)Figure 5.7: Example program in DLXLet S01 be identical to S1, except that it does not contain pc and num, and S001 be identicalto S1 except that it does not contain pc, (r 2) and num. I begin the proof by backchainingon bg clause, which generates cont. Next, I backchain on the alu clause, and then the onlyclauses that I can use for backchaining are the ones introduced by the alu clause to read92

the two source operands. Hence, I read second and third registers into a and b, respectively.Next the actual computation is performed using the values in the latches, and the valueof (r 2) is updated to 9. To complete the proof, I have to construct �. Es and �s are notwritten in the proofs for the sake of readability. It is also worth pointing out that neitherprovability nor the actual answers computed depend upon the order in which the sourceregisters are read. �S2 �! S 001 } (r 2 9)} cont} (pc 3)} (num2)S2; (r 2 4)} (a 4)} (b 5) �� (r 2 9)} cont} (pc 3)�! S 01 } (b 5)} (a 4)} (num2)(r 2 4)} (a 4)} (b 5) �� (r 2 9)} cont} (pc 3);S2; (r 2 4) �� (r 2 4)} (a 4) �! S 01} (b 5)} (num2)(r 2 4)} (a 4)} (b 5) �� (r 2 9)} cont} (pc 3);(r 3 5) �� (r 3 5)} (b 5);S2; (r 2 4) �� (r 2 4)} (a 4) �! S 01 } (num 2)...alu clause, �� -R,
 -LS2 �! (pc 2)}S01} cont} (num1)�s : Es ; S2 �! S1 bg clauseTo construct � notice that by de�nition of S2, the state S 001 } (r 2 9)} (pc4)} (num3) isidentical to S2 upto associativity and commutativity of } { the states are being treated asmultisets. Hence, � is constructed by �rst backchaining on the ht clause, and then usingthe identity rule. The proof is detailed below. Es and �s are not written in the proofs forsake of readability. S2 �! S 001 } (r 2 9)} (pc4)} (num3) InitialS2 �! S 001 } (r 2 9)} cont} (pc 3)} (num2) ht clauseOne consequence of de�nition 5.3 is that evaluation can be composed using cuts. SupposeS1, S2 and S3 are three states, and P is a program state such that S1 }P 7!s S2}P andS2 }P 7!s S3 }P . The computation for S1 }P 7!s S3}P is obtained by a linear cut on �1and �2, which are provided by de�nition 5.3.�2�s : Es ; S3 }P �! S2 }P �1�s : Es ; S2 }P �! S1 }P�s : Es ; S3 }P �! S1 }P CutL93

Hence, proofs of evaluations for the DLX machine will be composed using cuts { I use thecut-elimination theorem for FORUM. The main point is that the computation of an entirelyimperative program is being represented declaratively and analyzed by proof theoretic toolssuch as cut-elimination.5.3 Pipelining DLX - facing the hazardsPipelining is an implementation technique in which multiple instructions are overlapped inexecution. Today, pipelining is a key technique used to make fast CPU's (Central ProcessingUnit). The basic idea of pipelining was �rst implemented in IBM 7030 [Blo59, Buc62].The CDC 6600 [Tho70] and IBM 360/91 [AST89] introduced many important concepts inpipelining, including scoreboarding, use of multiple functional units, simple architecture fore�cient pipelining, and tagging of data, dynamic memory hazard resolution, and generalizedforwarding. With the advent of RISC [AC87], e�cient pipelining and compilation becameintegral parts of the architecture design. Many new ideas and designs for RISC architectureshave been explored in the last decade, resulting in the design of important machines suchas the Intel i860, MIPS R2000/R3000, Motorola 88000, SPARC, PowerPC. As we see in�gure 5.8, all instructions in DLX have �ve distinct parts. The intention is to execute the�ve distinct parts of �ve instructions at the same time, and complete the execution of aninstruction every time unit. Since the time unit for the pipeline will be determined by theexecution time of its slowest segment it is important to have similar work loads for thedi�erent stages of the pipeline. Furthermore, since the performance gain for the pipelinewill be maximized if all stages of the pipeline are kept busy it is important to minimizestalls in the pipeline.Pipelining exploits the simple nature of the DLX architecture which facilitates well balancedpipeline segments, and early detection and elimination of possible stalls in the pipeline.Although the intentions are concisely stated, the design of pipelines is a tight rope walk,balancing various parameters to improve performance. The DLX instructions are not seenas atomic entities any longer - the �ve stages, i :e: IF, ID, EX, MEM and WB, are the atomic94

ALU LOAD STORE CONTROLIF IR := M[PC] IR := M[PC] IR :=M[PC] IR := M[PC]PC := PC+ 1 PC := PC+ 1 PC := PC+ 1 PC := PC+ 1ID A := Rs1 A := Rs1 A := Rs1 A := Rs1B := Rs2 B := Rs2 B := Rs2 B := Rs2PC1 := PC PC1 := PC PC1 := PC PC1 := PCIR1 := IR IR1 := IR IR1 := IR IR1 := IREX AOUT := A op B MAR := A+ MAR := A+ AOUT := PC1+(IR116)16]]IR116:::31 (IR116)16]]IR116:::31 (IR116)16]]IR116:::31SMDR := B cond := (Rs1 op 0)MEM AOUT1 := AOUT LMDR :=M[MAR] M[MAR] := SMDR if (cond) fPC := AOUTgWB Rd := AOUT1 Rd := LMDRFigure 5.8: DLX pipeline structureactivities. The parallel execution of these atomic steps for di�erent instructions requirescomplex control to ensure that the results computed are identical to the ones computed byEs.I view pipelining as an alternate operational semantics for DLX programs { a di�erent evalu-ator for DLX programs. The declarative speci�cation of the pipelines which can be executedto simulate pipelined computation has not been attempted to the best of my knowledge.The thrust of the existing work has been either to verify the correctness of a pipelinedprocessor all the way down to the circuit level [TK93], or to automate the production ofcontrol circuitry from high level descriptions of pipelines [AL93]. My goal is to provide anexecutable and declarative speci�cation of pipelines explaining the intricate synchroniza-tions required to implement the basic concepts in modern pipelined architectures.In this section, I begin by introducing the basic pipeline structure for DLX, and structuraland data hazards. The pipeline is then speci�ed using external functions to resolve the haz-ards. The speci�cation in this section does not incorporate any of the standard techniques95

to improve the CPU throughput. The implementation of call-forwarding and early branchresolution will be the subject of the next section. Furthermore, I prove that the pipelinespeci�cation is equivalent to the sequential speci�cation, Es.Hazards in PipelineI model IF, ID, EX, MEM and WB and the clock as cyclic processes. The clock generatessignals prompting the stages to start their respective computations. When all the stagescomplete their designated computations they notify the clock, which once again generatesthe enabling signal for the stages, and the cycle continues. Although there is no synchro-nization amongst di�erent stages, the computation for every stage is synchronized via theclock signal.Once the processes for the clock and the pipeline stages start running in parallel, it ispossible to run into a variety of problems. Imagine that a machine can only write/readto one register at a time. In such a machine executing the WB stage and ID stage oftwo alu instructions would cause a contention for register port. The point is that whenexecution of stages is done in parallel, certain resources need to be duplicated to avoidcon
icts over resource usage. Existence of such a con
ict can stall the pipeline because oneinstruction will have to wait while the other uses the resource, causing the entire pipelineto waste one time unit. Such con
icts are called structural hazards. Informally, if there isa combination of instructions which causes contention for resources, then the machine issaid to have structural hazards.In the DLX machine that I outline there will be no structural hazards, essentially because allinstructions are assumed to complete in one time unit and resources have been duplicatedsu�ciently. Although eliminating structural hazards from pipelines yields better through-put, designers sometimes allow structural hazards since, either duplicating resources is tooexpensive or eliminating them results in a larger time unit for the pipeline.96

The concurrent execution of parts of DLX instructions alters the relative timing of instruc-tions. In the sequential speci�cation an instruction is executed only after the precedinginstruction is completed, whereas, in the pipeline there are up to �ve instructions whosevarious parts are being computed at the same time. So for example (ix ld 1 2 2 I op) couldbe in the EX stage while (ix alu 1 2 4 I+) is in the ID stage. Now I have a problem, since(ix alu 1 2 4 I+) reads the value in R2 before the ld has fetched the contents of memoryaddressed by R1 and stored them in R2, which happens at the end of the WB stage (�g-ure 5.8). The problem is that there is a data-dependence in the sequence of instructionsabove. It causes no problems for Es, because alu starts only after the completion of ld.Thus the pipeline must be stalled while alu waits for ld to �nish. Such problems aresigni�cantly eliminated by code rescheduling and forwarding [HP90].De�nition 5.4 [Data Hazard] If the order of access to operands by instructions is changeddue to overlapping execution in pipeline, then there is a data hazard. Data Hazards areclassi�ed by the order in which the read and writes are supposed to occur in the program.Let i be an instruction occurring before j in the execution.� RAW (read after write) : j tries to read a source before i writes it, and thus gets theold value.� WAR (write after read) : j tries to write a destination before i has read it, and thusi gets the new value.� WAW (write after write) : j tries to write an operand before it is written by i, andthus the writes are performed in the wrong order.Note that RAR (read after read) is not an error. In the DLX pipeline stages all instructionscomplete in one time unit, and registers are read early at ID as compared to written laterat WB. Moreover the memory accesses are kept in order, and hence no WAR hazard is97

possible in DLX. Since the WAW hazard is only possible in pipelines that write in morethan one stage of the pipeline, this hazard is avoided by DLX which writes registers only inthe WB stage. The only kind of data hazard in the DLX pipeline is RAW, as exhibited inthe example above regarding the ld and alu instructions.The concurrent execution of instructions causes another kind of synchronization problem.Suppose (ix br 1 2 4 I =) enters the ID stage. The IF stage now needs to fetch the nextinstruction to be executed, but this is not possible before the branch instruction is resolvedand new pc is available at the end of the MEM stage, �gure 5.8. Moreover, at the beginningof the IF stage it is not known whether the previous instruction was a br or not. Thusthe IF fetches the next instruction, and invalidates the fetched instruction if the precedinginstruction is a br instruction. The pipeline is stalled until the end of the MEM stagefor the br instruction when the new pc is available. The fact that I fetch and invalidatean instruction introduces wasteful computation and is di�erent in nature from the stallintroduced by data hazards. Informally, if the pipeline is stalled for a br instruction tocalculate the new pc, then there is a control hazard.Even in the simple setting of the integer DLX architecture hazards and stalls arise due tothe concurrent nature of the pipeline. The presence of instructions which do not completein one time unit and interrupts further complicates the control circuitry. However, thespeci�cation techniques used to resolve the hazards for the simple unoptimized pipelinepresent the ideas needed to tackle the various synchronization and control issues that arisein the speci�cation. To keep the presentation concise and convey the essential ideas, I choseto specify only the integer DLX with call-forwarding and early-branch resolution, and notdeal with
oating-point arithmetic and interrupts. Floating-point arithmetic and interruptsare challenging aspects of pipeline design, the comments above are only with respect to thespeci�cation techniques used to specify the pipeline design for these features.
98

Specifying the pipelineGiven the hazards in DLX pipeline, it will not be enough to specify the processes repre-senting the pipeline stages and the clock. The crucial ingredient in the speci�cation isthe synchronization which avoids all the hazards that may occur during execution. Theresource conscious language of FORUM provides an ideal setting to specify the complexinteractions required to specify the pipeline.I begin by giving the signature, �p, for the speci�cation of the pipeline. The signature isthe union of �s and the constants in �gure 5.9. lr stores the data to be written back tothe register �le. The cond predicate stores conditional value for branch instructions, marstores the memory address to be accessed, lmdr stores the data read from the memoryand smdr stores the data to be written into memory. The aout predicate stores the ALUresult at the end of the EX, and aout1 stores the ALU result at the end of the MEM. Thepc1 predicate stores the old pc to EX, ir stores the instruction, and it stores the class,destination, immediate and operator of the instruction. The predicates with a l before theabove predicate names are latches which hold temporary values in between reading andwriting to the registers. The beginning of the read and write pahse for IF are signalled byifrb and ifwb, respectively, while ifrd and ifwd signal the completion of the read andwrite phase, respectively, for IF. Similarly there are predicates for ID, EX, MEM and WBpre�xed by their names. The class of an instruction is tested by alu?, ld?, st?, br? andnoop? predicates.The following de�nitions make the presentation more concise. I sometime use ~n as anabbreviation for n1; n2; n3; n4; n5.� crb =def �~n: (ifrbn1)} (idrbn2)} (exrbn3)} (merbn4)} (wbrbn5)� crd =def �~n: (ifrdn1)} (idrdn2)} (exrdn3)} (merdn4)} (wbrdn5)� cwb =def �~n: (ifwbn1)} (idwbn2)} (exwbn3)} (mewbn4)} (wbwbn5)� cwd =def �~n: (ifwdn1)} (idwdn2)} (exwdn3)} (mewdn4)} (wbwdn5)99

lr : int! int! ocond; mar; lmdr; smdr : int! olcond; lmar; llmdr; lsmdr : int! oaout; aout1 : int! ola; lb; laout; laout1 : int! opc1; lpci : int! o i 2 f1; 2gir; lir : inst! oiti; liti : class! int! int! func! o i 2 f1; 2; 3gifrb; idrb; exrb; merb; wbrb : int! oifrd; idrd; exrd; merd; wbrd : int! oifwb; idwb; exwb; mewb; wbwb : int! oifwd; idwd; exwd; mewd; wbwd : int! oalu?; ld?; st?; br?; noop? : class! oFigure 5.9: Signature for speci�cation of DLXI sometimes use (crb ~n) as abbreviation for (crb n1 n2 n3 n4 n5), and similarly for crd, cwband cwd. Thus (crb ~n), is the signal for the read begin phase for the stages of the pipeline,and the numbers ni ; i 2 [1; : : : ; 5] denote di�erent states of the signal in question. �1, �2,�3, �4 and �5, speci�ed in �gure 5.10, are the transition functions for IF, ID, EX, MEM andWB stages, respectively. The states of the �ve signals in the clock are arguments to eachof the transition functions, and the output is the state of the clock signal for its stage. In�gure 5.10, ni 2 f0; 1g; i 2 [3; : : : ; 5], and for any input not exhibited the functions �1, �2,�3, �4 and �5 return 1. For the ID clock signal, i 2 f�1;�2;�3g are the states for a datahazard where the stalled instruction has to wait for �i cycles, i 2 f�4;�5g are the statesfor a control hazard, and i = 0 is the state when the pipeline will stop within the next �vecycles. For example, from �gure 5.10, �11(�3)100 = 0, thus IF will remain idle in the nextcycle. I sometimes use (crb �(~n)) as an abbreviation for (crb �1(~n) �2(~n) �3(~n) �4(~n) �5(~n)),and similarly for crd, cwb and cwd.The speci�cation for the pipeline, Ep, is the set of universal closures of clauses in �g-ures 5.12, 5.13, 5.14 and 5.15. In the ID stage in �gure 5.12, RAW and control hazards aredetected by the function �l, whose return value sets the state for idrd. �l is de�ned below.De�nition 5.5 [�l - Hazard detection function for Ep]100

