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ABSTRACT
PROOF THEORETIC APPROACH TO SPECIFICATION LANGUAGES
Jawahar Lal Chirimar

Advisor: Dale Miller

In this thesis I study FORUM as a specification language. FORUM is a higher-order logic
based on the logical connectives of Linear Logic. As an initial example, I demonstrate that
FORUM is well suited for specifying concurrent computations by specifying the higher-
order 7 calculus. Next, I focus on the problem of specifying programming languages with
higher-order functions, and imperative features such as assignable variables, exceptions and
first-class continuations. I provide a modular and declarative specification of an untyped
programming language, UML, which contains the above mentioned features. Further, I use
the proof theory of FORUM to study program equivalence for the functional core of UML
augmented with assignable variables. Using my compositional specifications in FORUM, I
prove equivalence of programs that have been challenging for other specification languages.
Finally I study the operation semantics of DLX, a prototypical RISC machine. I specify the
sequential and pipelined operational semantics of DLX with important optimizations such as
call-forwarding and early branch resolution, and prove them to be equivalent. Furthermore,
I study the problem of code equivalence via the FORUM specification, and, in particular,

analyze the problem of code rescheduling for DLX.

v



Contents

1 Introduction

2 FORUM
2.1 FORUM — Logic programming with multiple heads . . . . .. .. ... ..

2.2 Specifying HOmin FORUM . . . .. ... ... 0 ..

3 Specifying UML
3.1 A, — Functional Coreof UML . . . . .. ... .. ... ... ... .....
3.2 A, — Statein UML . . . . . . . . . . . . ..
3.3 A, — Exceptionsin UML . . . . ... ... .. ... ... ... ... ...,
34 A,.— Continuationsin UML . . . . ... ... ... ... .. ........

3.5 UML — Putting it together . . . . . . . . ... .. oo L.

4 Program Equivalence for A,; in FORUM
4.1 Defining Observational Equivalence . . . . . . . ... ... ... ...

4.2  Reduction in A, preserves Observational Equivalence . . . .. .. ... ..



4.3 Observational Equivalence proofs in FORUM . . .. ... .. ... ... .. 72

5 Specifying DLX - a RISC architecture 82
5.1 The DLX architecture . . . . . . .. .. ... 83
5.2 Sequential specification for DLX architecture. . . . . . . . ... .. ... .. 85
5.3 Pipelining DLX - facing the hazards . .. ... ... ... ... ... .... 94
5.4 Call-forwarding and early branch resolution . . . .. ... ... ... .... 116
5.5 Program equivalence for DLX — Correctness of code scheduling . . . . . .. 127

6 Conclusion and Future Work 132
6.1 Conclusion . . . . . . . . e e 132
6.2 Future Work . . . . . oL 134

A Proofs from chapter 3 138

Bibliography 153

vi



List of Figures

2.1 Proof Rules for Forum . . . ... .. ... ... 10
2.2 Specifying inequality of natural numbers in FORUM . . . ... .. ... .. 11
2.3 Reduction semantics for HOnm-calculus . . . . . . .. ... .00 L. 15
3.1 Syntax for Ay, . . . ..o e 21
3.2 Natural Semantics specification for A, . . . . .. .. .. 0oL 23
3.3 X,, Signature for A, evaluator . . . .. ... o o oo 24
3.4 ¢, Values, —vl, Hy : Ay —tm .o 0 0o 25
3.5 vl — Values,, L, :tm— Ay .. ..o o 25
3.6 Clauses in &, - the evaluatorfor A, . . . . .. . ... ... ... ... .... 27
3.7 One step in the evaluation of (M N) . . . ... ... ... ... ... .... 28
3.8 Syntax for Ays . . . L L e e 31
3.9 Natural Semantics specification for the new constructsin Ay, . . . . . . .. 32
3.10 Constants for translating Ay terms . . . . . . . . oL oo oo 33
3.11 Specification in FORUM for new constructsin Ay . . . . . . . .. ... .. 34

vii



3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

4.1

4.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Syntax for Aye . . . L L e e 40

Natural Semantics specification for the new constructsin Aye. . . . . . . .. 42
Constants for translating A, terms . . . . . . . ... . L o000, 45
Translating the new construct of A, to FORUM . . ... ... ... .... 45
Constants for exception management in FORUM . . . .. ... .. ... .. 47
Specification in FORUM for new constructsin A,e . . . . . . . .. ... .. 48
Syntax for Aye . o . L L e e e 53
Constants for translating A,. terms . . . . . .. ... L o000 54
Specification in FORUM for new constructsin A, . . .. ... .. ... .. 54
Cye, translation of FvCont,. to FORUM terms of typevl — o . . . . .. .. 56
Specification for callcc in the presence of exceptions . . . . . . .. . ... .. 57
Contexts in Ays . . . o o 0 o o o e e e e e 63
Cys, translation of FvCont,s to FORUM terms of typevl— o . . . . . . .. 65
Semantics of example instructions in DLX. . . . ... ... ... 0. 84
List of DLX instructions selected for specification. . . . . . . .. .. ... .. 85
Block diagram for the connectivity of functional blocks in the DLX. . . . . . 86
Signature for specification of DLX . . . . . . .. .. o oo L 89
Grammar for DLX programs . . . . . . . . . .. .. oo 90
Sequential specification of DLX . . . . .. ... oo oo 91
Example program in DLX . . . . .. ... o oo o 92



5.8 DLX pipeline structure . . . . . . .. Lo L e 95

5.9 Signature for specification of DLX . . . . . . .. .o o000 L 100
5.10 DLX pipeline state transition functions for clock . . . . . . . .. .. ... .. 101
5.11 p; - table for hazard detection in the DLX pipeline . . .. ... .. ... .. 102
5.12 Specification for the DLX pipeline — clock, bg, IFand ID. . . . . . . ... .. 104
5.13 Specification for the DLX pipeline —EX. . . . .. .. ... ... ... .. 105
5.14 Specification for the DLX pipeline - MEM. . . . . .. ... ... .. ... .. 106
5.15 Specification for the DLX pipeline —-WB. . . . .. .. ... ... ... .. 107
5.16 Changes in the DLX pipeline to reduce branch penalty. . . . . . .. ... .. 117
5.17 py — new table for hazard detection in DLX pipeline . . . ... .. ... .. 119

5.18 DLX pipeline state transition functions in the presence of call-forwarding and

early branch resolution . . . . . . ... Lo oL 120
5.19 ¢ — Call forwarding functions . . . . . .. ... ... L o oL 121
5.20 Specification for the DLX pipeline — IF and ID. . . . ... ... .. ... .. 123
5.21 Specification for the DLX pipeline — clock, bg, EX. . . .. ... .. ... .. 124
5.22 Specification for the DLX pipeline - MEM and WB. . . . . . .. .. ... .. 125
A.1 Constants in X,,; used in translating UML to FORUM . . . .. .. ... .. 139
A.2 Translating UML to FORUM . . .. ... ... .. .. . ... ... 140
A.3 Translating answers in UML to FORUM . . . . ... ... ... ... .... 140
A4 Translating FORUM terms to UML . . . ... ... . o o .. 141

X



A.5 Matching final configurations of computations in FORUM



Chapter 1

Introduction

Ever since we have had programming languages, we have had to specify the computational
behaviors of the languages. In the most naive sense, we specify the actions of if M then N
else P — a typical phrase in a programming language — by saying that first execute M,
and if the result is true then evaluate N , otherwise evaluate P. Even in this simple example,
there are many ambiguities inherent in the above specification. For example, it is not clear
whether P is to be computed only when M evaluates to false, or even if M evaluates to
some other value, say 3. On the one hand, we would like a specification to be precise in as
much as we would like different implementations of the same specification to have identical
computational behavior. On the other hand, if a specification is as precise as an actual
implementation of a programming language, then the entire purpose of a specification as a

tool to understand the language independently of its implementation is defeated.

Rigorous specifications which define the grammar and meaning of programming languages
are indispensable in the present context for a variety of reasons. These include verifying
safety of programs, developing optimizing compilers, and maintaining programs as language
design evolves. Unfortunately, very few widely used programming languages have such a

rigorous specification, the only two I know of being [HMT89, BR90]. In this thesis, I use



FORUM [Mil94] as a specification language. Specifications in FORUM convert computa-
tions into proofs — formal objects amenable to logical analysis within the meta-theory of
FORUM. I call this style of specification proof-theoretic for the key emphasis placed upon

proofs and their analysis.

Precise specification provides the sound basis on which one builds implementations of the

language and programs. To quote [HMT89] :

...for a robust program written in an insecure language is like a house built

upon sand.

The main point is that a programming language is different from its implementation —
specifications are a way of making precise the behavior that an implementation must exhibit
in order to implement a given programming language. Specifications play a crucial role in
the present software environment where different commercial vendors are implementing the
same language. It will be highly undesirable if programs written in a programming language

have different behaviors in two implementations of the same language!

I expect specification languages to play a variety of roles. The most important among these

are :

e a specification language should be rich enough to specify imperative, functional and

concurrency features modularly

e provide modular specification of different features of the programming language, re-

sulting in better and easier understanding of the programming language itself, and

e should be able to use the meta-theory of the specification language to study the
program transformations and verify the correctness of implementations of the speci-

fications.

In this thesis [ use FORUM to specify the operational semantics of programming languages.

I specify the operational semantics of UML, a prototypical functional language, and the



sequential and pipelined operational semantics of the DLX machine [HP90]. I take UML —
an untyped higher-order functional language with exceptions, state and callec, i.e. first-class
continuations — as a prototypical functional language. UML is the same as the untyped
core Standard ML (SML) [HMT89], excluding data-types and pattern matching, augmented
with callecc. UML is a significant language in as much as it contains both the functional
and imperative features of SML, and thus provides a simpler setting to study the problems
that arise due to these features in SML. UML supports first- class continuations because
of the rich programming paradigm they provide. The DLX machine is representative of
the eminently successful and popular RISC architectures of the last decade including Intel
i860, MIPS R2000/R3000, Motorolla 83000, SPARC, PowerPC. The specification of DLX
resolves data and structural hazards, and implements optimizations characteristic of modern
pipelined machines. The specification of pipelined DLX underlines the fact that FORUM
provides the appropriate framework to specify a variety of computational processes — from

as high-level and abstract as UML to as low-level and concrete as DLX.

Many attempts have been made at specifying the operational semantics of fragments of UML
[Lan64, FF86, WF91, HMT89, MP92, HM92, Han90]. In this thesis I am able to address
many issues regarding the specification of UML which the above semantics could not address
satisfactorily. Firstly, I am working in a rich meta-theory where concurrency, higher-order
functions and imperative features can be specified. This is a mixture of features which
has traditionally been very difficult to specify. Secondly, in my translation computations
become proofs — formal objects — which I analyze using proof transformations. Using
this analysis I am able to prove many program equivalences in [MS88, OT93, SF92, MT92].
Finally, declarative and modular descriptions of imperative features such as mutable state,
first-class continuations, and exceptions has been an elusive goal for specification languages,

which I believe is satisfactorily answered by the specifications in FORUM.

Although the extant formal presentations of pipelines specify the temporal behavior of the
pipeline [TK93], they are unable to provide a concurrent computational specification of the
pipelined operational semantics. The FORUM specification of the DLX pipeline is a concur-

rent executable logic program — one obtains a simulation tool for free. In my thesis, [ specify



the sequential and pipelined operational semantics for DLX, with important optimizations
such as call-forwarding and early branch resolution [HP90]. Since floating-point operations
and interrupts introduce unilluminating details to the specification, I have excluded them
from the DLX instruction set that I specify. I prove the crucial equivalence theorem assert-
ing the equivalence of the sequential and pipelined specifications of DLX. Furthermore, I
define notions of program equivalences for DLX programs, and prove the correctness of the
code rescheduling typically done for RISC machines [HP90]. The declarative specification
of pipelined DLX operational semantics and the proofs of correctness of code rescheduling

underlines the richness of FORUM as a specification language.

The point behind the specifications of imperative features is to extract the logical essence
of imperative extensions of programming languages. The specification of state in natural
semantics, higher order logic or other similar meta-theories [HMT89, MT92] represents
state by non-logical means, such as a finite function, making the extension of state non-
modular. In FORUM state is represented by logical propositions and is maintained in the
sequent by logical rules. Thus, one can reason about state variables using cut-elimination.
The understanding of this logical nature of imperative features underlines the richness of

FORUM and its meta-theory.

The thesis has five main parts. In the first part [ explain the logic programming methodology
of FORUM, and then specify Higher-Order 7= Calculus (H Ox-calculus), a typical calculus for
concurrent processes, [MPW92a, MPW92b] substantiating the idea that FORUM provides
an appropriate framework for specifying concurrent processes. In the second part, I specify
UML in stages starting from the functional part of UML, and adding exceptions, mutable
store and callcc modularly in separate steps. 1 prove that the FORUM specification of
UML without callcc is the same as the specification in [HMTS89]. In the third part, I
define a notion of program equivalence induced by the translation into FORUM, and prove
that it coincides with the standard definition of program equivalence. Furthermore, using
FORUM specifications I prove several of the program equivalences involving mutable store
in [MS88, Sie93, SF92, OT93]. In the fourth part, I specify the sequential and pipelined

operational semantics for DLX. I also prove that the sequential and pipelined operational



semantics are equivalent. Furthermore, I formulate a notion of program equivalence for
DLX programs, and prove correctness of code-rescheduling for the DLX machine. In the
final section, I explain the extensions that I seek of my current research and how I intend

to carry those out.



Chapter 2

FORUM

In this chapter I introduce FORUM, a new meta-logic proposed in [Mil94]. FORUM can
encode linear logic [Gir87] without using any non-logical constants. On the one hand, prov-
ability in FORUM is the same as provability in linear logic. On the other hand, in FORUM
all right hand rules permute with each other — a property which is not true of the proof sys-
tems for linear logic in [Gir87]. The novelty of FORUM is in the choice of connectives which
makes all right hand rules permute. Since uniform proofs are complete for FORUM, follow-
ing [MNPS91] a logic programming language can be designed for FORUM. FORUM extends
earlier work in designing logic programming languages from linear logic [HM91, AP90] in

the sense that the provability in FORUM is the same as the provability in linear logic.

Clauses in FORUM can have multiple heads. I show some programming examples which
exploit multiple heads to represent synchronization in FORUM. The basic intuition is that
concurrent computations can be represented in FORUM. I substantiate this claim by trans-
lating a particular presentation of a fragment of Higher-Order © (H Ow-calculus) calcu-
lus [San92a] which is rich enough to encode Lazy Lambda calculus [San92b, San92a, Chi94].
The parallel combinator of HOx-calculus is mapped to @, the multiplicative disjunction of

Linear Logic. This identification of concurrency with proof search in a multiple conclusion



logic where all the right-hand rules permute with each other makes the intuitions techni-
cally precise. The handling of names using the restriction opreator in HOn-calculus and the
universal quantifier in FORUM are quite different, and consequently the translation into
FORUM is sound but not complete. The computational mechanism of FORUM provides
a new flavor of process theories which are very expressive, and the translation shows how

computations maybe mapped from HOx-calculus to FORUM.

In the first section, I introduce FORUM and define its syntax and proof rules precisely. 1
illustrate the programming style in the presence of multiple heads via some examples. In the
second section, I introduce the syntax, structural equivalence, and reduction semantics of
HOm-calculus. I translate HOw-calculus into FORUM and prove that if process P reduces
to @), then the translation of () entails the translation of P. Furthermore, I illustrate the

difference between the restriction operator of HOn-calculus and the universal quantifier in

FORUM.

2.1 FORUM — Logic programming with multiple heads

FORUM [Mil94], is best explained as a particular presentation for Linear Logic which
gives us access to the entire Linear Logic as a logic programming language in the sense of
[MNPS91, AP90]. Linear logic was introduced in [Gir87] as a new logic which decomposed
the connectives of the familiar classical and intuitionistic logics. This finer analysis of
connectives had immediate implications in the design of logic programming languages which
analyzed connectives as directions for proof search [MNPS91]. LO[AP90] and Lolli [HM91]
were two new logic programming languages which resulted from different sets of connectives
of linear logic. However, the logical constants in neither of these languages were rich enough
to encode the entire linear logic. In [Mil94] classical linear logic is encoded in FORUM
without using any non-logical constants. The logical connectives in FORUM are —o, =,
p, &, V¥V, L and T. —o, @, & ,V, L and T are linear logic connectives as defined
in [Gir87]. Instead of the modalities of linear logic, FORUM has =, the intuitionistic

implication. In [Mil94] it was proved that the proof system of FORUM has the uniform



proof and focussing property [MNPS91, AP90]. FORUM can be thus thought of Linear
Logic and Church’s simple theory of types [Chu40] put together. I begin by defining the
syntax of FORUM.

Definition 2.1 [Types, Terms and Formulas in FORUM] Let © be a set of base types and

0 € O the type of propositions. The set of well formed types is defined as

o if o € O then o is a type, and

e if 7y and 7y are types then so is 74 — 79.

Let ¥ be a set of pairs whose first component is a term, and the second component is the
type of the term, written as f : 7, if f is a term with type 7 in ¥. —0:0 — 0 — o,
>0—0—0, p:0o—0—0, & :0—0—0,Y,:(T—=0)—o0,L:0and T :o0 are
the logical constants in X. = denotes intuitionistic implication and the infix symbol o—

denotes the converse of —o. The set of terms over X is defined as :

o If ¢c: 7 € X then c¢is a term of type 7.
o If f:7 — o and?:7 then (ft)is a term of type o.

o If z is a variable of type ¢ and ¢ : 7 then Az.tis of type ¢ — 7.

Terms of type o are defined to be formulas. The order of a type 4 — 79 — ... — 7, — To
is the one plus the max of the orders of 71 ...7,, and 79 € ©. The order of the elements of
0O is 0. For a non-logical constant ¢ : 7y — 75 — ... = T, — Tp € X, Tg is a member of O,

and if 7y is o then c is called a predicate.

I follow [Bar84] in conventions regarding free and bound variables and a conversion. As
usual, — associates to the right and application to the left. The logical constants are written
in the familiar infix form, and I write Y, Az.t as Vo : 7.t. Let t = s, for A-terms ¢ and s

mean that ¢t and s are o equivalent. If the variable # and term s are of the same type, then



tlz := s] denotes the capture-free substitution of s for z in ¢. Besides a conversion, terms

are also related by the following rules of 3 and 7 conversions:

e The term s; (-converts to the term sy if s; contains a subformula occurrence of
the form ((Az.?1) t2) and sy arises from replacing that subformula occurrence with

t1[$ = tg].

e The term s; 7n-converts to the term s, if s1 contains a subformula occurrence of the
form Az.(tx),in which 2 is not free in ¢, and s, arises from replacing that subformula

occurrence with ¢.

The proof system for FORUM as presented in figure 2.1 is a minor variation on the one in
[Mil94]. The sequents comprise of five parts, &, ¥, A, B and I'. The signature of the terms
in the sequent is given by Y. The intuitionistic part of the sequent, ¥, is treated like a set,
i.e. contraction, weakening and exchange are allowed on formulas in W. The linear parts of
the sequent, A and I', are treated as multisets of formulas, allowing only exchange on these
parts of the sequent. In the sequent X : ¥; A B, I', one applies left rules to the formula
B. By abuse of notation I write B, ¥ to mean { B}UW¥, and Ay, As to stand for the multiset
union of the multisets Ay and A,, and B, A, to stand for the multiset union of the multisets
{B} and Aj. ¥[c := t] denotes the capture-free substitution of ¢ for ¢ in all formulas in the
set ¥ and Afc := t] denotes the capture-free substitution of ¢ for ¢ in all formulas in the
multiset A. I write A =y B as an abbreviation for the statement that both ¥ :; A — B
and Y :; B — A are provable in FORUM. I say that A is logically equivalent to B when
A =y B. One can prove a cut-elimination theorem for FORUM, which states that CutlL,
Cutl, and CutS are redundant in FORUM [Mil94]. Also note that if ¥ : ¥; A —— T'is
provable, ¥ C ¥y and ¥ C ¥y, then Xp : U1 ; A — T is also provable.

Following the line of reasoning in [MNPS91], logic programs can be viewed as collections

of formulas specifying the meaning of non-logical constants, and computation is identified
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Figure 2.1: The rule V-R has the proviso that y is not declared in the signature X.

10



(neq(s X)z) o 1
(neqz(s X)) o 1
(neq (s ¥) (sY)) o= (neg X V)

Figure 2.2: Specifying inequality of natural numbers in FORUM

with the search for uniform proofs. The key feature of FORUM is that the right-hand side
of the sequent can now have more than one formula. How does one interpret uniform proofs
in the presence of more than one goal formula ¢ The answer in [Mil94] comes from the
concept of permutabilities in proof theory [Kle64]. Informally, it is required that the order
in which goal formulas are processed does not affect the success of the proof search. This
novelty lets us represent concurrent computations in FORUM, as was exhibited in [Mil94]

by specifying Algol-like implementations of CML, and First-order w-Calculus in [Mil93].

I illustrate the computational mechanism of FORUM with a simple example. T begin by
specifying the natural numbers in FORUM. I introduce a new type in FORUM called nat
and two new constants z : nat and a function s : nat — nat. The intended meaning is
that nat is the type of natural numbers, z denotes 0, and s denotes the successor function.
I now want to define a predicate neq : nat — nat — o, which should be provable of the
two terms m and n of type nat, if m is not equal to n. The meaning of neq is specified
by the universal closure of the clauses in figure 2.2, called C,,. The collection of clauses
is called the program for the non-logical constant neq. In the specification I use a new
logical connective 1. It can be defined as L —o 1, and the proof rule can be derived

correspondingly. I show the right-hand side rule below.

v, — 1

To check neq for (s z) and (s s z), I try to construct a proof of

z:nat,s:nat — nat: Cpy; — (neq (sz) (ssz)).

11



If the sequent is provable then the two numbers are not equal. For the example at hand,
the proof is constructed below. The first rule I apply is the backchain rule. The backchain

rule is an abbreviation, instead of constructing the following proof

§ 5 nitial
»:¥.C o B;A— C,)T' ¥:¥.C o B;A— B I
_O J—
N:U,0 o B:A 2P BT ,
decide?

E:W,C —0 (B1 pan)7 A — (B1 p..an),Fl,FQ,...,Fn,Fn+1
E:W,C —0 (Blp an)7A — Fl,Bl,FQ,...,Fn,Bn,Fn+1

exchange, p — R

I abbreviate it as

0
E:W,C—O(Blp...an);A—>C,F1,F2,...,Fn,Fn+1
E:W,C —0 (Blp an)7A — Fl,Bl,FQ,...,Fn,Bn,Fn+1

backchain

B is an abbreviation for By ¢ ... ¢ B,, and I' is an abbreviation for I'y,..., ' 41.

The formula on the right hand side unifies the head of the clause (neq (s X) (s V)) o—
(neq X Y). So I then have to prove (neq z (s z)). The goal now unifies with the head of the
clause (neq z (s X)) o— 1, leaving me to prove 1. I complete the proof using the 1 rule. In

this manner, proof search for cut-free proofs is identified with computation.

z:nat,s:nat —nat:C)y; — 1

backchain
)

z : nat,s: nat — nat:Cmq; — (neq z(sz

z:nat,s:nat — nat: Cp; — (neq (sz)(ssz)) backchain

The novelty of FORUM lies in the fact that the clauses can contain multiple heads, i.e.
formulas like Ap B. 1 want to specify a predicate inc: (nat — o) — o, which takes a
predicate of type nat — o as an argument, such that every time inc is executed in a proof
a new number is returned. Let ctr: nat — o be a non-logical constant, denoting a memory
cell in the environment storing the next number to be used by inc. Suppose ctr is initialized
to some number, then the only clause required will be the universal closure of the following

clause called Inec.

[(inc P)p(ctr X)] o— [(PX)gp(ctr(s X))].
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Both (inc P) and (ctr X) must be on the right hand side of the sequent before one can
backchain on the clause. In this sense, clauses with multiple heads enforce synchronization

between various predicates. The last step in the uniform proof of
inc : (nat — 0) — o,ctr : nat — o, P : nat — o : Inc; — (inc P) p (ctr (s z))

is shown below.

ctr,inc, P : Inc; — '(P (sz))p(ctr(ssz)) .
) backchain

ctryinc, P : Inc; — (inc P)p(ctr(sz

To use the clause Inc, I need to have both (inc P) and (ctr (s z)), or, in other words, (inc P)
and (ctr (s z)) synchronize with each other. Now, by backchaining on Inc the goal becomes
(P(sz))p(ctr (ssz)). Note that because ctr is linear it is destructively read by the Inc

clause — the number stored in ctr is increased by one as a result of backchaining.

The examples above point towards a relationship between concurrency and proof search in
multiple conclusion logic where the right hand side rules permute. The idea is that all the
processes on the right hand side are free to compute concurrently and synchronize with each
other. Some of these intuitions will be made precise in the next section, where I specify a

particular presentation of a fragment of HOw-calculus in FORUM.

2.2 Specifying HO7 in FORUM

In this section I specify a fragment of HOmw-calculus as defined in [San92a] to make
concrete my claim that FORUM can be used to represent both abstraction and concur-
rency. | begin with a brief presentation of HOw-calculus, and refer the interested reader
to [Mil89, MPW92a, MPW92b, San92b, San92a) for a detailed introduction to, and analyses
of HOm-calculus and 7-calculus. The motivating idea of HOn-calculus is to provide higher
order communication in the framework of synchronous mobile process algebras. The frag-

ment of HOm-calculus that I consider can encode call-by-value and call-by-name lambda
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calculus [Mil90, San92b, San92a]. I use z,y,... possibly subscripted, to stand for Names
and their capitalized versions to range over Vars. Moreover, K stands for a process or a

name, and U stands for a variable or a name.

Definition 2.2 [Syntax for HO7-calculus.] The processes in HOw-calculus are defined by
P and the prefixes by a.

P ou= 0
| (X)
| (P]F)
| (va(P))
| (a.P)
a n= w(U) | T(K)

0 is the inactive process — not capable of any action or interaction. z(U).P accepts input
for variable U along the channel z, while Z(K).P transmits K along the channel z. va(P)
makes the name z private to the process P, and P | @ places the two processes P and @ in
parallel. The variable U is bound in 2(U).P, and z is bound in vz(P). I often abbreviate
.0 as a. The reduction relation for HOmr-calculus is divided in two parts, the structural
equivalence and the reduction relation. We illustrate the reduction semantics and explain

the syntax conceptually with some examples.

Example 2.3 Examples of reductions in H Ow-calculus.

1. T(Q).P|2(Y).R —, P|R]Y :=Q]
2. ve(w(z).P| Q)| w(y)R — va(Q | Rly:==z])| P, 2 g FV(P) and 2 ¢ FV(w(y).R).
3. TQ).0z(Y).(Y | P) = Q| P
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7(Q).P|z(Y).R =, P|R[Y :=Q] ComP

ComN

Z(y).P|z(2).R =, P|R[z:=1y]
P =, Q

ve(P) =, va(Q)
P =, P

P | Q = Pl | Q

P=P P =01 1 =0
P =,.0

vR

Par

Struct

p=_p
P:>7T Ql Ql :>7TQ

P =.0 Trans

Figure 2.3: Reduction semantics for H Ox-calculus

In example 2.3.1, Z(Q).P transmits @ along the channel z and z(Y).R receives ¢ on
the x. The rule underlines one key feature of the calculus — the communications are
synchronous, i.e. a process, e.g. T(Q).P, that wants to send a message waits until there
is a process, e.g. (Y).P, in the environment which will accept that message, hence the
name synchronous message passing. This also ensures a flavor of sequencing in the process,
e.g. in aj.as.P the action corresponding to a; must happen before the action for a; can
occur. Another basic feature of HOm-calculus is the capability of changing the connectivity
amongst processes during computation. In example 2.3.2, the channel z in va(w(z).P | Q)
is a private channel between w(z).P and (). However, it is possible for x to extrude its
scope and be sent to w(y).R. In this sense, the connectivity of the processes can change
during the computation, and hence the name mobile processes. Example 2.3.3 illustrates
the novelty of Higher- order processes. z(Y).(Y | P) can be viewed as a process that will
execute whatever process it receives from the environment in parallel with P. Higher-
order communications provides the familiar substitution of A-calculus in the context of

HOmr-calculus. [San92b, San92a] gave a nice encoding of Lazy A-calculus in HO7-calculus
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and showed the correspondence between HOw-calculus and First Order 7. [Chi94] compares
the encoding of Lazy A-calculus in HO7-calculus to the Continuation-passing semantics.

Now, I define the structural equivalence and reduction semantics of HO7-calculus formally.

Definition 2.4 [Structural Equivalence, =, ] =, is defined as the least congruence con-

taining the following rules.

1. P|0 =, P.

2. P|Q =, Q| P.

3. (PIQ)IR = PI(Q]R).

4. va(P)|Q = va(P|Q), v & FV(Q).
5. va(P) =, P,z ¢ FV(P).

6. va(vy(P)) = vy(va(P)).

The reduction semantics for HOw-calculus is specified as an unlabeled system in terms
of proof rules. One notable feature is that the separation of structural equivalence from
reduction rules enables a concise presentation of the latter. It should be noted that reduction
is built as a congruence for all term constructors except prefizing, as seen in the rules VR,
Par, agent R and Struct; this feature forces a strict order of evaluation on prefixed processes,

as we saw in example 2.3.1.

Definition 2.5 [Translation of HOw-calculus in FORUM] Let ¢ be a new basic type, the
type of names, and X, be the set consisting of the following constants needed to describe

the translation of HOn-calculus into FORUM.
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send,,,n,
receive,,,
send

receive,,,

1 —1—0—0
i—(il—o0)—o
1—0—0— 0

i—(0o—0)—o0

The translation ()° takes a process in HOw-calculus to a formula,

FORUM.

1

X
PooQ°
Vo 1. P°

send,, © Q° P°
receive,, © AY. P°
send,,,, z y P°

receive,,, ¥ Az. P°

i.e. terms of type o, in

Let &; be the set consisting of the universal closure of the following clause, which describes

the meaning of the non-logicals in ;.

