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1 Proposal Summary

There is little hope that the world will know secure software if we cannot make greater strides in the
practice of formal methods: hardware and software devices with errors are routinely turned against
their users. The ProofCert proposal aims at building a foundation that will allow a broad spectrum
of formal methods—ranging from automatic model checkers to interactive theorem provers—to
work together to establish formal properties of computer systems. This project starts with a won-
derful gift to us from decades of work by logicians and proof theorist: their efforts on logic and
proof has given us a universally accepted means of communicating proofs between people and
computer systems. Logic can be used to state desirable security and correctness properties of soft-
ware and hardware systems and proofs are uncontroversial evidence that statements are, in fact,
true. The current state-of-the-art of formal methods used in academics and industry shows, how-
ever, that the notion of logic and proof is severely fractured: there is little or no communication
between any two such systems. Thus any efforts on computer system correctness is needlessly
repeated many time in the many different systems: sometimes this work is even redone when a
given prover is upgraded. In ProofCert, we will build on the bedrock of decades of research into
logic and proof theory the notion of proof certificates. Such certificates will allow for a complete
reshaping of the way that formal methods are employed. Given the infrastructure and tools envi-
sioned in this proposal, the world of formal methods will become as dynamic and responsive as
the world of computer viruses and hackers has become.

2 Extended Synopsis

2.1 Software and hardware correctness is critically important

Computer systems are everywhere in our society and their integration with all parts of our lives is
constantly increasing: along with this wide scale use of computing systems comes an increasing
need to deal with their correctness. There are a host of computer systems—such as those in
cars, airplanes, missiles, hospital equipment—where correctness of software is paramount. Big
changes in the attitude towards correctness is also taking place in the area of consumer electronics.
For example, years ago, establishing the correctness of, say, desktop PCs, music players, and
telephones was not urgent since rebooting such systems to recover from errors or living without a
feature due to bugs were mostly nuisances and not “life-threatening”. But today,

these same devices are now tightly integrated into networks that require dealing with
the security of information, with the anonymity of users, etc. while keeping safe from
attacks from malicious software (almost always exploiting bugs within software).

Attempting to establish various kinds of correctness-related properties of software systems is no
longer an academic curiosity. The old chestnut “You can’t build a tall building on a sandy beach,”
which is so often invoked to argue for solid foundations for engineering projects, needs a modern
updating that requires moving off the beach to the sea: “If you are in a canoe, a small leak might
be okay; if you are in a submarine, a small leak is lethal.” As it is painfully clear today, plugging
your computer into the Internet is similar to descending into the depth of the sea: if there is a crack
in your security, it will be exploited quickly. One cannot be relaxed anymore about leaks.
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Our ability to provide at least some formal guarantees about software systems will be di-
rectly related to our ability to deploy new functionality and services. If we cannot distinguish
applets from viruses, we cannot expect people to really use the rich set of flexible services orga-
nized around mobile code. Our future could resemble elements of the world in William Gibson’s
Virtual Light, where network security was so bad that important data was transferred by bikers
carrying hard-disks! If we cannot produce software that has some formal guarantees, then the
development of all the new features and services—and the concomitant increases in efficiency and
productivity—that we all hope to see soon will be greatly delayed.

2.2 The Tower of Babel and formal methods

Even in the earliest days of the theory of computing, there was a range of ways to specify compu-
tation: e.g., Church’s λ-calculus, Turing’s machines, Kleene’s recursive schemes, Post rewriting
systems, etc. Gradually, it was shown that all of these different formal systems were computing
the same partial recursive functions. While the functionality of these many different programming
paradigms coincided, there was no coincidence in their syntax and their operational behaviors.
It is now broadly accepted that the malediction against the construction of the Tower of Babel
affected not only natural languages but also programming languages: there are numerous pro-
gramming languages in common use and they do not easily inter-operate. Our discipline lives
with many programming languages and has developed tools and techniques for making the best of
this diverse and fragmented approach to programming.