IF ID EX MEM WB �1 �2 �3 �4 �51 1 1 1 1 1 1 1 1 11 �3 1 n4 n5 0 �3 0 1 n40 �3 0 1 n5 0 �3 0 0 10 �3 0 0 1 0 1 0 0 00 1 0 n4 n5 1 1 1 0 n41 1 1 0 n5 1 1 1 1 01 1 1 1 0 1 1 1 1 11 �2 n3 1 n5 0 �2 0 n3 10 �2 0 n4 1 0 1 0 0 n41 �1 n3 n4 1 0 1 0 n3 n41 �4 n3 n4 n5 0 �5 1 n3 n40 �4 0 n4 n5 0 �5 1 0 n40 �5 1 n4 n5 0 �5 0 1 n40 �5 0 1 n5 1 �5 0 0 11 �5 0 0 1 1 1 0 0 01 1 0 0 0 1 1 1 0 01 0 n3 n4 n5 �1 0 0 n3 n4�1 0 0 n4 n5 0 0 0 0 n50 0 0 0 n5 0 0 0 0 �1Figure 5.10: DLX pipeline state transition functions for clock(�lS1 S2 ~Di ~CiC) = minf(�1S1 ~Di ~CiC); (�1S2 ~Di ~CiC)g C 2 falu; stg= (�1S1 ~Di ~CiC) otherwiseWhere, �1 is the function in �gure 5.11, C is the instruction type, and S1 and S2 are thetwo source registers of the current instruction. Ci is the instruction type and Di is thedestination register of the ith preceding instruction, for i 2 f1; 2; 3g.Note the di�erence between the control hazard and data hazard. In the case of a data hazardthe instruction signaling the hazard and the ones following it are stalled. However, in thecase of a control hazard, the br instruction which signals the hazard continues executionwhile the instructions following it are stalled. Thus, if there is both a control and datahazard, the data hazard must be processed �rst. The table for �1 is given in �gure 5.11.In �gure 5.11, A 2 falu; br; ld; stg, Y 2 falu; br; ld; st; noop; bgg, and Z 2 falu; ldg.Furthermore, =j in the column for Di means that the destination register Di is the source101

register Sj , 6=j means that the destination register Di is di�erent from the source registerSj , and Xj means either =j or 6=j . If the current instruction is a noop or the destinationregisters of the three preceding instructions are di�erent from the source registers, thenthere is no hazard. A data hazard is detected if any of the previous three instructions writeeither S1 or S2. A control hazard is signaled if the current instruction is a branch and thereis no data hazard. If the current instruction is ht, then the pipeline is stopped after theexecution of ht is �nished.C C1 C2 C3 D1 D2 D3 �noop Y Y Y Xj Xj Xj 1A Y Y Y 6=j 6=j 6=j 1A Z Y Y =j Xj Xj �3A Y Z Y 6=j =j Xj �2A Y Y Z 6=j 6=j =j �1br Y Y Y 6=j 6=j 6=j �4ht Y Y Y Xj Xj Xj 0Figure 5.11: �1 - table for hazard detection in the DLX pipelineThe complex looking clauses in the Ep warrant some explanation. The clock is speci�ed bythe �rst two clauses in �gure 5.12. It is a cyclic process consuming the completing signals forread(write) to enabling signals for write(read). The clock stops if the state for wbwd is �1.The state information of the clock is calculated by ~� de�ned in �gure 5.10. Each of the �vestages of the pipeline { IF, ID, EX, MEM and WB { are implemented by two clauses. One ofthe clauses synchronizes with the read begin signal, reads data into temporary latches, andproduces the read done signal. The other clause synchronizes with the write begin signal,consumes data in the temporary latches, and produces the write done signal. The actionsperformed by a stage depend on the type of the instruction being processed and the stateof the clock. Note that a register might be updated in one stage and read in another stageduring the same cycle. To ensure availability of proper data, in the read phase requireddata is stored into latches, and only after all data is read, registers and memory may beupdated in the write phase.The bg instruction is handled specially as the clock is started by this instruction. This102

instruction also loads several latches in the environment needed by the pipeline. I use Las an abbreviation for the various latches as de�ned below, and (L ~C ~D ~I ~O ~S ~V) is a latchstate. L0 is the initial state for these latches. When the lengths of the vectors are notmentioned explicitly, they are of the required length, as assumed in the de�nition below.L =def �~C; ~D; ~I; ~O; ~S; ~V : (} i2f1;2;3g(itiCiDi IiOi))} (ir (ix C4 S1 S2D4 I4O4))} (aV1)} (bV2)} (aoutV3)} (aout1V4)} (pc1V5)} (marV6)}(lmdrV7)} (smdrV8)} (condV8)L0 =def (L ~noop ~0 ~0 ~+ ~0 ~0)Now, evaluation of DLX programs can be de�ned using Ep. The idea behind evaluation isthe same as that for Es. A program is loaded in the program memory, and then the programstate is evaluated in a given data state. The program state remains static, while the datastate may possibly change due to the execution of instructions. The de�nitions of programand data state are taken from de�nitions 5.1 and 5.2.De�nition 5.6 [Pipelined evaluation in DLX, Ep] Given data states S1 and S2, and (P l ~Pl),a program state. Pl evaluates in S1 to S2 written as S1 } (P l ~Pl) 7!p S2 } (P l ~Pl), if�p : Ep ; S2 } (P l ~Pl) �! S1 } (P l ~Pl)is provable in FORUM.I use the example program in �gure 5.7 to illustrate the speci�cation Ep. I use S1 as anabbreviation for the entire expression in the �gure. At the end of the computation, theresultant state, S2 will have 9 in the second register, 4 in the pc, 3 in the num and otherwisebe identical to S1. The proof of the computation is detailed below. Let S01 be identical toS1, except that it does not contain pc and num, and S 001 be identical to S1 except that itdoes not contain pc, (r 2) and num. 103

(crd ~N) �� (cwb ~N)(cwd ~N) ��[(ne (N5 = �1))
 (crb �(~N))]�[(eq (N5 = �1)) �� [1} ((L ~C ~D ~I ~S ~V) �� ?)]](pL (ix bgDS1 S2 I O))} (pcL)} (numM) ��(pL (ix bgDS1 S2 I O))} (pc (L+ 1))} (crb ~1)}L0 } (num (m+ 1))(ifrbN)} (pLV)} (pcL) �� (pcL)} (pLV)}[[(eq (N = 1))
 ((lir V)} (lpc (L+ 1))} (ifrdN))]�[(eq (N = �1))
 ((lir (ix noop 0 1 2 0+))} (lpc (L� 1))} (ifrdN))]�[(eq (N = 0))
 (ifrdN)]](ifwbN) ��[(eq (N = 0))
 (ifwdN)]�[[(eq (N = 1))� (eq (N = �1))] ��[1} ((irV 0)} (pcL0)} (lirV)} (lpcL) �� (ir V)} (pcL)} (ifwdN))]](idrbN)} (} i2f1;2;3g(itiCiDi IiOi))} (pcL)} (ir (ix C DS1 S2 I O)) ��(} i2f1;2;3g(itiCiDi IiOi))} (pcL)} (ir (ix CDS1 S2 I O))}[[(ne (N = 1))
 (idrdN)]�[(eq (N = 1))
[[[(eq (u = 1))� (eq (u = �4))]
 ((lit1C DI O)} (lpc1L)) ��[[(rS1V1) �� (rS1 V1)} (laV1)}S]
[(rS2V2) �� (rS2V2)} (lbV2)}S]
[S }S �� (idrdu)]]]�[(ne (u = 1))
 (ne (u = �4))
 (idrdu)]]]]Where u =def (�l S1 S2 ~Di ~Ci C)(idwbN)} (it1C DI O) ��[(ne (N = 1))
 (ne (N = �4))
 ((it1 noopDI O)} (idwdN))]�[[(eq (N = 1))� (eq (N = �4))] ��[[(aW1)} (laV1)} (bW2)} (lbV2)} (pc1L1)} (lpc1L2)} (lit1C 0D0 I 0O0) ��(aV1)} (bV2)} (pc1L2)} (it1C0D0 I 0O0)} (idwdN)} 1]]]Figure 5.12: Speci�cation for the DLX pipeline { clock, bg, IF and ID.104

(alu? alu) �� 1(ld? ld) �� 1(st? st) �� 1(br? br) �� 1(noop? noop) �� 1(exrbN)} (it1CD I O) �� (it1CD I O)} (lit2C DI O)}[[(ne (N = 1))
 (exrdN)]�[(eq (N = 1))
[(alu?C) ��((aV1)} (bV2) �� (aV1)} (bV2)} (laout (V1 O V2))} (exrdN))} 1]�[(ld?C) ��((aV1) �� (aV1)} (lmar (V1 + I))} (exrdN))} 1]�[(st?C) ��((aV1)} (bV2) ��(aV1)} (bV2)} (lmar (V1 + I))} (lsmdrV2)} (exrdN))} 1]�[(br?C) ��((pc1L)} (aV1) ��(pc1L)} (aV1)} (laout (L+ I))} (lcond(V1 O 0))} (exrdN))} 1]�[(noop?C)
 (exrdN)]]](exwbN)} (it2C 0D0 I 0O0)} (lit2CD I O) �� (it2CD I O)}[[(ne (N = 1))
 (exwdN)]�[(eq (N = 1))
[(alu?C) ��((aout V1)} (laoutV2) �� (aout V2)} (exwdN))} 1]�[(ld?C) ��((marL1)} (lmarL2) �� (marL2)} (exwdN))} 1]�[(st?C) ��((marL1)} (lmarL2)} (smdrW1)} (lsmdrW2) ��(marL2)} (smdrW2)} (exwdN))} 1]�[(br?C) ��((aout V1)} (laoutV2)} (condU1)} (lcondU2) ��(aout V2)} (condU2)} (exwdN))} 1]�[(noop?C)
 (exwdN)]]]Figure 5.13: Speci�cation for the DLX pipeline { EX.105

(merbN)} (it2CDI O) �� (it2CDI O)} (lit3CD I O)}[(ne (N = 1))
 (merdN)]�[(eq (N = 1))
[(alu?C) ��((aoutV1) �� (aout V1)} (laout1V1)} (merdN))} 1]�[(ld?C) ��((marL)} (mLV) ��(marL)} (mLV)} (llmdrV)} (merdN))} 1]�[(st?C) ��((marL)} (mLV)} (smdrV2) ��(marL)} (mLV2)} (smdrV2)} (merdN))} 1]�[(br?C) ��((condM)} (aoutV1)} (pcL2) ��[[(ne (M = 1))
 ((lpc2L2)} (merdN))]�[(eq (M = 1))
 ((lpc2V1)} (merdN))]]} (condM)} (aoutL1)} (pcL2))} 1]�[(noop?C)
 (merdN)]](mewbN)} (it3C0D0 I 0O0)} (lit3C DI O) �� (it3C DI O)}[(ne (N = 1)) �� (mewdN)} 1]�[(eq (N = 1))
[(alu?C) ��((aout1V1)} (laout1V2) �� (aout1V2)} (mewdN))} 1]�[(ld?C) ��((lmdrW1)} (llmdrW2) �� (lmdrW2)} (mewdN))} 1]�[[(st?C)� (noop?C)]
 (mewdN)]�[(br?C) ��((pcL1)} (lpc2L2) �� (pcL2)} (mewdN))} 1]]Figure 5.14: Speci�cation for the DLX pipeline { MEM.106