(receive,,, © R)p(send,,, 2y P) o
(receive,, = R) p(send,, 2 Q) P) o—

(Ry)p P,

NameCl

(RQ)p P, ProcessCl

Synchronization for processes exchanging names, i.e. terms of type i, is specified by

NameCl, while ProcessCl specifies synchronization for processes exchanging processes, i.e.

terms of type o. For the clauses in &£, to make sense, I need to show that the translation

commutes with substitution. The proof is a straightforward induction on the structure of

the process P.

Lemma 2.6 (Substitution Lemma for ()°) Let P and Q) be processes, then
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o P°lz:=y] = Plz:=y]

o P[X :=Q°] = Plz:=Q)

This translation is a simple extension of the one in [Mil93] to the case of HOw-calculus.
Although I cover a small fragment of the calculus here, it is easy to extend these ideas along
the line of reasoning in [Mil93] to handle richer versions of HOw-calculus. However, speci-
fying HOw-calculus augmented with constants and agents, i.e. abstractions over variables
or names in processes is rather subtle. The translation is fairly simple, and gives concrete
intuition about the nature of concurrency in FORUM. Concurrency is identified with proof
search in a multiple conclusion logic, where all the right-hand rules permute with each
other. The usage of o as the translation of the parallel combinator of HOn-calculus in the
above translation makes this intuition technically precise. The fact that the intention of the
HOm-calculus is captured by the translation is underlined by lemma 2.7 and theorem 2.8.
Lemma 2.7 states that if two processes are structurally equivalent, then their translations
are logically equivalent. The proof for lemma 2.7 follows from the logical equivalences in
[Gir87]. Let P* =def YZ. P°, where ¥ are all variables of type ¢ in the signature of P°.
Theorem 2.8 states that if P reduces to ¢}, then * entails P*. In the proof of theorem 2.8,
going from left to right, the proof for theorem 2.8 is an induction on the height of reduction

in HOmr-calculus.
Lemma 2.7 Given two processes P and () in HO7-calculus, if P =, @ then P° =x_ (°.

Theorem 2.8 Let P and () be HOm-calculus processes, and Y contain the names and

process variables in P and ().
if P =, Q then Y., %:&:; Q" — P*
s provable in FORUM.

The reductions in translated processes have a simple shape. One essentially reorganizes

the shape of the process using structural equivalences until either NameCl or ProcessCl
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is applicable. Although it is an interesting topic, I do not consider the issue of explaining
interesting equivalence relations on HOm-calculus in FORUM, because the above translation
makes my point — concurrent computations can be represented in FORUM. In [Mil93]

bisimulations and trace equivalences for First Order w-calculus without v are analyzed in

the framework of a FORUM like language.

The translation of HOw-calculus into FORUM is proved sound by theorem 2.8, but is it
complete 7 This question was answered affirmatively in [Mil93] for the m-calculus without

the restriction operator. However, in FORUM

Yo Ve Vy. Qe = z][d := y] — Vz. Qe := z][d := 7]

is provable, where ) is the translation of some process into FORUM. If the translation is

complete, then for any process (), this would imply that

va(Q) =~ vr(ry(Q)).

This is false. Hence, the universal quantifier has a logical nature which is richer than
that of the restriction operator in HOw-calculus. In the later chapters, I explore various
specifications in the “process theory” obtained from FORUM, and its expressive power
and abstraction mechanisms are made clear. Nonetheless, the question of a proof theoretic
analogue of HOw-calculus remains, and there is some work in progress with new quantifiers

which might shed more light on the restriction operator.
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Chapter 3

Specifying UML

In this chapter I specify UML (Untyped ML) — untyped core SML excluding pattern
matching and data-types, augmented with callcc — in FORUM. I prove that a program P
in UML without callcc evaluates to a value V' as per the specification in FORUM, if and only
if P evaluates to V' as per the specification in [HMT89]. The correspondence between the
two operational semantics is restricted to core UML without callcc because [HMT89] does
not provide a specification for callcc. The main point of this section is that FORUM allows
us to specify imperative features — exceptions, mutable state, first-class continuations —
in a modular and declarative way. In particular, I first specify the functional core of UML,
and then specify exceptions, mutable state, and first-class continuations independently. If I
need the specification for the functional core, and any combination of the imperative parts
of UML, I just put the corresponding specifications together. For example, if I want the
specification for the functional core of UML with exceptions, all I have to do is put my

specification for the functional core of UML together with the specification for exceptions!

Modularity of specifications is as helpful in understanding the design of a programming
language as it is in the design of the language itself. However, modularity is crucial not
only for such esoteric purposes as ‘understanding’ and ‘designing’ languages, but also for

many practical concerns including proving correctness of implementations [HM92], verifying
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Vi=2 x € Vars, ( Values,)
| n neEzZ
| b beB
I (Az. M)

Ea=] (EvCont,)
| ELf[] M] feo
| ELSV ) feo
| E[[] M]
| EV (]
| Efif [] M M]
| Elletvalz =[]in M]

Figure 3.1: Syntax for A,

correctness of optimizations in compilers, understanding program equivalences, and proving

meta-theoretic properties such as type soundness in statically typed languages [WF91].

The plan for this chapter is to introduce the separate parts of UML in stages, and provide
their specifications. 1 first introduce the syntax and operational semantics for A,, the
functional core of UML, which is most familiar and similar to the language considered in
[HM92, MP92]. Next, I specify A, in FORUM, and define when a translated program in
FORUM evaluates to a value. I then prove the correspondence theorem between the FORUM
specification and the specification in [HMT89]. The program is extended modularly to the

functional core with exceptions, state, and continuations.

3.1 A, — Functional Core of UML

The syntax of A, - the functional core of UML - is very similar to the functional part of

21



SML without data-types. The syntax of A, is defined formally in figure 3.1. The language
contains integers, Z, and booleans, B, as constants. Arithmetic operators and equality test
for integers are included in the language as term constructors in the set 0. Functional
abstraction in the form of A abstraction and application are represented by Az. M and
(M N) respectively. I include in the language let val z = M in N which is treated like
((Az.N) M). let fun fz = M in N allows recursive definitions in A,. e is a token, like the
only value of type unit in SML [HMTR9]. The evaluation contexts, FvCont, in figure 3.1,
are a way of parsing a given A,-term to find out the next redex to be contracted during
evaluation. One can write standard functional programs in this language. The following
program, exp, calculates m raised to the power n for non-negative numbers m and n. The

constant — stands for subtraction and * for multiplication.

let fun f o = Ay, z.if (=2 1)y (f(—z1)(xyz)2)

Ay,z.if (=20)1 (fayy)

The operational semantics for A, as presented in figure 3.2 is culled out from the specifi-
cation for SML in [HMT89] by using substitutions instead of environments. This style of
presentation is called natural semantics following [Kah87]. The evaluator is presented as a
series of rules, all of which have a simple format — to evaluate an expression first evaluate
the subexpressions and then put the results together as per the outermost term constructor.
For example, to evaluate (M N), first evaluate M to a function, Az. P, and N to a value
U, then finally evaluate Pz := U] to a value V' — the value of (M N). The evaluator thus
specified is call-by-value, as the argument to a function is evaluated before it is passed to
the function. fV U denotes the constant in A,, which is obtained as a result of performing
f viewed as an arithmetic operator on the numbers denoted by V and U, e.g. + 54 denotes

the constant 9.

The order of evaluation of the subterms is not a part of the syntax — it is an additional
requirement that the hypothesis to the rules should be read from left-to-right. In a language

with partial arithmetic operations such as =+, division, the order of evaluation is crucial.

22



Z
CUCCE uB

Are. M | Az M

MUyXe.P NYU Plz:=UlV
MN|V

MJyU Nlz:=U]V
letvalz =M in N |V

N[f:=Xz.letfun fe =M in NV
IetfunfszinNUV
MYV NJYU
JMNUYfVU

M |true N |V
fMNPJV

M | false PV
fMNPLV

feo

Figure 3.2: Natural Semantics specification for A,

For example, consider the program (4 P (< 50)), where P is any non-terminating program.
In a language with exceptions, evaluating the program left-to-right will cause it to diverge.
However, evaluating the program right to left may raise a division-by-0 exception. Using the
given specification, left to right evaluation will result in an infinite search for a computation
tree reflecting the non-termination of P, whereas right-to-left evaluation will cause a finite

evaluation tree in which one can detect the division-by-0 error.

The specification of A, in FORUM requires that one translates A, terms into the higher
order abstract syntax of FORUM. The translation reveals the binding structure of the
language. Issues such as capture free substitution and a-conversion in the object language,
i.e. Ay, are taken care of by substitution and the binding mechanism of the meta-language,
i.e. FORUM. The terms and types required to define the translation comprise the set X,
and are defined in figure 3.3. I define two basic types, vl and tm, along with a coercion
function, (.), mapping terms of type vl to terms of type tm. vl is the type of values, and tm

is the type of terms. I then introduce terms at appropriate types to encode the terms of A,
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abs : (vl — tm) — vl
c ol ceBUZU{e}

(.) vl —tm
f :tm—tm — tm feo
app : tm — tm — tm
cond : tm — tm — tm — tm
letval : (vl — tm) — tm — tm
letfun : (vl — tm) — (vl = vl — tm) — tm
ifbr : vl = tm — tm — tm
apply : tm —tm — o

eval : tm — (vl = 0) — o

Figure 3.3: ¥,, Signature for A, evaluator

e.g. app is a term construct which will be the target of application terms in the translation.
For every integer and boolean, I introduce a constant of vl type. For every operator f, I

introduce a constant f in the signature of type tm — tm — tm.

Following is the translation of exp into a term of type tm in FORUM.

letfun Af. (abs Ay. (abs Az. cond (= 2 (0)) (1) (app (app (app f ) ¥) ¥)))
Af,w. (abs Ay. (abs Az.cond (= (1)) y (app (app (app f (— = 1)) (xy2)) 2)))

The first argument of letfun is the body of the let fun declaration, and the second argument
is the function declaration. The body is parameterized over the function variable defined
by the let fun as made explicit by the meta-level A-binding of f in the first argument of
letfun. The example also illustrates how the A bindings in the object language get converted
into A-bindings in the meta-language. For example, Az. M is translated as (abs Az. M?),
M? is the translation of M, and the A binding in abs is at the meta-level. Other than
this clean explanation of variable bindings, the translation, although heavy on usage of
new syntax, is similar in spirit to parsing concrete terms into abstract syntax trees. The
translation of A, terms to FORUM is rather cumbersome, but it is crucial to the statement

of the correspondence theorem between FORUM specification and the natural semantics
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do(z) = =
du(Ax. M) = abs Az :vl. H, (M)
du(c) = ¢ c€ ZUBU{e}
Ho(V) = (6(V))
HASMN) = [ HUM) H(N)
Ho(M N) = app Hy(M) Hy(N)
H,(if M N P) = condH,(M)H,(N)H,(P)
Hy(let valz = M in N) = letval (Az. H,(N)) H, ( )
Hy(let fun fz =M in N) letfun (Af. Hy(N)) (Af, 2. Hy(M))

Figure 3.4: ¢, : Values, — vl, H, : A, — tm

P(z) = =z
Py(abs Ae. M) = Aa. L,(M)
o) = ¢ ce ZUBU {e}
L,({(V)) (V)
LAFMN) = JL(M)LN) feo
Ly(app M N) = Ly (M)L,(N)
Ly((ifbr VN P)) = if (V) L,(N)L,(P) beB
Ly(cond M N P) = if L,(M)L,(N)L,(P)
Ly(letval R N) = letvalaz = L,(N)in L, (Rz) x fresh
Ly (letfun Ry R3) let fun fo = L,(Rafa)in L,(R1f) f,x fresh

Figure 3.5: 1, : vl — Values,, £, : tm — A,

specification. I provide the details in figure 3.4. ifbr and apply are constants which are not

used in the translation H,, but arise during evaluation of translated A,-terms in FORUM.

There are some rather subtle issues in the translation in figure 3.4. For instance, on what
basis do I choose abs A\z. z over ((Au.u )(abs Az. z)) as the encoding of Az.z? The choice
comes from the fact that there are unique Sn-long normal forms in FORUM terms. So
I pick the pgn-long normal form as the encoding of the given A, term. The translations
from FORUM to A,, and vice versa, in figures 3.5 and 3.4 respectively, are straightforward

recursions on the structure of the terms.

I would like to evaluate with the translated programs. Hence, I need to check whether
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substitution commutes with the two translations H, and L£,. The following lemma states

these identities precisely; proofs are deferred to the appendix.

Lemma 3.1 Let M € A,, V € Values,, N and U be FORUM terms of types tm and vl

respectively :

Armed with the precise definitions, I am now in a position to define the evaluator and the
correspondence theorem. Keeping in mind that A, is to be evaluated left-to-right, and in
fact, considering this as a part of the specification of A, operational semantics, I would like
to specify the evaluator such that left-to-right evaluation is enforced on implementations
complying with my specifications. Hence, a natural choice is to use a continuation-passing-
style semantics for A, [Plo76, Rey72]. How is my specification then different from the
standard continuation-passing-style semantics for A, [Plo76, Rey72]? The main point is
that just the translation of programs to continuation-passing semantics does not yield the
operational semantics. One also needs a strategy for executing the resulting programs. As
my specifications are logic programs, search for cut-free proofs corresponds to computation

— I get an evaluator for A, from very simple clauses.

The evaluator is presented as a set of universally quantified clauses defining the meaning
of the non-logical constants I used in translating A, into FORUM. (eval M K) is a two
place predicate, the first argument being of type tm and the second being of type vl — o,
the type of continuations, with the intended meaning that the term M is to be evaluated
with K being the continuation. The computational paradigm is that I evaluate M, and
whatever is its result, I pass it to K which then completes the evaluation. The evaluator
&, is defined in figure 3.6. The order of evaluation for the terms in A, does not matter as
far as one is concerned only with the values produced by the evaluations. In this sense,

specifying the exact evaluation order may seem to be an overkill. However, the failure
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(eval (V) K

(eval (app M N)
(apply (abs R) U
(eval (f M N)

(eval (cond M N P) K
(eval (ifbr true M N) K
(eval (ifbr false M N) K
) K

) K

V)

(K

(eval M Av. (eval N Au. (apply v u K)))

(eval (RU) K)

(eval M Av.(eval N Au. (K fou))) feO
(eval M Av. (eval (ifbro N P) K))
(
(
(
(

eval M K)

eval N K)

eval M Av. (eval (R v) K))

eval (Ry (abs Az.letfun (Af. Ry f ) R3)) K)

(eval (letval R M
(eval (letfun Ry Ry

EEEEEEERERE
\_/\_/\_/\_/\_/\_/\_/\_/\_/

7TTYTITIVTN

Figure 3.6: Clauses in &, - the evaluator for A,

to produce a value may be for two reasons. Firstly, the evaluator may get stuck, or the
arithmetic operators may be undefined for some values, and secondly, the evaluation may
never terminate. Suppose P is a divergent program. The program (+ P (=< 50)) will have an
infinite evaluation tree under left-to-right evaluation, whereas under right-to-left evaluation

it will result in a finite failure caused by a division by 0 error.

Now I have to define when a term evaluates to a value in FORUM. As computation corre-
sponds to search for cut-free proofs, the definition will involve statements about existence

of proofs of sequents in FORUM.

Definition 3.2 [Evaluating A, terms in FORUM] M : tm evaluates to V : vl, written as
eval, (M, V), if

Yp:&; — VK :vl—= 0. (KV) —o (eval M K)

is provable in FORUM. B

I compare the evaluation of programs using &£, to the natural semantics evaluator to high-
light some key aspects of &,. Lets look at the computation of (app P @) and (M N) where
P and @ are H,(M) and H,(N ) respectively.

In figure 3.7 I use the backchain rule. This is essentially a composite rule in which I choose a

clause from the evaluator clauses such that a right-hand side formula unifies with the head of

27



Yo, K& (KV) — (eval P Av. (eval Q Au. (apply v u K)))
Yo, K& (KV) — (eval (app P Q) K)

MUXe. L NYU Llz:=UlV
MN|V

Figure 3.7: One step in the evaluation of (M N)

the clause. The justification of the rule follows with use of —o -L followed by the observation
that the right sub-proof of —o -L will trivially follow from initial, as the head of the clause
and right-hand side formulas unified. The key point of the above example is the role of
the continuation. The natural semantic proof has three sub-proofs, whereas the &£, proof
is linear — this corresponds to the idea that the evaluation order is completely specified.
Furthermore, notice the structure of the continuation Av. (eval @ Au. (apply v u K)) — this
term encodes the fact that the value of P, (abs R), will be bound to v, and then ¢ will
be evaluated and its value, W, will be bound to u, and finally (R W) will be evaluated.
Hence, continuations provide notation within the syntax for the incomplete parts of natural
semantics evaluation trees. This capability of representing incomplete proofs within the
syntax plays a crucial role in the specification of exceptions and callcc. In fact, it seems
that it is problematic to specify callec in the natural semantics framework because of this

deficiency in its syntax.

&, and the natural semantics in figure 3.2 are two specifications of A,. I prove that the
two specifications are identical to the extent that the values computed are identical. The

complete proof is deferred to the appendix.

Theorem 3.3 (Correspondence theorem for A,) For all closed A, terms M and val-

ues V',

M |}V if and only if eval,(H, (M), ¢,(V)).

The proof of theorem 3.3 is rather interesting. Going from left-to-right I induct on the
evaluation tree for the term, i.e., I build computations for larger terms using computations

of the subterms. I illustrate the general strategy by showing the case for M = (N P).
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Suppose (N P) |} V, then the only way this may happen is by the use of rule for application

terms, which implies that

o N0,

e Pl U and

e Qz:=U]| V.

The evaluation trees of N, P and @[z := U] are smaller than the evaluation tree of (N P).

Let Ny =def Hu(N), Py =def Ho(P), Q1 =def Ho(Q), Ur =def ¢u(U) and V; =def Pu(V).
By induction hypothesis I get proofs 61, 63 and 63 in FORUM respectively for

o ¥, K1:&; (Kqi(abs Az. Q1)) — (eval Ny K1),
o ¥, Ky:&; (KoUy) — (eval Py K3) and

o X, K3: g@, (](3 Vl) — (eval Q1[$ = Ul] ](3).

In the proof 3 I use lemma 3.1 to rewrite H,(Q[z := U]) as Q1]z := Uy]. Using the above

proofs I need to construct a proof for the sequent
Yo, K& (KVy) — (eval (app Ny 1) K).

I show below how to construct the required proof. To keep the proof readable, I do not
write £, in the intuitionistic context and the signature which is 3,, K in all the sequents
shown in the proof. In the proof let (4 =def Av. (eval Py Au. (apply v v K)) and Cy =def
Au.(apply (abs Az.Q)1) u K). It is interesting to note that the CutL rules are needed exactly
at those points in the computation when a term passes its values to its continuation. The
CutL passes the value of Ny to ('1, the continuation of NVy.

g1

(KV) — ’y(eval Py Cy) (Cq(abs Az. Q1)) — (eval Ny Cy)
(KV) — (eval Ny (1)
(K'V) — (eval (app N1 P1) K)

CutL

backchain
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~ is constructed as shown below. The Cutl passes the value of P; to (5, the continuation

OfPl.

g

(KV) — (evaISQl[ac =U1] K) .
(K'V) — (apply (abs Az. Q1) Uy K) backchain
(KV) — (eval P C3)

g2

(CQ Ul) — (eval P1 Cz)

CutL

Fach o;, ¢ € [1,3] is constructed from §; using CutS. Note that

Yo, K1, K : &5 (K1 (abs Az. Q1)) — (eval Ny K4)

is provable by 61 as X, K1 C 3, K1, K. Hence o1 can be completed by cutting on Ky with

(. Similarly, one can build o9 and o3.

This completes the proof for the case M = (N P). The important point is that proofs in
FORUM are built using various cut rules rather than analyzing the structure of the proof,
as one would expect for the left-to-right direction. Computation in FORUM is represented
by search for cut-free proofs. However, since the proofs constructed above have cuts, I am
implicitly using the cut-elimination theorem for FORUM. In the other direction, I analyze
the proofs in FORUM and construct the natural semantics evaluation trees from FORUM

proofs. The proofs are detailed in chapter A.

3.2 A,, — State in UML

In this section I specify A,s, A, extended with state. A, is a higher-order functional language
where values are associated to variables via A binding. For example, let val z = 2 in M
associates the value 2 with the variable x in the term M. The salient property of such
variable bindings is that it cannot be changed - z will remain bound to 2 throughout the
evaluation of M. Although in principle, one can program only with A bindings, in practice
there are many situations where one would like to update the binding of a variable. For

example, in A,, I cannot write a function, inc, such that it takes a dummy argument and
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| ref M
| deref M
| asg M M

Fa= ... (EUCOntvs)

Figure 3.8: Syntax for Ay

generates a new number every time it is called. Assignable variables introduce a notion of
state in the programming language. The state of the computation is the current binding
for the assignable variables. As I can update the binding for the assignable variables, the

state may change during the computation.

The syntax for A, is formally defined in figure 3.8. The definitions of M and F in figure 3.1
are extended with the clauses in figure 3.8 to obtain A,s; and FvCont,,, respectively. The
definition for V in figure 3.1 remains unchanged for Values,s. However, the non-terminal
M ranges over the extended definition. The result of evaluating (ref M) is a fresh location
in the state which is bound to the value of M. (deref M) evaluates M to a location and
then returns the contents of the state at that location. (asg M N) assigns the value of N to
the location resulting from evaluating M, if that location is already defined in the current

state. The inc function described above may be implemented in A, as:

let val z = ref 0 in

Ay. (Az. deref z) (asg @ (+ (deref z) 1))

Evaluating M in store S may create a new location, say [. What should I do with {7 One
approach would be to extend S with [, and let [ be in the state at the end of evaluating
M. Another approach would be to treat [ as a variable local to M, which must not be

in the state at the end of evaluating M. While the first approach results in a global view
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—<Z,SO> 1050 l € dom(Sp)

<M7 SO> 4 <Vv Sl>
(ref M, So) I (I, 51[l — V])

<M7 SO> ‘U’ <lv Sl>
(deref M, So) | (S1(1), 51)

<M7 SO>‘U’<17‘91> <N7 Sl>‘U’ <V7 52>
(asg M N, Sp) | (e, 5[l — V])

| ¢ dom(57)

[ € dom($7)

[ € dom(57)

Figure 3.9: Natural Semantics specification for the new constructs in A

of state as taken by SML [HMTR9], the second approach is adopted by block-structured
languages like ALGOL [Rey81a, Rey81b]. State is thought of as a finite function from Vars
to Values,s. dom(.9) for a state S is the set of variables which are bound in the state, i.e.
the set of assignable variables currently defined. If [ € dom(.9) then S[l — V] denotes the
state which maps [ to V. If [ € dom(9) then S[l/ — V] denotes a new state, say 57, such
that dom(.57) is the union of dom(\S) and {l/}, and 51(I) = V.

I specify A, in natural semantics in the style of [HMT89]. The specification for the new
constructs is in figure 3.9. In the evaluation of (ref M) the side condition — [ ¢ 51 — causes
the creation of a new location in the state which is bound to V. deref reads the value of the
state at a location [; the side condition [ € 57 ensures that S is defined for [. (asg M N)
redefines the binding of .55 at the location [ to be V', only if [ is a variable already defined in
S5. Note that all currently defined assignable variables are treated as values. The changes
to state are cumulative, e.g., in the rule for (asg M N), evaluation of M results in the state
57 which is then passed along as the starting state for the computation of N. If I define
some new locations in the process of evaluating M, they will be in dom(S7), and hence

finally in S5[{ — V). Thus the rules specify a global view of state.

Unfortunately, the evaluator for A,s is not simply the union of rules in figure 3.9 and
figure 3.2. Although no new rules are needed for the constructs of A, due to the addition
of state, the existing rules in figure 3.2 need to be modified. In this sense, the specification

of A, is not modularly extended to the specification of A,s. However, the damage is mild
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cell : tm — tm

read : tm — tm
write : tm — tm — tm

get : vl = (vl = 0) — 0

set : vl —vl— (vl =0)—o0

Figure 3.10: Constants for translating A,y terms

compared to the situation in section 3.3, where extending A, with exceptions will create
new rules for the constructs in A,. The modification to the rules in figure 3.2 is obtained

by applying the state convention in section 3.3 to states. For example

MUyXe.P NYU Plz:=UlV
MN|V

is considered to be an abbreviated form of

(M, So) I} (Aw. P.S1) (N, 51) U (U, 59) (Ple:=U], 52) I {V,53)
(M N, 5S0) | (V,S5)

Thus the natural semantics specification for A, is obtained by taking the rules in figure 3.9
and the rules obtained by applying the state convention to the rules in figure 3.2. I will
freely use the abbreviated form of the natural semantics rules, because using the state

convention I can always recover the full form.

I want to specify state in FORUM not as a finite function, but as some form of concurrent
computation. I think of every location in the state as a separate process storing a value,
which interacts with its environment only via read and write messages. Interaction on a read
message causes the process to transmit the value it stores to the environment. Interaction
on a write message causes the process to accept a value from the environment which replaces
the value it stores. Adopting the paradigm used in section 2.1 to specify HOw-calculus in

FORUM, I directly specify the above process-style reading of state in FORUM.

The signature for the translation, ¥,,, is the union of ¥, and the constants in figure 3.10.
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(eval (cell M) K') o— (eval M Av.VP,[. getC(P,l)= setC(P, 1) = [(K{)p(Pv)])
(eval (read M) ') o— (eval M Av.(get v K))
(eval (write M N) K) o— (eval M Av.(eval N Au. (set v u K)))

where getC(P, 1) =g f VK, U.[(get | K) p (P U)] o= [(KU) p(PU)]
setC(P,1) =qof VK, V,U.[(set [V K) p(PU)] o= [(Ke)p(PV)]

Figure 3.11: Specification in FORUM for new constructs in A,

I define translations ¢,s : Values,s — vl, Hys @ Ays — tm, s : vl — Values,; and
Lys :tm — Ay, in the appendix. For example, H, (ref M) = cell H,s(M). The following

lemmas regarding the translations and substitution are proved in the appendix.

Lemma 3.4 Let M € A5, V € Values,s, N and U be a FORUM terms of types tm and vl

respectively:

o Hys(M[z :=V]) = Hyo(M)[z := ¢ps(V)].

o Log(N[ai=U]) = Loo(N)[a = bua(U)].

The evaluator for A,s, &5, is the union &, and the clauses in figure 3.11. (cell M) is
evaluated by first evaluating M to a value V. Next, a new predicate P is created and
placed in the environment storing V as (P V). The process identifier, [, for the process P,
is passed to the continuation K. Along with the creation of the process, two more clauses
are introduced, namely getC and setC. getC specifies the handling of read messages passed
along the process identifier [, while setC specifies the handling of write messages passed along
the identifier [. A read message, (get [ k'), synchronizes with the process identified by [,
reads its value, and passes the value to the continuation K. A write message, (set [ V K),
synchronizes with the process identified by [, sets its value to V, and passes the token e
to the continuation K, indicating the successful completion of the write message. (read ()
issues the read message to the process identified by [, and (write [ V') issues the write

message to the process identified by [. I now prove the correspondence theorem between the
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two specifications, namely £,s and natural semantics, for A,;. Before I can do this, I have

to define when a term evaluates to a value in FORUM and translate state into FORUM.

Remark 3.5 [ define notation that I use in describing evaluation in FORUM. Let S be a

state, and m be the number of elements in dom(.9).

o Ps =gof Pr,..., P

o Is =gof lis- ol i € dom(S),i € [1,m].

o X5 =gof {P1s-- s Pt U{li, 1)

o Cls =gcf {getC(P1,1h), ... getC( P, 1)} U {setC(Pr, 1h), . . ., setC( P, 1)}
o I's =qef (PLVI) g ... p(PrVin).

o Vi =gef dus(5(1)), i € [1,m].

o FV(S(l;)) C dom(S), i € [1,m].

o A term M s closed in a state S, written as close(S, M), if FV(S(l;)) C dom(5),
i € [1,m] and FV(M) C dom(5).

Definition 3.6 [Translating state into FORUM] The translation of state .S, written as 5°,
is a FORUM term of type o — o.

S° =def Au oV Pg,lg. getC( P, 1) = setC(P,l1) = ... =
getC( P, 1) = setC( Py, 1) = [upls]

The application of a term M to 5° would require that the free variables in M be named
apart from the bound variables in 5° including lg. I abuse notation because I want the

location names to be “captured” by the substituion. Suppose S is Au. V. getC(P,l) =
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setC(P,l) = [upl's] and M is (I), then (S(I)) is Vi.getC(P,l) = setC(P,{) = [{{) pI's].
Note that [ is free in (I) but in (5 (l)) it gets captured by the universal quantification on /.

This abuse of syntax comes in very handy, and should not be confusing.

Definition 3.7 [Evaluating A,s terms in FORUM] Let M be a A,s-term, and Sg be a state
such that close(Sy, M). M with Sg evaluates to V' with Sy, written eval,s(M, So, V, S1), if

Yus 1 Esy — VK tvl — 0. 51°(K V) —o Sp°(eval Hys(M) K)

is provable in FORUM. B

Theorem 3.8 (Correspondence theorem for A,;) Let M be a Ays term, and Sy a

state such that close(S, M ).

(M, So) I (V,S1) if and only if eval,s(M, Sy, V, S1)

The proof of theorem 3.8 is deferred to the appendix. It is along the same lines as the proof
for theorem 3.3. Given the fact that A,; has an imperative state, it is not a priori clear
whether I can use Cut rules to compose proofs - the richer proof-theory of FORUM permits
me to use Cut rules essentially because environments are maintained using logical constants.
I illustrate the proof strategy going left-to-right when (asg M N, So) |} (e, S3[l — V). The

last rule in the evaluation tree has to be for asg, which implies that

o (M,S0) (I, 51),
[ ] <N, Sl> ~U, <V, SQ>, and

e [ € dom(S5y).

The evaluation trees of M and N are smaller than the evaluation tree of (asg M N). Let
M, =def Hos(M), Nq = def Hoys(N), S3 = def Soll — V]and Vj = def ¢us(V). By induction
hypothesis I get proofs §; and é3 in FORUM respectively for
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e eval, (M, So,1,51), and

e eval, (N, 51, V,59,).

Further, note that [ € ¥g,. Using the above proofs, I need to construct a proof for the

sequent
Yo, K, Y, 0 Eus 3 S3°(K @) — Sp°(eval (write My Ny) K).