Given that programs and proofs share a common and deep connection, it is natural to ask
if this same malediction also applies to proofs as well. A quick review of the state-of-the-art
strongly suggests that a similar fragmentation already exists. In the theoretical study of proofs and
automated reasoning, there are a plethora of proof systems: resolution, tableaux, sequent calculus,
natural deduction, DPLL, etc. In the practical development of theorem proving systems, proofs are
often stored in formats that are seldom meaningful to another theorem prover and seldom work
as proofs for even a later version of the same prover. For example, both Isabelle and Coq can
represent proofs as “proof scripts” (procedural descriptions of how to steer a theorem prover to a
proof) but these scripts mean nothing to any other prover. It would seem that the malediction of
the Tower of Babel also applies to proof system with the result that it is difficult to communicate
proofs among the many practitioners in formal methods.

Given that logic can be used to formalize much across the vast landscapes of computation
and mathematics, diversity in prover technology is certainly desirable. Clearly, the techniques
and tools needed for producing formal proofs in, for example, algebraic topology and in cache
coherence protocols are different. The principle goal of ProofCert is to establish that it is possible
for this rich diversity of provers to present their proofs in a single, flexible structure.

2.3 The challenges

We shall use the term “prover” to denote any computational logic system (automatic or interac-
tive) that is used to establish a proof about some logical expression. There are a wide range of
provers in common use today in both academics and industry:2 besides the well-known theorem

2For a perspective on industrial uses of provers, see D. MacKenzie. Mechanizing Proof, MIT Press, 2001.
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proving systems (Coq, Isabelle, HOL, NuPRL, PVS, etc) there are a number of other systems that
prove theorems: for example, model checkers, type inferencers, static analyzers, SAT solvers, and
rewriting systems can all be seen as providing proofs of logical formulas.

Selecting the appropriate “universal logic” does not seem too controversial. A higher-order
logic (following Church’s “Simple Theory of Types”) seems natural: it can easily capture proposi-
tional formulas and (multi-sorted) first-order logics as well as admit an array of modal operators.
Also, many typing systems (e.g., dependent typed λ-calculus) can easily be mapped into formulas
of higher-order logic. For these reasons, higher-order logic is a popular choice in many of today’s
ambitious, interactive theorem provers. The main issue depends on a choice between classical
and intuitionistic logic: almost all major theorem provers force this choice in their foundations.
Our choice here is to make use of recent work in the “unity of logic”3 in which both classical and
intuitionistic connectives can co-exist.

The challenge here is to design proof certificates that satisfy the following four desiderata.4

1. Since proof checkers must be trusted, they need to be, in principle, simple program: this
will make it possible to verify and trust them.

2. It should be easy for a wide range of computational logic systems to output: in a given
prover, there should be a pretty-printer that can output a proof certificate for any proof-like-
evidence within that prover. The goal is not to force the prover to conform to some arbitrary
notion of proof structure. The prover will be required to maintain some notion of proof but
there should be some way for the prover to describe its notion of proof to the checker.

3. The process of validating a proof certificate requires discovering that it denotes a proof in a
well understood and “declarative” setting. This requirement rules out, for example, proce-
dural scripts that drives a particular prover to a proof. The certificates should denote (via a
possibly complex series of computations) a proof object for which a rich set of operations
are possible. As a result, certificates will allow rich mechanisms for browsing them and for
applying them in new situations.

4. The design of proof certificates must acknowledge that proofs can be huge objects which
cannot be communicated with all of their details. Thus proofs must contain mechanism that
permit lemmas to be introduced (thus allowing tree structured proofs to be organized into
directed acyclic graphs) and permit some proof information (presumably information that
can be calculated) to be completely elided. The proof checker should be able to redo the
computation.

2.4 The ground-breaking developments

We list a few ground-breaking developments that such a proof certificate format would allow.