(wbrbN)} (it3C DI O)} (numM) �� (it3CD I O)}[(eq (N = 0))
 ((wbrdN)} (numM))]�[(eq (N = �1))
 ((wbrdN)} (num(M + 1)))]�[(eq (N = 1))
[(alu?C) ��((aout1V1) �� (aout1 V1)} (lr1 d V1)} (wbrdN)} (num(M + 1)))} 1]�[(ld?C) ��((lmdrV1) �� (lmdrV1)} (lr1 d V1)} (wbrdN)} (num(M + 1)))} 1]�[((st?C)� (br?C))
 ((lr 0 d V1)} (wbrdN)} (num(M + 1)))]�[(noop?C)
 ((lr0 d V1)} (wbrdN)} (numM))]](wbwbN) ��[(ne (N = 1))
 (wbwdN)]�[(eq (N = 1)) ��[[(lr1 d V1)} (r d V2) �� (r d V1)} (wbwdN)] &[(lr0 d V1) �� (wbwdN)]} 1]]Figure 5.15: Speci�cation for the DLX pipeline { WB.�1S2 �! (ifrd 1)} (irX1)} (pc 3)}�3S2 �! (cwb ~1)} (lirX1)} (lpc 3)}�2 ifwbS2 �! (crd ~1)} (lirX1)} (lpc 3)}�2 Clockidrb; exrb ... merb; wbrbS2 �! (ifrd 1)} (lirX1)} (lpc 3)}�1S2 �! (pc 2)}S01} (crb ~1)}L0} (num1) ifrb�p : Es ; S2 �! S1 bgThe proof begins by backchaining on the bg clause. Each of the it registers has a noopinstruction (by the de�nition of L0). Thus, only the execution of ifrb and ifwb stages areshown. Note that there is no hazard detected because the instruction in it1 was a noop.X1 is the instruction (ix alu 2 3 2 I+), and X2 is the instruction (ix ht 1 2 3 0+). Now Icomplete �1 below. 107

�2S }S �� (idrd 1)(r 3 5) �� (r 3 5)} (b 5)}S;S2; (r 2 4) �� (r 2 4)} (a 4)}S�! (ifrd 1)} (lirX2)} (lpc 4)} (lpc1 3)} (lit1 alu 2 0+)}�5ifrb; idrb ... other logical ruleS2 �! (crb ~1)} (irX1)} (pc 3)}�4 ifrbS2 �! (cwd ~1)} (irX1)} (pc 3)}�4 Clockidwb; exwb ... mewb; wbwbS2 �! (ifrd 1)} (irX1)} (pc 3)}�3I use �i in the proofs above for the part of the context which is inactive in the rule. Theconstruction of �2 is similar to the plan above. First the ID stage is completed for X1, theEX, MEM and WB have noop instructions. In the next cycle, ht is detected and the state ofidwd becomes 0, X1 proceeds to EX stage. Now the pipeline goes through the �nal stagesas the clock shuts down. The construction of �2 is not made explicit because it gets verytedious and the idea is clear from the above constructions.Note that in the read and the write phase I choose a given order for backtracking onthe various clauses. It is a key fact that the order in which the various read clauses arechosen for backtracking during the read phase is irrelevant to provability, and similarly forthe write phase { a similar point was made in the context of process theories in [Mil93].The reason for this \permutability" in the read phase is that information is read by thevarious stages into di�erent latches, and in the write phase the stages use the latches they\created" to update the values of distinct storage locations. In other words, there is nocontention for resources in a given phase, read or write, amongst the various stages. Itis this permutability of backtracking which underlines the concurrent nature of the pipelinespeci�cation in FORUM.Now I have Es and Ep, two operational semantics for DLX. On the one hand, Es is mucheasier to work with and understand, and on the other hand, Ep speci�es a much moreinteresting algorithm. The natural question to ask is whether Es and Ep are equivalent.Following is the Correspondence theorem that I would like to prove.Theorem 5.7 (Correspondence between Es and Ep) For any DLX program Pl, and108

data states S1 and S2,S1} (P l ~Pl) 7!s S2} (P l ~Pl) i� S1 } (P l ~Pl) 7!p S2 } (P l ~Pl)The theorem will be proved by induction on the number of instructions executed. Since theinternal states of the two speci�cations are di�erent, the theorem is obtained as a corol-lary to the lemma 5.9 which establishes relationships between the sequential and pipelinedevaluation using the di�erent internal states. Before I present these lemmas, I prove someproperties about the evaluation using Ep. I de�ne it to be consistent if (it1C1D1 I1O1)is the instruction in EX stage, (it2C2D2 I2O2) is the instruction in MEM stage, and(it3C3D3 I3O3) is the instruction in WB stage. The actual proofs, which are constructionsof proofs in FORUM, are not shown in the proofs of the lemmas in this section, essentiallybecause the construction gets very tedious and unilluminating. However, the steps outlinedprovide the recipe for constructing the required proofs.Lemma 5.8 (Ep - it consistency, data hazards, and control hazards) If� L1 and L2 are two latch states, and it is consistent in L1,� S1 and S2 are two data states, such that the pc in S1 does not address a bg or htinstruction in P,� P is a program state, and� �p : Ep ; S2 }L2 } (cwd ~N)}P ` S1 }L1 } (crb ~N)}P,then1. it is consistent in L2,2. if the instruction in the ID stage depends upon a preceding instruction in the pipelinefor data, then the data hazard is resolved, and109

3. if the instruction in the ID stage is a br, then the control hazard is resolved.Proof: Part 1 : For this part, notice that in every completion of a read and write phaseit3 gets the values of it2, which in turn gets the values from it1, which in turn get thevalues from ir in the ID. This movement of values of it exactly matches the de�nition ofthe consistency of it.Part 2 : Given the consistency of it, �l returns one of -1, -2 or -3, i :e: a data hazard, ifand only if the instruction in ID stage depends upon one of the preceding instructions fordata. From the de�nition of the state transition function in �gure 5.10, it is clear that theinstruction with the dependency and the ones following that instruction are stalled till thepreceding instruction completes execution.Part 3 : Given the consistency of it, �l detects returns -4, i :e: a control hazard, if andonly if the current instruction is a br and there are no data hazards. The absence of datahazards enables the execution of br. From �gure 5.10, the pipeline after the br is stalledtill the br completes the MEM stage, when the new pc is available. Thus the instructionafter a br is fetched from the right address.The problem in relating the computations of Es and Ep are manifold. Firstly, the numberof steps taken to compute a program are di�erent - Ep takes �ve steps for each instruction -hence an induction on the height of the proof trees would not work. Secondly, the internalstates of the two evaluators are di�erent. The induction measure that I use is the numberof instructions which have completed evaluation. However, I have to treat the case when thelast instruction is ht separately from other instructions because it cleans up the environmentof the latch state.Lemma 5.9 (Lemmas for Correspondence between Es and Ep) Given� m � 1 and m 2 nat, 110

� S1 and S2 two data states minus the pc, num has 0 and m in S1 and S2, respectively,� Pl is a DLX program, P1 =def (P l ~Pl) is a program state,� L1 =def 8 ~C; ~D; ~I; ~O; ~S; ~V : (L ~C ~D ~I ~O ~S ~V), and� C =def 8 ~N: (cwd ~N).1. if the mth instruction is not ht then�s : Es ; S2 } cont} (pcL)}P1 ` S1 } (pcM)}P1 i��p : Ep ; S2 } (pcK)}L1} C }P1 ` S1 } (pcM)}P12. if the mth instruction is ht then�s : Es ; S2 } (pcL)}P1 ` S1} (pcM)}P1 i��p : Ep ; S2 } (pcL)}P1 ` S1 } (pcM)}P1Proof: Proof Part 1 (Left to Right) : The mth instruction is not ht.We have�s : Es ; S2 } cont} (pcL)}P1 ` S1} (pcM)}P1:Suppose the mth instruction is a bg. Then there are two cases :m = 1 : Then bg is the �rst instruction, S2 and S1 are identical except for the count innum, and the proof is completed by following the execution of the bg instruction.m = n + 1; 0 < n : Then bg is not the �rst instruction. By the grammar for programs(�gure 5.5), the nth instruction executed must be a ht. Thus S 02, the state at the end of111

the nth instruction, is the same as S2 except for the count in num. Using induction on Part2, I get�p : Ep ; S 02 } (pc (L� 1))}P1 ` S1} (pcM)}P1:The shape of the right-hand side of the sequent at the point when num is incremented to nwill beS02} (pc (L� 1))}P1:Backchaining on the clause for bg increments num by 1 and the right-hand side of the sequentbecomesS2} (pcL)}L0} (crb~0)}P1:Now in the linear part of the left-hand-side of the sequent, I replaceS02} (pc (L� 1))}P1 by S2 } (pcL)}L1} C }P1:Note that this replacement does not e�ect the structure of the proof thus far, and thesequent that I am now constructing the proof of is�p : Ep ; S2 } (pcL)}L1} C }P1 ` S1 } (pcM)}P1:After the transformation all that I have left to prove is�p : Ep ; S2 } (pcL)}L1} C }P1 ` S2 } (pcL)}L0} (crb~0)}P1:The proof is easily completed by using } � L, 8 � L and Id, and hence I am done.112

Suppose the mth instruction is not a bg. Then the de�nition of the DLX programsimplies that m = n + 1; 0 < n and that the nth instruction cannot be ht. By inductionhypothesis on Part 1, I get�p : Ep ; S 02 }L1 } C } (pcK)}P1 ` S1 } (pcM)}P1:S02 di�ers from S2 in that it has n in num and is missing the side e�ects, if any, of the mthinstruction.First consider the case when the nth instruction is not a branch instruction. Thecomputation up to the execution of the nth instruction matches for Es and Ep. Note thatthe nth instruction is at (L � 2) address in the program memory. By lemma 5.8 parts 1and 2, it is consistent, and data-dependency, if any, for the mth instruction is resolved.Thus, the arguments to the mth instruction are identical to the sequential computation,and hence, so are the results. At the point when num is incremented to n the right-handside of the sequent has the following shapeS02} (pcK 0)} (L ~V)} (crb ~W)}P1:Where K 0 depends upon the data and control hazards encountered by the instructionsfollowing the nth instruction. For example, if there are no hazards then K0 will be L + 3.Backchaining over clauses to complete the execution of the mth instruction results in aright-hand side that looks likeS2} (pcK)} (L ~V 0)} (crb ~W 0)}P1:To complete the proof, in the linear part of the left-hand-side of the sequent, replaceS02}L1 } C } (pcK)}P1 by S2 }L1 } C } (pcK)}P1:The transformation does not e�ect the structure of the proof, and as a result of it I am now113

constructing the proof for the sequent�p : Ep ; S2 }L1 } C } (pcK)}P1 �! S1 } (pcM)}P1:Given the right-hand side above, the proof can be �nished by } � L, 8 � L and Id, andhence I am done.Now consider the case when the nth instruction is a branch instruction. Firstly,the argument to br is identical to the one in the sequential run, and thus by lemma 5.8part 3, the next pc calculated at the end of the MEM stage will also be (L � 1). Again,using part 2 of lemma 5.8, the data dependency, if any, for the mth instruction is resolved,and thus the result produced by the mth instruction are identical to the ones produced inthe sequential run. By the de�nition of the transition functions in �gure 5.10, at the end ofthe cycle when num is incremented to n the right-hand side of the sequent has the followingshapeS02} (pcL)} (L ~V)} (crb ~W)}P1and the mth instruction will have completed its IF stage. The rest of the argument can becompleted analogous to the case above when the nth instruction was not br.Proof Part 2 (Left to Right) :We have�s : Es ; S2 } (pcL)}P1 ` S1 } (pcM)}P1:The mth instruction to be executed - ht - is at the (L� 1) address in the program memory.By the grammar for DLX programs (�gure 5.5) there has to be at least one instruction thatwas completed before ht, and the immediately preceding instruction could not be another114

ht. Thus m = n + 1; 0 < n. The state S02 at the end of the nth instruction is the same asS2, except that num stores n.By induction hypotheses on part 1, I have�p : Ep ; S 02 } (pcK)}L1} C }P1 ` S1 } (pcM)}P1:First consider the case when the nth instruction is not a branch instruction.Note that the nth instruction is at the (L � 2) address in the program memory. In theproof I look at the point when the nth instruction completed its ID phase. At this pointthe right-hand side of the sequent will have the following shape,S02} (L ~V)} (pcL)} (cwd ~W)}P1:Now, in this proof at the point ht completed the ID stage, the state of the idrd was setto 0, and pc has (L+ 1). �1 sets the state for ifrb is set to -1 which causes the pc to bedecremented by 1 by the IF stage, and thus pc has L. Now, from the de�nition of the statetransition functions it is clear that the stages of the pipeline become idle as the ht passesthrough them. WB knows that ht has arrived when the state of wbrb is -1, and it increasesthe count in num without looking at the class of the instruction in it3. Now the clock willdetect the -1 as its �fth argument and it will consume the (L ~V 0) from the environment,and I am left with S2 } (pcL)}P1.In the proof thus far, in the linear part of the left-hand-side of the sequent, I replaceS02} (pcK)}L1} C }P1 by S2 } (pcL)}P1:This transformation does not e�ect the structure of the proof thus far, and now I am proving�p : Ep ; S2 } (pcL)}P1 ` S1 } (pcM)}P1:As a result of the transformation the proof can be completed immediately using an identityaxiom. 115