Below, I construct the required proof. To keep the proof readable, I do not write &,; in
the intuitionistic context, and X,s, K in the signature part of the sequent, as these parts
are present in all the sequents in the part of the proof shown. Furthermore, I do not show
the introductions of X5 and CLg in the sequents below, because these can be deduced from
the context. Let Cy =g.r Av.(eval Ny Au. (set v u K)) and C3 =gop Au. (set [ u K).
In the proof, I first do a bunch of right V introductions followed by a bunch of right =
introductions to introduce ¥g, and ClLg,. Next, I backchain on the clause for asg clause,

and then [ do a CutlL. 1 am left with the construction of v and oy.

g1

7
530(](.) — Slo(eval Ny 02) 510(01 l) — (eval My Cl) pFSO
530(](.) — (eval My Cl) pFSO
S3°(K o) — (eval (write My N1) K) pl'g,

backchain

LVR,= R
S3°(K o) — Sp°(eval (write My Ny) K)

The construction of 7 is given below. I first do a bunch of right V introductions followed

by a bunch of right = introductions to introduce ¥gs, and Clg,. Next, I do a CutL.

ga! 02
Sgo(](.) —_— SQO(Set Vi I() SQO(CQ Vl) — (eval N 02) prsl

530(](.) — (eval Ny 02) pfgl

LVR,= R
S3(K o) — 51°(eval Ny C5)
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Suppose dom(.57) =def Lyl As T € dom(S3), for some ¢ € [1,n], [ is {;. Construction
of 71 is shown below. I start the proof with a bunch of right V introductions followed by
a bunch of right = introductions to introduce X5, and ClLg,. Now I backchain over the

setC(P;,[;) to change the value stored as P; to be V4. I am left with the construction of 7,.

72
53 (K o) — (Ke)p(PVi)p(P1Ui)...p(FUy)
S(K ) — (set L Vi K)p(PU)p(PLUL). .. 9 (PoUn)
S(K o) — (set L Vi K)p (P UL ) g (BiUD) . 9 (PaUy)

LVR,= R
530(]( .) — SQO(Set LW I()

The construction of vy is rather interesting. I start a proof with a bunch of left V intro-
ductions. The purpose of these is to identify the location names in the final state with the
locations created during the evaluation of the term. Next, I perform a bunch of left =
introductions. The purpose of these is to constrain the substitution for the P variables.
Essentially, the getC and setC clauses for each location are matched off against each other.
I then reorganize the memory on the right-hand side to match the order in I'g,, and use

identity.

(I( .) pr& - (I( .) pF53

(K o) pTs, — (Ko), o(PV) o (Piln) . 9 (PaU)

VL, = L
S3°(Ke) — (Ke)plg,

The construction of o1 and o5 from é; and é5 is straightforward. Note that Cutl is only
used when terms pass values to their continuations. The novelty of this proof lies in the
way the cell [ is updated to store Vj. The proof makes crucial use of multiple heads to
synchronize between the set instruction and P;, the process identified by [. Values can be
updated by backchaining, because memory cells are linear objects in FORUM. When a cell
synchronizes with a message from the environment, it is consumed, and thus needs to be

refreshed. When refreshed, it may be updated as the setC clause does.
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3.3 A,, — Exceptions in UML

In this subsection I specify A, - A, with exceptions. Exceptions are a very important feature
of any programming language, and especially indispensable in programs which accept inputs
from users or external programs. The openin function of SML is a good example. Given
the name of a file, the function opens a stream for reading the data in the file. However, if
there does not exist a file with the specified name, then openin is faced with an exceptional
situation. At this point openin has two acceptable strategies. The first strategy is that
openin returns some value indicating the fact that the file does not exist - the path taken by
C. The shortcoming of this strategy is that the programmer must check the value returned
by openin to see whether the file was actually opened or not. If the programmer forgets to
do so, one may get some obscure error in a possibly unrelated part of the program, and then
have to trace the error back to the non-existence of the file. The second strategy is to send
a signal to the function which invoked openin. Now, if the programmer does not check for
the signal intentionally, it will cause the program to stop, and print an error message saying
that the specified file did not exist. However, if not checking the signal was an oversight,
then the error will be reported as being caused by the fact the specified file did not exist,

and hence is easily detectable.

The SML exception mechanism makes possible the second of the two choices outlined above.
There is no restriction on the number of exceptions that one may have in a SML program —
exceptions can be created on the fly. Furthermore, exception handlers are scoped, i.e. 1 can
declare a handler for an exception for any given sub-part of my program. These features
make the exception mechanism of SML rich and elaborate. I begin by extending the syntax
of A, for exceptions in figure 3.12. The definitions of M, V" and F in figure 3.1 are extended
with the clauses in figure 3.12 to obtain A,., Values,. and FvCont,. respectively. Declared
exception names are also values. For this, I introduce a new countable syntactic class of
FExnNames ranged over by [. The result of a computation now may not be a value, e.g. an
uncaught exception. I introduce a new syntax class called answers for this purpose, and

the natural semantic clause M || A will now read as M evaluates to the answer A. [pk{ V]
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M= ... (Aye)
| exception | M l € FxnNames

| handle M M M

| raise M M
V= .. (Values,.)

| 1 l € FxnNames
Au=V (Answers,.)

| [pk { V] l € FxnNames
Ei= .. (EvCont,.)

| Flraise [] M]

| Elraise V []]

| Flexception 2 []]

| Flhandle M [] M]

| Elhandle M V []]

| Elhandle []V V]

Figure 3.12: Syntax for A,

is a called a packet, raising the exception [ with the value V.

(exception [ M) binds the exception name [, in the scope of M. It is entirely conceivable
to write a program such as (exception [ ((exception [ N) M)). This scoping of exceptions
creates the need for renaming of exception names, i.e. a-conversion. This problem is han-
dled in [HMT89] by evaluating the exception [ to a new exception name, and carrying this
binding around in the environment. (raise [ V') indicates that the exceptional circumstance
as indicated by [ has occurred, and the function handling this exception should be called
with the value V. (handle M [ N) declares that during the evaluation of M, if the exception
[ is raised and uncaught within M, then N will be the handling function. Furthermore, if
the evaluation of M to a value is completed without raising [, then NV is removed as the
function handling the exception [. This semantics of installing handlers locally provides

flexibility during programming.

Iillustrate the point with the following example. Let xn be some exception name resulting

from the declaration of some exception, and P some function defined in the environment.
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(handle(if (= 2 0)
(handle (P ) xn Ny)
M
Jxn Na)

Now, which handler is used for the exception exn depends upon the value of x. Furthermore,
if Pis called and in P handlers are installed for xn, then those handlers take precedence over
Ni. There are some elements of dynamic binding in the mechanism for determining which
handler catches a raised exception. It is rather tricky to specify this exception mechanism

because of the above mentioned considerations.

The specification of exceptions in [HMT89] is presented in a very slick manner. The speci-
fication proceeds in two stages. First, the rules needed for the new constructs are specified
as in figure 3.13. The spirit of the rules remains the same as the rule for A,. The eval-
uation of a term is a result of the synthesis of the evaluations of its subterms. However,
now I need to keep track of the exception names which have been declared thus far, which
means that I need to carry along a state in the evaluation rules. The operational semantics
as presented here differs from [HMTS89] to the extent that I use substitution instead of

maintaining closures.

Clearly, the mere addition of the above rules to £, is not enough to specify A,.. One problem
is that the propagation of exception names has to be handled for all the existing rules for
A, terms. For this purpose, the state convention is adopted in [HMT89], which tells us how
to restore exception states in a rule which omits them. According to this convention, if a

rule is presented as

MUV

then its full form is intended to be
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[ € FxnN
{0 By B (1, By © © omames

(M[z :=1], ExoUl) | (V, Eaq)
(exception @ M, Exo) | (V, Eaq)

Z€E$0

(M, Exo) ) (I, Exzq) (N, Exq) | (V, Exy)
(raise M N, Exo) | ([pk [ V], Exzq)

<N, E$0> ~U, <Z,E$1> <P, E$1> ~U, <W, E$2> <M, E$2> ~U, <V, E$3>
(handle M N P, Exg) | (V, Exs)

*

<N, E$0> ~U, <Z,E$1>
<P, E$1> ~U, <W, E$2>
(M, Ezs) I ([pk [ U], Exs)
(WU), Exg) § (V, Ey)
(handle M N P, Exg) || (V, Exy4)

<N7E$0>‘U’<107E$1> <P7E$1>‘U’<W7E$2> <M7E$2>‘U’<[pk h U]7E$3>
(handle M N P, Exo) || ([pk 1 U], Exs)

1075117*

Figure 3.13: Natural Semantics specification for the new constructs in A,..

<M1, E$0> ~U, <V1, E$1> e <Mn, E$n_1> ~U, <Vn, E$n>
(M, Exzo) |} (V, Ez,)

As T can always derive the full-form of a rule using the state convention, I will freely use
the abbreviated versions of natural semantic rules from now on. The specification is still
not complete. For example, what do I do if the evaluation of N in (raise M N) raises an
exception? In fact, this question comes up in each and every rule specified in figure 3.2.
Unfortunately, this leads to adding more clauses for all the rules. The description of the
additional rules needed can be done concisely along the lines of [HMT89]. An exception
convention defines new natural semantic rules based on the ones in figures 3.2 and 3.13,

except for the rules labeled * in figure 3.13. Suppose the form of a rule is:

MUV

Then for every k, 1 < k < n, such that Vj is not a packet, we add another rule of the form
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M| [pk V]

For example, the rule for application will now result in the following three new rules.

MU [pk 1 V]
M N | [pk V]

M Ae. P N | [pklV]
M N | [pklV]

MUyXe. P NYU Ple:=U]{pklV]
M N | [pk { V]

The natural semantics evaluator for A, is specified by the rules in figure 3.13, 3.2 and the
ones created as a result of adopting the exception convention explained above. Thus, the
exception convention causes the number of rules in the evaluator to increase from fourteen

to thirty-two!

Let me present another way of looking at the operational semantics for exceptions. Suppose
I am evaluating the term FEfhandle M [ V] where (handle M [ V) is the redex that I am
reducing currently, and F is the current evaluation context or the part of the program that
will take the value of (handle M [ V') and complete the evaluation of the term, i.e. the
current continuation. Further, let us suppose [ and [y are two exception names, and no

handler is installed for /. The evaluation of M, if it terminates, will yield

1. a value Uy, or
2. a packet [pk [ U3], or
3. a packet [pk {; Us].
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In case 1, the computation continues with E[U;]. In case 2, the computation continues with
E[V Us]. But what should happen in case 3?7 A signal, [y, has been raised for which there
is no handler. The only reasonable thing to do is to throw away the current continuation,
i.e. /., and report to the top level or the next outer handler, that the exception [; was
raised with the value Us. What is clear from the explanation is that exceptions can cause

the computation to discard its current continuation up to a handler.

Consider the evaluation of the term E[handle ((raise [ U) N) [ V]. The program will evaluate
(handle ((raise { U) N) [ V') causing the handler V' to be installed for the exception [/, and
then proceed with the evaluation of ((raise [ U) N), which in turn will cause it to evaluate
(raise [ U). Evaluating (raise [ U) will result in a packet [pk [ U], which can only be handled
by V. However, notice that the answer computed by (raise [ U) is passed not to the current
continuation at that point, but rather to the continuation at the time when the handler V'

was installed! Thus exceptions can also change the current continuation.

My point is that a natural operational reading of the evaluation mechanism involves the
idea of continuations, a concept which has no direct representation in the syntax of natural
semantics. The clever presentation in [HMT89] is a way of overcoming this shortcoming
of natural semantics. However, one has to pay a price for extending natural semantics to
cope with exceptions — the blow up in the number of rules for A, terms from eight to
twenty. Of particular concern is the fact that the evaluator has to be redefined for the term
constructs of A,, e.g. one has four rules for application now. In this sense, the specification
of exceptions in [HMT89] is not modular. An exception mechanism very similar to that
of UML has been specified in [WF91] using term rewriting machines. The specification
is indeed modular — specifications for the existing term constructs do not change when
the language with exceptions is considered. However, the style in [WF91] introduces two
new notions of contexts, one used to maintain the scope of exceptions and the other used
to match a raised signal with its handler — the basic intuition about manipulation of

continuations is not brought out very clearly.

The specification of A, in FORUM follows the same pattern as the specification of A,. 1
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ex

exn
install
signal

uncaught :

ext — vl

: (ext — tm) — tm
ctm —tm — tm — tm
ctm — tm — tm

ext = vl — o

Figure 3.14: Constants for translating A,. terms

Gue(l) = (exl)

exn Al Hy (M)

H e (exception [ M)

l € ExnNames

Hye(handle M N P) = install Hye(M) Hye(N) Hye(P)

Hye(raise M N)

signal Hye(M) Hye(N)

Figure 3.15: Translating the new construct of A, to FORUM

introduce a new type ext, the type of exception names in FORUM. First, I translate A,
terms into FORUM syntax using ¥, augmented with the constants in figure 3.14. For
example, install : tm — tm — tm — tm is the target of the translation of handle terms.
[pk [ V] is translated using uncaught : ext — vl — o. I define translations ¢, : Values,. —
vl, Hoe : Aye — tm, ¢y vl — Values,. and L, : tm — A,.. I show the translation from A,
to FORUM for the new constructs in figure 3.15. The complete translations are deferred

to the appendix. The following lemmas regarding the translations and substitutions are

proved in the appendix.

Lemma 3.9 Let M € A, V € Values,., N and U be a FORUM terms of types tm and vl

respectively:

o Hye(M[z :=V]) = Hye(M)[z := ¢pe(V)].

o Loo(Nfoi=U)) = Loo(N)a = ol U)].

Instead of specifying the semantics of catching raised exceptions in the style of [HMT89],

I take the route of using the continuations explicitly. Consequently, I have to manage
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explicitly the installation and removal of handlers, and the matching of raised exceptions
with handlers. 1 find this description to be more enlightening because it highlights the
manipulation of continuations by exceptions, and explains the maintenance of exception
handlers separately. I represent the exceptions via a predicate, exnst, which takes a list of
exception handlers as an argument. An exception handler is a term, (pkt [ V' K'), where [ is
the exception name, V' is the function installed as the handler, and K is the continuation
which will be invoked if this handler is chosen. To maintain exnst I need predicates push
and pop to add and remove handlers from the list of exception handlers. Further, I need a

predicate lookup to search the list of handlers.

(lookup [ V') searches the list X in (exnst X) for the first packet whose exception name
is I. The search program for lookup would therefore need to check whether two exception
names are equal or not, i.e. [ need an inequality predicate for exception names. Specifying
inequality in the presence of V is a rather delicate matter. Suppose I am able to prove
Va,y.x # y, how can I then use it? Obviously, instantiating the proof for z = ¢ and
y = ¢, where ¢ is a constant, will lead to inconsistencies. [HSH90, SH93, Gir92] analyze

such situations. However, the results are not very conclusive as yet.

The solution I adopt is to take the type ext to be nat of section 2.1, and as shown in sec-
tion 2.1, inequality between numbers can be specified in FORUM. I generate new exception
names using the paradigm of inc in section 2.1. The signature for the various constants is
given in figure 3.16. In the translation in figure 3.15, [ is translated to (ex /). Given the
new interpretation of ext, I have to redefine the translation. As FznNames is a countable
set, there is an isomorphism between EznNames and ext. Hence, by abuse of notation I
let [ denote a term of type ext, which denotes the number to which [ is mapped by the

isomorphism.

The signature for the additional constants is given in figure 3.16. The signature for spec-
ifying Aye, Xy, is defined as the set consisting of the elements of 3, the constants in

figure 3.16, and the constants in figure 3.14.
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pkt : ext — vl — (vl — 0) — packet
push : ext — vl — (vl = 0) = tm — o
pop : 0 — o0
nil : packet list
:: . packet — packet list — packet list
exnst : packetlist — o
isexn : vl — (ext — 0) — o
Z . ext
s . ext — ext
neq : ext —ext — o
sigctr : ext — o

Figure 3.16: Constants for exception management in FORUM

I consider handle as an instruction to store an exception handler with the current continu-
ation, and raise as an instruction to search for the most recently installed handler for the
raised exception. (handle M [ V) will cause V to be pushed on the stack of handlers as
the handler for [ before the execution of M begins, and if the execution of M terminates
without raising [ to the handler V', then V is removed from the stack of exception handlers.
(raise [ V') causes the system to look in the exception stack from top to bottom for a handler
for [. If a handler is found for /, then control is passed to the handler and its continuation,
or else the exception returns to the top-level as an uncaught exception. The specification
for the new constructs along with the specification for the auxiliary non-logical constants
is presented in figure 3.17. The evaluator, &,., is defined to be the universal closure of the

clauses in figure 3.17, the clauses in &,.

The clauses in figure 3.17 highlight various aspects of the exception mechanism. The fact
that new exceptions can be created on the fly is implicit in the usage of the sigctr to generate
a new constants for exception names. The way continuations are handled by exceptions
is made explicit by handle storing the current continuation along with the handler in the
exception stack. The search for a matching exception explains how exceptions can cause
a program to discard its current continuation and reinstate the continuation stored with
the handler. The issue of locally installing and removing handlers is a separate concern,

managed by the stack like maintenance of exnst via push and pop. The clause for lookup
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(eval (exn R) K) g (sigetr )
(eval (install M N P) K)

(eval (RY) K) p (sigetr (sY))

(eval N Av :vl. isexn v A\w : ext.
(eval P Au :vl. (push w u K M)))

(eval (signal M N) K) o (eval M Av:vl isexn v Aw : ext.

(eval N Au : vl. (lookup v u)))

7T

(isexn (ex L) K) o— (K L)
(push LV K M)gp(exnst X) o— (eval M Av.(pop (K v)))
o (exnst (pkt L V K) 2 X)
(pop P)p(exnst (pkt LV K):: X) o Pgp(exnst X)
(neq(s X)z) o T
(neqz (s X)) o— T
(neq (s ¥)(sY)) o (neg X V)
(lookup L V') o (exnst (pkt L U K):: X) o— (apply UV K)gp(exnst X)
(lookup L V') g (exnst (pkt Ly U K'):: X) o— (neq L Ly)

@ ((lookup L V') p (exnst X))

(lookup L V') o (exnst nil) (uncaught L (signal L (V'))) ¢ (exnst nil)

7

Figure 3.17: Specification in FORUM for new constructs in A,

uses a new constant @ . Although the use of ® makes the intention clear, it is not essential

because in FORUM

A —o B —-o(C —(A®B) oC

is provable.

The key point is that neither do I introduce any new clauses for the constructs in A,, nor
do I modify the existing clauses in A,. The specification of the exception mechanism is
a modular extension to the specification for A,. The fact that I can specify the stack in
the environment using a logical connective, i.e. @, is rather important. If I attempt to
specify A,. using non-logical constants in the spirit of abstract machines, then I will not
have to add new clauses for A,, but I will have to redefine the clauses for A, to explicitly
carry along the exception stack. However, because of the proof rules for @, I am able
to keep the stack passively in the environment, and interact with it only when I have to
deal with exceptions. The rich proof theory of FORUM provides me the tools to specify the

maintenance of the environment in a logical fashion. 1 now state the correspondence theorem
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between the two specifications, namely &,. and [HMTR89]. If Fz is a set of exception names,

let g, be one plus the largest number to which any element of Fz is mapped. Further,

G(I, P) =qef P p(exnstnil) o (sigetr [).

Definition 3.10 [Translating Answers,. to FORUM] A, translates terms in Answers,, to
terms in FORUM of type o. Let K be a constant of type vl — o in FORUM.

Aue(V, K) (K ¢pe(V))
Aue([pk V], K) = (uncaught [ ¢,.(V))

Definition 3.11 [Evaluating A,. terms in FORUM] Let M be a A,.-term, A € Answers,.,
and Fzg be an exception state such that all the free variables of M are in Fzg. M in

exception state Fxg evaluates to A with the exception state Fzq, written as

evalys(Hype (M), gz, Ave(A, K), lEs,), if

Ype 1 &e; — VK vl — 0. G(lgy,, Ave(A, K)) — G(lgy,, (eval Hye(M) K))

is provable in FORUM. B

Theorem 3.12 (Correspondence theorem for A,.) Let M be a Ay term, Exq be the
exception state consisting of all the exception names in M, A € Answers,., and FExq be the
exception state consisting of all the exception names in A. All the free variables of M are

mn Fxg.

<M7 E$0> ‘U’ <A7 E$1> Zf and Only Zf evalvs(Hve(M)v lEacov -Ave(Av I()v lEacl)

The proof of theorem 3.12 is deferred to the appendix. The proof is along the same lines
as the proof for theorem 3.3. The logical maintainence of environments permits me to use
cuts to compose proofs. I illustrate the proof strategy going left to right when (N P, Fy) |}
([pk { V], F3). One way this may happen is that
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. <N7 EO> ‘U’ <A$ Q7E1>7

[ ] <P, E1> ~U, <U, E2> and

o (Qz:=U]J, Fq) | ([pk { V], E3).

The evaluation trees of N, P and @[z := U] are smaller than the evaluation tree of (N P).

Let Nl :def HUB(N)7 Pl :def HUB(P)7 Ql :def Hve(@)v Ul :def ¢ve(U)7 Vl :def ¢ve(v)
and A =def (uncaught [ V'). By induction hypothesis I get proofs 61, d; and 3 in FORUM

respectively for

o X, K1:&; Glgy,, (K1(abs Az. Q1)) — G(lga,, (eval Ny K1),
o X, K2:&; G(lgs,, (K2 Uy)) — G(lgs,, (eval Py K3)), and

o X, K3:&,; Glgs,, A) — G(lgs.,,(eval Q1[z := U] K3)).

In the proof 63 I use lemma 3.9 to rewrite H,(Q[z := U]) as Q1]z := Uy]. Using the above

proofs I need to construct a proof for the sequent
S0, K &5 Glgp,, A) — G(lgs,, (eval (app N1 Py) K)).

I construct the required proof below. To keep the proof readable, I do not write &,. in
the intuitionistic context, and the signature which is Y,., K. In the proof let (4 =def
Av. (eval Py Au. (apply v u K)), and Cy =g¢p Au. (apply (Az. Q1) u K). Note that
(Ci(abs Az. Q1)) is 3 equivalent to (eval Py C3), and that (CyUy) is 8 equivalent to
(apply (abs Az. Q1) Uy K). The last proof rule is Cutl in the construction below.

g

7 1
G(lgys, A) — G(lgs,,(eval Py C3)) G(lgy,,(eval Py C3)) — G(lgs,, (eval Ny C1))
g(lEl’gv A) — g(lExov (eval Nl Cl))
G(lgys, A) — G(lgs,, (eval (app N1 P1) K))

backchain

To complete the proof I have to construct v and ;. o7 is constructed from é;, by using
CutS on Ky with 4. I show the construction of . I use a Cutl followed by a backchain
on the left sub-proof of CutL.
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g3
G(lgys, A) — G(lgy,, (eval Qq[z := U] K)) oy
g(lEl’gvA) — g(lExgv(evaI Cy Ul)) g(lExQ,Cz Ul) — g(lEx17(eva| Py Cz))
G(lggs, A) — G(lgs,, (eval Py C3))

The construction of o3 and o3 is along the lines of o1, using 6 and é3, respectively. The
surprising fact is that the structure of the proof construction given above, and the construc-
tion of 0;,i € [1, 3] is identical to the construction given in the example for theorem 3.3. The
fact that I can use Cut rules to compose proofs and cut-elimination to obtain computations
in the presence of exceptions is a convincing argument for the claim that £, is a declarative

specification of Aye.

3.4 A,,— Continuations in UML

In this subsection I specify A,. - A, with continuations. A continuation is that part of a
program which must be evaluated to obtain the final value of the computation. For example,
consider the evaluation of (+ (+ 3 2) 4). When I am evaluating (4 3 2), the remaining part
of the computation is (+ e 4). The idea being that the value of (4 3 2) will replace o, and
then computation will start once again, or, in other words, Az. (+ z 4) is the continuation.
Informally, one may think of a continuation as a function which takes the value of the term
being evaluated currently as its argument, and then continues the computation. If T can
represent the continuation of a program in the program itself, then I can change the control
flow of the program during its evaluation. Thus, continuations provide a functional means

of representing the control flow of the program.

Continuations have been used widely in the semantics, compilation and design of program-
ming languages [Gor79, Sto77, SW74, AJ89, App92, Ste78, RC86, SF92]. Many program-
ming languages provide language constructs which allow the programmer to take control
of the continuation of the program during the computation and manipulate it, e.g. callcc
in SML of New Jersey, and call-with-current-continuation in scheme. Programming with

continuations introduces a rich programming style. [Fri88, DH89, Wan80] implemented
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coroutines and process schedulers using scheme-style call-with-current-continuation. [Rep91]
implemented CML, a concurrent higher order functional language with concurrency primi-

tives, using callcc in SML of New Jersey.

Continuations are not a part of the core SML [HMT89]. The reasons for not providing
language support for manipulating continuations are not presented in [HMT89]. However,
given the obvious utility of continuations as a programming paradigm, I consider first-class
continuations as an important aspect of a programming language. Moreover, SML of New
Jersey does include callec, a construct that allows the programmer to capture the current
continuation. We saw in section 3.1 that exceptions can be specified in natural semantics,
and that continuations are manipulated when exceptions are raised. Hence, some level
of continuation manipulation can be specified in the natural semantics framework. Thus
encouraged, I attempted to specify callcc in the natural semantics framework outlined in
[HMT89]. The operational semantics of callcc is informally specified as — first evaluate M to
V', and then apply V to whatever the current continuation is. Hence, to specify callcc I need
to formalize the notion of current continuation within the syntax of the language. Without
changing the essential nature of the natural semantics framework it seemed impossible to

specify callce.
In natural semantics, the continuation at any point of the computation is not a part of the

syntax. For example, let us look at the evaluation for (M N) in figure 3.2.

MUyXe.P NYU Plz:=UlV
MN|V

The continuation of M is a program which will take Az. P, compute N to U and then
compute Pz := U] to V. This information is encoded in the above rule by the three
separate hypotheses of the rule, and demanding that the hypotheses be read from left to
right. If I want to capture the current continuation in the program, then I must be able to
represent the continuation in the evaluation rule — it is not clear how to do this in natural
semantics. Fxceptions also manipulate continuations — how can exceptions be specified

in natural semantics? Exceptions can be specified in natural semantics because of two
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M= ... (Ave)
| callee M
| throw M M

E=. (EvCont,.)

|”E[ca||cc ]
| Efthrow [] M]
| Elthrow V []]

Figure 3.18: Syntax for A,.

key reasons. Firstly, exceptions do not allow the programmer to capture the continuation
as a part of the program. Secondly, exceptions do not allow the programmer to use a
continuation more than once. Although the path taken in [CF94] is a beginning towards
using a concurrent meta-theory with side-effects, it is however restricted by the fact that

there are essentially two threads, the program evaluator and the administrator.

The syntax for A,. is presented in figure 3.18. The definitions of M and I in figure 3.1
are extended with the clauses in figure 3.18 to obtain A,. and FvCont,. respectively. The
definition for V in figure 3.1 remains unchanged for Values,.. However, the non-terminal
M ranges over the extended definition. I think of (callcc V') as creating a process out of the
current continuation, called the continuation process— the process identifier for the created
process is passed to V. Unlike processes created in concurrent languages, the continuation
process does not start computing on its own, in fact it lies dormant. The process identified
by [ is invoked by (throw [ U). As A,. is a sequential language, only one process should be
active at any given time. Hence, the continuation process is dormant when created, and
when a continuation process is invoked using throw, the evaluation thread terminates and
the continuation process becomes the evaluation thread. I find this view of callcc to be very
useful, especially in light of the fact that one of the most significant uses of callcc has been to
implement CML in SML of New Jersey [Rep91]. Adopting the paradigm used in section 2.1
to specify the HOm-calculus in FORUM, I directly specify the above process-style reading
of callcc in FORUM.
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catch : tm — tm

jump : tm — tm — tm
resume : vl — vl — o

cont : vl = (vl = 0) — o

Figure 3.19: Constants for translating A,. terms

(eval (catch M) K) o— (eval M Av.VI. contC(l, K') = [(apply v ! K) p(cont! K)])
(eval (jump M N) K) o— (eval M Av.(eval N Au.(resume v u)))

where  contC(l, K') =4, VU. [(resume [ U) p (cont I K')] o— [(KU) p(cont [ K)]

Figure 3.20: Specification in FORUM for new constructs in A,

The signature for the specification, X,., is defined to be ¥, extended with the constants
in figure 3.19, e.g. callcc is translated to catch. I define translations ¢,. : Values,. — vl,
Hoe 1 Aye — tm, . o vl — Values,. and L. : tm — A, in the appendix. For example,
Hye(callee M) = catch Hyo(M). The following lemmas regarding the translations and

substitutions are proved in the appendix.

Lemma 3.13 Let M € A, V € Values,., N and U be a FORUM terms of types tm and

vl respectively:

o Hye(M[z:=V]) = Hye(M)[z := ¢oe(V)].

o Loo(N[zi=U]) = Lol N[z i= o U)].

The evaluator &,. for A,. is the universal closure of the clauses in figure 3.20 along with the
clauses in &,. Below, I outline the evaluation of (eval (catch M) K') to highlight the novel

features of this specification.

e To evaluate (eval (catch M) K'), I first evaluate M to a value V', which is passed to
the continuation Av.VI. contC({, ') = [(apply v K)o (cont [ K)].
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e Lvaluation of VI. contC(l, K') = [(apply V [ K) ¢ (cont [ K)] creates a new name [ : vl

and makes contC(l, K') a part of the evaluator.

e linally, I proceed with the evaluation of (apply V I K)o (cont! K).

Placing (cont { K') in the environment of (apply V' [ k') is the creation of the continua-
tion process as a dormant entity — [ is the process identifier for the continuation process
(cont [ K). Every time I create a continuation process, I introduce the contC(l, k') clause
which associates the process identifier [ to (cont [ k'), the continuation processes. When
(resume [ U) synchronizes with (cont [ K'), it results in the evaluation of (K V') with
(cont [ K) in the environment. (jump M N) terminates the current evaluation thread and
invokes one of the dormant continuation processes. The main novelty lies in the way I can
create new entities in the environment, e.g. (cont [ K). The created processes lie in the
environment dormant, and can be activated by passing control explicitly to them, e.g. the
contC(l, K') clause. This specification provides a view of catch and jump as a restricted form
of concurrency where it is possible to have more than one process. However, only one of
the processes can compute at a given time. Given this basic understanding, it is natural
that callec in SML of New Jersey was the basis of the CML implementation in SML of
New Jersey [Rep91] and call-with-current-continuation was used to implement co-routines

and process schedulers [Fri88, DH89, Wan80].