Universal communications of the results of proving. A theorem prover is said to satisfy
the “de Bruijn criterion” if that prover produces a proof object that can be checked by a simple

3See Girard’s paper in the Annals of Pure and Applied Logic 1993 and the Liang & Miller paper in LICS 2009.
4These desiderata and technical approaches to addressing them appear in the draft paper “Communicating and

trusting proofs: Towards a broad spectrum proof certificate” available from Miller’s web site.
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checker.5 The first two desiderata above together imply a “global” version of the de Bruijn crite-
rion: if every theorem prover can output a proper proof certificate, then any prover can trust any
other prover’s output simply by using its own trusted checker.

Marketplaces for proofs. Proof certificate makes it possible to develop a marketplace for
proofs. For example, the Acme company may need a formal proof of its next generation safety
critical system (such as can be found in avionics and medical equipment) because the proof is
mandated by a government contract.6 Acme can place in the marketplace a proof certificate that
contains the proposed theorem along with a hole instead of a proof. Acme would then offer to pay
anyone who can fill that hole in such a way that Acme’s trusted proof checker can validate it. This
marketplace can be open to anyone: any theorem prover or combination of theorem provers can
be used. The provers themselves do not need to be known to be correct.

Libraries of proofs. Once a proof certificate is checked, it could be admitted to a library: others
might be willing to trust the library and to use its theorems without rechecking the certificate.
Besides trust, libraries can also provide other services, including searching their theorems and
proofs as well as structuring to large collections of theorems.

Check the certificates, not the prover. The availability of proof certificates means that the
“trusted base” of software that must be trusted can be radically reduced. One needs to make
certain that the proof checker is correct: much of the work of ProofCert is desired to ensure that
such checkers will be relatively simple and static programs (hence, their formal correctness should
be straightforward). On the other hand, most provers that are designed to search for proofs are
usually sophisticated and constantly evolving: their formal verification would be a rather dubious
project. Of course, if a particular prover can be formally verified and the proof certificate related
to that verification is checked, the proof certificates it may produce do not need to be checked.

One proof can involve many provers. Since a model checker and an inductive theorem prover
will be able to output their proof evidence as such proof certificates, their different strengths can
be mixed and formally validated. For example, a model checker may only explore a small part
of a model since the remaining part can be guaranteed by symmetries of the model. An inductive
theorem prover might be able to prove that that model satisfies such a symmetry. While the internal
mechanisms for these two style of provers can be wildly different, the desiderata above imply that
both provers will be able to output proof certificates and that these can be combined into one
certificate for justifying the full model checking effort.

Distributed development of proofs and counterexamples. Since proofs can be large efforts
and since the availability of proof certificates should allow many different provers to contribute
to a full proof, the notions of partial proof and of counterexamples will play a critical role in the
dynamics of assembling proofs. Partial proofs will provide the framework for not only distributing
parts of the proving effort but also dealing with counterexamples. If Acme is willing to pay
for a proof, it should clearly also place some economic value on a counterexample. Clearly,
counterexample should be part of a comprehensive proof certificate format description. A strong
theory that allows proofs and counterexamples to interact will allow the scope of counterexamples
to be clearly understood: in particular, one should be able to determine if the counterexample

5See “The Challenge of Computer Mathematics,” by Barendregt and Wiedijk in Trans. A of the Royal Society (2005).
6For an overview of such government requirements, see J. P. Bowen’s paper “Formal methods in safety-critical

standards” in Proc. Software Engineering Standards Symposium (1993).
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affects just one or more of the open premises of a partial proof or is it a counterexample to the
initial proposed theorem.

2.5 Methodology

In order to explain how such an ambitious treatment of such a ubiquitous concept as proof can be
achieve, we outline the major methodological aspects of ProofCert.