Now consider the case when the nth instruction is a branch instruction. Firstly,the argument to br is identical to the one in the sequential run, and thus by lemma 5.8part 3, the next pc calculated at the end of the MEM will also be (L� 1). By the de�nitionof the transition functions in �gure 5.10, at the end of the cycle when num is incrementedto n the right-hand side of the sequent has the following shapeS02} (pcL)} (L ~V)} (crd ~W)}P1and the mth instruction will have completed its IF stage. The rest of the argument can becompleted analogous to the case above when the nth instruction was not br.The proofs going from right to left can be completed along similar lines - the proofs for Esare composed using linear cuts.The proof highlights the main fact that the key ingredient in the speci�cation of the pipelineis the complex synchronization and hazard detection. The lemma 5.9 is a inductive argu-ment using the basic properties of the Ep as proved in lemma 5.8. The proof is ratherstraight forward, given the choice of induction measure, however, the complete construc-tion of FORUM proofs is rather cumbersome. The nice feature is that the two declarativespeci�cations - Es and Ep - were proved equivalent, and cuts were used in one direction ofthe proof.5.4 Call-forwarding and early branch resolutionThe speci�cation Es exhibits the basic ideas of the pipeline. However, the pipeline dealsnaively with the data and control hazards it faces - it stalls whenever it may need to. Inthis section I look at { call forwarding, early branch resolution, branch prediction { simpleand important techniques to reduce the stalls caused by data dependencies and branchinstructions.Suppose an instruction, X1, in the ID stage needs the result of an alu instruction which is in116

CONTROLIF IR := M[PC]; PC := PC+ 1ID A := Rs1; B := Rs2; PC1 := PC; IR1 := IRBTA := PC+ (IR16)16]]IR16:::31if (Rs1 op 0) fPC := BTAgEXMEMWBFigure 5.16: Changes in the DLX pipeline to reduce branch penalty.the MEM stage. According to the scheme of Ep, X1 has to stall for alu to go through MEMand WB before it can get the result of alu { this is clearly ine�cient. The rather straight-forward idea of short-circuiting the loop, i :e: \forwarding" the result from aout directly tothe input of X1, works very well in practise. Sending results from one functional units inthe pipeline to another functional unit directly is called call forwarding. Call forwardingreduces dramatically the stalls generated in the pipeline due to data dependencies.The second ine�ciency of Ep is regarding the cost of branch instructions. The idea hereis to calculate the outcome of the branch instruction as early as possible in the pipeline {early branch resolution. The basic change to the
ow for branch instructions is shown in�gure 5.16. By using dedicated adders, extra latches and other circuitry it is possible tocompute the new pc by the end of the ID stage. This reduces the penalty for branches fromthree cycles to one cycle. The other aspect of optimization for branches is to �rst predictwhether a branch will be taken or not, and then continue to fetch and execute from thepredicted address till the branch is resolved { branch prediction. In case the branch altersthe pc, the earlier instructions are invalidated, and the execution starts at the new pc. Incase the branch does not alter the pc, the machine has incurred no penalty by continuing tocompute rather than sit idly as Ep does. The number of instructions computed speculativelywill never be more than one in the DLX pipeline, because the new pc is ready at the end117

of the ID stage of the branch instruction.Call forwarding and speculative computation become more critical to the performance ofthe pipeline in the presence of instructions which take more than one cycle to complete.Extensions to, and variants of these ideas are embodied in many of present day RISCmachines [HP90]. The speci�cation of these features require more complex synchronizations,new de�nitions of the state transition functions, and call forwarding functions. Further, theIF and ID stages will have to synchronize directly with each other. Consider the situationwhen a branch instruction is in the ID stage. The branch instruction might alter the pc atthe same time when IF wants to increment the old value in the pc. Thus, there is a race forthe pc, and the �nal value in the pc is unpredictable. I force the write phase of IF to startafter the write phase of the ID stage, and thus only IF writes to the pc, avoiding the race.I begin by presenting the de�nition for the new hazard resolution function, �o, for de-tecting hazards given that I am implementing call-forwarding and early branch resolu-tion. The table for �2 is given in �gure 5.17. In �gure 5.17, A 2 falu; br; ld; stg, andY 2 falu; br; ld; st; noop; bgg. Furthermore, =j in the column for Di means that the des-tination register Di is the source register Sj , 6=j means that the destination register Di isdi�erent from the source register Sj , and Xj means either =j or 6=j . The �rst point to noteis that �o only depends upon the two immediately preceding instructions in the pipeline, notthree as in the case of �l. Note, moreover, the di�erence between the alu and ld instruc-tions. The result of the alu is available at the end of the EX stage, while that of the ldis available only after the MEM stage. Thus, a dependency with an instruction two cyclesahead of the current one is signaled only when the instruction two cycle ahead is a ld.Thus the cost of data hazard with alu instructions is reduced to one cycle and with ldinstructions to two cycles at most. Other than this, �2 is same as �1.Using the de�nition of �2, I de�ne below �o, the hazard detection function, for Eo, the newspeci�cation of pipeline incorporating call-forwarding and early branch resolution.De�nition 5.10 [�o - Hazard detection function for Eo]118

C C1 C2 D1 D2 �onoop Y Y X X 1A Y Y 6=j 6=j 1A ld Y =j X �2A Y ld 6=j =j �1A alu Y =j X �1br Y Y 6=j 6=j �4ht Y Y X X 0Figure 5.17: �2 { new table for hazard detection in DLX pipeline(�oS1 S2 ~Di ~CiC) = minf(�2S1 ~Di ~CiC); (�2S2 ~Di ~CiC)g C 2 falu; stg= (�2S1 ~Di ~Ci C) otherwiseWhere, �2 is the function in �gure 5.17. C is the instruction type, and S1 and S2 are thetwo source registers of the current instruction. Ci is the instruction type, and Di is thedestination register of the ith preceding instruction, for i 2 f1; 2g.To make the pipeline work with call-forwarding and early branch resolution, I need torede�ne the state transition functions for the clock. The main point is that fewer stallsignals are generated when either data or control hazards are detected. �1, �2, �3, �4 and�5, speci�ed in �gure 5.18, are the new transition functions for IF, ID, EX, MEM and WBstages, respectively. The states of the �ve signals in the clock are arguments to each ofthe transition functions, and the output is the state of the clock signal for its stage. In�gure 5.18, ni 2 f�1; 0; 1g; i 2 [3; : : : ; 5], and for any input not exhibited the functions �1,�2, �3, �4 and �5 return 1. For the ID clock signal, i 2 f�1;�2g are the states for a datahazard where the stalled instruction has to wait for�i cycles, i 2 f�4;�5g are the states fora control hazard, and i = 0 is the state when the pipeline will stop within the next �ve cycles.For example, from �gure 5.18, �11(�2)100 = 0, thus IF will remain idle in the next cycle.I sometimes use (crb �(~n)) as an abbreviation for (crb �1(~n) �2(~n) �3(~n) �4(~n) �5(~n)), andsimilarly for crd, cwb and cwd.Other than changing the de�nitions of the transition functions and hazard detection, I needto know from which unit a value has to be forwarded to which unit. In the case of the DLX119

IF ID EX MEM WB �1 �2 �3 �4 �51 1 1 1 1 1 1 1 1 11 �2 1 n4 n5 0 �2 0 1 n40 �2 0 n4 n5 0 1 0 0 n40 1 0 n4 n5 1 1 1 0 n41 1 1 0 n5 1 1 1 1 01 1 1 1 0 1 1 1 1 11 �1 n3 1 n5 0 1 0 n3 11 �4 n3 n4 n5 1 �5 1 n3 n40 �4 0 n4 n5 1 �5 1 0 n41 �5 1 n4 n5 1 1 �1 1 n41 1 �1 1 n5 1 1 1 �1 11 1 1 �1 1 1 1 1 1 01 0 n3 n4 n5 �1 0 0 n3 n4�1 0 0 n4 n5 0 0 0 0 n40 0 0 0 n5 0 0 0 0 �1Figure 5.18: DLX pipeline state transition functions in the presence of call-forwarding andearly branch resolutionarchitecture that I am studying, all data is read in the ID stage, and thus the destinationof the forwarded data will be one of the input latches to the ALU. '1 and '2, de�nedin �gure 5.19, are the two call-forwarding functions for the two source registers of a giveninstruction. The result of a ld is forwarded only when C3 has ld, because by this timethe instruction has completed its MEM stage. In the case of alu instructions, results areavailable after the ID stage, and the result is forwarded when alu result is either C2 or C3.Note that just as �2 does not need it3, the call-forwarding functions do not need it1. Itis interesting to note that the two tables for �2 and call-forwarding functions put togethercover all the cases in the table for �1. The notation in �gure 5.19 is the same as that in�gure 5.17. The numeric return values signal the register from where the data will come -0 stands for the register �le, 1 stands for lmdr, 2 stands for aout and 3 stands for aout1.The speci�cation for the pipeline, Eo, is the set of universal closures of clauses in �g-ures 5.20, 5.21 and 5.22. The signature for the speci�cation �o is the union of �p andfbta : int! og. Note that the branch is resolved at the end of ID stage, and hence the EX120

C C2 C3 D2 D3 '1 '2(br; ld)A Y 6=j 6=j 0 0A Y ld 6=j =j 1 1(0)A alu Y =j X 2 2(0)A Y alu 6=j =j 3 3(0)Figure 5.19: ' { Call forwarding functionsand MEM stages treat the branch instruction as if it were a noop. Other than this change,the clauses for EX and MEM are identical to the clauses for these stages in Ep. The clausefor the clock, bg instruction, eq, ne, WB stage and for matching classes remain unchanged,but I have rewritten them here for the sake of completeness. The critical di�erence is inthe clauses for IF and ID.The read phase of ID has to take into account call-forwarding and calculation of the jumpaddress for the branch in bta. Note that the calculation of the jump address is done for allinstructions, because at this point the class of the instruction has not been decoded. If IDis not idle then �rst hazards are checked. If there is a data hazard the instruction stalls.Otherwise, if there is either no hazard or a control hazard then the current instruction willcontinue. The call forwarding functions are used to obtain the arguments of the instructionfrom the appropriate registers. Note that the call forwarding functions are used only whenthere are no data hazards. Furthermore, if a control hazard is detected then the state ofidrd will be -4.If there were no hazards in the ID stage, the state of idwb is 1, bta is consumed away andappropriate registers are loaded. Note that the register pc1 is no longer needed because thiswas used only by br in the EX stage. The case remaining is when the state of idwb is -4,i :e: the instruction in ID is a branch instruction. If the condition of the branch instructionis true, then bta is left in the environment and the state of the idwd is -4. If, however, thecondition of the branch instruction is false then bta is consumed and the state of idwd isset to 1.The write phase of IF stage must synchronize with idwd { this ensures that ID has already121

�nished its write phase. If the state of idwd is not -4, then the instruction in ID did notalter the pc, and the actions of IF are identical to the write phase of IF in Ep. In case stateof idwd is -4, bta is used to set the value of pc. The read phase of IF is unchanged from Ep.The idea behind evaluation remains the same as for Ep. The de�nition of data and programstate are from de�nition5.1 and 5.2. The de�nition of latch state is di�erent in that thelatch state for Eo does not have the registers cond and pc1. Having said this, I will use thesame notation for the latch state for Eo also.De�nition 5.11 [Pipelined evaluation in DLX, Eo] Given data states S1 and S2, and(P l ~Pl), a program state. Pl evaluates in S1 to S2 written as S1 } (P l ~Pl) 7!o S2} (P l ~Pl),if �o : Eo ; S2 } (P l ~Pl) �! S1 } (P l ~Pl)is provable in FORUM.I have Es and Eo, two operational semantics for DLX. I will prove the equivalence of thesetwo speci�cations along the lines of the proof for theorem 5.7.Theorem 5.12 (Correspondence between Es and Eo) For any DLX program Pl, anddata states S1 and S2,S1} (P l ~Pl) 7!s S2} (P l ~Pl) i� S1 } (P l ~Pl) 7!o S2 } (P l ~Pl)Before proving the theorem, the following properties of the Eo will be proved. These lem-mas prove that Eo maintains the consistency of it, and resolves data and control hazardscorrectly. Analogous facts were proved for Ep in lemma 5.8.Lemma 5.13 (Eo - it consistency, data hazards, and control hazards) If122

(ifrbN)} (pLV)} (pcL) �� (pcL)} (pLV)}[[(eq (N = 1))
 ((lir V)} (lpc (L+ 1))} (ifrdN))]�[(eq (N = �1))
 ((lir (ix noop 0 1 2 0+))} (lpc (L� 1))} (ifrdN))]�[(eq (N = 0))
 (ifrdN)]](ifwbN)} (idwdM) �� (idwdM)}[[((eq (N = 0))
 (ne (M = �4)))
 (ifwdN)]�[((eq (N = 0))
 (eq (M = �4))) ��((btaL00)} (pcL0) �� (pcL00)} (ifwdN))} 1]�[((eq (N = 1))
 (eq (M = �4))) ��((ir V 0)} (pcL0)} (lirV)} (lpcL)} (btaL00) ��(ir V)} (pcL00)} (ifwdN))} 1]�[(eq (N = �1))� ((eq (N = 1))
 (ne (M = �4))) ��((ir V 0)} (pcL0)} (lirV)} (lpcL) �� (ir V)} (pcL)} (ifwdN))} 1]](idrbN)} (} i2f1;2;3g(itiCiDi IiOi))} (pcL)} (ir (ix CDS1 S2 I O)) ��(} i2f1;2;3g(itiCiDi IiOi))} (pcL)} (ir (ix C DS1 S2 I O))}[[(ne (N = 1))
 (idrdN)]�[(eq (N = 1))
[[((eq (u = 1))� ((eq (u = �4))
 (bta (L+ I))))
 (lit1CD I O) ��[(argr f1 S1 laV1)
 (argr f2 S2 lbV2)
 [S }S �� (idrdu)]]]�[(ne (u = 1))
 (ne (u = �4))
 (idrdu)]]]]u =def (�o S1 S2D1D2C1C2C); fi =def ('1 SiD2D3C2C3C) i 2 [1; 2]argr =def � u; s; l; v:[[(eq(0 = u))} (r s v) �� (r s v)} (lv)] &[(eq (1 = u))} (lmdrv) �� (lmdr v)} (l v)] &[(eq (2 = u))} (aout v) �� (aout v)} (l v)] &[(eq (3 = u))} (aout1 v) �� (aout1 v)} (l v)]](idwbN)} (it1CD I O) ��[(ne (N = 1))
 (ne (N = �4))
 ((it1 noopD I O)} (idwdN))]�[(eq (N = 1))
 (btaL) ��[(aW1)} (laV1)} (bW2)} (lbV2)} (lit1C0D0 I 0O0) ��(aV1)} (bV2)} (it1C0D0 I 0O0)} (idwdN)]]�[(eq (N = �4))
 (btaL) ��[(aW1)} (laV1)} (bW2)} (lbV2)} (lit1C0D0 I 0O0) ��(aV1)} (bV2)} (it1C0D0 I 0O0)}[[(eq (V1O0 0))
 ((btaL)} (idwdN))]� [(ne (V1O0 0))
 (idwd 1)]]]]Figure 5.20: Speci�cation for the DLX pipeline { IF and ID.123