I would like to define when a term M evaluates to a value V. When computation starts, there
may be continuation processes defined in the environment in which M is to be evaluated.
As the computation of M proceeds, new continuation processes may be created. Hence,
the value V will have a continuation state, i.e. the continuation processes associated with
it. In this sense continuations behave like a mutable store. Hence, to evaluate A,. terms
one has to carry the continuation processes and the corresponding process identifiers created
thus far, just as in evaluating programs with assignable variables one must carry along the
mutable store. A continuation state, written as I'c, possibly subscripted, is defined to be
a finite function from variables to EvCont,.. dom(I'c) denotes the domain of the function

I'c. Let I, denote a list of the variables in dom(I'c) in any order. A key difference between
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Coe([], K) K
Coc(E[f[IM],K) = Av.(eval Hye(M) Au. K’ fou)
wel(EIfVIILE) = A K fou(V)v
Coo(E[[IM],K) = Xv.(eval Hyo(M) Au. (apply v u K'))
Cool BV (LK) = Xo (apply 60elV) 0 )
Coo(E[if [] M N, K) = Av.(eval (ifbr v H,.(M) H,oe(N)) K')
Coc(Elletval 2 = []in M],K) = Av.(eval Hyo(M)[z :=v] K')
Cype(Elcallecc []], K) = Av.Vl.contC(l,K') = [(apply v K') p(cont | K')]
Coc(E[throw [] M], ) = Av.(eval Hyo(M) Au. (resume v u))
Cye(E[throw V []], K) Av. (resume ¢,.(V') v)

where K" = efCoc( B, K : vl — o)
Figure 3.21: C,., translation of FvCont,. to FORUM terms of type vl — o

the continuation state and the mutable store is that the process identifiers in I'c cannot be
reassigned. Consequently, I'c is cycle-free, i.e. there is an ordering on Ir., say [;, ...
where dom(I'c) has m elements, such that for all I € FWV(T'e(l;))), I < l;;, j € [1,m]. In
particular, I ¢ FV(T'¢(l)), for all I € dom(T'¢) and FW(Te¢(l;,)) = 0. By a continuation

state I will henceforth mean a cycle-free continuation state. C,. in figure 3.21 translates

FE € FvCont,. to the terms in FORUM of type vl — o.

Definition 3.14 [Translating continuation state into FORUM] The translation of I'c, writ-

ten as I'c?, is a FORUM term of type o — o.

Te? =def Au oV lp. contC(ly, K1) = ... =
contC(ly,, Ky) = [up(cont L K1) g ... p(contl,, K,)]

Where m is the number of elements of dom(I'c) and K; = g5 Coc(Le(l;), K), ¢ € [1,m]. B

Note the substitution of a term M for w in I'c® is treated like the substitution a term in in
the translation of a state. In particular, the free variables Ip. in M will get “captured” by

the substitution.
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(eval (catch M) K') p(exnst X ) o—
(eval M Av.VP,l. contC(l, K, X )= [(apply v K)p(cont | K X)p(exnst X)])

where, contC(/, K, X) =def
VU,Y. [(resume [ U) p(cont I K X)p(exnstY)] o— [(KU)p(cont! K X)gp(exnst X)]

Figure 3.22: Specification for callcc in the presence of exceptions

Definition 3.15 [Evaluating A,. terms in FORUM] Let M be a A,.-term, and I'¢; be a
continuation state such that all free variables of M are in dom(I'¢1). M with the continua-

tion state I'c; evaluates to V with the continuation state I'cy, written eval,.(M,'cy, V, I'eq)

if

Ye 1€y — YK vl = 0. T'er?(KV) —o T'er”(eval Hyo(M) K)

is provable in FORUM. B

A further issue arises when callcc and throw need to be specified in the presence of exceptions,
i.e. I am extending A,. with first-class continuations. The question is regarding the status
of exception handlers when I throw to a continuation process. In SMIL of New Jersey, the
exception handlers are stored along with the continuation. Consequently, if I throw to a
continuation, then along with restoring the saved continuation as the current continuation, I
install the saved exception handlers as the currently installed exception handlers. Since the
definition of the continuation is extended to include exception handlers, the clause for catch
is changed to treat exceptions. The achievement here is that only the specifications for catch
and contC need to be changed; everything else remains the same. The new specifications
for catch and contC are given in figure 3.22. Note that the type of cont is vl — (vl — 0) —
packet list — o. The integration of first-class continuations will be done in detail later, when
I put together the specification for UML using all the pieces. As [HMT89] does not specify

callcc and throw, I cannot prove equivalence between the two semantics for A,..

57



3.5 UML — Putting it together

In this section I provide the specification for UML — A, with state, exceptions and con-
tinuations. The syntax for UML is obtained by putting together the syntax in figures 3.1,
3.8, 3.12, and 3.18. A natural semantic specification for A, with state and exceptions is
obtained in two steps. First, take the rules in figures 3.2, 3.9, and 3.13. Now, apply the
state and exception convention to the rules thus obtained. The resulting set of rules is the
natural semantic specification for A, with state and exceptions. As discussed in section 3.4,

I do not have a natural semantics specification of first-class continuations.

In FORUM, it is possible to specify UML as evidenced by the specifications of its parts in
sections 3.1, 3.2, 3.3 and 3.4. The signature of the translation, X,,;, is the union of %,
Yus, e and X,.. The translations from UML to FORUM and back, ¢ : Values — wvl,
H: A — tm, A: Answers — (vl — o) — o, C : FvCont — (vl — 0), ¢ : vl — Values,
and £ : tm — A, are obtained by putting the translations for the fragments together.
The definitions are deferred to the appendix. The evaluator for UML, £ is defined as
the universal closure of the clauses in figures 3.6, 3.11, 3.17, and 3.20 — [ put together
the different modules specifying different pieces of FORUM. A configuration is a triplet of
continuation state, state and the exception names with respect to which a UML term is

evaluated. I now define the translation of a configuration in FORUM, and the evaluation

for UML terms in FORUM.

Definition 3.16 [Translating configuration to FORUM] Let ' =g4.r (I'¢, 5, Ex) be a
configuration, where I'c is a continuation state, S is a state and Fz a set of exception

names. The translation of (', written as C'°, is a FORUM term of type o — o.

C? = gef
Au:oN Ps,ls,pre. getC(Pr,lh) = setC( P, 1) = ... = getC(P,, 1) = setC(P,, 1) =
contC(py, I1) = ... = contC(py,, Kyy,) =

[uplsp(contpy K1) p ... @ (cont p,, K,,) o (sigetr lg,) @ (exnst nil)]
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Where

e 7 is the number of elements in dom(I'c), and m is the number of elements in dom(.5).

o K; =def C(FC([)Z’),I(), i €[1,n].

The domain of a configuration ' =g4.r (I'c,.5, Ex), written as dom(C’), is the union of
dom(l'c), dom()5) and Exz. These are the variables which have been declared to be values
by the configuration C'. Note that analogous to the case of 5¢ and I'c®, applying a term M

to C'° causes the free occurances of lg and pr. in M, if any, to get captured.

Definition 3.17 [Evaluating UML terms in FORUM] Let M be a UML term, A €
Answers,., and Cy a configuration such that FV(M) C dom(Cy). M in the configura-

tion 7 evaluates to A in the configuration Cy, written as eval(M,Cy, A, Cs), if
Y&y — VK :vl — 0. C°A(A,K) —o C°(eval M K)

is provable in FORUM. B

The part of UML specified by natural semantics, A,,., does not contain first-class contin-
uations. If I restrict the above definitions to UML without callcc and throw, then I can
prove a correspondence theorem between the two specifications. For this fragment I con-
sider configurations in which the continuation state is empty. The proof is deferred to the

appendix.

Theorem 3.18 (Correspondence theorem for A,s.) Let M € Ay, A € Answers,s.,
Cq =def (0,51, Exy) and Cy =def (B, S2, Exy). Further, M is closed with respect to C.

<M7 Cl> ‘U’ <A7 02> Zf and Only Zf evaI(H(M)v Clv A(Av I()v 02)
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Chapter 4

Program Equivalence for Ay; in

FORUM

In this chapter, I study observational equivalence for A,s programs in FORUM. A program
is treated like a black-box — the only way to determine the behavior of a program is to
give it some inputs and watch the output it generates. In this paradigm, two programs
are equivalent if whenever they are given identical inputs they generate identical outputs.
Equivalence of programs is relative to what can be observed about their computation. For
example, the two sorting routines, binary sort and quicksort [Set89], are equivalent if all
I can observe is that the algorithms sort their inputs. However, if I can observe the time

taken to sort inputs by binary sort and quicksort, then they will not be equivalent.

Understanding observational equivalence of programs is of fundamental importance for a
variety of reasons. For example, the compiler for SML of New Jersey first transforms
programs into a continuation-passing-style (CPS) intermediate language, and then performs
various transformations on the program in the intermediate language to improve its run-
time performance [App92]. Let us assume that SML programs and their translations to CPS
language evaluate to the same value. Still, there is a question regarding the transformations

done on the CPS programs — what is the relationship between the original CPS program
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and the transformed CPS program? Unfortunately, [App92] does not answer this question in
a formally precise manner. Suppose I take a program P in the CPS language and transform
it to @ following [App92]. What is the relationship between the observations I can make of
P and Q7 If the observable properties of P and () are identical, then up to our definition of
observations the transformation maintains the essential nature of the program. However,
if the observable properties of P and () are not identical, then there will be situations
in which the observable results produced by ¢ will differ from the ones produced by P.
Such a transformation can only be justified if @) is observationally equivalent to P in the
environment in which ) is used. The claim is that observational equivalence provides a
Sframework to study transformations performed by compilers. Along similar lines, one can
want to change pieces of existing programs as better algorithms and implementations are
developed. Observational equivalence provides a framework to verify whether two programs

can be exchanged.

The study of observational equivalence for functional languages with state has been partic-
ularly difficult [MS88, OT93, SF92, MT92, Sie93, OT92]. In specifying A,s, I have placed
the evaluator for A,; within the rich proof theory of FORUM. I use the meta-theory of
FORUM to analyze observational equivalence. 1 first define observational equivalence for
Ays programs with respect to the natural semantics and the specification in FORUM, &,;.
Next, using a theorem in [MT92], I prove that the two definitions are equivalent. I prove
that reduction preserves observational equivalence. This is the basis for the equational the-
ory for A, in [SF92]. T also prove the observational equivalence for some of the examples in
[MS88, 0T92]. One of the main focuses of my future work will be to analyze proof-theoretic

properties of the transformations required for proving observational equivalences.

4.1 Defining Observational Equivalence

In this section, I define two notions of observational equivalence. Firstly, I define when
two A,s (defined in figure 3.8) programs are observationally equivalent with respect to

their natural semantics specification (defined in section 3.2). Secondly, I define when two
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Ays programs are observationally equivalent with respect to &£,s, the specification of A,
in FORUM, defined in section 3.2. Next, I prove that the two notions of observational
equivalence are identical. This result lets me study the observational equivalence for A,

programs in FORUM — the main aim of this chapter.

The basic idea of observational equivalence is that one places a program in a context, and
then observes its behavior. Two programs are observationally equivalent if and only if in
all contexts the observable behavior remains the same. There are two key concepts here —
context and observable behavior. Suppose I have two programs, M and N, in A,s. In what
contexts can I place M and N ? If I think in terms of program transformations, then M is
a part of a larger A,; program, and I am replacing it with N — the contexts must come
from the syntax of A,s. Following the argument, a context would be a A,; program with
one of its pieces missing. The idea would then be that programs M and N have identical

observational behavior with respect to contexts of the given language, in this case A,;.

What are the observable properties of a program? Many observations can be made about the
computation of a program in a context. Some of the many observable properties of interest
are — whether the evaluation of programs terminate, whether the programs evaluate to
the same answer, whether the programs yield the same answer with identical execution
time, whether the programs create identical number of new memory locations, etc. The
most primitive of the choices listed above is observing whether the programs evaluate to
the same answer. As the evaluator for the language is deterministic, observing whether
programs evaluate to the same answer yields the same relation as observing whether two
programs terminate. The other choices for observations are more refined versions of these
two primitive observations. If I transform M to N, the minimal property that I would want
of the resulting programs is that one terminates if and only if the other does — guaranteeing
the safety of the transformation. I take termination of the evaluation of programs as the

observation I make.

Contexts, ranged over by (', are defined in figure 4.1. I use o to denote the place in the

context where the program will be placed. For example, Az. o is a context. Note that
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Cu= |o (Contexts,s)
| « x € Vars
| n nez
| b be b
| (A\z.C)
| o
| (fCC) feo
| (CC)
| (if C CC)
| (letval 2 = C'in C)
| (let fun fo =CinC)

Figure 4.1: Contexts in A

placing a term, M, in the holes in a context, C', written as C[M], may cause binding of free
variables in the term. For example, if I place z in the hole in Az. o, then I get Az.a — the
free variable x gets captured by the context. 1 now define when a program terminates in a

state with respect to natural semantics.

Definition 4.1 [Termination of programs in A, in natural semantics] Let M € A,s and
So be a state such that close(Sy, M). M in the state Sy terminates, written as (M, So) |5,
if there exists a value V and a state Sy such that (M, So) | (V,57). B

Observational equivalence using program contexts was first defined by [Mor68]. It has been
studied extensively for call-by-name and call-by-value A-calculus, and its extensions with
state [Abr87, AO89, Abr90, Hoa69, MT92, MS88, OT93, Plo76, PS93, SF92]. The definition
of observational equivalence for A,; is an extension to the definition for A, [Mor68] along

the lines of [MT92].

Definition 4.2 [Observational Equivalence with natural semantics] Let M and N be two
A, terms, and @) be the empty state. M is said to be observationally equivalent to N with
respect to the natural semantics, written as M =,, NV, if

VC € Contexts,s such that C[M] and C[N] are closed terms, (C[M],0) |5 if and only if
(CINL0) ns- W
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To determine whether two programs are equivalent, I have to check for their termination
in all contexts in Contexts,;. This obviously becomes a very difficult problem because one
has no control over what the arbitrary contexts might do. [MT92] provides an alternate
definition of observational equivalence in which they are able to reduce the contexts to
FvCont,s, the evaluation contexts. I use a slight variation of the definition of avciu gy

[MT92].

Definition 4.3 [=°"] Let M and N be two A, terms. M is said to be observationally
equivalent to N with respect to natural semantics, written as M =% N if

for all £ € EvCont,s and for all states 5, such that close(.5, E[M]) and close(.S, E[N]),
(E[M],5) |ns if and only if (E[N],5)],,. W

Going from arbitrary contexts to evaluation contexts, one loses the capability to bind vari-
ables using A and state. Since we are only evaluating programs which are closed with
respect to the A bound variables, the main concern is the binding of assignable variables.
Consider the two programs (asg [ 5;1) and (asg [ 7;1), where M; N is syntactic sugar for
(M.N)M),d ¢ FV(N). I evaluate the programs in a state which maps [ to 0. Clearly,
the two programs are not observationally equivalent with respect to the definition for =,,,.
However, if in the definition of =% I had insisted on F being closed, then the two pro-
grams would have been equivalent! The point is that F[M] may have free variables which
are defined in the state in which E[M] will be evaluated. The testing of the program is
done by not only placing it in different evaluation contexts, but also by altering the state
in which it is evaluated. The following theorem showing the equivalence of 2, and =

was proved in [MT92].

Theorem 4.4 (Theorem ciu, [MT92]) Let M and N be two A5 terms.
M 2., N if and only if M = M.

I translate the definition of 2" into FORUM. In order to do this, I have to generalize the

definition of eval,,, because the initial continuation instead of being K, as in the definition
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Cos([], K) K
Cos(E[f[| M],K) = Mv.(eval Hys(M) Au. K' fou)
ws(E[f V], K) = M.K' fo(V)v
Cos(E[[] M), K) = Av.(eval H,s(M) Au. (apply v u K'))
Coo BV [ K) = Ao (apply 60s(V) 0 )
Cos(E[ff [ M N],K) = Mv.(eval (ifbr v Hys(M) H,s(N)) K')
Cos(Elletvalz =[]in M],K) = Av.(eval Hys(M)[z :=v] K')
Cos(Elcell [1], ) = Av.VP,l.getC(P,1) = setC(P,l) = [(K'l) p(Pv)]
Cps(Elread []], K) = Av.(get v K')
Cos(Elwrite [| M], K) = Av.(eval Hys(M) Au. (set v u K'))
Cos(Elwrite V []], K) = Au.(set ¢s(V) u K')

B

where (' = gef Cos(E, K 1 vl — o)

Figure 4.2: Cys, translation of FvCont,s to FORUM terms of type vl — o

of eval,s, is now specified by E. I first define C,s, the translation of F into FORUM in

figure 4.2. The definition of eval,; needs to be changed.

Definition 4.5 [Evaluation in FORUM given an initial continuation F] Let M € A,
FE € FEvCont,s and Sy be a state such that close(So, F[M]). M with Sy in the initial

continuation E evaluates to V' with 51, written as evaly(F, M, Sy, V, S1), if

Yus 1 Eusy — VK 1vl — 0. 51°(K V) —o Sp%(eval Hys(M) Cos(F, K))

is provable in FORUM. B

It is quite obvious that eval,; will be true of E[M] exactly when eval; is true of M in the
continuation F. The following lemma states the relationship precisely, and follows from an

easy induction on the structure of £ and the definition of C,,.

Lemma 4.6 Let M € A,;, £ € FvCont,s, V € Values,s, 51 be a state, and Sy be a state
such that close(So, E[M]).
eval,s(F[M], So,V, 51) if and only if eval,(E, M, So, V, 51)

65



I now define the termination property, | s, for programs with respect to &, using the notion
of evaluation defined by eval;. Next, I define when two A,; programs are observationally

equivalent on the basis of their evaluation in FORUM.

Definition 4.7 [Termination of programs in A,; in FORUM] Let M € A,,, E € EvContys,
and Sp be a state such that close(Sy, £[M]). M in the state Sy with the initial continuation

I terminates, written as (&, M, So) | ¢, if there exists a value V', and a state Sy such that
eval,(E, M, S, V,5). &

Definition 4.8 [Observational Equivalence with &,5] Let M and N be two A, terms. M
is said to be observationally equivalent to N with respect to &,,, written as M =y N, if
for all £ € EvCont,s and for all states 5, such that close(.5, E[M]) and close(.S, E[N]),
(E,M,S)]|sif and only if (E,N,5)];. N

In order to use the translation in FORUM to prove observational equivalence, I first need

to prove that &, defines the same relation as =%

Theorem 4.9 (=°* and = coincide) Let M and N be two A, terms.
M = N if and only if M ~¢N.

Proof: To prove the above theorem, it is enough to prove that (£, M, So) | s if and only
if (E[M],S50) |ns, for any state Sy and F € FEvCont,s, such that close(Sy, F[M]) and
close( .S, E[N]).

Unraveling definitions of |; and |5, all I need to prove is that if for some V € Values,,
and state Sy, eval,(F, M, Sy, V,S51) then (E[M],So) | (V,51). Conversely, if for some
V € Values,s and state Sy, (F[M], So) | (V, 51) then eval (£, M, Sy, V, 51).

By the Correspondence theorem 3.8 in section 3.2

eval,( E[M], So, V, S1) if and only if (E[M], So) | (V, 51).
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Further note that by lemma 4.6

eval,( E[M], So, V, S1) if and only ifeval,(E, M, S, V, S1).

Using these facts the proof is completed. B

Now suppose I want to prove that two programs M and N are observationally equivalent.
Suppose, for some F € FvCont,s, states Sp and S, and V' € Values,, such that FV(E[M]) C
dom(5), eval,(F, M, Sq,V,51) is true. I look at the resulting proof tree in FORUM and
transform it to a proof tree for evals(F, N, So, V, S1). If I can exhibit such transformation
to and fro, then I have established that M is observationally equivalent to N. The problem
of determining whether two programs are observationally equivalent has been reduced to

specifying proof transformations.

4.2 Reduction in A, preserves Observational Equivalence

In this section, I use &, to prove that if a program reduces to another program, then the
two programs are observationally equivalent — the basis for the equational theory in [FH92].
evalg defines the evaluation of a term M in the state 5, and continuation F to a value V' and
state 5. In this sense, evaly is not specifying reductions, rather, it is specifying complete

evaluations. However, using lemma 4.6 it can be easily proved that

eval,(F, M, Sq,V, 51) if and only ifevaly([], E[M], So, V, S1).

Using this basic intuition, I define when M reduces to N.

Definition 4.10 [Reduction in A,s] Let M, N € A5, 51 be state, and Sy be a state such
that close(Sg, M). M in state Sq evaluates to N in state 57, written as reds(M, So, N, S1),
if
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s t Evs 3 — VK 1yl — 0. S1%(eval H,s(N) K) —o So°(eval H,s(M) K) is provable in
FORUM. R

I would like to prove that reduction preserves observational equivalence, i.e. if
reds(M, So, N, S1) then M = N. Unfortunately, as stated my claim would be false. Fol-

lowing is a counter-example.

Example 4.11 Let M =;.p ref 0, So =4 0, N =def I and 51 =gof (1,0). Clearly
reds(M, So, N, 51) is true.

However, ref 0 is not observationally equivalent to [. To distinguish the two terms, take

E = deref [Jand 5 = (I, P), where P is a divergent program. l

The problem is that evaluation of a program may create new memory cells and change the
existing state. However, the statement M =; N throws away this information. In the above
example [ is defined in the state 57, but this information was not used in the attempted
proof of ref 0 = [. On the other hand, (ref 0) is observationally equivalent to [ with respect
to all states which map [ to 0. Suppose we had a way of representing state in the syntax
of A,s, then the situation can be repaired. I would change the succedent of my claim to
M’ = N', where M" and N’ are A,; terms, such that M’ incorporates the state Sy and
M, while N’ incorporates the state S; and N. I will prove the new statement of my claim
below. I define the translation of a state into the syntax of A, [MT92, SF92]. (M; N ) is
syntactic sugar for (Ad. N) M, d ¢ FV(N).

Definition 4.12 Given a state S, I define a A,; term ST, the encoding of state S in A,,.

5t =def (Az1,... @0, y.asg 2y Vi jasgay Vijy)(ref 1), (ref n))

Where
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e y is distinct from all z;, 7 € [1,n].

e S(z;)=Vi, 1 €[l,n].

The proof of the following lemma is immediate from the construction of S* for a state 5.

Lemma 4.13 Let N € Ay, and S a state such that close(S, N).
red;((ST N),0, N, S) is true.

Theorem 4.14 Let M be a redex, N € A,s, 51 be a state, and Sy a state such that
close( .Sy, M ).
If redS(M, So,N, Sl) then (SO+ M) gf (Sl+ N)

Proof: Assume given M, N € A, Sp astate such that close(.So, M), and reds(M, So, N, S7)
is true. Let M =4, (Sot M) and N’ =def (511 N). Unraveling the definition of M’ = N,
I have to prove that for any arbitrary state S and F € EFvCont,,, such that close(.S, F[M'])
and close( S, E[N"]), (E,M’,5) |y if and only if (£, N',5) ;.

Going from right to left, I have to prove that if there exists V € Values,s, and a state
S" such that eval,(Fy, N', 5, V,5"), then eval,(F1, M', 5, V,5).

Assume evals(F1, N',5,V,5"). 1 have to construct a proof for evals( £y, M, S, V,5"). Eys
is in the intuitionistic part and X,s, K is in the signature of all the sequents shown in
all the proofs that I construct. I start by constructing a proof below, called o1. In oy,
61 is obtained by unfolding the definition for red (M, So, N, 51) and lemma 4.13 gives me
b3 Let My =gef Hos(M), Ny = def Hys(N), My = def Hys(M'), Ny = def Hos(N'),
K’ =def Cos(F, K),and V; =def bus (V).
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(51 62
S1%(eval Ny K) — So°(eval My K) S¢°(eval My K) — (eval M{ K)

S1%(eval Ny k) — Sp°(eval M| K)

CutS

By definition of eval,, and N’ I must have the following proof in FORUM.

gé!
s, 251,[( : CLs; S/O(I( Vl) — (eval Ny I(/) prs prsl

: backchain on ref clause,YR,= R
Ys, K :Clg; S"(KVy) — (eval N{ K')pT's

VR, = R
— VK vl — 0. 5°(K'Vy) —o S°(eval N{ K')

Using 1 in the above proof, I construct oy below.

gé!
s, 251,[( : CLs; S/O(I( Vl) — (eval Ny I(/) prs prsl

:,=> R,VR
Yg, K :Clg; S"(K Vi) — S{(eval Ny K') pT's

Using o3, I construct the required proof below. To keep the proof readable, I do not write

Y, K in the signature, and CLg in the intuitionistic part of some of the sequents.

02 04
S"(KVy) — (eval Ny K')pT's  51%(eval Ny K') — (eval M; K')

Vg, K :Clg; S"(KVy) — (eval M{ K")pTs

CutS

VR, = R
— VK vl — 0. 5°(K Vi) —o S°(eval M{ K')

To complete the construction, I build o4 below. o3 is obtained from oy by inflating the

signature and the intuitionistic parts of the sequents in the proof.

g3
K'isaXgterm Xg,K:Clg; 5i°eval Ny Ky) — S¢°(eval My Ky)

Ys, K :Clg; 51°(eval Ny K') — (eval My K')

CutS
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Going from left to right, I use the fact the £, is deterministic, because there is exactly
one clause for every term constructor. Hence, if red,(M, So, N, S1), then every evaluation
of M that evaluates the term beyond N must pass through the reduction of M to N.
Assuming evalg(Fy, M, S,V,5"), T have to construct a proof of evals(Fy, N, 5, V, 5). The
proof in evalg( £y, M',5,V,5") must have the following shape. To keep the proof readable,
I do not write the signature and the intuitionistic part of the sequent in all the sequents in
the proof.

6
25,251 : CLs,CLSO ; S/O(I( Vl) — (eval N1 I(/) prsprsl

: reduction of My in Sy to Ny in Sy
S"(KVy) — (eval My K')pTspTg,

. backchain on ref clause,YR,= R
S"(KVy) — (eval M{ K')pTs

VR, = R
S"(KVq) — S°%eval M{ K')

Using 6 1 construct the required proof below.

0
25,251 : CLs,CLSO ; S/O(I( Vl) — (eval N I(/) prsprsl

: backchain on ref clause,YR,= R
Yg:Clg; (K Vy) — (eval N{ K')pl's

VR, = R
S"(KVy) — Sp° (eval Ny K')

The above proof highlights some key aspects £,5. If M reduces to N, then N’, the translation
of N, entails M’, the translation of M. Hence, whenever N’ evaluates to a value, so will
M'. The proof going from right to left uses this fact and CutS to construct the required
proof. Now, N’ entails M’. This does not necessarily imply that an evaluation of M’ has to
have N’ as an intermediate state. Since &,5 is deterministic, i.e. for every term construct

of type tm there is exactly one clause, if M’ evaluates to a value, and N’ entails M’', it
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necessarily follows that the evaluation has N’ in some intermediate state. This observation

yields the proof going from left to right in the above theorem.

4.3 Observational Equivalence proofs in FORUM

In this section I present the Meyer-Sieber examples [MS88] in the UML, and prove the
desired equivalences, interpreting equivalence as =;. I have converted the Algol-like no-
tation of [MS88] into UML syntax following [MT92]. State introduces new nuances into
the programming language, and correspondingly into any theory which tries to study the
equivalence of programs with state. The idea behind the examples was to highlight some
of the novel issues that come up when state is added to a higher order language. Let {} be

a divergent program in UML.

Example 4.15 [Example 1] Let M € A, and My =deflet valz =ref Oin M, = ¢ FV(M).

M =y M,

The intuitive justification is simple. As z ¢ FV(M), the creation of 2 has no effect on the
behavior of M. R

The proof for this example follows from the following more general statement of the problem.
The lemma is proved by a straightforward induction on the height of the evaluations of
(S5 M) and M in FORUM. The essential point is that the evaluation of (53 M) creates
new locations by picking new eigen-variables in FORUM. Hence, if (S;’ M) is placed in an
evaluation context F, then F cannot access the newly created locations. The computations

of (S M) and M are identical except for this difference.

Lemma 4.16 (Elimination of inaccessible cells) Let M € Ay, L =def li,..., 0, , and

S1 be a state such that :
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close( .51, M).

L C dom($7).

forallle L, 1 ¢ FV(M).

ifl € FV(M), then for alll" € L, I" ¢ FV(51(1)).

Ss is the restriction of 51 to L.

(55 M) =y M

I first point out some equivalences for which I do not need induction on the height of proofs.

The proofs in FORUM for these terms are permuted to each other.

Remark 4.17 Let M, N, PA,,, and V € A,

1. letvalz =Vin M 2; (Az. M)V.

2. E[M]=¢letvalz = M in Efz], 2 ¢ FV(E).

3. Elletvalz = M in N] 2, let val 2 = M in E[N], 2 ¢ FV(F).

4. let val x = ref M in I[e] = let val z =ref V in Elasgz M), = ¢ FV(M).

5. letvalz =ref Pin ((Az. M) N)=Zs ((letvalz =ref Pin Az. M)N), 2 & FV(N)

6. letval z =ref Vin (A2. M) N) = ((Az.letval 2 = ref Vin M)N), 2 ¢ FV(N),
2 g FV(M)u FV(V)

Equivalence 1 is obvious from the interpretation of letval. Equivalence 2 and 3 follow from
lemma 4.6. For equivalence 4, observe that x is inaccessible from M, thus evaluating M
with or without & declared in the environment makes no difference. Equivalences 5 and 6

result from the permutation of proofs because of information about variable occurrences.

Example 4.18 [Example 2] M € A;.
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[ ] M1 Idef Q

o My =gyof let val w = (ref o) in ((asg @ true); (M o); if (deref 2) Q 1), v & FV(M).