Building molecules of inference from the atoms of inference. Gentzen’s sequent calculus
and Girard’s linear logic have provided us with both “atoms of inference” as well as a framework
for assembling those atoms into “molecules of inference.” Proof theory provides us with certain
“chemistry rules” that describe how atoms may either stick together to make the larger connectives
or separate to form the boundaries between connectives. The rules of chemistry can be found in
recent work on focused proof systems.7 When provers record evidence internally for a proof, that
evidence is not necessarily organized using these atoms. Since the set of “molecules of inference”
is surprisingly rich,8 those molecule can often be designed to match the structure of the proof evi-
dence. In this way, the programmer of the prover will be able to output its evidence using the larger
inference rules. That same programmer will need to describe the structure of those molecules us-
ing the vocabulary of the underlying chemistry (polarizations, additive/multiplicative, phases, etc).
Given this organization of proofs, the proof certificate checker only needs to understand a (small
set of) atomic inferences and how to apply the rules of chemistry.

The proof checkers will also do proof search (and computation). In order to make the sizes
of proof certificates manageable, proof certificates will allow for a trade-off between their size and
the complexity of checking them. In the setting of ProofCert, this trade-off arises from allowing
parts of a proof to be completely elided. When the proof checker encounters such a hole in the
proof, the checker will need to search for a proof. Of course, such a search should be known (by
the designer of the certificate writer) to be a simple and bounded process. The use of logic variables
and unification in theorem proving is an example of eliding such aspects of proofs: instantiations
are named by a logic variable in the certificate and unification will eventually determine its specific
value. Such holes also make it possible to incorporate a flexible boundary between computations
and deduction: in particular, computations are essentially proofs that both the proof producer and
the proof checker are expected to do exactly the same. Thus proof certificates need to involve
computations but do not need to include their trace.

The integration of model checking with conventional theorem proving. Recent work on
the proof theory of fixed points and term equality9 shows us that proof theory can capture proofs
from model checkers just as well as it can capture proofs from conventional theorem provers. In
particular, objects such as simulations and winning strategies can easily be seen as proof objects in
the proof theory with fixed points. Thus, we can now see model checking as a deductive systems
in a style similar to how we view proofs from other deductive systems. Such an integration is
extremely valuable but also not without its complexity. In particular, while we know how to
describe complete proofs for both model checking and theorem proving together, we do not yet
know how to search for ways to complete partial proofs involving both style of proof. The problem

7See: Andreoli, J. of Logic and Computation (1992) and Liang & Miller, Theoretical Computer Science (2009).
8Examples are in Miller’s paper “Communicating and trusting proofs: Towards a broad spectrum proof certificate.”
9See David Baelde’s 2008 PhD thesis and his recently accepted submission to the Trans. on Computational Logic.
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here has to do with the nature of quantified variables and unification in the combined proof system.
Addressing this issue of unification will be one of the several technical challenges of ProofCert.

2.6 The risks: high-risks but high-gains

The unification of the formal method community around a standard for logic and proof is a major
benefit of this proposal. European industry will benefit greatly from the many improvements and
tools that will come from this effort. At the same time, there are a number of risks involved in this
project: as mentioned below, these risks offer opportunities as well.

What if proof certificates are really too big to communicate? There are at least two approaches
to addressing such a problem in this setting. First, checkers could be given more resources (more
memory, more processors) and the computations that are part of proof certificates can be optimized
using logic programming compilation techniques. Second, one can use reflection: if one proves
that a particular prover component is correct, its certificates do not need to be checked.

How richly can we integrate model checking and theorem proving? As mentioned above,
no one has developed a complete approach for a proof checker to fill in the missing information
(unification in that setting is not fully understood). While we shall attempt to find a complete
solution to this problem, we may also need to consider studying real world examples to see to
what extent these two kinds of partial proofs overlap and cause problems.

7
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3 Scientific Proposal

3.1 The state-of-the-art

In the literature of mathematics and computer science, there is a great deal of skepticism, doubt,
and confusion about the value and nature of formal proof. For example, Lakatos saw the desire to
have formal proofs as a misguided quest for certainty:

. . . ‘certainty’ is far from being a sign of success, it is only a symptom of lack of
imagination, of conceptual poverty. It produces smug satisfaction and prevents the
growth of knowledge. - I. Lakatos, Proofs and Refutations

While this criticism of formal proof may be appropriate when aimed at a group of mathematicians
which is engaged in discovering mathematical concepts (as is depicted by Lakatos), it is not a valid
criticism (nor was it intended to be) of those building, for example, safety critical systems where
certainty is a requirement and formal proof are a means to establish certainty [19].