(crd ~N) �� (cwb ~N)(cwd ~N) ��[(ne (N5 = �1))
 (crb �(~N))]� [(eq (N5 = �1)) �� [1} ((L ~C ~D ~I ~S ~V) �� ?)]](pL (ix bgDS1 S2 I O))} (pcL) ��(pL (ix bgDS1 S2 I O))} (pc (L+ 1))} (crb~1)}L0(alu? alu) �� 1 (ld? ld) �� 1(st? st) �� 1 (br? br) �� 1(noop? noop) �� 1(exrbN)} (it1CD I O) �� (it1CD I O)} (lit2CD I O)[(ne (N = 1))
 (exrdN)]�[(eq (N = 1))
[(alu?C) ��((aV1)} (bV2) �� (aV1)} (bV2)} (laout (V1 O V2))} (exrdN))} 1]�[(ld?C) ��((aV1) �� (aV1)} (lmar(V1 + I))} (exrdN))} 1]�[(st?C) ��((aV1)} (bV2) ��(aV1)} (bV2)} (lmar(V1 + I))} (lsmdrV2)} (exrdN))} 1]�[((noop?C)� (br?C))
 (exrdN)]](exwbN)} (it2C 0D0 I 0O0)} (lit2CDI O) �� (it2CDI O)[(ne (N = 1))
 (exwdN)]]�[(eq (N = 1))
[(alu?C) ��((aout V1)} (laoutV2) �� (aout V2)} (exwdN))} 1]�[(ld?C) ��((marL1)} (lmarL2) �� (marL2)} (exwdN))} 1]�[(st?C) ��((marL1)} (lmarL2)} (smdrW1)} (lsmdrW2) ��(marL2)} (smdrW2)} (exwdN))} 1]�[((noop?C)� (br?C))
 (exwdN)]]Figure 5.21: Speci�cation for the DLX pipeline { clock, bg, EX.124

(merbN)} (it2C DI O) �� (it2C DI O)} (lit3CDI O)}[(ne (N = 1))
 (merdN)]�[(eq (N = 1))
[(alu?C) �� ((aout V1) �� (aout V1)} (laout1V1)} (merdN))} 1]�[(ld?C) ��((marL)} (mLV) �� (marL)} (mLV)} (llmdrV)} (merdN))} 1]�[(st?C) ��((marL)} (mLV)} (smdrV2) ��(marL)} (mLV2)} (smdrV2)} (merdN))} 1]�[((noop?C)� (br?C))
 (merdN)]](mewbN)} (it3C0D0 I 0O0)} (lit3CD I O) �� (it3CD I O)}[(ne (N = 1))
 (mewdN)]�[(eq (N = 1))
[(alu?C) �� ((aout1V1)} (laout1V2) �� (aout1 V2)} (mewdN))} 1]�[(ld?C) �� ((lmdrW1)} (llmdrW2) �� (lmdrW2)} (mewdN))} 1]�[((st?C)� (noop?C)� (br?C))
 (mewdN)]](wbrbN)} (it3C DI O)} (numM) �� (it3CD I O)}[(eq (N = 0))
 ((wbrdN)} (numM))]�[(eq (N = �1))
 ((wbrdN)} (num(M + 1)))]�[(eq (N = 1))
[(alu?C) ��((aout1V1) �� (aout1 V1)} (lr1 d V1)} (wbrdN)} (num(M + 1)))} 1]�[(ld?C) ��((lmdrV1) �� (lmdrV1)} (lr1 d V1)} (wbrdN)} (num(M + 1)))} 1]�[((st?C)� (br?C))
 ((lr 0 d V1)} (wbrdN)} (num(M + 1)))]�[(noop?C)
 ((lr0 d V1)} (wbrdN)} (numM))]](wbwbN) ��[(ne (N = 1))
 (wbwdN)]�[(eq (N = 1)) ��[[(lr1 d V1)} (r d V2) �� (r d V1)} (wbwdN)] &[(lr0 d V1) �� (wbwdN)]} 1]]Figure 5.22: Speci�cation for the DLX pipeline { MEM and WB.125

� L1 and L2 are two latch states, and it is consistent in L1,� S1 and S2 are two data states, such that the pc in S1 does not address a bg or htinstruction in P,� P is a program state, and� �o : Eo ; S2 }L2 } (cwd ~N)}P ` S1 }L1 } (crb ~N)}P,then1. it is consistent in L2,2. if the instruction in the ID stage depends upon a preceding instruction in the pipelinefor data, then the data hazard is resolved, and3. if the instruction in the ID stage is a br then the control hazard is resolved.Proof: Identical to proof of lemma 5.8 using the de�nitions of �o and call forwardingfunctions.The following lemma is proved by mutual induction on the number of instructions whichhave completed execution. Since the proof of lemma 5.13 is identical to the proof oflemma 5.9, I state the lemma without proof. The proof of theorem 5.12 is a corollaryof this lemma.Lemma 5.14 (Lemmas for Correspondence between Es and Eo) Given� m � 1 and m 2 nat,� S1 and S2 two data states minus the pc, num has 0 and m in S1 and S2, respectively,� Pl is a DLX program, P1 =def (P l ~Pl) is a program state,� L1 =def 8 ~C; ~D; ~I; ~O; ~S; ~V : (L ~C ~D ~I ~O ~S~V), and126

� C =def 8 ~N: (cwd ~N).1. if the mth instruction is not ht then�s : Es ; S2 } cont} (pcL)}P1 ` S1 } (pcM)}P1 i��o : Eo ; S2 } (pcK)}L1} C }P1 ` S1 } (pcM)}P12. if the mth instruction is ht then�s : Es ; S2 } (pcL)}P1 ` S1} (pcM)}P1 i��o : Eo ; S2 } (pcL)}P1 ` S1 } (pcM)}P1The technique of using external functions for state transition functions, and using the logicto manage the synchronizations has provided a powerful and
exible tool. The speci�cationfor the optimizations did not change the global structure of the speci�cation. The keyrede�nitions were in the external functions, and the clauses for IF and ID stages. The changefrom Ep to Eo is not modular, in fact, I believe it cannot be modular because we are changingthe interpreter for DLX programs, not adding new constructs to the programming language.In spite of the non-modular changes the structure of the speci�cation is maintained, andthe proof strategies for the Ep su�ce for Eo.5.5 Program equivalence for DLX | Correctness of codeschedulingIn this section I study the observational equivalence for DLX programs. Two programsare deemed to be observationally equivalent if the observable behavior of the two programsis identical with respect to a given set of environments. The problem of deciding whentwo code fragments are observationally equivalent is of great importance to compiler opti-mizations. For example, code rescheduling [HP90], i :e: reordering the instructions in theprogram, is one of the most important techniques to reduce penalties due to data and con-trol hazards. However, code can be reordered only if the reordered code is observationally127

equivalent to the original code sequence. Similarly, other optimizations done by back endcompilers need to be justi�ed by proving appropriate observational equivalence.The two key words in the informal de�nition of observational equivalence are environmentand observable behavior. The evaluator for DLX programs translates a given data state intoanother one. Thus, the observable entity at the end of the computation is the data state.Note, however, that if I observe the entire data state then I will be able to count the numberof instructions executed by a program. Although the number of instructions executed tocompute a result is useful information, this notion of equivalence would be too �ne. I amprimarily interested in making sure that the results computed by two programs are identicalin all environments { how many steps are taken to achieve the results is a question that I amnot investigating here. The result of the computation is to alter the contents of the register�le and the memory { the observable entities. Hence, two programs will be equivalent if,when placed in identical environment, the contents of the register �le and memory at theend of the computations is identical. The observable state of a computation is de�ned tobe the registers, the number of memory cells and the contents of the memory.De�nition 5.15 [Observable State] (r 1) : : :(r 32) are the DLX registers, and n 2 nat isthe number of memory cells. Let O be an abbreviation for�n; ~V ; ~U: (r 1V1)} : : : } (r 32V32)} (m 1U1)} : : : (mnUn):The lengths of ~V and ~U { 32 and n respectively { if implicit, are assumed to be of appropriatelength.For any n � 0, V1; : : : ; V32; U1; : : : ; Un : int, (O n ~V ~U) is an observable state.The next problem is to de�ne the notion of environment. An environment, written asE[]l;m, is de�ned to be a DLX program, Pl+m, in which at most one of the lists parsed bythe non-terminal Hm;m is missing. A block is a list of DLX instructions which can be parsedby Hm;m. Note that given a block Q of length q, replacing the hole in the environmentE[]l;m by Q, written as E[Q]l;q, results in a DLX program Pl+q . Thus, blocks of di�erent128

lengths may be substituted for the hole in any given environment. I will drop the subscriptson the environments whenever this will not create any confusion. Note that I will use DLXprograms themselves to test equivalence of DLX blocks. Using these two concepts, thede�nition of observational equivalence is made below.De�nition 5.16 [Observational Equivalence, �=dlx] Let Qi; i 2 [1; 2] be blocks. Q1 isobservationally equivalent to Q2, written as Q1 �=dlx Q2, if for any DLX environment E andobservable states O1 and O2, the following is provable.(pcL1)} (num(N1 +M1))}O2} (P l1 ~E[Q1]) 7!s O1 } (pc 0)} (P l1 ~E[Q1])} (numN1)if and only if(pcL2)} (num(N2 +M2))}O2} (P l2 ~E[Q2]) 7!s O1 } (pc 0)} (P l2 ~E[Q2])} (numN2)for some Ni; Mi; Li and li is the length of E[Qi]; i 2 [1; 2]:Note that the de�nition is with respect to Es. This is enough due to the theorems 5.12and 5.7, which establish that all three, Ep, Eo and Es, are equivalent. This fact is very helpfulbecause Es is the simplest to work with. The de�nition may appear rather weak because itis only regarding observational equivalence of blocks. This is only apparent because blocksare a basic entity for which it makes sense to formalize the notion of equivalence. The keyproperty of a block as de�ned is that it can only be entered at the beginning and exited atthe end. If either of these two conditions are violated, then it would be next to impossible to�nd interesting equivalences. Suppose that the de�nition of a block was such that it allowedone to enter it at some intermediate point. In this case, the standard code reschedulingwould be incorrect. To make this point concrete, lets look at the following example. Lettheir be two instructions (ix alu 1 2 3 I+) and (ix alu 4 5 6 I+). The �rst one writes thesum of registers 2 and 3 in register 1, and the second one writes the sum of registers 5 and6 in register 4. It is clear that interchanging the order of these two instructions is harmless,only if both the instructions are executed. Suppose I was allowed to place the instructionsin an environment which can jump to the second instruction avoiding the execution of129

(ix alu 1 2 3 I+), then the reordering of the instructions will produce di�erent results,i :e: code rescheduling in this case would be unsound. The de�nition of environments andblocks disallows this possibility because the environment cannot jump to an intermediatepoint in a block. I now prove the observational equivalence for the general statement ofcode rescheduling.Lemma 5.17 (Observational Equivalence of Code rescheduling) LetQ1 =def Ix1; Ix2, Q2 =def Ix2; Ix1, where Ixi =def (ix CiDi SiRi IiOi), Ci 2falu; ldstg, and all of Di; Si; Ri are pair wise distinct for i 2 [1; 2].Q1 �=dlx Q2Proof: Note that both Q1 and Q2 are blocks by de�nition. let E be any environment, andO1 and O2 be two observable states such that(pcL1)} (num (N1 +M1))}O2} (P l1 ~E[Q1]) 7!s O1 } (pc 0)} (P l1 ~E[Q1])} (numN1):If the computation does not reach Q1, it will also not reach Q2, and thus the proof for(pcL2)} (num(N2 +M2))}O2} (P l2 ~E[Q2]) 7!s O1 } (pc 0)} (P l2 ~E[Q2])} (numN2)is the proof that I assumed.So suppose that(pcL3)} (num(N3 +M3))}O02} (P l1 ~E[Q1]) 7!s O1 } (pc 0)} (P l1 ~E[Q1])} (numN1)such that Ix1 is at the address L3 in the program memory. As the block Q1 has not beenexecuted as yet, I must have,(pcL4)} (num(N4 +M4))}O02} (P l2 ~E[Q2]) 7!s O1 } (pc 0)} (P l2 ~E[Q2])} (numN2)130

such that Ix2 is at the address L4 in the program memory.Computing the instruction Ix1 and Ix2 in both the proofs will yield(pcL3 + 2)} (num(N3 +M3 + 2))}O002 } (P l1 ~E[Q1]) 7!sO1 } (pc 0)} (P l1 ~E[Q1])} (numN1)and (pcL4 + 2)} (num(N4 +M4 + 2))}O002 } (P l2 ~E[Q2]) 7!sO1 } (pc 0)} (P l2 ~E[Q2])} (numN2):Since there is no dependence between the two instructions, I can permute the order inwhich the instructions are computed without e�ecting the observable state at the end ofthe execution of the two instructions.The rest of the proof is obtained by inducting on the number of times the blocks Q1 andQ2 are computed. The other side of the transformation can be completed similarly.I have provided a formal de�nition of observational equivalence for DLX programs which canbe tackled using program transformations. As an example, I showed how to justify code-rescheduling from the de�nitions developed. This points out a subtle assumption in the coderescheduling, that the instructions in the two sequences are computed atomically { eitherone executes the entire sequence, or none of it. Without this assumption, code reschedulingcannot be justi�ed in general. This opens up an interesting line of investigation into backend optimization using this meta-theoretic tool.
131