Lemma 4.19 My =5 Mso
Proof: The strategy is to show that for any F € FvCont,s, and any state S such that
close( .S, My), (£, M, 5) | is not true.

On the contrary, suppose that (E, My, Sg) | s is true for some Ey € EvCont,s, and state
So such that close(Sg, Fo[M3]). Then there exists a value V and a state S; such that

evaly( Fo, Ma, So,V, 51) is true. Now by the equivalence in remark 4.17,

M; = ((Me);let val z = (ref 0) in (if (deref 2) Q2 1)).

o V' =jef Pus(V).

o M =def Hys(M).

Q= gep Hus(9).

Q =gep (let val a = (ref 0) in (if (deref 2) Q 1)), Q" = g5 Hus(Q).

o N =gef (Me);Q), N' =5 Hus(N).

4 =def CUS(E I().

Cy =gef Au. (apply (abs Ad. Q) uCy),d¢g FVQ).

By definition of = I have a proof ¢ of

sy K, X5, ¢ Eus, Clsgy ;3 ST(K V') — (eval N' C1) pTs
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in FORUM.
The last rules of § must be as shown below.

01
s, Ky Ys, + Eus, Clg, 5 SY(K V') — (eval (app M’ o) Cy) pT's,

s, Ky Ys, : Eus, Clg, 5 S{(K V') — (eval N' Cy) pTs,

Suppose ((M o), Sp) diverges then there cannot exist a 6; because of theorem 3.8. There is

a contradiction, hence I am done.
Suppose (M o), S0) |} (U, S3). Hence, by theorem 3.8 I would get §; as shown below. Let

U’ =def (bvs(U), S3 =def Soll— 0], 1 & dom(Sg).

W
Yos, K, Ys, 1 E4s, Clg, 5 SY(K V') — (eval Q' Cp) pl's,

Yus, ], Xg, 1 E4s, Cls, 5 SY(K V') — (eval Q' C1) pl's,
Yous, K, Ys, 1 E4s, Clg, 3 SY(K V') — (apply (abs Ad. Q") U' C1) pl's,

Yos, K, Ys, 1 Eus, Clgy 5 SY(K V') — (eval (app M’ o) C3) p1's,

Using theorem 3.8 and the fact that €2 is divergent I get that é; cannot exist in FORUM. B

Example 4.20 [Example 3] Let M € A,;.

o Msy =gef let val x = (ref 0) in (let val y = (ref 0) in M).

o Msy =gef let val y = (ref 0) in (let val z = (ref 0) in M).

Lemma 4.21 M3, =5 Mz,
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Proof: The idea is to show that given a proof for the evaluation of Ms5; I can transform

it to an evaluation of M35, and vice versa.

Let E be an arbitrary evaluation context and Sy any state such that close(.So, F[Ms51]).
Suppose {E[Ms1],5) | (V,51), for some value V' and state Sy. Let V’ =def bus(V),
C1 =gef Cos(E, K), NT = gof Hos(Ms1), Ny =gep Hos(Ms2).

By theorem 3.8, I have a proof in FORUM, &7, of
sy X5y, K 2 Eus, Cls, 5 ST(K V') — (eval Ny C1) pTs,.

I need to transform éy, into a proof for the evaluation of N} in FORUM. The shape for é;

is shown below.

62
Evsv 2517]( : gvsv CLS1 ; Slo(]( V/) - (eval (app (app Q/ ll) l?) Cl) pFSO p(Pl 0) p(PQ 0)

Yuss NSys W 2 Eps, Clgy 3 SY(K V') — (eval Ny Cy) pTs,

Using 65, I can trivially get the evaluation for M5, in FORUM. The proof in the other

direction follows from a similar argument. B

The above proof shows the advantage of using eigen-variables to generate names of new
assignable variables. The two terms in this example can essentially be renamed to each

other. This fact is made precise by the usage of the eigen-variables.

Example 4.22 [Example 4] Let M € A,;.

[ ] M4.1 Idef Q

o Miz =gef let val z = (ref 0) in
let val f = Ad. (asg « (+ 2 (deref z))); (deref ) in
(M f); (if (= 0(mod(deref )2))Q 1), z, f ¢ FV(M).
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Lemma 4.23 My =5 My

Proof: The strategy is to show that My, will have no evaluation in FORUM. I only consider
the case when (M f) converges, as otherwise the argument is trivial. I introduce a new

idea in this proof.

The essential point of the example is that access to the local variable z is passed to M
only via f. Hence, the content of z can only be incremented by 2, and then read out —
no other operation is possible on z. In a way, an abstract data type has been created with
the only interface function being f. The if statement checks whether this abstraction was

maintained by M or not.

Let

F = gef VE,V,U.[(apply ¢ V K)p(PU)] o— [(K2x(U/2+ 1)) p(P2+(U/2+1))].

P and ¢ are declared in the signature. F encapsulates the computational behavior of f.
Note how it does away with the name of the cell (P U), and need for getC and setC clauses
for P.

Suppose [ have a proof, ¢, in FORUM of
s, X5y, Wy e, Pl €5, Clg,, Fy S{(K, V') — (eval (app M’ ¢) Cy) pT's, p(P0),
where £ € EvCont,,,

e 5o is a state such that close(Sg, E[M]).
o V' =jef Pus(V).
o M’ =def Hys(M).

7



o (4 =def CUS(E,I().

In 6 the only interaction for P is via I as there are no getC and setC clauses for P and [ in

the sequent above. Thus, it is trivially true that S1(1) is a multiple of 2.

[ construct 61 from ¢ using CutS. Let F' =;.¢ Fle:= Addy], and

Addy = gep Hus(Ad. (asg @ (+ 2 (deref 2))); (deref z)).

)
Addg is a ¥y, term ¢, P12 F'; SO(K, V') — (eval (app M’ ¢) C1)pl's, p (P0)
Pl F; SO(K, V') — (eval (app M' Addy) C1) pT's, 9 (P0)

I construct & below. Let CL; =g.r {getC(P,{),setC(F,1)}. In this proof I have used the
equation 2% (U/2+ 1) = U 4 2, which is true if the division is for real numbers.

PILK,UV:ClL,Es; (KU+2)p(PU+2) — (KU +2)p(PU+2)

s evaluate Add,
P LK, UV:CL,Es; (KU+2)p(PU4+2) — (apply Add, V K)o (PU)

VR, ©o R
Pvlvzvs:Clegvs; —

Using é; and 63, I construct é3 below. 83 is the computation of (app M’ Addy) in FORUM!
By the observation regarding é;, S1(/) is a multiple of 2. Hence, it is clear that (if (=
0 (mod (deref [)2)) Q 1) will evaluate to the value of 2. Using theorem 3.8 and the fact that

Q is a divergent program, I have proved that M, o does not converge.

(52 61
Pl:Cly; — F' Pl F'; S{(K, V') — (eval (app M’ Addy) Cy) pI's, p(P0)

P,l:CL;; S{(K, V') — (eval (app M’ Addy) Cy) pT's, p(P0)

To complete the proof I have to convert any evaluation of (app M’ Adds) into an evaluation
of (app M’ ¢). I prove this by a straightforward induction on the height of the evaluation
of (app M’ Add;). &
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Example 4.24 [Example 5] Let M € A,;.

[ ] M5.1 Idef (M Ad. .)

o Msy =gef let val z = (ref 0) in
let val f = in Ad.asg = (+ 1 (deref z))
(M f)

Lemma 4.25 M5 =5 M5,

Proof: The strategy is to show that an evaluation of M5y can be transformed to an eval-
uation of Mso, and vice versa. The essential point of this example is that incrementing
achieved by f is useless for M because it can never read the contents of z. Hence, might
as well as use Ad. e instead. This equivalence has been especially problematic for various

denotational semantics [0T92].

The proof strategy is the same as in example 4.

Let F' =40 VK, V.(YU.[(apply ¢ V K) p (PU)] o= VW.[(K o) o (PW)]).

P and ¢ are declared in the signature. F encapsulates the computational behavior of f and
Ad.e. Note how it does away with the name of the cell (P U), and need for getC and setC

clauses for P.

Suppose [ have a proof, ¢, in FORUM of
Yuss Bsy, Koo, Pl Es,Cls,, F; S{(K, V') — (eval (app M’ ¢) C1) pT's, p (P0),
where £ € FvCont,.

e 5o is a state such that close(Sg, E[M]).
o V' =jef Pus(V).
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o M =def Hys(M).

o (1 =def CUS(E,I().

I construct é; from é using CutS, 7 € [1,2]. Let F; =g.p Flc:= D;], where
Dy =gef Hus(Ad.asg 1 (+ 1 (deref 1)), Dy =g.r Hos(Ad. @), and 7 € [1,2].

0
D;isa X, lterm ¢, Pl:F; SY(K,V') — (eval (app M’ ¢) C1) pT's, p(P0)

Pl F;; S(K, V') — (eval (app M' D;) C1) pl's, o (P0)

I construct é5 below. Let CL; =g.r {getC(P,1),setC(P,1)}.

PLK,UV:CL,E: (Ke)p(PU+1) — (Ke)p(PU+1)

PLEK, UV :CL, s VW. (K o) p(PW) — (Ke)p(PU+1)

s evaluate Dy

Pl K, UV :CL,Es; YW.(Ke)p(PW) — (apply D1V K)p(PU)

VR, ©o R
Pvlvzvs:Clegvs; —

I construct é4 below. Let CL; =g.r {getC(P,1),setC(P,1)}.

PILK,U,V:CL,Es; (Ke)p(PU) — (Ke)p(PU)
PLK,U,V:CL, s VW. (K 0)p(PW) — (K o) p(PU)

: evaluate Do

Pl K, UV :CL,Es; YW.(Ke)p(PW) — (apply D2 V K) p(PU)

:VR, ©o R
Pvlvzvs:Clegvs; —

Composing 6; and és, I construct the evaluation of (app M’ D) in FORUM. Composing 63
and 64, I construct dg. ¢ fails to be the evaluation of (app M’ D;) in FORUM, because of
the extra cell P in the environment. However, I can use lemma 4.16 to get rid of this extra
cell. To complete the proof I have to convert proofs of evaluation of (app M’ D;), i € [1, 2]
to an evaluation of (app M’ ¢). I prove this by a straightforward induction on the height of
the evaluation of (app M’ D;). R
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Using the meta-theory of FORUM, I have proved many of the Meyer-Sieber examples from
[MS88] and an example from [OT92]. This style of reasoning bears a close resemblance to
the style in [OT93] using logical relations. The use was most remarkable in the fourth and
fifth example where 1 was able to use CutS and Cutl to get the proofs. One direction in
this proof still needed to induct on the height of evaluation proof tree, a weakness of the
argument that I would like to get rid of in my future work. The first three proofs were
essentially arguments about permutations of evaluations in FORUM. I want to investigate
whether I can make these proofs compositional using resolution on the proof rules. The
meta-theory gives me distinct advantage in the above proofs. However, I would like to
develop the meta-theory so that composition, and permutation of resolution can be studied

in finer detail.
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Chapter 5

Specifying DLX - a RISC

architecture

In this chapter I specify the sequential and pipelined operational semantics for the DLX
[HP90] architecture — a prototypical RISC (Reduced Instruction Set Computer) architec-
ture — in FORUM. DLX is a generic load /store machine representative of the RISC machines
which have become very popular since the late 1980’s, e.g. Intel i860, MIPS R2000/R3000,
Motorola 83000, SPARC, PowerPC. I will prove that the sequential and pipelined specifica-
tions of DLX are identical, and using this equivalence give a simple proof of the correctness of
code rescheduling. The main point of this chapter is that FORUM facilitates the declarative
specification of the concurrent pipelined operational semantics of DLX with complex synchro-
nizations. Furthermore, the framework allows me to handle structural and data-hazards,

and specify optimizations such as call-forwarding and early-branch prediction declaratively.

The key feature of the FORUM specification is that it specifies the computation of the
pipeline as compared to the existing specifications in the literature which specify the

pipeline’s temporal behavior [AL93]. The specifications in FORUM are executable as logic
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programs yielding a prototype implementation of the pipeline which can be used for collect-
ing statistics and experimentation. This seems to be a unique feature of the FORUM spec-
ification amongst all the specifications for DLX style pipelines. Furthermore, the FORUM
specification is concurrent — different stages of the pipelines can be computed independently
of each other. Moreover, the equivalence of sequential and pipeline operational semantics
provides me with a tool to prove correct various optimizations done by the back-end opti-
mizer and/or hardware such as code rescheduling. The proofs of program-equivalence are

once again achieved by proof transformations very much along the lines of chapter 4.

In this chapter I first introduce the DLX architecture, and specify its sequential operational
semantics. I specify only the integer part of DLX and as such, the discussion will be
restricted to relevant parts of the architecture, the reader is referred to [HP90] for a detailed
description. The specification of the floating-point operations and interrupts in the pipeline
do not require any new specification techniques, and thus they have been left out from the
present discussion. Next, I specify the operational semantics of DLX pipeline. I prove that
the DLX pipeline specification is equivalent to the sequential specification. The program is
then extended to call-forwarding and early-branch prediction. Finally, I use the sequential

operational semantics to prove the correctness of code scheduling.

5.1 The DLX architecture

The architecture of the DLX machine — the user visible part of the instruction set of DLX
— emphasizes design for pipeline efficiency, an easily decoded instruction set and efficiency
as a compiler target. In this section, I describe the architecture for the integer part of
DLX, for a complete description and discussion of the entire DLX architecture the reader is
referred to [HP90]. I have left out the jump instructions because their introduction needs
no new ideas — the presence of branch instructions causes all the complications that they

may cause.

DLX has thirty-two 32 bit general-purpose registers (GPRs). Memory is word addressable
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Instruction Instruction name Meaning

lw R1, I(R2) Load word R1:= MJ[l + R2]

add R1,R2,R6 Add R1:= R2+R6

sll R1, R2, R4 Shift left logical R1:=R2 <« R4

seq R1,R2,R3  Set equal to if (R2 = R3) R1:=1
else R1:=0

beqz R4, §1 Branch equal zero if (R4 = 0)PC:=PC+ [ +4;
(PC+4)—2Y) <PC+ 1T < ((PC+4)+2")

Figure 5.1: Semantics of example instructions in DLX.

in Big Endian mode with 32-bit address, and all memory references are through loads
or stores between memory and the GPRs. I treat memory as word addressable to avoid
unilluminating details regarding byte and halfword addressability. All instructions are 32-
bits and all memory accesses must be aligned. Since I am only specifying the integer part

of DLX, I use the GPRs for integer multiply and divide instructions.

There are three classes of instructions for the integer part of DLX : loads and stores,
ALU operations, and branches. A load instruction is written as lw R1,/(R2) with the
intended semantics being that R1 is assigned the contents of the memory array, M, from
the address R2 plus the 16-bit integer I. A store operation written as sw [(R1), R2 results
in M[I 4+ R1] := R2. The operands and results for all ALU operations are stored in registers.
The operations include simple arithmetic and logical operations : add, subtract, and, or,
exclusive or, shifts and compares. One of the arguments in the operations can be the
number itself (called the immediate) instead of a register. However, to focus on the central
issues in the specification, I do not consider these variants of the instructions. Typical ALU
instruction is written as op R1, R2, R3 with the intended semantics being that R1 is assigned

the value R2 op R3.

The branch instructions can only test for equality with zero and the offsets are limited to
16-bit integers. To present the specification in a more understandable way, I have chosen
a representative set of instructions from each class for the DLX [HP90]. I have added

instructions end and begin, which cause the computation to halt and start, respectively.
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Data transfers Move data between registers and memory

lw, sw Load-word, store word (to/from GPR).
Arithmetic/Logical Operations on integer or logical data in GPRs
add, addu, sub, subu Add and subtract; signed and unsigned.
mult, div, multu, divu Multiply and divide; signed and unsigned.
and, or, xor And, or, exclusive or.
sll, srl, sra Shifts: left and right logical, and right arithmetic.
S__ Set conditional: “__” may be lt, le, eq, ne.
Control Conditional branches
beqz, bnez Branch GPR equal/not equal to zero;

16-bit offset from PC + 1.
end, begin Halt, start computation.

Figure 5.2: List of DLX instructions selected for specification.

A sample of instructions from the different classes along with their intended semantics is

given in figure 5.1. A list of the selected DLX instructions is given in figure 5.2.

5.2 Sequential specification for DLX architecture

In this section, I specify the sequential semantics of the DLX machine. The DLX instructions
are of a very simple nature. In particular, no instruction can both perform an arithmetic
operation and a memory operation. Consequently all instructions can be broken into five
distinct parts: fetch the instruction to be executed, decode instruction, execute instruc-
tion, perform required memory-access, and write-result. The block diagram detailing the
connectivity of the various units is shown in figure 5.3. In the figure only MAR (Memory
Address Register) can set the address for a memory load/store, and only MDR (Memory
Data Register), can send/receive data from memory. IR (Instruction Register), and PC
(Program Counter), save the current instruction being executed and the address of the
next instruction to be executed, respectively. The latches A, B and AOUT provide storage
for the inputs and the outputs of the ALU. The block named CONTROL decodes the in-

struction in IR, and sets all the switches to generate the appropriate flow of data required
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Figure 5.3: Block diagram for the connectivity of functional blocks in the DLX.
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to execute the current instruction. The individual parts in the execution of an instruction

are further elaborated below.

1. Instruction fetch (IF): MAR := PC; IR := M[MAR]
Operation: Send out the PC and fetch the instruction from memory into the instruc-

tion register, IR. PC is transferred to MAR because PC is connected to memory only

via MAR.

2. Instruction decode/register fetch (ID): A := Rsl; B := Rs2; PC:=PC+ 1
Operation: Decode the instruction and access the source registers from the register
file. The PC is also incremented to point to the next instruction to be executed.
Decoding is done in parallel with reading registers to the latches A and B, because of
the fixed format of the DLX instructions. Moreover, as the immediate argument occurs
in the same bits in all DLX instructions, the sign-extended immediate, if needed, is

also calculated in this step.

3. Execution/effective address (EX): The ALU operates on the operands, performing

one of the following functions depending upon the DLX instruction type.

e Memory reference: MAR := A + (IR16)'°4£IR16..31; MDR := Rd
Operation: The immediate is calculated by taking the upper 16-bits of the IR
and filling the lower 16-bits of the immediate with the 16th bit of the IR. The
immediate is added to the latch A. The destination register Rd is stored in MDR,
because GPRs can store data into memory only via MDR. IR4.. 31 are the lower

16 bits of IR, and (IRy6)'® is the 16th bit of IR repeated 16 times.

e ALU instruction: AOUT :=Aop B
Operation: The ALU performs the operation specified in the opcode on the value
in latch A and on the value in B. The result is stored in another latch called
AOUT.

e Branch: AOUT := PC + (IRy)'%4#IRy6._31; cond := (A op 0)
Operation: The ALU computes the branch target address by adding the PC to

the immediate. It then compares A to 0; op can be either = or #.
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4. Memory access/branch completion (MEM): The only DLX instructions active in this

step are loads, stores and branches.

e Memory reference: MDR := M[MAR] or M[MAR] := MDR
Operation: For a load data comes from memory to MDR, and for a store data

from MDR goes to memory.

e Branch: if (cond) PC:= AOUT

Operation: For branch instructions PC is updated if cond is 1.

5. Write-back (WB): Rd := AOUT or MDR
Operation: Write the result into the register file, whether coming from the memory

system or from the ALU.

The idea behind specifying DLX is pretty clear, given the above explanation of the operation
semantics of the instructions. I look at the various registers and the memory array as
entities in some common pool. The evaluation of the program consists of a synchronization
between the PC, the registers, and the memory, which contains both the program and the
data. Memory is represented by a two place predicate, (mn V'), the first argument is the
address - an integer - of the memory cell and the second argument is the contents of the cell.
Similarly, registers are represented by binary predicates (ri V) and program memory by
(pia). An instruction is represented as (ix X sy s2d [ op), where X denotes the class of the
instruction, s; the first register argument, s5 the second register argument, d the destination
register, I is an immediate and op the particular function to calculate. It should be obvious
that all instructions can be represented with this representation, however, it is not necessary

that all fields will have meaningful data for all the instructions.

The signature, called X, specifying the constants used in the sequential specification of DLX
is given in figure 5.4. A function for every arithmetic/logical function of DLX is assumed
in FORUM - I treat these functions as if they were in-built. Further, the type int is
declared with all the integers as terms of type int. The built-in functions are represented
by tokens which are members of func. Members of the type class represent the classes of

instructions. The predicate cont signals that computation should continue, and num is a
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predicate whose argument counts the number of instructions executed. (eq V) is provable

if and only N is 1, and (ne N) is provable if and only if N is 0.

cont : o

num, eq,ne : int — o

op : int — int — int
r,m : int — int — o
a,b,pc : int —o
p : int — inst — o

ix : class — int — int — int — int — func — inst
op : func

alu,br,1d,st,ht, bg, no@ : class

Figure 5.4: Signature for specification of DLX

The specification for DLX, called &, is the set of universal closure of clauses in figure 5.6.
Different kinds of parentheses have been used in figure 5.6 to enhance readability. Note that
for every instruction type — specified by its class — there is exactly one clause in figure 5.6
with a matching head. The one subtlety in the specification is that I cannot perform a
multi-way synchronization amongst the operand registers, destination register, and PC for
the ALU operations. The problem is that there is only one Rn, while the instruction may
need three copies — a deadlock would occur. The specification thus decouples the reading
of the two source registers into individual unsynchronized steps. The idea is that the two
source registers are read in any order into the latches A and B. Once the latches are loaded
the operation is performed and result is stored in the destination register. In this approach

all of the register arguments may be identical or different — a deadlock will not occur.

The DLX programs in FORUM are defined by the terms parsed by the non-terminal Fj,
[ € nat in figure 5.5. A program is loaded in program memory, and then evaluated with
respect to a state specified by the contents of the special purpose registers, general purpose
registers, memory and PC — the data state. The definitions of program state and data state

are given below.

Definition 5.1 [Program State] Let P be an abbreviation for

AM, &1,y T (Pla1) @ ... p(pmay,) for m € nat. For any dlz program P, (P 113) is a
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R = n n € [1,32]

C u= 1d | st | alu
Il’,l,m,n = q qc [l/, l] U [0, m] U [—n, 0]
I$1/717m7n n= (iX erRRIl’,l,m,n Op)
| (ix CRRRIyp,,0p) q =21
Bl,l,m,n n= Iwm,l—n—l,O,n—I—?
Brimn = 1opqr a1 1042 Bro1immni1 (I'+n),m<land 1 <!
Al,l,m,n = 190—(1+1),—(m+n+2),0,n+1
Apimn = Ix—(l—|—2—l’),—(m—l—n-l—?),l’—l,—(n-l—l); A1l mont1 (l/ + n), m<land 1<
Hl,l n= 1960,0,—1,1
Hyy = Twoop_gi—v—1; Hy_1y L<lI"<l
S 1= (ix bgRR RIyoop)
E = (ix ht RRRIypop)
Qe = S F
Quy2 == S;Brioo ¥ 1<
Qit2 = S By imoi Hoy A os F I=U4+1U"+m, 1<l 1" m
Po= Q| Qs P [=0U+1" and2 <", 1"

Figure 5.5: Grammar for DLX programs

program state. P are the instructions in P, and by definition [ is the number of instructions

mP. N

Definition 5.2 [Data State] (r1)...(r32) are the DLX registers, n € nat is the number
of memory cells, pc is the program counter, and num stores the number of instructions

executed. Let S be an abbreviation for

AV, U, L. (pc L) p(r1Vi)p...(r32Va) pmlUy)p...(mn0,) p(numl, ).

The lengths of Vand U - 32 and n + 1 respectively — if implicit, are assumed to be as

required.

— -

Foranyn >0, L,Vy,...,Vaq, Uy, ..., Upyq @ int, (SnV U L) is a data state. B

It is worth pointing out that execution cannot start without executing bg as clauses for all

instructions other than bg synchronize with cont, and that the execution cannot terminate
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(pcL)p(pL(ix aluSy 5, DI10))pcontp(numM) o
[(pL(ix aluS1 5, DI10)) p(num(M 4 1)) o—
[(x51V1) o= (x5 Vi) p(a )]
©[(x52V2) o= (x52V2) p(bV7)]
©lxr DVa)p(aVi)p(bVz) o= (x D (V1 O V) peontp(pe (L + 1))]]]

(pcL)p(pL(ix 1d51 5. D10))pcontp(numM) o—
[(pL(ix 1451 5:D10))p(num(M + 1)) o
[(r51V1) o= (x 51 V1) p(aVi)]
Ol DVa)p(aVi)p(m(Vi+1)Vs) o=
(xDVs)pcontp(pe (L +1))p(m(Vi+I)Va)ll]

(pcL)p(pL(ix stS15:D10))pcontp(numM) o
[(pL(ix st 51 5:D10))p(num(M + 1)) o
[(x51V1) o= (x5 Vi) p(a )]
Ol DVa)p(aVi)p(m(Vi+1)Vs) o=
(xDVz)pcontp(pe (L +1))pm(Vi+1)Va)ll]

(pcL)p(pL(ix brS15:D10))p(rS Vi) pcontp(numM) o
(pL(ix brS1 5, DI0))p(rSi1Vi)pcontp(num(M +1))p
[(eq(V1 0 0)) ® (pe(L+1+1))]® [(ne(V1 0 0)) @ (pe (L +1))]]

(pcL)p(pL(ix htS1 5. D10))pcontp(numM) o
(pc(L+1)p(pL(ix htS1 5, D10))p(num(M + 1))

(pe L) 9 (p L (ix bg Sy S2 D 10)) p (mum M) o-
(e (L + 1)) (p L(ix bg 81 S5 DT0)) o cont  (mum(M + 1))

(eql) o— 1

(ne0) o— 1

Figure 5.6: Sequential specification of DLX
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successfully without executing ht because the clause for ht is the only one that consumes
cont. Hence, the value of pc in the initial data state must address a bg instruction in the
program state. The program state is static — its contents do not change during execution —
it instructs the machine how to alter the data state. Thus, the evaluation, given a program
state, transforms one data state into another. The definition of evaluation is made precise

below.

Definition 5.3 [Sequential evaluation in DLX, &] Given data states §; and S, and
(P l]_jl), a program state. P; evaluates in &1 to Sy written as Sy p (P ”3’1) —s Sop (P l]_jl),
if

S &5 S p(PLR) — Sip(PLR)
is provable in FORUM. B

A small example of an evaluation will explain the specification better. I consider a program
that adds the contents of second and third register, and places the result in the second
register. The program is stored in the memory starting at the first cell. The data state,
and the program state are described in figure 5.7. I use &1 as an abbreviation for the entire
expression in the figure. At the end of the computation the resultant state, S will have 9
in the second register, 4 in the pc, 3 in the num and otherwise be identical to &;. The proof

of the computation is detailed below.

(pc0) 9 (r10)p(r24) p(r35) ... p(r32 V) p(mnU,) p (num0) p }
(pl(ix bgl1230+4))p(p2(ix alu232/+))p(p3(ix ht12304))p(pmW,,)

Figure 5.7: Example program in DLX

Let &f be identical to &1, except that it does not contain pc and num, and S{' be identical
to &1 except that it does not contain pc, (r2 ) and num. I begin the proof by backchaining
on bg clause, which generates cont. Next, I backchain on the alu clause, and then the only

clauses that I can use for backchaining are the ones introduced by the alu clause to read
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the two source operands. Hence, I read second and third registers into a and b, respectively.
Next the actual computation is performed using the values in the latches, and the value
of (r2) is updated to 9. To complete the proof, I have to construct §. & and ¥ are not
written in the proofs for the sake of readability. It is also worth pointing out that neither
provability nor the actual answers computed depend upon the order in which the source

registers are read.

)
Sy — SV p(r29)pcontp(pc3)p(num2)
S2,(r24)p(ad)p(dh) o— (r29)pcontp(pc3)— Sip(bd)p(ad)p(num2)
(r24)p(a4)p(b5) o— (r29)pcontp(pc3),
S2,(r24) o— (r24)p(ad) — 819 (b)) p(num2)
(r24)p(a4)p(bb) o— (r29)pcontp(pc3l),
(r35) o— (r35)p(bh),
S2,(r24) o— (r24)p(ad) — 8] p(num?2)

:alu clause, —o-R, ® -L

S; — (pc2)p S| pcontp(numl)
Y5:8:8 — &1

bg clause

To construct § notice that by definition of Sy, the state SY p(r29)p(pcd) p (num3) is
identical to &3 upto associativity and commutativity of @ — the states are being treated as
multisets. Hence, ¢ is constructed by first backchaining on the ht clause, and then using
the identity rule. The proof is detailed below. &; and X, are not written in the proofs for

sake of readability.

S — S p(r29) p(ped) p (mmy)

Sy — SV p(r29)pcontp(pcl)p(num?)

ht clause

One consequence of definition 5.3 is that evaluation can be composed using cuts. Suppose
S1, &2 and 83 are three states, and P is a program state such that §; pP —, Sap P and
Sy pP =, S3pP. The computation for §; P —5 S3p P is obtained by a linear cut on é;
and 63, which are provided by definition 5.3.

(52 61

25355;S3p77 — SgpP Esigs;SQWP — SlpP
Ys:E:83pP — S19pP

CutL
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Hence, proofs of evaluations for the DLX machine will be composed using cuts — I use the
cut-elimination theorem for FORUM. The main point is that the computation of an entirely
imperative program is being represented declaratively and analyzed by proof theoretic tools

such as cut-elimination.

5.3 Pipelining DLX - facing the hazards

Pipelining is an implementation technique in which multiple instructions are overlapped in
execution. Today, pipelining is a key technique used to make fast CPU’s (Central Processing
Unit). The basic idea of pipelining was first implemented in IBM 7030 [Blo59, Buc62].
The CDC 6600 [Tho70] and IBM 360/91 [AST89] introduced many important concepts in
pipelining, including scoreboarding, use of multiple functional units, simple architecture for
efficient pipelining, and tagging of data, dynamic memory hazard resolution, and generalized
forwarding. With the advent of RISC [ACR87], efficient pipelining and compilation became
integral parts of the architecture design. Many new ideas and designs for RISC architectures
have been explored in the last decade, resulting in the design of important machines such
as the Intel i860, MIPS R2000/R3000, Motorola 88000, SPARC, PowerPC. As we see in
figure 5.8, all instructions in DLX have five distinct parts. The intention is to execute the
five distinct parts of five instructions at the same time, and complete the execution of an
instruction every time unit. Since the time unit for the pipeline will be determined by the
execution time of its slowest segment it is important to have similar work loads for the
different stages of the pipeline. Furthermore, since the performance gain for the pipeline
will be maximized if all stages of the pipeline are kept busy it is important to minimize

stalls in the pipeline.