Within mathematics, different domains have different needs of proofs. For example, formal
proof probably has at best a minor role to play in the discovery of mathematical concepts and
the appreciation of mathematics as an art form. On the other hand, the mathematician V. Vo-
evodsky has recently described a plan [34] for doing mathematics in such a way that one can be
certain that a theorem holds independently of possible inconsistencies that may someday appear
in mathematics. His plan involves building and normalizing formal proofs.

The attitude towards formal proof in computer science has had a varied past. For example,
in 1979 the CACM published an article by De Millo, Lipton, and Perlis [22] that provided many
criticisms and problems in the use of formal proof in verification. Thirty one years later, the CACM
published another article, this one by Z. Shao [30], that provides a more modern and nuanced
program for the use of formal proofs in verification. On a more concrete level, formal proofs of
software and hardware are now developing economic value. For example, some professional and
contractual standards (for example, DefStan 00-55 of the UK Defence Standards [23]) mandate
formal proofs for software that is highly critical to system safety (see [6] for an overview of such
standards). The cost of going to market with computer system containing an error can, in some
cases, prove so expensive that additional assurances arising from formal verification can be worth
the costs. For example, an error in the floating point division algorithm of one of their processors
proved to be extremely costly to Intel: as a result, formal verification is now used within Intel to
help improve the correctness of the floating point arithmetic on their processors [15].

Improving the quality and safety of software systems can and must be addressed along many
axises: for example, software engineering (via, e.g., requirement capturing and code reviews) and
human management certainly play important roles. On the other hand, formal proofs can play a
role in increasing the quality and correctness of computer system. Much about the treatment of
formal proofs can be automated if we have the proper, broad notion of proof and the right suite
of tools surrounding them. Developing a universally accepted format for proof certificates and the
tools for checking and producing such certificates is the subject of ProofCert.

3.1.1 There are many proof systems in common use

We shall use the term “prover” to denote any computational logic system (automatic or interactive)
that is used to establish a proof about some expression in a logic. There are a wide range of
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provers in use today in academics and industry [19]: besides the well-known theorem proving
systems (Coq, Isabelle, HOL, NuPRL, PVS, Vampire, etc) there are a host of other computational
systems that can be seen as proving theorems. For example, model checkers, type inferencers,
static analyzers, SAT solvers, and rewriting systems can all be seen providing proofs of logical
formulas.

It has long been recognized that to make provers effective, one must often narrow the domain
of application of the prover to specialized domains. For example, type inference and static analysis
generally establish rather weak properties of program code (falling far short of “full functional
correctness”): at the same time, however, such properties could be very useful to a programmer or
a compiler if they could be established or refuted quickly. Similarly, when the domain of interest
is finite, complete enumeration of that domain might prove more effective at proving a theorem
than, say, a prover with stronger methods (such as induction) for the treatment of possibly infinite
domains.

The need for proliferation in provers is more related to developing specialized automated and
interactive methods for discovering proofs: there is no corresponding proliferation of basic proof
principles (this is in contrast to a possible proliferation of axioms or theories to describe mathe-
matical structures). Unfortunately, most existing provers do not rely on such basic proof principles
but instead they produce “proof scripts”: these are sequences of instructions that instruct the prover
to find a proof. That is, these proof scripts are tied to the specialized methods for finding proofs
instead of those more general and basic proof principles. Indeed, very few proof principles (in-
ference rules) are needed to describe proofs in all of these systems: modus ponens, substitution,
de Morgan duality, replacing expressions with equivalent expressions, etc. The ProofCert project
will make it possible for these many provers to communicate and check each others’s work by
focusing on what is this common notion of proof.