Chapter 6Conclusion and Future Work6.1 ConclusionMy goal has been to analyze a meta-theory in which various issues regarding programminglanguages can be discussed. The �rst, and key requirement of a framework would be thatit can specify the operational semantics of the programming language. However, I wantthe meta-theory to play a much more signi�cant role than the speci�cation of operationalsemantics alone. In particular, I want to use the meta-theory to study various interest-ing and challenging properties of programs. One key feature of a meta-theory should beto facilitate discussion of the programming language at various levels of detail | fromhigh-level speci�cations down to abstract machines. The meta-theory should provide a uni-form framework in which diverse properties | subject reduction, compiler optimizations,observational equivalence, and equivalence of di�erent speci�cations | can be analyzed.In this thesis I used FORUM as a meta-theory to study programming languages. FORUMprovides a rich structure to proofs which was used to specify concurrency, higher-order func-tions, exceptions, state, and �rst-class continuations. I speci�ed a fragment ofHO�-calculusin FORUM to show how concurrent computations may be represented in FORUM. Next,I de�ned an untyped higher-order functional language, UML, which provides an exception132

mechanism and state and �rst-class continuations. UML, without �rst-class continuations,is untyped SML without data-types. UML encapsulates essential programming constructswhich have been challenging to understand in more than one way. For example, modularspeci�cations of UML have not been possible. The semantic analysis of the observationalequivalence for �vs, the functional core of UML augmented with state, has been very chal-lenging. Next, I analyze the DLX architecture in FORUM. The executable speci�cationof DLX architecture, to the best of my knowledge, has not been attempted. Formaliz-ing low-level optimizations and observational equivalence for DLX programs has been verychallenging.Specifying UML modularly and declaratively has been challenging for formal systems be-cause of the presence the various imperative features. I have provided modular and declar-ative speci�cations of the imperative features in UML. The claim that the speci�cationsare modular is justi�ed by the fact that I obtain the speci�cation for UML by literallyputting together my speci�cations for its di�erent parts. The claim that the speci�cationsare declarative is justi�ed by the fact that my proofs regarding the evaluations in FORUMwork by composing proofs using cut rules of FORUM.As a result of my speci�cation, evaluations become proofs in FORUM | formal objectswhich can be analyzed using the meta-theory of FORUM. I use this fact to study obser-vational equivalence for �vs. Using the proof structure of evaluations in FORUM, I haveproved some of the challenging observational equivalences in the literature for �vs-like lan-guages. The nature of these proofs is very interesting. They seem to fall into two maincategories. One kind of proofs essentially permute a given evaluation proof, typically usinginformation regarding variable occurrences. The other kind of proofs are based on abstract-ing away details of function parameter from computations. The structure of proofs, richerlogic, and cut rules play a key role in this analysis. However, the story is far from complete.Proofs of observational equivalence exhibit the need for a richer meta-theory for FORUM.The declarative speci�cation of the DLX pipeline, with its complex synchronizations, hazardresolution, call-forwarding, branch prediction and early-branch resolution, provides ample133

evidence of the
exibility of FORUM as a speci�cation language for concurrent and imper-ative processes. The speci�cations allow me to prove the correctness of the pipeline withrespect to the simple sequential evaluator for DLX programs. Further, I provide a de�ni-tion of observational equivalence for DLX programs, and justify code rescheduling using thede�nitions. This e�ort highlights the key concept of blocks when discussing equivalence ofDLX programs.FORUM seems to provide an appropriate starting point as a meta-theory for present dayprogramming languages. My results regarding the speci�cation of HO�-calculus, UML andDLX prove that the proofs in FORUM are rich enough to represent a variety of computa-tional paradigms. The analyses of the observational equivalence for �vs, and DLX programsjusti�es the claim that FORUM can be used to study meta-theoretic properties also.6.2 Future WorkThe future work that I want to do in this area has three principal directions. First, I wantto develop proof theory required to better specify imperative features and analyze proofsin FORUM. Second, I wish to study the derivation of abstract machines from high-levelspeci�cations in FORUM. Finally, I wish to consider other speci�cation tasks. I describeeach of these topics below.Proof-theoretic challengesQuanti�ers for location namesAlthough FORUM is able to specify imperative features declaratively, there is one aspectwhich is not captured entirely by the speci�cation. In the speci�cation for �ve, I usednatural numbers to generate unique names for exceptions. The reason for using the sigctrwas that I had to do inequality checks on the exception names when I searched the exceptionstack for an appropriate handler. The same problem would come up in the speci�cation of134

�vs if the language permitted us to check for the equality of location names. The problem ofthe mismatch between restriction in HO�-calculus and universal quanti�er is also related.The usage of 8 to represent creation of new location names is not entirely appropriate.This may be an overkill, because I instantiate the universal quanti�er with location namesonly, not arbitrary values. In some sense, I need a quanti�er for pointers. When the 8 isintroduced, it discharges a constant from the signature. Along with the discharging of theconstant, it might be possible to manage inequality clauses between all the location names.In this sense, the new quanti�er then may handle both the \newness" and \uniqueness"of the location names. A solution along these lines would allow for a completely logicalspeci�cation of the exception mechanism. Further, a proper proof-theoretic understandingmight help in the search for semantics for such languages.Proof transformationsIn chapter 4 we saw how proofs were manipulated to yield observational equivalences.There were two basic
avors to the proofs. First, the proof would essentially permutea given evaluation proof typically based on information regarding variable occurrences.Second, the proof would attempt to abstract the details of a function parameter from thecomputation of a program.Some of the proofs were by induction on the height of proofs in FORUM. This might leadone to believe that there was not much uniformity to the transformations. Fortunately, justthe contrary is true. For example, in lemma 4.23, I transform evaluations of (appM 0 Add2)to evaluations of (appM 0 c) by induction on the height of the evaluation of (appM 0 Add2).The shape of the evaluation of (app M 0 Add2) will be as shown below. � is the evaluationof (app Add2 V). 135

...Evaluation of (app Add2 V)...Evaluation of (app Add2 V)...Sequent for start state of (app M 0 Add2)The transformation replaces the proof fragment � with the constant c. The structure ofthe rest of the proof does not matter to the transformation. The question is, how to studythese transformations proof theoretically so that the above transformations can be speci�edcompositionally instead of having to induct every time.Deriving abstract machines from high-level speci�cationsOne of the problems in language development is to show the link between the actual ab-stract machine that is implemented and the high-level semantics that one starts with. Thetraditional speci�cation techniques are not able to present these di�erent levels of abstrac-tions. Hence, one has to mediate between dissimilar formalisms using some hairy inductionarguments. I would like to logically transform the evaluator I have to a CEK style abstractmachine for UML. A similar transformation was done for �v like language in [HM92]. Mywork would extend it to the richer language UML. The transformation in [HM92] was notcarried out entirely within the logic. I want to investigate whether the mixture of FORUMand continuation-passing-style speci�cation will overcome some of the problem encounteredin [HM92].Speci�cation of other aspects of programming languagesOne of the natural questions that comes after having speci�ed UML, is whether it canbe typed in FORUM, i :e:, can I specify the static semantics of UML in FORUM? I havesome preliminary ideas on this problem. The Subject Reduction theorem would then bea statement about the compositionality between the typing derivation and the evaluation.136

The general setting of FORUM would also allow us to analyze other static informationabout the programs, such as e�ects. The proof theory may provide us insight into thelogical nature of e�ects, if any.Implementation of FORUM and interpreters for DLXAn implementation of a fragment of FORUM with �rst-order uni�cation would su�ce toplay with interpreters for DLX pipelines. This could be a big step forward in understandingthe role of FORUM as a prototyping language for such applications. The critical use ofprototypes to experiment with new ideas and negotiate contracts is gaining much recognitionrecently. As such, this direction might result in some tangible applications of FORUM.

137

Appendix AProofs from chapter 3In �gure A.1 the constants from �ml used for the translation of UML into FORUM ispresented. In �gure A.2 the translation from UML to FORUM is presented, in �gure A.3the translation for Answers to FORUM is presented, and in �gure A.4 the translation fromFORUM terms of type vl and tm to UML is presented. I prove lemmas A.1 and A.2 whichimplies lemmas 3.1, 3.4, 3.9 and 3.13. I use the notation from chapter 3 regarding freely inthe appendix.Lemma A.1 Let M and N be UML terms, V and U be values in UML.1. �(U [x := V]) = �(U)[x := �(V)]:2. H(M [x := V]) = H(M)[x := �(V)]:Proof: The proof of the lemma works by mutual induction on the two claims. The induc-tion is done on the structure of the term.Proof for claim 1: The claim is vacuously proved in the cases where U is an exceptionname, or a constant in the language.Case U = z, z 6� x : LHS = z = RHS 138

abs : (vl! tm)! vlc : vl c 2 B [Z [f�gh:i : vl! tmf : tm! tm! tm f 2 Oapp : tm! tm! tmcond : tm! tm! tm! tmifbr : vl! tm! tm! tmletval : (vl! tm)! tm! tmletfun : (vl! tm)! (vl! vl! tm)! tmcell : tm! tmread : tm! tmwrite : tm! tm! tmex : ext! vlexn : (ext! tm)! tminstall : tm! tm! tm! tmsignal : tm! tm! tmcatch : tm! tmjump : tm! tm! tmget : vl! (vl! o)! oset : vl! vl! (vl! o)! oapply : tm! tm! ouncaught : ext! vl! oresume : vl! vl! ocont : vl! (vl! o)! oeval : tm! (vl! o)! oFigure A.1: Constants in �ml used in translating UML to FORUM
139

�(x) = x�(�x:M) = abs �x : vl:H(M)�(c) = c c 2 Z [B [f�g�(l) = (ex l) l 2 ExnNamesH(V) = h�(V)iH(f M N) = f H(M) H(N)H(M N) = app H(M) H(N)H(if M N P) = cond H(M) H(N) H(P)H(let val x =M in N) = letval (�x:H(N)) H(M)H(let fun f x =M in N) = letfun (�f:H(N)) (�f; x:H(M))H(ref M) = cell H(M)H(deref M) = read H(M)H(asg M N) = write H(M) H(N)H(exception l M) = exn �l:H(M)H(handle M N P) = install H(M) H(N) H(P)H(raiseM N) = signal H(M) H(N)H(callccM) = catch H(M)H(throw M N) = jump H(M) H(N)Figure A.2: Translating UML to FORUM
A(V;K) = (K; �(V))A([pk l; V ;]K) = (uncaught l �ve(V))Figure A.3: Translating answers in UML to FORUM140

 (x) = x (abs �x:M) = �x: L(M) (c) = c c 2 Z [B [f�g (ex l) = lL(hV i) = (V)L(f M N) = f L(M) L(N) f 2 OL(app M N) = L(M) L(N)L((ifbr V N P)) = if (V) L(N) L(P) b 2 BL(cond M N P) = if L(M) L(N) L(P)L(letval R N) = let val x = L(N) in L(Rx) x freshL(letfun R1 R2) = let fun f x = L(R2 f x) in L(R1 f) f; x freshL(cellM) = ref L(M)L(readM) = deref L(M)L(writeM N) = asg L(M) L(N)L(exn R) = exception l L(Rl) l 2 ExnNames; l is freshL(install M N P) = handle L(M) L(N) L(P)L(signalM N) = raise L(M) L(N)L(catch M) = callcc L(M)L(jumpM N) = throw L(M)L(N)Figure A.4: Translating FORUM terms to UML
141

Case U = z, z � x : LHS = �(V) = RHSCase U = �z:M z 6� x :If z � x then the equality is immediate. I write the case when z 6� x.LHS = �((�z:M)[x := V]) = �(�z: (M [x := V])) = abs �z:H(M [x := V])= abs �z: (H(M)[x := �(V)]), by induction on claim 2.= (abs �z:H(M))[x := �(V)] = RHSThis completes the proof of claim 1.Proof for claim 2:Case M = U , U 2 Values : By claim 1.Case M = (f N P), f 2 O :LHS = f H(N [x := V])H(P [x := V]), by induction on claim2= f H(N)[x := �(V)]H(P)[x := �(V)] = RHSCase M = (N P) :LHS = app H(N [x := V]) H(P [x := V]), by induction on claim2= app H(N)[x := �(V)] H(P)[x := �(V)] = RHSCase M = (if N P L) :LHS = cond H(N [x := V]) H(P [x := V]) H(L[x := V]), by induction on claim2= cond H(N)[x := �(V)] H(P)[x := �(V)] H(L)[x := �(V)] = RHS142