Pipelining exploits the simple nature of the DLX architecture which facilitates well balanced
pipeline segments, and early detection and elimination of possible stalls in the pipeline.
Although the intentions are concisely stated, the design of pipelines is a tight rope walk,
balancing various parameters to improve performance. The DLX instructions are not seen

as atomic entities any longer - the five stages, i.e. IF, ID, EX, MEM and WB, are the atomic
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ALU LOAD STORE CONTROL

IF IR := M[PC] IR := M[PC] IR := M[PC] IR := M[PC]
PC:=PC+1 PC:=PC+1 PC:=PC+1 PC:=PC+1
ID A := Rsl A := Rsl A := Rsl A := Rsl
B := Rs2 B := Rs2 B := Rs2 B := Rs2
PC1 = PC PC1 = PC PC1 = PC PC1 = PC
IRy := IR IR; := IR IRy := IR IR; := IR
EX AOUT :=AopB MAR:= A+ MAR := A+ AOUT := PCy+
(|R116)16ﬁﬁ|R116...31 (|R116)16ﬁﬁ|R116...31 (|R116)16ﬁﬁ|R116...31
SMDR :=B cond := (Rsl op 0)

MEM AOUT; := AOUT LMDR := M[MAR] M[MAR]:= SMDR if (cond) {
PC:= AOUT}

WB Rd := AOUT, Rd := LMDR

Figure 5.8: DLX pipeline structure

activities. The parallel execution of these atomic steps for different instructions requires

complex control to ensure that the results computed are identical to the ones computed by

Es.

I view pipelining as an alternate operational semantics for DLX programs — a different evalu-
ator for DLX programs. The declarative specification of the pipelines which can be executed
to simulate pipelined computation has not been attempted to the best of my knowledge.
The thrust of the existing work has been either to verify the correctness of a pipelined
processor all the way down to the circuit level [TK93], or to automate the production of
control circuitry from high level descriptions of pipelines [AL93]. My goal is to provide an
executable and declarative specification of pipelines explaining the intricate synchroniza-

tions required to implement the basic concepts in modern pipelined architectures.

In this section, I begin by introducing the basic pipeline structure for DLX, and structural
and data hazards. The pipeline is then specified using external functions to resolve the haz-

ards. The specification in this section does not incorporate any of the standard techniques
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to improve the CPU throughput. The implementation of call-forwarding and early branch
resolution will be the subject of the next section. Furthermore, I prove that the pipeline

specification is equivalent to the sequential specification, &;.

Hazards in Pipeline

I model IF, ID, EX, MEM and WB and the clock as cyclic processes. The clock generates
signals prompting the stages to start their respective computations. When all the stages
complete their designated computations they notify the clock, which once again generates
the enabling signal for the stages, and the cycle continues. Although there is no synchro-
nization amongst different stages, the computation for every stage is synchronized via the

clock signal.

Once the processes for the clock and the pipeline stages start running in parallel, it is
possible to run into a variety of problems. Imagine that a machine can only write/read
to one register at a time. In such a machine executing the WB stage and ID stage of
two alu instructions would cause a contention for register port. The point is that when
execution of stages is done in parallel, certain resources need to be duplicated to avoid
conflicts over resource usage. Existence of such a conflict can stall the pipeline because one
instruction will have to wait while the other uses the resource, causing the entire pipeline
to waste one time unit. Such conflicts are called structural hazards. Informally, if there is
a combination of instructions which causes contention for resources, then the machine is

said to have structural hazards.

In the DLX machine that I outline there will be no structural hazards, essentially because all
instructions are assumed to complete in one time unit and resources have been duplicated
sufficiently. Although eliminating structural hazards from pipelines yields better through-
put, designers sometimes allow structural hazards since, either duplicating resources is too

expensive or eliminating them results in a larger time unit for the pipeline.
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The concurrent execution of parts of DLX instructions alters the relative timing of instruc-
tions. In the sequential specification an instruction is executed only after the preceding
instruction is completed, whereas, in the pipeline there are up to five instructions whose
various parts are being computed at the same time. So for example (ix 1d 122 [op) could
be in the EX stage while (ix alul24/+4) is in the ID stage. Now I have a problem, since
(ix alul247+) reads the value in R2 before the 1d has fetched the contents of memory
addressed by R1 and stored them in R2, which happens at the end of the WB stage (fig-
ure 5.8). The problem is that there is a data-dependence in the sequence of instructions
above. It causes no problems for &, because alu starts only after the completion of 1d.
Thus the pipeline must be stalled while alu waits for 1d to finish. Such problems are

significantly eliminated by code rescheduling and forwarding [HP90].

Definition 5.4 [Data Hazard] If the order of access to operands by instructions is changed
due to overlapping execution in pipeline, then there is a data hazard. Data Hazards are
classified by the order in which the read and writes are supposed to occur in the program.

Let ¢ be an instruction occurring before j in the execution.

e RAW (read after write) : j tries to read a source before ¢ writes it, and thus gets the

old value.

e WAR (write after read) : j tries to write a destination before i has read it, and thus

t gets the new value.

e WAW (write after write) : j tries to write an operand before it is written by 7, and

thus the writes are performed in the wrong order.

Note that RAR (read after read) is not an error. In the DLX pipeline stages all instructions
complete in one time unit, and registers are read early at ID as compared to written later

at WB. Moreover the memory accesses are kept in order, and hence no WAR hazard is
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possible in DLX. Since the WAW hazard is only possible in pipelines that write in more
than one stage of the pipeline, this hazard is avoided by DLX which writes registers only in
the WB stage. The only kind of data hazard in the DLX pipeline is RAW, as exhibited in

the example above regarding the 1d and alu instructions.

The concurrent execution of instructions causes another kind of synchronization problem.
Suppose (ix br1241 =) enters the ID stage. The IF stage now needs to fetch the next
instruction to be executed, but this is not possible before the branch instruction is resolved
and new pc is available at the end of the MEM stage, figure 5.8. Moreover, at the beginning
of the IF stage it is not known whether the previous instruction was a br or not. Thus
the IF fetches the next instruction, and invalidates the fetched instruction if the preceding
instruction is a br instruction. The pipeline is stalled until the end of the MEM stage
for the br instruction when the new pc is available. The fact that I fetch and invalidate
an instruction introduces wasteful computation and is different in nature from the stall
introduced by data hazards. Informally, if the pipeline is stalled for a br instruction to

calculate the new pc, then there is a control hazard.

Even in the simple setting of the integer DLX architecture hazards and stalls arise due to
the concurrent nature of the pipeline. The presence of instructions which do not complete
in one time unit and interrupts further complicates the control circuitry. However, the
specification techniques used to resolve the hazards for the simple unoptimized pipeline
present the ideas needed to tackle the various synchronization and control issues that arise
in the specification. To keep the presentation concise and convey the essential ideas, I chose
to specify only the integer DLX with call-forwarding and early-branch resolution, and not
deal with floating-point arithmetic and interrupts. Floating-point arithmetic and interrupts
are challenging aspects of pipeline design, the comments above are only with respect to the

specification techniques used to specify the pipeline design for these features.
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Specifying the pipeline

Given the hazards in DLX pipeline, it will not be enough to specify the processes repre-
senting the pipeline stages and the clock. The crucial ingredient in the specification is
the synchronization which avoids all the hazards that may occur during execution. The
resource conscious language of FORUM provides an ideal setting to specify the complex

interactions required to specify the pipeline.

I begin by giving the signature, ¥,, for the specification of the pipeline. The signature is
the union of ¥, and the constants in figure 5.9. 1r stores the data to be written back to
the register file. The cond predicate stores conditional value for branch instructions, mar
stores the memory address to be accessed, 1mdr stores the data read from the memory
and smdr stores the data to be written into memory. The aout predicate stores the ALU
result at the end of the EX, and aouty stores the ALU result at the end of the MEM. The
pci predicate stores the old pc to EX, ir stores the instruction, and it stores the class,
destination, immediate and operator of the instruction. The predicates with a 1 before the
above predicate names are latches which hold temporary values in between reading and
writing to the registers. The beginning of the read and write pahse for IF are signalled by
ifrb and ifwb, respectively, while ifrd and ifwd signal the completion of the read and
write phase, respectively, for IF. Similarly there are predicates for ID, EX, MEM and WB
prefixed by their names. The class of an instruction is tested by alu?, 1d?, st?, br? and

noop? predicates.

The following definitions make the presentation more concise. I sometime use # as an

abbreviation for nq, ny, ns, n4, ns.

o crb =g.¢ Afi. (1frbny) p (idrbny) p (exrbng) p (merbny) p (wbrbns)
o crd =y.¢ Aii. (ifrdny) p (idrdns) p (exrdns) p (merdng) p (wbrdns)
o cub =g.¢ Afi. (1fwbny) p (1dwbny) p (exwbns) p (mewbny) p (wbwbns)
o cwd =g r Afi. (1fwdny) p(idwdny) o (exwdns) o (mewd ny) p (wbwd ns)
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lr : int — int — o
cond,mar, lmdr,smdr : int — o
lcond,lmar,llmdr,1smdr : int — o
aout,aouty : int — o
la,1lb,laout,laouty; : int — o
pci,lpci : int — o i€ {1,2}
ir,lir : inst — o
iti,lit;y : class — int — int — func — o ie{l1,2,3}
ifrb, idrb, exrb,merb,wbrb : int — o
ifrd, idrd, exrd,merd, wbrd : int — o
ifwb, idwb, exwb, mewb, wbwb : int — o
ifwd, idwd, exwd, mewd, wbwd : int — o
alu?,1d?,st?,br?, noop? : class — o

Figure 5.9: Signature for specification of DLX

I sometimes use (crb 77) as abbreviation for (crb ny ny ng n4 ns), and similarly for crd, cwb
and cwd. Thus (crb i), is the signal for the read begin phase for the stages of the pipeline,
and the numbers n;, 7 € [1,...,5] denote different states of the signal in question. 7y, 7o,
T3, T4 and Ty, specified in figure 5.10, are the transition functions for IF, ID, EX, MEM and
WB stages, respectively. The states of the five signals in the clock are arguments to each
of the transition functions, and the output is the state of the clock signal for its stage. In
figure 5.10, n; € {0,1}, ¢ € [3,...,5], and for any input not exhibited the functions 7y, 7o,
73, T4 and 75 return 1. For the ID clock signal, i € {—1,—2, —3} are the states for a data
hazard where the stalled instruction has to wait for —i cycles, i € {—4,—5} are the states
for a control hazard, and ¢ = 0 is the state when the pipeline will stop within the next five
cycles. For example, from figure 5.10, 7 1(—3)100 = 0, thus IF will remain idle in the next
cycle. I sometimes use (crb 7(77)) as an abbreviation for (crb 7 (@) 72(7) 73(7) Tu(7) 75(7)),

and similarly for crd, cwb and cwd.

The specification for the pipeline, &,, is the set of universal closures of clauses in fig-
ures 5.12, 5.13, 5.14 and 5.15. In the ID stage in figure 5.12, RAW and control hazards are

detected by the function é;, whose return value sets the state for idrd. ¢; is defined below.

Definition 5.5 [¢; - Hazard detection function for &,]
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IF ID EX MEM WB Ty Ty T3 T4 T
1 1 1 1 1 1 1 1 1 1
1 -3 1 T4 N5 0 -3 0 1 T4
0 -3 0 1 ns 0 -3 0 0 1
0 -3 0 0 1 0 1 0 0 0
0 1 0 T4 N5 1 1 1 0 T4
1 1 1 0 ns 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1
1 -2 ns 1 N5 0 -2 0 ns 1
0 -2 0 N4 1 0 1 0 0 N4
1 -1 ns T4 1 0 1 0 ns T4
1 —4 ns T4 N5 0 -5 1 ns T4
0 —4 0 Mg ns 0 -5 1 0 Mg
0 -5 1 Mg ns 0 -5 0 1 Mg
0 -5 0 1 ns 1 -5 0 0 1
1 -5 0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0 0
1 0 ns T4 N5 -1 0 0 ns T4
-1 0 0 Mg ns 0 0 0 0 ns
0 0 0 0 ns 0 0 0 0 -1
Figure 5.10: DLX pipeline state transition functions for clock
(6151 59 D; C;C) = min{(p151 D; C; C), (p152 D; C; C)} C € {alu,st}
= (p151 D;C, ) otherwise

Where, py is the function in figure 5.11, €' is the instruction type, and 57 and 53 are the
two source registers of the current instruction. C; is the instruction type and D; is the

destination register of the ith preceding instruction, for ¢ € {1,2,3}. &

Note the difference between the control hazard and data hazard. In the case of a data hazard
the instruction signaling the hazard and the ones following it are stalled. However, in the
case of a control hazard, the br instruction which signals the hazard continues execution
while the instructions following it are stalled. Thus, if there is both a control and data
hazard, the data hazard must be processed first. The table for py is given in figure 5.11.
In figure 5.11, A € {alu,br,1d,st}, Y € {alu,br,1d,st,noop,bg}, and Z € {alu,1d}.

Furthermore, =; in the column for D; means that the destination register D; is the source
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register 5;, #; means that the destination register D; is different from the source register
S;, and X; means either =; or #;. If the current instruction is a noop or the destination
registers of the three preceding instructions are different from the source registers, then
there is no hazard. A data hazard is detected if any of the previous three instructions write
either 57 or S5. A control hazard is signaled if the current instruction is a branch and there
is no data hazard. If the current instruction is ht, then the pipeline is stopped after the

execution of ht is finished.

C Cq Cy Cs Dy Dy D ]
noop Y Y Y X; X; X; 1
ALY Y Y A A A1
A Z Y Y =; X; X; -3
A Y Z Y Z; =; X; -2
ALY Yz A A = -
br Y Y Y A A A -
ht Y Y Y X; X; X; 0

Figure 5.11: py - table for hazard detection in the DLX pipeline

The complex looking clauses in the &, warrant some explanation. The clock is specified by
the first two clauses in figure 5.12. It is a cyclic process consuming the completing signals for
read(write) to enabling signals for write(read). The clock stops if the state for wbwd is —1.
The state information of the clock is calculated by 7 defined in figure 5.10. Fach of the five
stages of the pipeline — IF, ID, EX, MEM and WB — are implemented by two clauses. One of
the clauses synchronizes with the read begin signal, reads data into temporary latches, and
produces the read done signal. The other clause synchronizes with the write begin signal,
consumes data in the temporary latches, and produces the write done signal. The actions
performed by a stage depend on the type of the instruction being processed and the state
of the clock. Note that a register might be updated in one stage and read in another stage
during the same cycle. To ensure availability of proper data, in the read phase required
data is stored into latches, and only after all data is read, registers and memory may be

updated in the write phase.

The bg instruction is handled specially as the clock is started by this instruction. This
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instruction also loads several latches in the environment needed by the pipeline. I use £
as an abbreviation for the various latches as defined below, and (LC DTG SV) is a latch
state. Lg is the initial state for these latches. When the lengths of the vectors are not

mentioned explicitly, they are of the required length, as assumed in the definition below.

e e T T

L =g ANODLO,SV.(pic123(iti Ci DiL; 05)) p (ir(ix C4 5153 DalyO4))
p(aVy) p(bVy) p(aout Vi) p(aouty Vy) @ (pet1 Vs) p (mar Vs) p
(Imdr V7) p (smdr Vg) p (cond V)
Lo =g4¢f (L nodp 00+00)

Now, evaluation of DLX programs can be defined using £,. The idea behind evaluation is
the same as that for . A program is loaded in the program memory, and then the program
state is evaluated in a given data state. The program state remains static, while the data
state may possibly change due to the execution of instructions. The definitions of program

and data state are taken from definitions 5.1 and 5.2.

Definition 5.6 [Pipelined evaluation in DLX, &,] Given data states S; and Sy, and (P l]_jl),

a program state. P evaluates in &1 to Sy written as &y p (P ”3’1) —p Sep (P l]_jl), if
Yp gp§52@(7)”31) — 81 W(Plﬁl)

is provable in FORUM. B

I use the example program in figure 5.7 to illustrate the specification &,. I use S; as an
abbreviation for the entire expression in the figure. At the end of the computation, the
resultant state, S; will have 9 in the second register, 4 in the pc, 3 in the num and otherwise
be identical to &;. The proof of the computation is detailed below. Let 8] be identical to
S1, except that it does not contain pc and num, and & be identical to & except that it

does not contain pc, (r2) and num.
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(crd N) o— (cwb N)

(cwd N) o—
(ne(Ns = —1)) © (exor(N)Jo
[(eq (N5 = =1)) o= [Lp((LE DI SV) o= L)]]

(pL(ix bgD S1510))p(pcl)p(numM) o— B
(pL(ix bgDS1510))p(pc(L+1))p(crbl)pLyp(num(m+ 1))

(ifrbN)p(pLV)p(pcL) o= (pcL)p(pLV)p
[[(eq(N =1)) @ ((Lir V) p(lpc(L + 1)) p(ifrd V))&
[(eq(N =—-1)) ® ((1ir(ix noop0120+))p(lpc(L — 1)) p(ifrd N))]®
[(eq(N =0)) @ (1frd N)]]

(ibeN) o—
[(eq(N =0)) ® (ifwd N)]®
[[(eq(N = 1))@ (eq(N = —1))] o
[1o((ir V) p(pcl')p(lirV)p(lpc L) o= (ir V) p(pc L) p (ifwd N))]]

(idrb N) p( pi€{17273}(iti C; D; I; OZ)) p(pc L) p(ir (iX C DS S, IO)) o—
( pi€{17273}(iti CZ Di Ii OZ)) p(pc L) p(ir (iX D Sl SQ IO)) P
[(ne(N = 1)) © (idrd N )}
[(eq(N =1)) @
ll(ea(u = 1)) & (eq(u = —4))] @ (1it1C DI0) g (Ipey L)) o-
[[(I‘ Sl Vl) o— (I‘ Sl Vl) p(laVl) pS] &
[(I‘ SQ VQ) o— (I‘ SQ Vz) p(lb Vz) pS] &
[S 9S8 o— (idrdu)]]]®
[(ne(u = 1)) © (ne(u = —4)) © (idrdu)]]]
Where u =def (615152 D;C; C)

(idwb N) o (it;C D10) o-
[(ne(N =1)) @ (ne(N = —4)) @ ((itynoop DI 0) p(idwd N))]%
[(eq(N = 1)) @ (eq(N = —4))] o-
[((aW1) p(1aV1) p(bW2) p(16V2) o (pe1 L1) o (1pes L2) p (1it1 ¢ D' 17 O') o
(aVi)p(bV2) p(pet Lo) p(it1 C" D' I'0") p (idwd V) p 1]]]

Figure 5.12: Specification for the DLX pipeline — clock, bg, IF and ID.
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(alu?alu) o— 1
(1d71d) o— 1
(st?st) o— 1
(br?br) o— 1
(noop?noop) o— 1

(exrb N) p(it1CDIO) o— (it1 CDI10)p(litoCDIO) g
[[(ne(N =1)) @ (exrd V)]
[(eq(N =1))®
[(alu? C') o—
((aV1) p(b V) o— (a V1) p(bV2) p(laout (V4 O V3)) p(exrdN)) p 14
[(1d?C) o—
((aVy) o— (aVi) p(Imar (Vi + 1)) p(exrd N)) p1]P
[(st? () o—
((aV1)p(bVa) o
(aV1) p(dV2) p(lmar (Vi + 1)) p(lsmdrVy) p (exrd N)) p 16
[(br? (') o—
((pe1 L) p(aVi) o
(pc1 L)p(aVi)p(laout (L + 1)) p(lcond(V; O 0)) p(exrdN)) p1]d
[(noop? C') @ (exrd N)]]]

(exwb N) p (itoC'D'I'0") p(1ito CDI0) o— (itoCDIO)p
[[(ne(N =1)) @ (exwd N)|F
[(eq (N =1)@
[(alu? C') o—
((aout V1) p (laout V3) o— (aout Vi) p(exwd N)) p1]P
[(1d?7C) o—
((mar L1) p (Imar Ly) o— (mar L) p (exwd N)) p 16
[(st?(C) o—
((mar Ly) p (Imar Ly) p (smdr Wy) p (1smdr W) o—
(mar Ly) ¢ (smdr W) p (exwd N)) p 1]¢
[(br? () o—
((aout V) g (laout V3) p(condUy) p (1lcondUs) o—
(aout V5) p (condUs) p (exwd NV)) p 1]¢
[(noop? C') @ (exwd N)]]]

Figure 5.13: Specification for the DLX pipeline — EX.
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(merb N) p(itoCDIO) o— (it CDI0)p(litaCDIO)p
[(ne(N =1)) ® (merd N)|®
[(eq (N = 1))@
[(alu? C) o—
((aout V1) o— (aout V;) p(laouty Vi) o (merd N)) p 1|6
[(1d?7C) o—
(mar L) p(m L V) o—
(mar L) p(m L V) p (11lmdr V') p (merd N)) p 1]@
[(st?(C) o—
((mar L) p(m L V) p (smdr V3) o—
(mar L) p (m L V3) p (smdr V3) p (merd NV)) p 1|4
[(br? () o—
((cond M) g (aout V;) p(pc Lg) o—
[(ne (M = 1)) © ((pes L) p (merd N )]
[(ea(M = 1)) @ ((1pc2 Vi) o (merd N))]
o (cond M) g (aout L) o (pc L)) 1]
[(noop? C') @ (merd N )]

(mewb N) p (it3C' D' I'0O") p(1itzC DI0O) o— (it3C DI10)p

[(ne(N =1)) o— (mewd N) p1]®
[(eq (N = 1))@
[(alu? C) o—

((aoutq V1) @ (laouty V3) o— (aouty V3) o (mewd N)) p 1]6
[(1d?7C) o—

((1mdr W1) ¢ (11mdr W3) o— (lmdr W) p (mewd N)) p 1]%
[[(st?C') @ (noop? C')] @ (mewd N)|E
[(br? () o—

((pc L1) p(1pca L) o= (pc La) o (mewd N)) o 1]]

Figure 5.14: Specification for the DLX pipeline — MEM.
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(wbrb N) p(it3C DIO)p(numM) o— (itgC DI10)p
[(eq (N = 0)) ® ((wbrd N) p (num M )]

[(eq (N = —1)) @ ((wbrd N) ¢ (num(M + 1)))]
[(eq(N =1))®
[(alu? C)

[(((aogt)l Vi) o— (aouty V1) p(lr1d Vi) o (wbrd N) p (num(M + 1))) p 1]F
147 o—

((Imdr Vy) o— (ImdrVy) p(lrl1d Vi) p(wbrd N) o (num(M + 1))) p 114
[(st?C) @ (br? () ® ((1xr0d Vi) p (wbrd N) p (num(M + 1)))]d

[(noop? C') @ ((1r0d V1) o (wbrd N ) o (num M ))]]

(wbwb V) o—
[(ne(N =1)) @ (wbwd N)]%
[(eq (N =1)) o=
[(lr1dVi)p(rdVy) o— (rd Vi) p(wbwd N)| &
[(1r0dVy) o— (wbwd N)] p1]]

Figure 5.15: Specification for the DLX pipeline — WB.

g1
Sy — (ifrd1)p(ir Xq) p(pc3) pls o
= ifw
Sy — (cwb 1) p(lir Xq) p(1pc3) p Iy
Clock

Sy — (crd 1) p(1ir X;) p(1pc3) p Ty

idrb, exrb : merb, wbrb
Sy — (ifrdl)p(lir Xy)p(1lpc3)ply
Sy — (pc2)p S, p(crb 1) p Lo p(numl)
Y,:85 8 — &1

ifrb

The proof begins by backchaining on the bg clause. Fach of the it registers has a noop

instruction (by the definition of Ly). Thus, only the execution of ifrb and ifwb stages are

shown. Note that there is no hazard detected because the instruction in ity was a noop.

X is the instruction (ix alu232/4), and X is the instruction (ix ht12304). Now I

complete o below.
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02
SpS o— (idrd1)
(r35) o— (r35)p(b5)ps, (ifrd1) p(lir X3) p(1pc4) p(1lpci3)
S2,(r24) o— (r24)p(ad)ps— ©(lit1alu20+)pls

ifrb, idrb : other logical rule
Sy — (crb 1) p(ir X1) p(pc3) ply
Sy — (cwd 1) p(ir X1) p(pc3) ply

ifrb
Clock

idwb, exwb : mewb, wbwb
Sy — (ifrdl)p(ir X1)p(pc3)pls

I use I'; in the proofs above for the part of the context which is inactive in the rule. The
construction of oy is similar to the plan above. First the ID stage is completed for Xy, the
EX, MEM and WB have noop instructions. In the next cycle, ht is detected and the state of
idwd becomes 0, Xy proceeds to EX stage. Now the pipeline goes through the final stages
as the clock shuts down. The construction of o5 is not made explicit because it gets very

tedious and the idea is clear from the above constructions.

Note that in the read and the write phase I choose a given order for backtracking on
the various clauses. It is a key fact that the order in which the various read clauses are
chosen for backtracking during the read phase is irrelevant to provability, and similarly for
the write phase — a similar point was made in the context of process theories in [Mil93].
The reason for this “permutability” in the read phase is that information is read by the
various stages into different latches, and in the write phase the stages use the latches they
“created” to update the values of distinct storage locations. In other words, there is no
contention for resources in a given phase, read or write, amongst the various stages. It
s this permutability of backtracking which underlines the concurrent nature of the pipeline

specification in FORUM.

Now I have & and &,, two operational semantics for DLX. On the one hand, & is much
easier to work with and understand, and on the other hand, &, specifies a much more
interesting algorithm. The natural question to ask is whether £ and &, are equivalent.

Following is the Correspondence theorem that I would like to prove.

Theorem 5.7 (Correspondence between & and &,) For any DLX program P;, and
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data states S1 and S,

S1p(PIP) =, Sap(PIP) iff S p(PIP)—,S,0(PLP)

The theorem will be proved by induction on the number of instructions executed. Since the
internal states of the two specifications are different, the theorem is obtained as a corol-
lary to the lemma 5.9 which establishes relationships between the sequential and pipelined
evaluation using the different internal states. Before I present these lemmas, I prove some
properties about the evaluation using &,. I define it to be consistent if (ity Cy Dy 11 Oq)
is the instruction in EX stage, (itoCy D2 I3 03) is the instruction in MEM stage, and
(it3 C3 D3 I3 O3) is the instruction in WB stage. The actual proofs, which are constructions
of proofs in FORUM, are not shown in the proofs of the lemmas in this section, essentially
because the construction gets very tedious and unilluminating. However, the steps outlined

provide the recipe for constructing the required proofs.

Lemma 5.8 (£, - it consistency, data hazards, and control hazards) If

o L1 and Ly are two latch states, and it is consistent in L1,

e 51 and Sy are two data states, such that the pc in &1 does not address a bg or ht

instruction in P,
o P is a program state, and

0o %, : 8 S pLyp(cwd N)pP F SipLyp(crbN)pP,
then

1. it is consistent in Lo,

2. if the instruction in the |D stage depends upon a preceding instruction in the pipeline

for data, then the data hazard is resolved, and
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3. if the instruction in the ID stage is a br, then the control hazard is resolved.

Proof: Part 1 : For this part, notice that in every completion of a read and write phase
it3 gets the values of ity, which in turn gets the values from ity, which in turn get the
values from ir in the ID. This movement of values of it exactly matches the definition of

the consistency of it.

Part 2 : Given the consistency of it, é; returns one of -1, -2 or -3, i.e. a data hazard, if
and only if the instruction in ID stage depends upon one of the preceding instructions for
data. From the definition of the state transition function in figure 5.10, it is clear that the
instruction with the dependency and the ones following that instruction are stalled till the

preceding instruction completes execution.

Part 3 : Given the consistency of it, §; detects returns -4, i.e. a control hazard, if and
only if the current instruction is a br and there are no data hazards. The absence of data
hazards enables the execution of br. From figure 5.10, the pipeline after the br is stalled
till the br completes the MEM stage, when the new pc is available. Thus the instruction

after a br is fetched from the right address. B

The problem in relating the computations of & and &, are manifold. Firstly, the number
of steps taken to compute a program are different - £, takes five steps for each instruction -
hence an induction on the height of the proof trees would not work. Secondly, the internal
states of the two evaluators are different. The induction measure that I use is the number
of instructions which have completed evaluation. However, I have to treat the case when the
last instruction is ht separately from other instructions because it cleans up the environment

of the latch state.

Lemma 5.9 (Lemmas for Correspondence between & and &,) Given

e m > 1 and m € nat,
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S1 and Sy two data states minus the pc, num has 0 and m in 81 and S, respectively,

Py is a DLX program, Py = gor (P [ P) is a program state,

- = o = = =

[ ]
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ol
hett
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=
=
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=
=
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C =def V]\_f. (de]\_f).

1. if the mth instruction is not ht then

Ys:&8;Sapcontp(pcl)pPr b S1p(peM)pPr iff
Y181 Sp(pe K)pLipCpPr F S1p(peM)pPy

2. if the mth instruction is ht then

Ys:8:S2p(pecl)pPr F S1p(peM)pPr iff
Yp: 8 Sap(pel)pPr - S1p(pe M) pPy

Proof: Proof Part 1 (Left to Right) : The myy, instruction is not ht.

We have
Ys:&; S pcontp(pecl)pPr b S1p(pe M) pPr.

Suppose the my, instruction is a bg. Then there are two cases :

m = 1 : Then bg is the first instruction, Sy and &; are identical except for the count in

num, and the proof is completed by following the execution of the bg instruction.

m=n+1,0 < n: Then bg is not the first instruction. By the grammar for programs

(figure 5.5), the ny, instruction executed must be a ht. Thus &), the state at the end of
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the nyp, instruction, is the same as 83 except for the count in num. Using induction on Part

2,1 get

Y,:8:Shppe(L—1)pP1 b Sip(pe M) pPr.