Case M = (let val z = N in P) :When z � x the result is immediate. I write the proof for z 6� x.LHS = letval (�z:H(P [x := V])) H(N [x := V]), by induction on claim2= letval ((�z:H(P))[x := �(V)]) H(N)[x := V] = RHSCase M = (let fun f; z = N in P) :When z � x or z � f the result is immediate. I write the proof for z 6� x and z 6� f .LHS = letfun (�f:H(P [x := V])) (�f; z:H(N [x := V])) by induction on claim2= letfun ((�f:H(P))[x := �(V)]) ((�f; z:H(N))[x := �(V)]) = RHSCase M = (ref N) :LHS = cell H(N [x := V]), by induction on claim2= cell H(N)[x := �(V)] = RHSCase M = (deref N) :LHS = read H(N [x := V]), by induction on claim2= read H(N)[x := �(V)] = RHSCase M = (asg N P) :LHS = write H(N [x := V]) H(P [x := V]), by induction on claim2= write H(N)[x := �(V)] H(P)[x := �(V)] = RHSCase M = (exception l N) :Note x 6� l.LHS = exn lH(N [x := V]), by induction on claim2= exn lH(N)[x := �(V)] = RHS 143

Case M = (raise N P) :LHS = raise H(N [x := V]) H(P [x := V]), by induction on claim2= raise H(N)[x := �(V)] H(P)[x := �(V)] = RHSCase M = (handle N P L) :LHS = signal H(N [x := V]) H(P [x := V])H(L[x := V]), by induction on claim2= signal H(N)[x := �(V)] H(P)[x := �(V)]H(L)[x := �(V)] = RHSCase M = (callcc N) :LHS = catch H(N [x := V]), by induction on claim2= catch H(N)[x := �(V)] = RHSCase M = (throw N P) :LHS = jump H(N [x := V]) H(P [x := V]), by induction on claim2= jump H(N)[x := �(V)] H(P)[x := �(V)] = RHSThe proof for lemma A.2 is a mutual induction exactly along the lines of lemma A.1. Asthe details do not reveal anything new I have not written down the proof.Lemma A.2 Let N : tm, U : vl, and V : vl be FORUM terms.1. (U [x := V]) = (U)[x := (V)]:2. L(N [x := V]) = L(N)[x := (V)]:I now want to prove theorem 3.18. This theorem states that the natural semantics spec-i�cation of �vse and Eves, and the FORUM speci�cation of �vse are equivalent. I beginwith the de�nition of a con�guration and the translation of the con�guration to FORUM.Con�gurations are the initial environments in which �vse terms need to be evaluated. The144

� : �;CLS ; Q}�C �! Q}�C Id...; 8L;) L� : �;CLS ; (CoQ) �! Q}�...;Associativity and commutativity of }� : �;CLS ; (CoQ) �! Q}� cFigure A.5: C is a con�gurationtranslation of a con�guration to FORUM returns a � which places its arguments in anenvironment in which all the cells and exceptions have been declared, and approporaitelyquanti�ed.De�nition A.3 [Con�gurations in �vse] A conifguration, C is a pair of state, S, and setof exception names, Ex, such that forall l 2 dom(S), FV(S(l))� dom(S) [Ex.De�nition A.4 [Translating Con�gurations to FORUM] C =def hS;Exi, be a con�gura-tion. The translation of C into FORUM is a term of type o! o, written as Co.Co =def�u : o:8 PS ; lS: getC(P1; l1)) setC(P1; l1)) : : :) getC(Pn; ln)) setC(Pn; ln))[u}�S } (sigctr lEx)} (exnst nil)]The domain of a con�guration, C =def hS;Exi, written as dom(C), is the union of dom(S)and Ex. In �gure A.5 I show a proof �gure, Compl, which I will use to end the computationsin �vse. Let C = hS;Exi.CoQ = 8 PS ; lS: getC(P1; l1)) setC(P1; l1)) : : :) getC(Pn; ln)) setC(Pn; ln))[Q}�S } (sigctr lEx)} (exnst nil)]145

lC =def lEx, �C =def �S , �C =def �C } (sigctr lC)} (exnst nil), and � is some permutationof �C . I restate Theorem 3.18.Theorem A.5 (Correspondence theorem for �vse) Let M 2 �vse, A 2 Answersvse ,C2 be a con�guration and C1 be a con�guration such that FV(M) � dom(C).hM;C1i + hA;C2i if and only if eval(H(M); C1;A(A;K); C2)Proof: AssumeM 2 �vse, A 2 Answersvse , C2 is a con�guration and C1 is a con�gurationsuch that FV(M) � dom(C).Left to right direction : Proof is by induction on the height of the evaluation tree in thenatural semantics. I do a case analysis on the structure ofM . There are in total thirty-ninerules in natural semantics that I have to analyze. Since many of the cases are repetetive,I will prove the ones which have di�erent features and leave out the proofs of the rest. Inthe proofs I show, I will not show parts of the signature and intuitionistic context. Forexample, I do not write �ves in the signature, and Eves in the intuitionistic context, sincethey are present in all the exhibited sequents.Case M = V : There is only one possible evaluation tree. The proof in FORUM followstrivially from Identity.Case M = (N P) : There are four possible evaluation trees. Suppose the evaluation ishN;C1i + h�x:Q;C2i hP;C2i + hU;C3i hQ[x := U]; C3i + hV; C4ih(N P); C1i + hV; C4iThe proof is essentially the one given in section 3.1 after theorem 3.3. There are three morenatural semantics trees, each for the fact that we have an uncaught exception. The prooffor these cases is completed as shown in section 3.3 after theorem 3.12.146

Case M = (f N P), f 2 O : In this case, there are three possible natural semantics whichare applicable. The proof is along the lines of the case M = (N P).Case M = (if N P Q) : In this case, there are six possible natural semantics which areapplicable. I show one of the cases, the others may be completed similary. Suppose the lastnatural semantics rule used is :hN;C1i + htrue; C2i hP;C2i + hV; C3ih(if N P Q); C1i + hV; C3iThe evaluation trees for hN;C1i + htrue; C2i and hP;C2i + hV; C3i are smaller than theevaluation of M . Let N1 =def H(N), P1 =def H(P), Q1 =def H(Q), and V1 =def �(V).Thus, by using induciton hypothesis I get proofs �1, and �2 of� K1 : Eves ; Co2(K1 true) �! Co1(eval N1 K1), and� K2 : Eves ; Co3(K2 V1) �! Co2(eval P1 K2), respectively.The required proof is constructed below. In the proof,L1 =def �v: (eval ((ifbr v P1 Q1)) K), and (L1 true) =� (eval ((ifbr true P1 Q1)) K).�2Co3(K V1) �! Co2(eval P1 K)Co3(K V1) �! (eval ((ifbr true P1 Q1)) K)}�C2...; 8R;) RCo3(K V1) �! Co2(L1 true) �1Co2(L1 true) �! (eval N1 L1)}�C1�C1 ; K : CLS1 ; Co3(K V1) �! (eval N1 L1)}�C1�C1 ; K : CLS1 ; Co3(K V1) �! (eval (if N1 P1 Q1) K)}�C1In the above proof, �1 is obtained by �1 by a CutS rule K1 with L1, similarly �2 is obtainedfrom �2 by a CutS rule on K2 with K.Suppose the last natural semantics rule used is :147

hN;C1i + h[pk l V]; C2ih(if N P Q); C1i + hV; C2iThe evaluation tree for hN;C1i + h[pk l V]; C2i is smaller than the evaluation of M . LetN1 =def H(N), P1 =def H(P), Q1 =def H(Q), and V1 =def �(V). Thus, by usinginduciton hypothesis I get proof �1 of� K1 : Eves ; Co2(uncaught l V1) �! Co1(eval N1 K1).The required proof is constructed below.�1�C1 ; K : CLS1 ; Co2(uncaught l V1) �! (eval N1 L1)}�C1�C1 ; K : CLS1 ; Co2(uncaught l V1) �! (eval (if N1 P1 Q1) K)}�C1 backchainWhere �1 is obtained from �1 using CutS. The proof, for the other natural semantics rulesfor if are completed in a similar manner.Case M = (let val x = N in P) : This case is handled exactly like (�x: P) N .Case M = (let fun f; x = N in P) : The last evaluation rule for letfun will be :hP [f := �x: let fun f x = N in N]; C1i + hA;C2ihlet fun f x = N in P;C1i + hA;C2iThe evaluation tree for hP [f := �x: let fun f x = N in N]; C1i + hA;C2i is smaller than theevaluation of M . Let N1 =def H(N), P1 =def H(P), and V1 =def �(V). Thus, by usinginduciton hypothesis I get the proof �1 of� K1 : Eves ; Co2A(A;K1) �! Co1(eval P1[f := (abs �x: let fun f x = N1 in N1)] K1).The required proof is constructed below. Let Q =def (abs �x: let fun f x = N1 in N1).148

�1�C1 ; K : CLS1 ; Co2(uncaught l V1) �! (eval P1[f := Q] L1)}�C1�C1 ; K : CLS1 ; Co2A(A;K) �! (eval H(let fun f x = N in P) K)}�C1 backchainWhere �1 is obtained from �1 using CutS.Case M = (ref N) : I consider the case when the last evaluation rule for ref is :hN;C1i + hV; C2ihref N;C1i + hl; C2[l 7! V]i l 62 State in C2The evaluation tree for hN;C1i + hV; C2i is smaller than the evaluation ofM . Let N1 =defH(N), and V1 =def �(V). Thus by using induction hypothesis I get proof �1 of� K1 : Eves ; Co2(K V) �! Co1(eval N1 K1).The required proof is constructed below. Let C3 =def hS2[l 7! V]; Ex2i, where C2 =defhS2; Ex2i, and L1 =def �v: 8P; l: getC(P; l)) setC(P; l)) [(K l)} (P v)].Compl�C3 ; P; l : CLS3 ; Co3(K l) �! (K l)} (P V1)}�C2...; 8R;) RCo3(K l) �! Co2(L1 V1) �1Co2(L1 V1) �! (eval N1 L1)}�C1�C1 ; K : CLS1 ; Co3(K l) �! (eval N1 L1)}�C1�C1 ; K : CLS1 ; Co3(K l) �! (eval (cell N1) K)}�C1 backchainWhere �1 is obtained from �1 using CutS. The other case when the evaluation of N returnsan uncaught exception is treated similarly.Case M = (deref N) : I consider the case when the last evaluation rule for deref is :hN;C1i + h[pk l V]; C2ihderef N;C1i + h[pk l V]; C2i149

The evaluation tree for hN;C1i + h[pk l V]; C2i is smaller than the evaluation of M . LetN1 =def H(N), and V1 =def �(V). Thus, by using induction hypothesis I get proof �1 of� K1 : Eves ; Co2(uncaught l V1) �! Co1(eval N1 K1).The required proof is constructed below. Let L1 =def �v: (get v K).�1�C1 ; K : CLS1 ; Co2(uncaught l V1) �! (eval N1 L1)}�C1�C1 ; K : CLS1 ; Co2(uncaught l V1) �! (eval (read N1) K)}�C1 backchainWhere �1 is obtained from �1 using CutS. The other case when evaluation of N returns avalue is treated similarly. Essentially, the computation continues with (get l K), where lwould be the value returned by N .Case M = (asg N P) : There are three natural semantics rules for asg. The proofs for allof these is completed along the lines of the proof after theorem 3.8.Case M = (exception l N) : This case is rather straightforward given the examplesabove. It is handled along the lines of ref.Case M = (raise N P) : This case is rather straightforward given the examples above. Itis handled along the lines of app.Case M = (handle N P Q) : Suppose the last rule in the evalution washP;C1i + hl; C2i hQ;C2i + hW;C3i hN;C3i + h[pk l U]; C4i h(W U); C4i + hV; C5ihhandle N P Q;C1i + hV; C5iThe evaluation trees for hP;C1i + hl; C2i, hQ;C2i + hW;C3i, hN;C3i + h[pk l U]; C4i,and h(W U); C4i + hV; C5i are smaller than the evaluation of M . Let N1 =def H(N),150

P1 =def H(P), Q1 =def H(Q), V1 =def �(V), U1 =def �(U), and W1 =def �(W). Thus,by using induciton hypothesis I get proofs �1, �2, �3, and �4 of� K1 : Eves ; Co2(K1 (ex l)) �! Co1(eval P1 K1),� K2 : Eves ; Co3(K2W1) �! Co2(eval Q1 K2),� K3 : Eves ; Co4(uncaught l U1) �! Co3(eval N1 K3), and� K4 : Eves ; Co5(K4 V) �! Co4(eval (app W1 U1) K4), respectively.The required proof is constructed below.Let L1 =def �v: (isexn v �w: (eval Q1 �u: (push w u K N1))),L2 =def �w: (eval Q1 �u: (push w u K N1)), and L3 =def �u: (push l u K N1).Note (L1 (ex l)) =def (isexn (ex l) �w: (eval Q1 �u: (push w u K N1))),(L2 l) =def (eval Q1 �u: (push l u K N1)), and (L3W1) =def (push l W1 K N1)
1�C2 : CLC2 ; Co5(K V1) �! (L1 (ex l))}�C2... 8R;) RCo5(K V1) �! Co2(L1 (ex l)) �1Co2(L1 (ex l)) �! Co1(eval N1 L1)�C1 : CLC1 ; Co2(K V1) �! Co1(eval N1 L1)�C1 : CLC1 ; Co5(K V1) �! Co1(eval (install N1 P1 Q1) K)To complete the proof I am left with constructing
1.
2�C3 : CLC3 ; Co5(K V1) �! (L2 l)}�C3... 8R;) R�C2 : CLC2 ; Co5(K V1) �! Co3(L2 l) �C2 : CLC2 ; Co2(L2 l) �! (L2 l)}�C2�C2 : CLC2 ; Co2(L2 l) �! (L1 (ex l))}�C2�C2 : CLC2 ; Co5(K V1) �! (L1 (ex l))}�C2
2 is constructed below. 151