The shape of the right-hand side of the sequent at the point when num is incremented to n

will be

Sy p(pc(L —1)) pPr.

Backchaining on the clause for bg increments num by 1 and the right-hand side of the sequent

becomes

Sy (pcl) pﬁop(crbﬁ) o P1.

Now in the linear part of the left-hand-side of the sequent, I replace

Shp(pc(L—1)pP1 by Sep(pcl)pLipCpPr.

Note that this replacement does not effect the structure of the proof thus far, and the

sequent that I am now constructing the proof of is

Y181 Sppel)pLipCpPr B S1p(pe M) pPr.

After the transformation all that I have left to prove is

Y181 Sppel)pLipCpPr F Sap(pel) pﬁop(crba) o P1.

The proof is easily completed by using p — L,V — L and Id, and hence I am done.
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Suppose the my;, instruction is not a bg. Then the definition of the DLX programs
implies that m = n 4+ 1,0 < n and that the ny, instruction cannot be ht. By induction

hypothesis on Part 1, I get

Y,:8: 8o LipCp(pe K)pP1 b S1p(pe M) pPr.

&} differs from Sy in that it has n in num and is missing the side effects, if any, of the my,

instruction.

First consider the case when the n;, instruction is not a branch instruction. The
computation up to the execution of the ny, instruction matches for £ and &,. Note that
the ny, instruction is at (L — 2) address in the program memory. By lemma 5.8 parts 1
and 2, it is consistent, and data-dependency, if any, for the my; instruction is resolved.
Thus, the arguments to the my, instruction are identical to the sequential computation,
and hence, so are the results. At the point when num is incremented to n the right-hand

side of the sequent has the following shape

Syp(pe K') o (LV)p(crb W) p P,
Where K’ depends upon the data and control hazards encountered by the instructions
following the ny, instruction. For example, if there are no hazards then K’ will be L + 3.
Backchaining over clauses to complete the execution of the my, instruction results in a
right-hand side that looks like

S0 (pc K)o (LV") p(ctb W) p Py
To complete the proof, in the linear part of the left-hand-side of the sequent, replace

SypL1pCp(pcK)pP1 by S2pL1pCp(pcK)pP.

The transformation does not effect the structure of the proof, and as a result of it I am now
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constructing the proof for the sequent

Y1880 LipCp(pcK)pP1 — S1p(pcM)pPr.

Given the right-hand side above, the proof can be finished by ¢ — L,V — L and Id, and

hence I am done.

Now consider the case when the n;, instruction is a branch instruction. Firstly,
the argument to br is identical to the one in the sequential run, and thus by lemma 5.8
part 3, the next pc calculated at the end of the MEM stage will also be (L — 1). Again,
using part 2 of lemma 5.8, the data dependency, if any, for the my, instruction is resolved,
and thus the result produced by the myy, instruction are identical to the ones produced in
the sequential run. By the definition of the transition functions in figure 5.10, at the end of
the cycle when num is incremented to n the right-hand side of the sequent has the following

shape

Shp(pe L) p(LV)p(ctbW)pPy

and the myy instruction will have completed its IF stage. The rest of the argument can be

completed analogous to the case above when the ny, instruction was not br.

Proof Part 2 (Left to Right) :

We have

Ys:8:Sppel)pPr F S1p(peM)pPr.

The myy, instruction to be executed - ht - is at the (L — 1) address in the program memory.
By the grammar for DLX programs (figure 5.5) there has to be at least one instruction that

was completed before ht, and the immediately preceding instruction could not be another
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ht. Thus m = n+ 1,0 < n. The state S at the end of the ny, instruction is the same as

S3, except that num stores n.

By induction hypotheses on part 1, I have
Y,:8: S p(pe K)pLipCpPr b Sip(pe M) pPr.

First consider the case when the n;, instruction is not a branch Instruction.
Note that the ny, instruction is at the (L — 2) address in the program memory. In the
proof I look at the point when the ny, instruction completed its ID phase. At this point

the right-hand side of the sequent will have the following shape,
Syp(LV)p(pe L) p(cwd W) o Pr.

Now, in this proof at the point ht completed the ID stage, the state of the idrd was set
to 0, and pc has (L 4 1). 7 sets the state for ifrb is set to -1 which causes the pc to be
decremented by 1 by the IF stage, and thus pc has L. Now, from the definition of the state
transition functions it is clear that the stages of the pipeline become idle as the ht passes
through them. WB knows that ht has arrived when the state of wbrb is -1, and it increases
the count in num without looking at the class of the instruction in itz. Now the clock will
detect the -1 as its fifth argument and it will consume the (£ ‘7’) from the environment,

and I am left with Sy o (pc L) pP1.

In the proof thus far, in the linear part of the left-hand-side of the sequent, I replace
Syp(pec K)pLipCpPr by S2p(peL)pPr.

This transformation does not effect the structure of the proof thus far, and now I am proving
Y181 Sp(pel)pPi B Sip(pe M) pPr.

As a result of the transformation the proof can be completed immediately using an identity

axiom.
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Now consider the case when the n;, instruction is a branch instruction. Firstly,
the argument to br is identical to the one in the sequential run, and thus by lemma 5.8
part 3, the next pc calculated at the end of the MEM will also be (L —1). By the definition
of the transition functions in figure 5.10, at the end of the cycle when num is incremented

to n the right-hand side of the sequent has the following shape
Sy 9 (pe L) 9 (LV) g (cxdW) o Py

and the myy instruction will have completed its IF stage. The rest of the argument can be

completed analogous to the case above when the ny, instruction was not br.

The proofs going from right to left can be completed along similar lines - the proofs for &

are composed using linear cuts. H

The proof highlights the main fact that the key ingredient in the specification of the pipeline
is the complex synchronization and hazard detection. The lemma 5.9 is a inductive argu-
ment using the basic properties of the £, as proved in lemma 5.8. The proof is rather
straight forward, given the choice of induction measure, however, the complete construc-
tion of FORUM proofs is rather cumbersome. The nice feature is that the two declarative
specifications - £ and &, - were proved equivalent, and cuts were used in one direction of

the proof.

5.4 Call-forwarding and early branch resolution

The specification &; exhibits the basic ideas of the pipeline. However, the pipeline deals
naively with the data and control hazards it faces - it stalls whenever it may need to. In
this section I look at — call forwarding, early branch resolution, branch prediction — simple
and important techniques to reduce the stalls caused by data dependencies and branch

instructions.

Suppose an instruction, X1, in the ID stage needs the result of an alu instruction which is in
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CONTROL
IF IR := M[PC]; PC:= PC + 1

ID A :=Rsl; B:=Rs2; PCy := PC; IRy := IR
BTA := PC + (IR6)"4tIR16..51
if (Rs1 op 0) {PC:=BTA}

EX
MEM

WB

Figure 5.16: Changes in the DLX pipeline to reduce branch penalty.

the MEM stage. According to the scheme of &,, X; has to stall for alu to go through MEM
and WB before it can get the result of alu — this is clearly inefficient. The rather straight-
forward idea of short-circuiting the loop, i.e. “forwarding” the result from aout directly to
the input of X7, works very well in practise. Sending results from one functional units in
the pipeline to another functional unit directly is called call forwarding. Call forwarding

reduces dramatically the stalls generated in the pipeline due to data dependencies.

The second inefficiency of &, is regarding the cost of branch instructions. The idea here
is to calculate the outcome of the branch instruction as early as possible in the pipeline —
early branch resolution. The basic change to the flow for branch instructions is shown in
figure 5.16. By using dedicated adders, extra latches and other circuitry it is possible to
compute the new pc by the end of the ID stage. This reduces the penalty for branches from
three cycles to one cycle. The other aspect of optimization for branches is to first predict
whether a branch will be taken or not, and then continue to fetch and execute from the
predicted address till the branch is resolved — branch prediction. In case the branch alters
the pc, the earlier instructions are invalidated, and the execution starts at the new pc. In
case the branch does not alter the pc, the machine has incurred no penalty by continuing to
compute rather than sit idly as £, does. The number of instructions computed speculatively

will never be more than one in the DLX pipeline, because the new pc is ready at the end
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of the ID stage of the branch instruction.

Call forwarding and speculative computation become more critical to the performance of
the pipeline in the presence of instructions which take more than one cycle to complete.
Extensions to, and variants of these ideas are embodied in many of present day RISC
machines [HP90]. The specification of these features require more complex synchronizations,
new definitions of the state transition functions, and call forwarding functions. Further, the
IF and ID stages will have to synchronize directly with each other. Consider the situation
when a branch instruction is in the ID stage. The branch instruction might alter the pc at
the same time when |F wants to increment the old value in the pc. Thus, there is a race for
the pc, and the final value in the pc is unpredictable. I force the write phase of IF to start

after the write phase of the ID stage, and thus only IF writes to the pc, avoiding the race.

I begin by presenting the definition for the new hazard resolution function, é,, for de-
tecting hazards given that I am implementing call-forwarding and early branch resolu-
tion. The table for py is given in figure 5.17. In figure 5.17, A € {alu,br,1d,st}, and
Y € {alu,br,1d,st,noop,bg}. Furthermore, =; in the column for D; means that the des-
tination register D; is the source register 5;, #; means that the destination register D; is
different from the source register 5;, and X; means either =; or #;. The first point to note
is that 6, only depends upon the two immediately preceding instructions in the pipeline, not
three as in the case of 6;. Note, moreover, the difference between the alu and 1d instruc-
tions. The result of the alu is available at the end of the EX stage, while that of the 1d
is available only after the MEM stage. Thus, a dependency with an instruction two cycles
ahead of the current one is signaled only when the instruction two cycle ahead is a 1d.
Thus the cost of data hazard with alu instructions is reduced to one cycle and with 1d

instructions to two cycles at most. Other than this, ps is same as pq.

Using the definition of py, I define below é,, the hazard detection function, for &,, the new

specification of pipeline incorporating call-forwarding and early branch resolution.

Definition 5.10 [6, - Hazard detection function for &,]
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4 Cy D1 D, b
noop Y Y X X 1
A Y Y #i #i 1
A 1d Y =, X -2
A Y 1d 75]‘ =; -1
A alu Y =; X -1
br Y Y 75] 75]‘ —4
ht Y Y X X 0

Figure 5.17: py — new table for hazard detection in DLX pipeline

>
7

(6,51 55 D; C;C) = min{(p251 D; C; C), (p2S2 D; C; C)} C € {alu,st}

= (p251 D;C ) otherwise

Where, py is the function in figure 5.17. (' is the instruction type, and 57 and S5 are the
two source registers of the current instruction. ) is the instruction type, and D; is the

destination register of the ith preceding instruction, for ¢ € {1,2}. B

To make the pipeline work with call-forwarding and early branch resolution, I need to
redefine the state transition functions for the clock. The main point is that fewer stall
signals are generated when either data or control hazards are detected. oy, 09, 03, 04 and
o5, specified in figure 5.18, are the new transition functions for IF, ID, EX, MEM and WB
stages, respectively. The states of the five signals in the clock are arguments to each of
the transition functions, and the output is the state of the clock signal for its stage. In
figure 5.18, n; € {—1,0,1},4 € [3,...,5], and for any input not exhibited the functions oy,
09, 03, 04 and o5 return 1. For the ID clock signal, i € {—1, —2} are the states for a data
hazard where the stalled instruction has to wait for —i cycles, i € {—4, =5} are the states for
a control hazard, and ¢ = 0 is the state when the pipeline will stop within the next five cycles.
For example, from figure 5.18, 011(—2)100 = 0, thus IF will remain idle in the next cycle.
I sometimes use (crb o(7)) as an abbreviation for (crb o1(7) 02(7) o3(7) 04(77) 05(7)), and

similarly for crd, cwb and cwd.

Other than changing the definitions of the transition functions and hazard detection, I need

to know from which unit a value has to be forwarded to which unit. In the case of the DLX
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IF ID EX MEM WB g1 g9 03 04 05
1 1 1 1 1 1 1 1 1 1
1 -2 1 T4 N5 0 -2 0 1 T4
0 -2 0 T4 N5 0 1 0 0 T4
0 1 0 T4 N5 1 1 1 0 T4
1 1 1 0 ns 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1
1 -1 ns 1 N5 0 1 0 ns 1
1 —4 ns T4 N5 1 -5 1 ns T4
0 —4 0 T4 N5 1 -5 1 0 T4
1 -5 1 i N5 1 1 -1 1 N4
1 1 -1 1 s 1 1 1 -1 1
1 1 1 -1 1 1 1 1 1 0
1 0 ns T4 N5 -1 0 0 ns T4
-1 0 0 Mg ns 0 0 0 0 Mg
0 0 0 0 ns 0 0 0 0 -1

Figure 5.18: DLX pipeline state transition functions in the presence of call-forwarding and
early branch resolution

architecture that I am studying, all data is read in the ID stage, and thus the destination
of the forwarded data will be one of the input latches to the ALU. ¢ and ¢g, defined
in figure 5.19, are the two call-forwarding functions for the two source registers of a given
instruction. The result of a 1d is forwarded only when C5 has 1d, because by this time
the instruction has completed its MEM stage. In the case of alu instructions, results are
available after the ID stage, and the result is forwarded when alu result is either C'; or Cs.
Note that just as py does not need its, the call-forwarding functions do not need ity. It
s interesting to note that the two tables for py and call-forwarding functions put together
cover all the cases in the table for p1. The notation in figure 5.19 is the same as that in
figure 5.17. The numeric return values signal the register from where the data will come -

0 stands for the register file, 1 stands for 1lmdr, 2 stands for aout and 3 stands for aout;.

The specification for the pipeline, &,, is the set of universal closures of clauses in fig-
ures 5.20, 5.21 and 5.22. The signature for the specification X, is the union of ¥, and

{bta : int — o}. Note that the branch is resolved at the end of ID stage, and hence the EX
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C CQ 03 D2 D3 ©1 @Q(br, ld)
A Y #F #F 0 0

A Y 1d 75]‘ = 1 1(0)

A alu Y =; X 2 2(0)

A Y alu  #; =; 3 3(0)

Figure 5.19: ¢ — Call forwarding functions

and MEM stages treat the branch instruction as if it were a noop. Other than this change,
the clauses for EX and MEM are identical to the clauses for these stages in &,. The clause
for the clock, bg instruction, eq, ne, WB stage and for matching classes remain unchanged,
but I have rewritten them here for the sake of completeness. The critical difference is in

the clauses for IF and ID.

The read phase of ID has to take into account call-forwarding and calculation of the jump
address for the branch in bta. Note that the calculation of the jump address is done for all
instructions, because at this point the class of the instruction has not been decoded. If ID
is not idle then first hazards are checked. If there is a data hazard the instruction stalls.
Otherwise, if there is either no hazard or a control hazard then the current instruction will
continue. The call forwarding functions are used to obtain the arguments of the instruction
from the appropriate registers. Note that the call forwarding functions are used only when
there are no data hazards. Furthermore, if a control hazard is detected then the state of

idrd will be -4.

If there were no hazards in the ID stage, the state of idwb is 1, bta is consumed away and
appropriate registers are loaded. Note that the register pcq is no longer needed because this
was used only by br in the EX stage. The case remaining is when the state of idwb is -4,
i.€. the instruction in ID is a branch instruction. If the condition of the branch instruction
is true, then bta is left in the environment and the state of the idwd is -4. If, however, the
condition of the branch instruction is false then bta is consumed and the state of idwd is

set to 1.

The write phase of IF stage must synchronize with idwd — this ensures that ID has already
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finished its write phase. If the state of idwd is not -4, then the instruction in ID did not
alter the pc, and the actions of IF are identical to the write phase of IF in &,. In case state

of idwd is -4, bta is used to set the value of pc. The read phase of IF is unchanged from &,.

The idea behind evaluation remains the same as for £,. The definition of data and program
state are from definition5.1 and 5.2. The definition of latch state is different in that the
latch state for £, does not have the registers cond and pcy. Having said this, I will use the

same notation for the latch state for &£, also.

Definition 5.11 [Pipelined evaluation in DLX, &,] Given data states &; and Sy, and
(P l]_jl), a program state. P; evaluates in &1 to S written as Sy p (P ”3’1) —o Sap (P l]_jl),
if

Y165 Sap(PLB) — S1p(PLB)

is provable in FORUM. B

I have &; and &,, two operational semantics for DLX. T will prove the equivalence of these

two specifications along the lines of the proof for theorem 5.7.

Theorem 5.12 (Correspondence between & and &,) For any DLX program P;, and

data states S1 and S,

S1p(PLP) ;S0 (PIP) iff S1p(PIP)—,S0(PILP)

Before proving the theorem, the following properties of the &, will be proved. These lem-
mas prove that &, maintains the consistency of it, and resolves data and control hazards

correctly. Analogous facts were proved for &, in lemma 5.8.

Lemma 5.13 (£, - it consistency, data hazards, and control hazards) If
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p(pcl) o= (pcL)p(pLV)p
(1ir V) p(lpc(L + 1)) p(ifrdN))|®
@? ((1ir (ix noop0120+)) p(lpc(L — 1)) p(ifrd N))|®

o—

cL)p(btal”) o—
1

e(M = —4))) o-
lpc L) o— (ir V) p(pc L) p(ifwd N)) p1]]

(1drb N) p( pieqr,2,3iti Cs D 1 0;)) p(pe L) p (ir (ix € D S1510)) o-
( pi€{17273}(iti C; D; I; OZ)) p(pc L) p( (1X C DS S, IO)) P
[(ne(N =1)) ® (idrd N)]%
[(eq(N =1))®
[[((eq(u=1))® ((eq(u=—4)) @ (bta(L +1)))) ® (1it1CDI0) o
[(argy f1.511a Vi) ® (argr f2.521bV2) ® [S S o— (idrdu)]]]®
[(ne (= 1)) © (ne(u = —4)) © (idrdu)[]
U =def (5051 SngDzClCQC), fi =def (991 SiD2D3CQC3C) 1€ [1,2]
argr =ef Au, s, L, v][(eq(0=u))p(rsv) o= (rsv)p(lv)] &
[(eq(l = u)) p(Imdrv) o= (Imdrv)p(lv)] &
[(eq(2 =u))p(aoutv) o— (acutv)p(lv)] &
[(eq(3 = u)) p (aoutyv) o= (aocutyv)p(lv)]]
(idwb N) p(it1C DIO) o—
[(ne(N =1)) @ (ne(N =—-4)) ® ((itynoop DI10) p(idwd N))]%
[(eq(N =1)) @ (btal) o—
[(aW1)p(laVy)p(b W) p(1bVy) p(1it1 C' D' I'O") o—
(aV1) p(dV2) p(it1 C" D' I'O") p (idwd N)]|®
[(eq(N = —4)) @ (btal) o
[(a Wl) p(laVl) p(b WQ) p(lb VQ) p(litl Cl D/ I/ O/) o—
(aV)p(dVa)p(it1 C'D'I'0") p
[[(eq(V1070)) @ ((btal)p(idwd N))] @ [(ne(V10'0)) @ (idwd1)]]]]

Figure 5.20: Specification for the DLX pipeline — IF and ID.
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(crd N) o— (cwb N)

(cwd ]\7) o— B o
[(ne(Ns = —1)) @ (cxb 7(N))] & [(eq(Ns = 1)) o= [1p((LEDISV) o= 1)]]

(pL(ix bgDS1510))p(pcl) o— B
(pL(ix bgD S1510))p(pc(L+1))p(crbl)pLy

(alu?alu) o— 1 (1d?71d) o— 1
(st?st) o— 1 (br?br) o— 1
(noop? noop) o— 1

(exrb N) p(it1CDIO) o— (it1 CDI10)p(litoCDIO)

[(ne(N =1)) @ (exrd N)|%
[(eq(N =1))®
[(alu? C) o—

((aV1) p(b V) o— (a V1) p(bV2) p(laout (V4 O V3)) p(exrdN)) p 14
[(1a?C) o—

((aVy) o— (aVi) p(Imar (Vi + 1)) p(exrd N)) p 1]P
[(st? () o—

((aV1)p(bVa) o

(aV1) p(dV2) p(lmar(Vi + 1)) p (1smdrVy) p (exrd N)) p 1]6

[((noop? C') & (br? C)) @ (exrd N)]]

(exwb N) o (itoC'D'I'O") p (1ito C DI0) o— (it C DIO)

[(ne(N =1)) @ (exwd N)]||®
[(eq (N = 1))@
[(alu? C) o—

((aout V1) p (Laout V3) o— (aout V3) p(exwd N)) p1]F
[(1d?7C) o—

((mar L1) p (Imar Ly) o— (mar Lg) p(exwd N)) p 14
[(st?(C) o—

((mar Ly) p (Imar Ly) o (smdr Wy) p (1smdr Wy) o—

(mar Ly) p (smdr Wy ) p (exwd N)) p 1|4

[((noop? C') & (br? (') @ (exwd N)]]

Figure 5.21: Specification for the DLX pipeline — clock, bg, EX.
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(merbN) p (itoC DIO) o— (it C DI10)p(lita3CDIO)p
[(ne(N =1)) @ (merd N)|®
[(eq (N = 1))@
[(alu? C) ((aout Vi) o— (aout V;) p(laouty Vi) p(merd N)) p 1|6
(147C) o
(mar L) p(mL V) o— (marL)p(mL V) p(1llmdr V) p (merd N)) p1]®
[(st?(C) o—
((mar L) p(m L V) p (smdr V) o—
(mar L) p (m L V3) p (smdr V3) p (merd NV)) p 1|4
[((noop? C') & (br? (")) @ (merd N)]]

(mewb V) p (itz3C" D'I'0") p (1it3C DI0) o— (it3CDIO0)p

[(ne(N =1)) @ (mewd N)|&

[(eq (N = 1))@

[(alu? C) ((aouty V1) @ (laouty V3) o— (aouty V3) o (mewd N)) p 1|6
[(1d? C') o— ((Imdr Wy) p (11mdr W3) o— (lmdr W3) p (mewd N)) p 1]6
[((st?C) @ (noop? C') @ (br? ') ® (mewd N )]]

(wbrb N) p(it3C DIO)p(numM) o— (itgC DI10)p
[(eq (N =0)) ® ((wbrd N) p (num M ))&
[(eq (N = —1)) @ ((wbrd N) ¢ (num(M + 1)))]&
[(eq (N = 1))@
[(alu? C)
((aoutq Vq) o— (aoutq Vi) p(lrld Vi) o (wbrdN) o (num(M 4 1))) p 1|4
[(1d?7C) o—
((ImdrVy) o— (ImdrVy) p(lrld Vi) p(wbrd N) o (num(M +1))) p 1)@
[(st?C) @ (br?7C)) @ ((1xr0dVy) p(wbrd N ) ¢ (num(M + 1)))]d
[(noop? C') @ ((1r0d V1) g (wbrd N ) o (num M ))]]

(wbwb V) o—
[(ne(N =1)) @ (wbwd N)]%
[(sa (N = 1)) o-
[(lr1dVi)p(rdVy) o— (rd Vi) p(wbwd N)| &
[(1r0dVy) o— (wbwd V)] p1]]

Figure 5.22: Specification for the DLX pipeline — MEM and WB.

125



o L1 and Ly are two latch states, and it is consistent in L1,

e 51 and Sy are two data states, such that the pc in &1 does not address a bg or ht

instruction in P,
o P is a program state, and

o .18 pLyp(cudN)pP F S pLyp(ctbN)pP,
then

1. it is consistent in Lo,

2. if the instruction in the |D stage depends upon a preceding instruction in the pipeline

for data, then the data hazard is resolved, and

3. if the instruction in the ID stage is a br then the control hazard is resolved.

Proof: Identical to proof of lemma 5.8 using the definitions of §, and call forwarding

functions. W

The following lemma is proved by mutual induction on the number of instructions which
have completed execution. Since the proof of lemma 5.13 is identical to the proof of
lemma 5.9, 1 state the lemma without proof. The proof of theorem 5.12 is a corollary

of this lemma.

Lemma 5.14 (Lemmas for Correspondence between & and &,) Given

e m > 1 and m € nat,

S1 and Sy two data states minus the pc, num has 0 and m in 81 and S, respectively,

—

Py is a DLX program, Py = gor (P 1P is a program state,

— —

Ly =4of VO, D, 1,0, 5,V (LEDIOSV), and

126



o C =def V]\_f. (de]\_f).

1. if the mth instruction is not ht then

Ys:&8;Sapcontp(pcl)pPr b S1p(peM)pPr iff
Yo:8 ;3 Sap(pe K)pLipCopPr F S1p(peM)pPy

2. if the mth instruction is ht then

Ys:8:S2p(pecl)pPr F S1p(peM)pPr iff
Yo:8;S2p(pecl)pPr F S1p(peM)pPy

The technique of using external functions for state transition functions, and using the logic
to manage the synchronizations has provided a powerful and flexible tool. The specification
for the optimizations did not change the global structure of the specification. The key
redefinitions were in the external functions, and the clauses for IF and ID stages. The change
from &, to &, is not modular, in fact, I believe it cannot be modular because we are changing
the interpreter for DLX programs, not adding new constructs to the programming language.
In spite of the non-modular changes the structure of the specification is maintained, and

the proof strategies for the &, suffice for &,.

5.5 Program equivalence for DLX — Correctness of code

scheduling

In this section I study the observational equivalence for DLX programs. Two programs
are deemed to be observationally equivalent if the observable behavior of the two programs
is identical with respect to a given set of environments. The problem of deciding when
two code fragments are observationally equivalent is of great importance to compiler opti-
mizations. For example, code rescheduling [HP90], i.e. reordering the instructions in the
program, is one of the most important techniques to reduce penalties due to data and con-

trol hazards. However, code can be reordered only if the reordered code is observationally
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equivalent to the original code sequence. Similarly, other optimizations done by back end

compilers need to be justified by proving appropriate observational equivalence.

The two key words in the informal definition of observational equivalence are environment
and observable behavior. The evaluator for DLX programs translates a given data state into
another one. Thus, the observable entity at the end of the computation is the data state.
Note, however, that if I observe the entire data state then I will be able to count the number
of instructions executed by a program. Although the number of instructions executed to
compute a result is useful information, this notion of equivalence would be too fine. I am
primarily interested in making sure that the results computed by two programs are identical
in all environments — how many steps are taken to achieve the results is a question that I am
not investigating here. The result of the computation is to alter the contents of the register
file and the memory — the observable entities. Hence, two programs will be equivalent if,
when placed in identical environment, the contents of the register file and memory at the
end of the computations is identical. The observable state of a computation is defined to

be the registers, the number of memory cells and the contents of the memory.

Definition 5.15 [Observable State] (r1)...(r32) are the DLX registers, and n € nat is

the number of memory cells. Let O be an abbreviation for
A, V0. (x1V) g ... p(r32Vay) pmlUy)p...(mnl,).

The lengths of Vand U —32andn respectively —if implicit, are assumed to be of appropriate
length.
For anyn >0, Vq,..., Va3, Uq,..., U, : int, (O nV [7) is an observable state. W

The next problem is to define the notion of environment. An environment, written as
E)i m, is defined to be a DLX program, Py, in which at most one of the lists parsed by
the non-terminal H,, ,, is missing. A blockis a list of DLX instructions which can be parsed
by H,, . Note that given a block ) of length ¢, replacing the hole in the environment
El) by @, written as E[Q];4, results in a DLX program Pp,. Thus, blocks of different
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lengths may be substituted for the hole in any given environment. I will drop the subscripts
on the environments whenever this will not create any confusion. Note that I will use DLX
programs themselves to test equivalence of DLX blocks. Using these two concepts, the

definition of observational equivalence is made below.

Definition 5.16 [Observational Equivalence, =y.] Let @;, ¢ € [1,2] be blocks. @y is
observationally equivalent to ), written as )1 X1 ()2, if for any DLX environment £ and

observable states (01 and O, the following is provable.

(pe L1) p (num(Ny + M1)) 9 Oz 0 (P ly E[Q1]) 5 O 9 (pc0) o (P 1y E[Q1]) ¢ (num Ny )
if and only if
(pe La) p (num( Ny + M) 9 Oz 0 (P ly E[Q2]) 5 Oy 9 (pc0) o (P 1y E[Q2]) ¢ (num Ny)
for some N;, M;, L; and [; is the length of E[Q], i € [1,2].

Note that the definition is with respect to &. This is enough due to the theorems 5.12
and 5.7, which establish that all three, &,, &, and &, are equivalent. This fact is very helpful
because &; is the simplest to work with. The definition may appear rather weak because it
is only regarding observational equivalence of blocks. This is only apparent because blocks
are a basic entity for which it makes sense to formalize the notion of equivalence. The key
property of a block as defined is that it can only be entered at the beginning and exited at
the end. If either of these two conditions are violated, then it would be next to impossible to
find interesting equivalences. Suppose that the definition of a block was such that it allowed
one to enter it at some intermediate point. In this case, the standard code rescheduling
would be incorrect. To make this point concrete, lets look at the following example. Let
their be two instructions (ix alul23/4) and (ix alu456/+). The first one writes the
sum of registers 2 and 3 in register 1, and the second one writes the sum of registers 5 and
6 in register 4. It is clear that interchanging the order of these two instructions is harmless,
only if both the instructions are executed. Suppose I was allowed to place the instructions

in an environment which can jump to the second instruction avoiding the execution of
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(ix alul237+), then the reordering of the instructions will produce different results,
i.e. code rescheduling in this case would be unsound. The definition of environments and
blocks disallows this possibility because the environment cannot jump to an intermediate
point in a block. I now prove the observational equivalence for the general statement of

code rescheduling.

Lemma 5.17 (Observational Equivalence of Code rescheduling) Let

Q1 = def Tz 1xy, Qo = def Ixy; Iz, where Ix; = def (ix C;D;S; R, 1;0,), C; €
{alu,1dst}, and all of D;, S;, R; are pair wise distinct for i € [1,2].

Q1 Zair Q2

Proof: Note that both ()1 and (5 are blocks by definition. let £ be any environment, and

O and O, be two observable states such that

(pe L1) o (mum (N1 + M1)) 9 O3 0 (Pl E[Qu]) s O1 9 (pe0) o (Pl E[Q1]) ¢ (mum Ny).
If the computation does not reach ()1, it will also not reach )2, and thus the proof for

(pc La) o (nun( Ny + My)) Oz 9 (Ply E[Q3]) 4 O1 9 (pc0) ¢ (Ply E[Q1]) ¢ (num Ny)

is the proof that I assumed.

So suppose that

(pc Ls) p (nun (N3 + M3)) p Oy 0 (Pl E[Q1]) =, O1 9 (pc0) ¢ (Pl E[Q1]) ¢ (nun N;)

such that Iz is at the address L3z in the program memory. As the block )1 has not been

executed as yet, I must have,

(pc Ly) p (nun(Ny + My)) p Oy 9 (Pla E[Q3]) 4 O1 9 (pc0) ¢ (Ply E[Q3]) ¢ (num Ny)
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such that Iz, is at the address L4 in the program memory.

Computing the instruction [z, and Iz, in both the proofs will yield

(pc Ls +2) p (num(Ns + Mz +2)) p O o (Ply E[Q1])

O1 p(pc0) p (Pl E[Q1]) p (num Nq)

and

(pc Ly +2) o (nun(Ny + My +2)) p OF 0 (P ly E[Q3]) s

O19(pc0) p (Pl E[Q2]) p (num Nz).

Since there is no dependence between the two instructions, I can permute the order in
which the instructions are computed without effecting the observable state at the end of

the execution of the two instructions.

The rest of the proof is obtained by inducting on the number of times the blocks ¢J; and

()2 are computed. The other side of the transformation can be completed similarly. B

I have provided a formal definition of observational equivalence for DLX programs which can
be tackled using program transformations. As an example, I showed how to justify code-
rescheduling from the definitions developed. This points out a subtle assumption in the code
rescheduling, that the instructions in the two sequences are computed atomically — either
one executes the entire sequence, or none of it. Without this assumption, code rescheduling
cannot be justified in general. This opens up an interesting line of investigation into back

end optimization using this meta-theoretic tool.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

My goal has been to analyze a meta-theory in which various issues regarding programming
languages can be discussed. The first, and key requirement of a framework would be that
it can specify the operational semantics of the programming language. However, I want
the meta-theory to play a much more significant role than the specification of operational
semantics alone. In particular, I want to use the meta-theory to study various interest-
ing and challenging properties of programs. One key feature of a meta-theory should be
to facilitate discussion of the programming language at various levels of detail — from
high-level specifications down to abstract machines. The meta-theory should provide a uni-
form framework in which diverse properties — subject reduction, compiler optimizations,

observational equivalence, and equivalence of different specifications — can be analyzed.

In this thesis I used FORUM as a meta-theory to study programming languages. FORUM
provides a rich structure to proofs which was used to specify concurrency, higher-order func-
tions, exceptions, state, and first-class continuations. I specified a fragment of H O7-calculus
in FORUM to show how concurrent computations may be represented in FORUM. Next,

I defined an untyped higher-order functional language, UML, which provides an exception
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mechanism and state and first-class continuations. UML, without first-class continuations,
is untyped SML without data-types. UML encapsulates essential programming constructs
which have been challenging to understand in more than one way. For example, modular
specifications of UML have not been possible. The semantic analysis of the observational
equivalence for A,;, the functional core of UML augmented with state, has been very chal-
lenging. Next, I analyze the DLX architecture in FORUM. The executable specification
of DLX architecture, to the best of my knowledge, has not been attempted. Formaliz-
ing low-level optimizations and observational equivalence for DLX programs has been very

challenging.

Specifying UML modularly and declaratively has been challenging for formal systems be-
cause of the presence the various imperative features. I have provided modular and declar-
ative specifications of the imperative features in UML. The claim that the specifications
are modular is justified by the fact that 1 obtain the specification for UML by literally
putting together my specifications for its different parts. The claim that the specifications
are declarative is justified by the fact that my proofs regarding the evaluations in FORUM

work by composing proofs using cut rules of FORUM.

As a result of my specification, evaluations become proofs in FORUM — formal objects
which can be analyzed using the meta-theory of FORUM. I use this fact to study obser-
vational equivalence for A,;. Using the proof structure of evaluations in FORUM, I have
proved some of the challenging observational equivalences in the literature for A,,-like lan-
guages. The nature of these proofs is very interesting. They seem to fall into two main
categories. One kind of proofs essentially permute a given evaluation proof, typically using
information regarding variable occurrences. The other kind of proofs are based on abstract-
ing away details of function parameter from computations. The structure of proofs, richer
logic, and cut rules play a key role in this analysis. However, the story is far from complete.

Proofs of observational equivalence exhibit the need for a richer meta-theory for FORUM.

The declarative specification of the DLX pipeline, with its complex synchronizations, hazard

resolution, call-forwarding, branch prediction and early-branch resolution, provides ample
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evidence of the flexibility of FORUM as a specification language for concurrent and imper-
ative processes. The specifications allow me to prove the correctness of the pipeline with
respect to the simple sequential evaluator for DLX programs. Further, I provide a defini-
tion of observational equivalence for DLX programs, and justify code rescheduling using the
definitions. This effort highlights the key concept of blocks when discussing equivalence of

DLX programs.

FORUM seems to provide an appropriate starting point as a meta-theory for present day
programming languages. My results regarding the specification of H Or-calculus, UML and
DLX prove that the proofs in FORUM are rich enough to represent a variety of computa-
tional paradigms. The analyses of the observational equivalence for A,s, and DLX programs

justifies the claim that FORUM can be used to study meta-theoretic properties also.

6.2 Future Work

The future work that I want to do in this area has three principal directions. First, I want
to develop proof theory required to better specify imperative features and analyze proofs
in FORUM. Second, I wish to study the derivation of abstract machines from high-level
specifications in FORUM. Finally, T wish to consider other specification tasks. I describe

each of these topics below.

Proof-theoretic challenges

Quantifiers for location names

Although FORUM is able to specify imperative features declaratively, there is one aspect
which is not captured entirely by the specification. In the specification for A,., I used
natural numbers to generate unique names for exceptions. The reason for using the sigctr
was that I had to do inequality checks on the exception names when I searched the exception

stack for an appropriate handler. The same problem would come up in the specification of
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Ays if the language permitted us to check for the equality of location names. The problem of

the mismatch between restriction in HOw-calculus and universal quantifier is also related.

The usage of V to represent creation of new location names is not entirely appropriate.
This may be an overkill, because I instantiate the universal quantifier with location names
only, not arbitrary values. In some sense, I need a quantifier for pointers. When the V is
introduced, it discharges a constant from the signature. Along with the discharging of the
constant, it might be possible to manage inequality clauses between all the location names.
In this sense, the new quantifier then may handle both the “newness” and “uniqueness”
of the location names. A solution along these lines would allow for a completely logical
specification of the exception mechanism. Further, a proper proof-theoretic understanding

might help in the search for semantics for such languages.

Proof transformations

In chapter 4 we saw how proofs were manipulated to yield observational equivalences.
There were two basic flavors to the proofs. First, the proof would essentially permute
a given evaluation proof typically based on information regarding variable occurrences.
Second, the proof would attempt to abstract the details of a function parameter from the

computation of a program.

Some of the proofs were by induction on the height of proofs in FORUM. This might lead
one to believe that there was not much uniformity to the transformations. Fortunately, just
the contrary is true. For example, in lemma 4.23, I transform evaluations of (app M’ Add;)
to evaluations of (app M’ ¢) by induction on the height of the evaluation of (app M’ Addy).
The shape of the evaluation of (app M’ Addy) will be as shown below. ¢ is the evaluation
of (app Add, V).
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FEvaluation of (app Addy V')

FEvaluation of (app Addy V')

Sequent for start state of (app M’ Addy)

The transformation replaces the proof fragment § with the constant ¢. The structure of
the rest of the proof does not matter to the transformation. The question is, how to study
these transformations proof theoretically so that the above transformations can be specified

compositionally instead of having to induct every time.

Deriving abstract machines from high-level specifications

One of the problems in language development is to show the link between the actual ab-
stract machine that is implemented and the high-level semantics that one starts with. The
traditional specification techniques are not able to present these different levels of abstrac-
tions. Hence, one has to mediate between dissimilar formalisms using some hairy induction
arguments. | would like to logically transform the evaluator I have to a CEK style abstract
machine for UML. A similar transformation was done for A, like language in [HM92]. My
work would extend it to the richer language UML. The transformation in [HM92] was not
carried out entirely within the logic. I want to investigate whether the mixture of FORUM
and continuation-passing-style specification will overcome some of the problem encountered

in [HM92].

Specification of other aspects of programming languages

One of the natural questions that comes after having specified UML, is whether it can
be typed in FORUM, i.e., can I specify the static semantics of UML in FORUM? I have
some preliminary ideas on this problem. The Subject Reduction theorem would then be

a statement about the compositionality between the typing derivation and the evaluation.
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The general setting of FORUM would also allow us to analyze other static information
about the programs, such as effects. The proof theory may provide us insight into the

logical nature of effects, if any.

Implementation of FORUM and interpreters for DLX

An implementation of a fragment of FORUM with first-order unification would suffice to
play with interpreters for DLX pipelines. This could be a big step forward in understanding
the role of FORUM as a prototyping language for such applications. The critical use of
prototypes to experiment with new ideas and negotiate contracts is gaining much recognition

recently. As such, this direction might result in some tangible applications of FORUM.
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Appendix A

Proofs from chapter 3

In figure A.1 the constants from 3,,; used for the translation of UML into FORUM is
presented. In figure A.2 the translation from UML to FORUM is presented, in figure A.3
the translation for Answersto FORUM is presented, and in figure A.4 the translation from
FORUM terms of type vl and tm to UML is presented. I prove lemmas A.1 and A.2 which
implies lemmas 3.1, 3.4, 3.9 and 3.13. I use the notation from chapter 3 regarding freely in

the appendix.

Lemma A.1 Let M and N be UML terms, V and U be values in UML.

Proof: The proof of the lemma works by mutual induction on the two claims. The induc-

tion is done on the structure of the term.

Proof for claim 1: The claim is vacuously proved in the cases where U is an exception

name, or a constant in the language.
Case U = z, z# 2 : LHS = 2 = RHS
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abs : (vl — tm) — vl
c vl ce BUZU({e}

()« vl—tm
f i tm—tm — tm feo
app : tm — tm — tm
cond : tm — tm — tm — tm
ifbr : vl — tm — tm — tm
letval : (vl — tm) — tm — tm
letfun : (vl — tm) — (vl — vl — tm) — tm
cell : tm — tm
read : tm — tm
write : tm — tm — tm
ex : ext — vl
exn : (ext — tm) — tm
install : tm — tm — tm — tm
signal : tm — tm — tm
catch : tm — tm
jump : tm — tm — tm

get : vl = (vl = 0) — o0
set : vl —vl— (vl =0)— o0
apply : tm —tm — o
uncaught : ext — vl — o
resume : vl — vl — o
cont : vl = (vl —0) — 0o
eval : tm — (vl = 0) — o

Figure A.1: Constants in X,,; used in translating UML to FORUM
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H(let val 2 = M in N
H(let fun fo =M in N
H(ref M

H(deref M

H(asg M N
H(exception [ M
H(handle M N P
H(raise M N

H(callece M

H(throw M N

P A N P D e N N NV N N

X

abs Az : vl. H(M)

¢ ce ZUBU{e}
(ex 1) [ € FxnNames
(V)

fH(M) H(N)

app H(M) H(N)

cond H(M) H(N) H(P)

letval (Az. H(N)) H(M)

letfun (Af.H(N)) (Af,z. H(M))
cell H(M)

read H(M)

write H(M) H(N)

exn Al. H(M)

install H(M ) H(N) H(P)

signal H(M) H(N)

catch H(M )

jump H(M) H(N)

Figure A.2: Translating UML to FORUM

AV, K)
A(lpk [,V | ]K

(£, 6(V))
(uncaught [ ¢,.(V))

Figure A.3: Translating answers in UML to FORUM
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o) = @
p(abs Az. M) = Az. L(M)
(¢c) = ¢ ce€ ZUBU{e}
Plexl) = 1
Lv)) = ¢(V)
LPMN) = [ LOD E(V) feo
e M) = L) 2
L((ifbr VN P)) = ifp(V)L(N)L(P) beB
L({cond M N P) = if L(M)L(N)L(P)
L(letval R N) = letvala =L(N)in L(Rz) x fresh
L(letfun Ry Ry) = letfun fo = L(Ry fz)in L(Ry f) f,x fresh
Lcell M) = ref L(M)
L(read M) = deref L(M)
L(write M N) = asg L(M)L(N)
L(exn R) = exception [ L(R]) l € ExnNames,l is fresh
L(install M N P) = handle L(M) L(N) L(P)
L(signal M N) = raise L(M) L(N)
L(catch M) = callec £L(M)
L(jump M N) = throw L(M)L(N)

Figure A.4: Translating FORUM terms to UML
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Case U = z, z=ua : LHS = ¢(V) = RHS

Case U = A\2. M 2 #x :

If 2 = « then the equality is immediate. I write the case when z # z.

LHS = ¢((Az. M)[z := V]) = ¢(Az. (M[z := V])) = abs A\z. H(M[z := V])
= abs \z. (H(M)[z := #(V)]), by induction on claim 2.

= (abs Az. H(M))[z := ¢(V)] = RHS

This completes the proof of claim 1.

Proof for claim 2:

Case M = U, U € Values : By claim 1.

Case M = (fNP), feO:
LHS = fH(N[z := V])H(P[z := V]), by induction on claim?2
= JH(N)[e = (V) H(P) = 6(V)] = RS

Case M = (N P):
LHS = app H(N[z := V]) H(P[z := V]), by induction on claim?
— app H(N)[x = G(V)] H(P)[z 1= 6(V)] = RIS

Case M = (if NP L):
LHS = cond H(N[z := V]) H(P[z := V]) H(L[z := V]), by induction on claim?2
= cond H(N)[z := ¢(V)] H(P)[a := (V)] H(L)[z := ¢(V)] = RHS
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Case M = (letval z= N in P) :

When z = 2 the result is immediate. I write the proof for z # «.

LHS = letval (Az. H(P[z := V])) H(N[z := V), by induction on claim?2
= letval ((Az. H(P))[z := ¢(V)]) H(N)[z := V] = RHS

Case M = (let fun f,z = N in P) :
When z = 2 or z = f the result is immediate. I write the proof for » # « and = Z f.
LHS = letfun (\f. H(Plz := V1)) (Af, 2. H(N[z == V])) by induction on claim?

— letfun (\f. H(P))a := 6(V)]) (Af, 2. H(N )[w := ¢(V)]) = RIS

Case M = (ref N) :
LHS = cell H(N[z := V]), by induction on claim?2
= cell H(N)[z := ¢(V)] = RHS

Case M = (deref N):
LHS = read H(N[xz := V]), by induction on claim?
= read H(N)[z := ¢(V)] = RHS

Case M = (asg N P) :
LHS = write H(N[z := V]) H(P[z := V]), by induction on claim?2
= write H(N)[z := ¢(V)] H(P)[z := ¢(V)] = RHS

Case M = (exception[ N) :

Note a # [.

LHS = exn {H(N]z := V]), by induction on claim2
= exn [H(N)[z := ¢(V)] = RHS
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Case M = (raise N P) :
LHS = raise H(N[z := V]) H(P[z := V]), by induction on claim?2
= raise H(N)[z := ¢(V)] H(P)[z := ¢(V)] = RHS

Case M = (handle N P L) :
LHS = signal H(N[z := V) H(P[z := V])H(L[z := V]), by induction on claim?2
= signal H(N)[z := (V)] H(P)[z := ¢(V)[H(L)[x := ¢(V)] = RHS

Case M = (callec N) :
LHS = catch H(N[z := V]), by induction on claim?2
= catch H(N)[z := ¢(V)] = RHS

Case M = (throw N P) :
LHS = jump H(N[z := V]) H(P[z := V]), by induction on claim?2
= jump H(N)[o := 6(V)] H(P)[z i= 6(1)] = RHS m

The proof for lemma A.2 is a mutual induction exactly along the lines of lemma A.1. As

the details do not reveal anything new I have not written down the proof.

Lemma A.2 Let N :tm, U :vl, and V : vl be FORUM terms.

I now want to prove theorem 3.18. This theorem states that the natural semantics spec-
ification of A,z and &,.5, and the FORUM specification of A, are equivalent. I begin
with the definition of a configuration and the translation of the configuration to FORUM.

Configurations are the initial environments in which A,z terms need to be evaluated. The
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Y:0,Cls: QpAg — Qi

VL, = L
Y:9,Cls; (CQ) — QpA c

:, Associativity and commutativity of @

Y@, Cly: (CQ) — QT

Figure A.5: C is a configuration

translation of a configuration to FORUM returns a A which places its arguments in an
environment in which all the cells and exceptions have been declared, and approporaitely

quantified.

Definition A.3 [Configurations in A,s] A conifguration, C' is a pair of state, S, and set

of exception names, Iz, such that forall [ € dom(5), FV(5(!)) C dom(S)U Ez. B

Definition A.4 [Translating Configurations to FORUM] C' =4, (9, Ex), be a configura-

tion. The translation of ' into FORUM is a term of type o — o, written as C°.

C% = gef
Au:oN Pg,ls. getC(Py, 1) = setC( Py, 1) = ... = getC(P,,[,,) = setC(P,,[,) =

[up s p(sigetr lg,) @ (exnst nil)]

The domain of a configuration, C' =y.¢ (5, Ex), written as dom(C'), is the union of dom(5)
and Fz. In figure A.5 I show a proof figure, Compl, which I will use to end the computations
in Ayse. Let C = (9, Ex).

C°Q =V Ps,ls. getC(Pr,ly) = setC(P1,l1) = ... = getC(P,,1,) = setC(P,, ) =

[Q ¢ 's p (sigetr lg,) o (exnst nil)]
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I =def lgs, To =def T's, Ac =def I'c o (sigetr Io) p (exnst nil), and A is some permutation
of A¢. I restate Theorem 3.18.

Theorem A.5 (Correspondence theorem for A, ) Let M € Ayse, A € Answers,s. ,
Cy be a configuration and Cy be a configuration such that FV(M) C dom(C).

<M7 Cl> ‘U’ <A7 02> Zf and Only Zf evaI(H(M)v Clv A(Av I()v 02)

Proof: Assume M € Ay, A € Answers,s. , C is a configuration and (' is a configuration

such that FV(M) C dom(C).

Left to right direction : Proofis by induction on the height of the evaluation tree in the
natural semantics. I do a case analysis on the structure of M. There are in total thirty-nine
rules in natural semantics that I have to analyze. Since many of the cases are repetetive,
I will prove the ones which have different features and leave out the proofs of the rest. In
the proofs I show, I will not show parts of the signature and intuitionistic context. For
example, I do not write 3,5 in the signature, and &,.; in the intuitionistic context, since

they are present in all the exhibited sequents.

Case M = V : There is only one possible evaluation tree. The proof in FORUM follows

trivially from Identity.

Case M = (N P) : There are four possible evaluation trees. Suppose the evaluation is

(N, C1) § (M2.Q,C2) (P,Co) I (U,C5) (Q[a:=U],C3) § (V,Cy)
(N P),C1) §(V,Cy)

The proof is essentially the one given in section 3.1 after theorem 3.3. There are three more
natural semantics trees, each for the fact that we have an uncaught exception. The proof

for these cases is completed as shown in section 3.3 after theorem 3.12.
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Case M = (f N P), f € O : In this case, there are three possible natural semantics which

are applicable. The proof is along the lines of the case M = (N P).

Case M = (if N P Q) : In this case, there are six possible natural semantics which are
applicable. T show one of the cases, the others may be completed similary. Suppose the last

natural semantics rule used is :

(N,Cy) ) (true, Cq) (P, Cq) | (V,C5)
((if N P Q),C1) (V. C5)

The evaluation trees for (N,C7) | (true,Cy) and (P,C3) | (V,C3) are smaller than the
evaluation of M. Let Ny =g.p H(N), P1 =gcp H(P), Q1 =405 H(Q), and Vi =gop o(V).
Thus, by using induciton hypothesis I get proofs 61, and 65 of

o K1 :&es; C§(Kqtrue) — C?(eval Ny Ky), and
o Ky:&es; C5(K2 V1) — CS(eval Py K3), respectively.

The required proof is constructed below. In the proof,

Ly =gep Av.(eval ((ifbr v P1 Q1)) K), and (L1 true) =5 (eval ((ifbr true P Q1)) K).

g2

C3(K Vi) — C9(eval P, K)
CS(K Vi) — (eval ((ifbrtrue Py Q1)) K) p A¢,

VR, = R o1
CY(K Vi) — C9(Lytrue) C9(Lytrue) — (eval Ny L1)p A,
Yo, K :Clg ; CS(K Vi) — (eval Ny L1) p Ac,
Yo,, K Clg ; CYK Vi) — (eval (if Ny Py Q1) K) pAc,

In the above proof, oy is obtained by é; by a CutSrule Ky with Ly, similarly o5 is obtained
from 69 by a CutS rule on Ky with K.

Suppose the last natural semantics rule used is :
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(N, C1) I ([pk 1 V], Cs)
((if N P Q),Cr) I (V, ()

The evaluation tree for (N,C4) | {[pk [ V],C3) is smaller than the evaluation of M. Let
Ni =gef HIN), Pr =g H(P), Q1 =4of H(Q), and Vi =gor &(V). Thus, by using
induciton hypothesis I get proof é; of

o i1 :&ues; C9(uncaught [ Vi) — CY(eval Ny k7).

The required proof is constructed below.

g1
Yo,, K : Clg ; C§(uncaught [ Vi) — (eval Ny Lq) p Ac,

Yo, I Clg 5 C§(uncaught [ Vi) — (eval (if Ny P Q1) K) pAc,

backchain

Where o4 is obtained from é; using CutS. The proof, for the other natural semantics rules

for if are completed in a similar manner.

Case M = (let val z = N in P) : This case is handled exactly like (Az. P) N.

Case M = (let fun f,z = N in P) : The last evaluation rule for letfun will be :

(P[f:=Az.letfun fo = Nin N|,Cq) | (A,Cy)
(let fun fa = Nin P,Cq) || (A,C3)

The evaluation tree for (P[f := Az.let fun fz = N in N],Cy) | (A, Cy) is smaller than the
evaluation of M. Let Ny =g.p H(N), P =qf H(P), and Vi =gep ¢(V). Thus, by using
induciton hypothesis I get the proof é; of

o 1 :&es; CSA(A, K1) — CY{(eval P[f := (abs Az.let fun fa = Nyin Ny)] Kq).

The required proof is constructed below. Let ¢ =def (abs Az. let fun fa = Nyin Ny).
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g1

Yo, I Clg 5 C9(uncaught [ Vi) — (eval P[f :== Q] L1) pAc,

Yo, I 1 Clg s CSA(A, K) — (eval H(let fun fa =N in P) K)pAg, backchain
Where o4 is obtained from é; using CutS.
Case M = (ref N) : I consider the case when the last evaluation rule for ref is :

(N, C1) 4 (V,Cy)
(ref N,Cq) J {I,Cq[l — V)

[ ¢ State in Cy

The evaluation tree for (N, C'y) || (V,C3) is smaller than the evaluation of M. Let Ny =g.¢
H(N), and V; =def #(V). Thus by using induction hypothesis I get proof é; of

i ](1 : gves ; CQO(I( V) — Cf(eval N1 ](1).

The required proof is constructed below. Let C3 =def (53]l — V], Exy), where (5 =def
(52, Exg), and Ly = g.p Av. VP, 1. getC(P,1) = setC(P,1) = [(K 1) p(Pv)].

Compl
Yog, Pyl Clg, ; CYK1) — (K1) p(PV1)pAg,
VR, = R o1
Cg([(l) — CQO(Ll Vl) CQO(Ll Vl) — (eval N1 Ll)pAC&

Yo, K :Clg ; CS(K 1) — (eval Ny L) p Ac,
Yo, K :Clg, ; CS(K 1) — (eval (cell Ny) K) p Ag

backchain

Where o4 is obtained from é; using CutS. The other case when the evaluation of NV returns

an uncaught exception is treated similarly.

Case M = (deref N) : I consider the case when the last evaluation rule for deref is :

(N, Cn) I ([pk L V], C)
(deref N, C1)  ([pk I V], C4)
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The evaluation tree for (N,C4) | {[pk [ V],C3) is smaller than the evaluation of M. Let
N1 =gef H(N), and V; =def #(V). Thus, by using induction hypothesis I get proof é; of

o i1 :&ues; CS(uncaught [ Vi) — CY(eval Ny k7).

The required proof is constructed below. Let Ly =g Av. (get v K).

g1
Yo,, K : Clg ; C§(uncaught [ Vi) — (eval Ny Lq) p Ac,
Yo, K Clg 5 C§(uncaught [ Vq) — (eval (read Ny) K') p Ac,

backchain

Where oy is obtained from é; using CutS. The other case when evaluation of N returns a
value is treated similarly. Essentially, the computation continues with (get | K'), where [

would be the value returned by N.

Case M = (asg N P) : There are three natural semantics rules for asg. The proofs for all

of these is completed along the lines of the proof after theorem 3.8.

Case M = (exception [ N) : This case is rather straightforward given the examples

above. It is handled along the lines of ref.

Case M = (raise N P) : This case is rather straightforward given the examples above. It

is handled along the lines of app.

Case M = (handle N P Q) : Suppose the last rule in the evalution was

<P7 Cl> ‘U’ <lv 02> <Q7 02> ‘U’ <W7 CS> <N7 CS> ‘U’ <[pk l U]v C4> <(W U)7 C4> ‘U’ <V7 C5>
(handle N P Q,C1) | (V,C5)

The evaluation trees for (P,C1) | (I,C3), (Q,C2) | (W,Cs), (N,Cs) | ([pk | U], Cy),
and (W U),Cq) I (V,C5) are smaller than the evaluation of M. Let Ny =def H(N),
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Py “def H(P), Q1 “def H(Q), V1 “def V), U “def P(U), and W, “def ¢(W). Thus,
by using induciton hypothesis I get proofs 81, é2, 63, and 64 of
o K1 :&es; CS(Kq(exl)) — Cf(eval Py Kq),
L4 ](2 : gves ; Cg(]‘/r? Wl) - Cg(eval Ql ](2)7
o K5:&.s; C§(uncaught [ Uy) — CY(eval Ny K3), and
o Iy:E&es; CL(K4V) — Cg(eval (app Wy Uy) Ky), respectively.
The required proof is constructed below.
Let Ly =gp Av. (isexn v Aw. (eval Q1 Au. (push w v K Ny))),
Ly =gef Aw.(eval @1 Au. (push w w K Ny)), and Ly =gep Au. (push lu K Ny).

Note (Ly (ex1)) =ges (isexn (ex 1) Aw. (eval Q1 Au. (push w u K Ny))),
(L2 l) =gef (eval @1 Au. (push lu K Ny)), and (Ls W1) =g.¢ (push { Wy K Ny)

R
Yo, 1 Cley,; CUK Vi) — (L1(ex 1)) p Ac,
VR, = R o1
CeK Vi) — C9(L1(ex 1)) C9(Ly (ex1)) — C7(eval Ny Ly)

Yo, Cley ; CS(K Vi) — CP(eval Ny Ly)
Yo, Cley ; CS(K Vi) — C{(eval (install Ny Py Q1) K)

To complete the proof I am left with constructing ;.

72
203 : CLC3 ; CSO(I( Vl) — (L2 l) pACS
:VR,= R Yo, 1 Cley,; C9(L2l) — (La2l) p Ac,
Yoy : Clo, s C5(K V1) — C3(Lal)  Xg, : Clg,; C5(Lal) — (Ly(ex 1)) pAg,
Yo, 1 Cley,; CUK VL) — (L1(ex 1)) p Ac,

~9 is constructed below.
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73
Cg([( Vl) — (pUSh W K Nl) WA@

:VR,=> R o
Cg([( Vl) — CZ(L3 Wl) CZ(Lg Wl) — (eval Ql Lg) pACS
Cg([( Vl) — (eval Ql Lg) pACS

~3 is constructed below.

g3
CY(K V1) — (eval Ny Av. (pop (K v))) pLc, p(sigetr I, ) @ (exnst (pkt { Wy K) :: nil)
Cg(K Vi) — (push I Wy K Ny)pT'c, p(sigetr lc, ) @ (exnst nil)

The proof o; is constructed from é;, ¢ € [1,2]. o3 is obtained from é3. 43 results in
(uncaught [ Uy), under the assumption that the initial exception stack is empty. However,
the excetion stack is (exnst (pkt [ Wy K') :: nil). I change 63 to reflect the intial exception
stack, which will catch the exception and evaluate (apply Wy U; K). The evaluation of

(apply Wy Uy K') is completed using 84. The other cases for handle are handled similarly.

Right to left direction : In this direction, I induct on height of the sequent proof in
FORUM. I then do a case analyses based on the outermost term constructor for the term
being evaluate. The proof in this direction is very similar in nature to the one for the
other direction. I illustrate the basic strategy using (asg N P) as an example, and do
not write down the other cases. The computation for (asg N P) in FORUM is as shown
below. P =g.¢ H(P), N, = def H(N), A € Answersys., Vi = def oV, Iy = def
Av. (eval Py Au.(set v u K)), and Ly =g, Au.(set lu K).

gé!
: Computation of P;, Ptl
CJA(A,K) — (eval Py Ly) p Ac,
CJA(AK) — (evall L) pAg,

: Computation of Ny, Ptl
CJA(A,K) — (eval Ny Ly) pAcy
Yo, 1 Cle, s CQA(A, K) — (eval (asg Ny P1) K) p A,

Where 77 is shown below.
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Compl
CIA(AK) — (o) pl' p(PVy)p(sigetrlo,) o (exnst nil)
CIA(AK) — (set I V] K)pl p(PUy)p(sigetr lc,) o (exnst nil)
Ci{A(A,K) — (eval Py L) pAg,

From this proof the computations for (N, Cy) | (I, C3) and (P, Cy) || (I, C3) can be extracted
easily. Next, the variable conditions in the proof imply that the state can be updated suit-
able so that the final answer is (e, C3[l — V). However, if the evaluation of Ny raised an
uncaught exception, (uncaught [ V7), then the proof would have ended with the Compl con-
struction at the point Pt1. In this case, I can get a computation of (N, C7) || ([pk { V], C3).
The case when Ny evaluates to a value, and P raises an uncaught exception, (uncaught [ V7),

is handled similarly.
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