3Co5(K V1) �! (push l W1 K N1)}�C4... 8R;) RCo5(K V1) �! Co4(L3W1) �2Co4(L3W1) �! (eval Q1 L3)}�C3Co5(K V1) �! (eval Q1 L3)}�C3
3 is constructed below. �3Co5(K V1) �! (eval N1 �v: (pop (K v)))}�C4 } (sigctr lC4)} (exnst (pkt l W1 K) :: nil)Co5(K V1) �! (push l W1 K N1)}�C4 } (sigctr lC4)} (exnst nil)The proof �i is constructed from �i, i 2 [1; 2]. �3 is obtained from �3. �3 results in(uncaught l U1), under the assumption that the initial exception stack is empty. However,the excetion stack is (exnst (pkt l W1 K) :: nil). I change �3 to re
ect the intial exceptionstack, which will catch the exception and evaluate (apply W1 U1 K). The evaluation of(apply W1 U1 K) is completed using �4. The other cases for handle are handled similarly.Right to left direction : In this direction, I induct on height of the sequent proof inFORUM. I then do a case analyses based on the outermost term constructor for the termbeing evaluate. The proof in this direction is very similar in nature to the one for theother direction. I illustrate the basic strategy using (asg N P) as an example, and donot write down the other cases. The computation for (asg N P) in FORUM is as shownbelow. P1 =def H(P), N1 =def H(N), A 2 Answersvse, V1 =def �(V), L1 =def�v: (eval P1 �u: (set v u K)), and L2 =def �u: (set l u K).
1... Computation of P1; Pt1Co4A(A;K) �! (eval P1 L2)}�C2Co4A(A;K) �! (eval l L1)}�C2... Computation of N1; Pt1Co4A(A;K) �! (eval N1 L1)}�C1�C1 : CLC1 ; Co4A(A;K) �! (eval (asg N1 P1) K)}�C1Where
1 is shown below. 152

ComplCo4A(A;K) �! (K �)}�} (P V1)} (sigctr lC3)} (exnst nil)Co4A(A;K) �! (set l V1 K)}�} (P U1)} (sigctr lC3)} (exnst nil)Co4A(A;K) �! (eval P1 L2)}�C2From this proof the computations for hN;C1i + hl; C2i and hP;C2i + hl; C3i can be extractedeasily. Next, the variable conditions in the proof imply that the state can be updated suit-able so that the �nal answer is h�; C3[l 7! V]i. However, if the evaluation of N1 raised anuncaught exception, (uncaught l V1), then the proof would have ended with the Compl con-struction at the point Pt1. In this case, I can get a computation of hN;C1i + h[pk l V]; C2i.The case whenN1 evaluates to a value, and P1 raises an uncaught exception, (uncaught l V1),is handled similarly.

153

Bibliography[Abr87] Samson Abramsky. Observation equivalence as a testing equivalence. Theoret-ical Computer Science, 53:225{241, 1987.[Abr90] S. Abramsky. The lazy �-calculus. In D. A. Turner, editor, Research Topics inFunctional Programming, pages 65{116. Addison-Wesley, 1990.[AC87] T. Agarwal and J. Cocke. High performance reduced instruction set processors.Technical report, IBM, 1987.[AJ89] Andrew Appel and Trevor Jim. Continuation-passing, closure-passing style. In16th Symp. Principles of Programming Languages, pages 293{302. ACM, 1989.[AL93] M. Aagaard and M. Leeser. A framework for specifying and designing pipelines.In IEEE International Conference on Computer Design, pages 548{551, 1993.[AO89] S. Abramsky and L. Ong. Full abstraction in the lazy �-calculus. Technicalreport, Imperial College, 1989. To appear in Information and Computation.[AP90] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-ininheritance. In Proceeding of the Seventh International Conference on LogicProgramming, Jerusalem, May 1990.[App92] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,1992. 154

[AST89] D.W. Anderson, F.J. Sparacio, and R.M. Tomasulo. The IBM 360 model 91:Machine philosophy and instruction handling. In IBM J. of Research and De-velopement, pages 8{24, 1989.[Bar84] Hank Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume103 of Studies in Logic and the Foundations of Mathematics. Elsevier, revisededition, 1984.[Blo59] E. Bloch. The engineering design of the stretch computer. In Proc. Fall JointComputer Conference, pages 48{59, 1959.[BR90] Egon B�orger and Dean Rosenzweig. From prolog algebras towards wam { amathematical study of implementations. In Computer Science Logic, volume533, pages 31{66. Springer-Verlag, 1990.[Buc62] W. Bucholtz. Planning a computer system : Project Stretch. McGraw Hill,1962.[CF94] R. Cartwright and M. Felleisen. Extensible denotational language speci�cations.In Symposium on Theoretical Aspects of Computer Software, 1994.[Chi94] Jawahar Chirimar. What can continuations observe in the lazy �-calculus?Technical report, University of Pennsylvania, April 1994.[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of SymbolicLogic, 5:56{68, 1940.[DH89] R.K. Dybvig and R. Heib. Engines from continuations. In Computing Lan-guages, volume 14(2), pages 109{123, 1989.[FF86] M. Felleisen and D.P. Friedman. Control operators, the SECD machine andthe �-calculus. In M. Wirsing, editor, Formal Descriptions of ProgrammingConcepts-III, pages 193{217. North-Holland, 1986.[FH92] M. Felleisen and R. Heib. The revised report on the syntactic theories of se-quential control and state. Theoretical Computer Science, 103:235{271, 1992.155

[Fri88] D.P. Friedman. Applications of continuations. In Proceedings of the ACMConference on Principles of Programming Languages, 1988.[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.[Gir92] Jean-Yves Girard. A �xpoint theorem in linear logic. A message posted on thelinear@cs.stanford.edu mailing listing, February 1992.[Gor79] M. C. Gordon. The Denotational Description of Programming Languages.Springer-Verlag, 1979.[Han90] John J. Hannan. Investigating a Proof-Theoretic Meta-Language for FunctionalPrograms. PhD thesis, University of Pennsylvania, August 1990.[HM91] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuition-istic linear logic: Extended abstract. In G. Kahn, editor, Sixth Annual Sympo-sium on Logic in Computer Science, pages 32{42, Amsterdam, July 1991.[HM92] John Hannan and Dale Miller. From operational semantics to abstract ma-chines. Mathematical Structures in Computer Science, 2(4):415{459, 1992. In-vited to a special issue of papers selected from the 1990 Lisp and FunctionalProgramming Conference.[HMT89] Robert Harper, Robin Milner, and Mads Tofte. The De�nition of Standard ML:Version 3. Technical Report ECS-LFCS-89-81, Laboratory for the Foundationsof Computer Science, University of Edinburgh, May 1989.[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. CACM, 12:576{580, October 1969.[HP90] J. Hennesy and D. Patterson. Computer Architecture A Quantitative Approach.Morgan Kaufman Publishers, Inc., 1990.[HSH90] Lars Halln�as and Peter Schroeder-Heister. A proof-theoretic approach to logicprogramming. 1. Clauses as rules. Journal of Logic and Computation, pages261{283, December 1990. 156

[Kah87] Gilles Kahn. Natural semantics. In Proceedings of STACS 1987, volume 247 ofLecture Notes in Computer Science, pages 22{39. Springer-Verlag, March 1987.[Kle64] Stephen Cole Kleene. Introduction to Metamathematics. North-Holland, Ams-terdam, 1964.[Lan64] P. J. Landin. The mechanical evaluation of expressions. Computer Journal,6(5):308{320, 1964.[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall International,1989.[Mil90] Robin Milner. Functions as processes. Research Report 1154, INRIA, 1990.[Mil93] Dale Miller. The �-calculus as a theory in linear logic: Preliminary results. InE. Lamma and P. Mello, editors, Proceedings of the 1992 Workshop on Exten-sions to Logic Programming, number 660 in Lecture Notes in Computer Science,pages 242{265. Springer-Verlag, 1993.[Mil94] Dale Miller. A multiple-conclusion meta-logic: Extended abstract. In S. Abram-sky, editor, Ninth Annual Symposium on Logic in Computer Science, Paris, July1994. To Appear.[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniformproofs as a foundation for logic programming. Annals of Pure and AppliedLogic, 51:125{157, 1991.[Mor68] J.H. Morris. Lambda Calculus Models of Programming Languages. PhD thesis,Massachusets Institute of Technology, 1968.[MP92] Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-theory in Elf. In Lars Halln�as, editor, Extensions of Logic Programming.Springer-Verlag LNCS, 1992. To appear. A preliminary version is available asTechnical Report MPI-I-91-211, Max-Planck-Institute for Computer Science,Saarbr�ucken, Germany, August 1991.157

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-cesses, Part I. Information and Computation, pages 1{40, September 1992.[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-cesses, Part II. Information and Computation, pages 41{77, September 1992.[MS88] Albert R. Meyer and Kurt Sieber. Towards fully abstract semantics for localvariables: Preliminary report. In Proc. 15th Annual ACM Symp. on Principlesof Programming Languages, pages 191{203, San Diego, 1988.[MT92] Ian A. Mason and Carolyn L. Talcott. References, local variables and opera-tional reasoning. In A. Scedrov, editor, Proceedings of LICS'92, pages 186{197,1992.[OT92] Peter W. O'Hearn and Robert D. Tennent. Semantics of local variables. Tech-nical Report ECS-LFCS-92-192, Laboratory for the Foundations of ComputerScience, University of Edinburgh, January 1992.[OT93] Peter W. O'Hearn and Robert D. Tennent. Relational parametricity and localvariables. In Proc. 20th Annual ACM Symposium on Principles of ProgrammingLanguages, pages 171{184, 1993.[Plo76] G. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical Com-puter Science, 1(1):125{159, 1976.[PS93] A.M. Pitts and I. Stark. On the observable properties of higher order func-tions that dynamically create local names. In Proc. ACM SIGPLAN Workshopon State in Programming Languages (Technical Report YALEU/DCS/RR-968,Yale University), 1993.[RC86] Jonathan Ress and William Clinger. The revised3 report on the algorithmiclanguage Scheme. ACM SIGPLAN Notices, 21:37{79, 1986.[Rep91] John H. Reppy. CML: A higher-order concurrent language. In ACM SIGPLANConference on Programming Language Design and Implementation, pages 293{305, June 1991. 158

[Rey72] J.C. Reynolds. De�nitional interpreters for higher-order programming lan-guages. In Proceedings of the ACM Annual Conference, pages 717{740, 1972.[Rey81a] J. C. Reynolds. The Craft of Programming. Series in Computer Science.Prentice-Hall, 1981.[Rey81b] J. C. Reynolds. The essence of algol. In J. W. de Bakker and J. C. van Vliet,editors, Algorithmic Languages, pages 345{372. North-Holland, 1981.[San92a] D. Sangiorgi. Expressing Mobility in Process Algebras : First Order and HigherOrder Paradigms. PhD thesis, University of Edinburgh, 1992.[San92b] D. Sangiorgi. The lazy � calculus in a concurrency scenario. In 7th LICS Conf.IEEE Computer Society Press, 1992.[Set89] Ravi Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley Pub. Co., 1989.[SF92] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passingstyle. In Proceedings of the ACM Conference on Lisp and Functional Program-ming, pages 288{298, 1992.[SH93] Peter Schroeder-Heister. Rules of de�nitional re
ection. In M. Vardi, editor,Eighth Annual Symposium on Logic in Computer Science, pages 222{232. IEEE,June 1993.[Sie93] Kurt Sieber. New steps towards full abstraction for local variables. In Proc.ACM SIGPLANWorkshop on State in Programming Languages (Technical Re-port YALEU/DCS/RR-968, Yale University), pages 88{100, Copenhagen, Den-mark, 1993.[Ste78] Guy L. Steele. Rabbit: A compiler for Scheme. Technical report, MIT Arti�cialIntelligence Laboratory, 1978.[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-gramming Language Theory. MIT Press, Cambridge, MA, 1977.159

[SW74] C. Strachey and C.P. Wadsworth. Continuations: A mathematical semanticsfor handling full jump. Technical Report PRG-11, Oxford university ComputingLaboratory, 1974.[Tho70] J.E. Thornton. Design of a computer, the Control Data 6600. Foresman, 1970.[TK93] S. Tahar and R. Kumar. A formalization of a hierarchical model for risc pro-cessors. In Proceedings of EuroARCH'93. Springer Verlag, 1993.[Wan80] M. Wand. Continuation based multiprocessing. In Conference Record of the1980 Lisp Conference, pages 19{28, 1980.[WF91] A. Wright and M. Felleisen. A syntactic approach to type soundness. TechnicalReport COMP TR91-160, Rice University, 1991.

160