3.1.2 Proofs are document to communicate

One of the goals of logic and proof has always been to be a universally accepted method for
establishing the truth of propositions and formulas. One of the critical functions for proofs (both
informal and formal) is to communicate across time and space. I might do an informal proof for
myself with the goal of a rather short-distance communication: I want to convince just myself now
of a truth so I can move to my next conjecture. If I want to write a text book and communicate
across a greater distance (to readers in some other country at some future time) then my proofs will
take on a more formal structure. If I wish to establish a proof that can convenience all individuals
(computer checkers included), my proofs will become far more formal and, as a result, able to
communicate across time and with all individuals (at least in principle).

The current state of the art neither addresses nor exploits the potential for proofs to commu-
nicate universally. Many provers do not produce proofs: their conclusions convince, at best, their
implementers. Many provers produce proofs that their own kernels can check and validate: their
proofs convince those who believe in the correctness of their (often tiny and transparent) kernels.
Still others actually produce proof objects that have a well described format and semantics and
which can be checked by independently implemented checkers [28]: someone can include such
a prover into their “trusted-base” by simply including a proof checker of their own construction.
Proof checkers are much easier to write and verify then the provers that are designed to discover
proofs.

9
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What is missing in the world of formal methods and formal proofs is exactly what ProofCert
proposes to build: a truly universal and flexible proof document that can be communicated broadly
and for which there is a clear semantics that would allow anyone to write a checker.

Designing a universal proof document is, however, far more complex than one might think
at first. Consider the following rather immediate attempt at this. The logic of Church’s Sim-
ple Theory of Types (a popular higher-order logic dating back to 1940) is certainly syntactically
rich enough to capture propositional logic, first-order logic, modal logics, and higher-order logic:
hence, the syntax of this logic is extremely flexible. Similarly, we can adopt as a proof system,
say, Gentzen’s 1935 sequent calculus but extended to allow for higher-order quantification. (We
address how to deal with the choice between classical and intuitionistic logic in Section 3.4.2).
So, why not just define proof certificates by providing a formal syntax and semantics for sequent
calculus proofs over simply typed formulas? After all, implementing proof checkers for such a
proposal is certainly a simple matter.

We list here just two of the many reasons for why this is a bad proposal for a universal docu-
ment format for proofs.

• All prover will need to output their internal proof structures into this one format. It is
far from clear that the many important proof structures in use today (resolution, tableaux,
DPLL, natural deduction, winning strategies, etc) can all be related to sequent calculus
proofs. Even if it were possible, the resulting encodings would likely introduce a significant
blow-up in proof size and obfuscate their structure.

• Proofs can be huge and various “optimizations” and “compressions” must be made of them
in order for them to be effectively communicated: for some early work on addressing proof
size in the proof carrying code literature, see [24]. While the sequent calculus contains the
so-called cut rule (the “lemma” rule), it is unlikely that the insertion of cut rules can really
address the full problem of proof compression since proofs without cuts are generally so
large that they do not exist in nature (nor in computer memories). Other means for making
proofs smaller must be taken seriously.

We now turn our attention to the goal of deploying structured documents for expressing proofs:
we shall refer to these documents as proof certificates.

3.2 Objective: Communicate, check, and trust proofs

We propose to develop a broad spectrum proof certificate so that nearly all deductive systems
can present their proof evidence as such a certificate and so that simple certificate checkers can
be build and trusted. These proof certificates can then be used to communicate proofs between
widely different deductive systems. They can also be stored in libraries and information about
their structure can be probed and extracted.

The foundations behind building such an approach to proof certificate can be found in the
work on proof theory given by Gentzen’s introduction of analytic methods for representing proofs
[12] and Girard’s refinement of that structure given by the introduction of linear logic [13]. These
two cornerstones of proof theory provide us with what we can call the “atoms of inference.” More
recent work has now shown us that these atoms of inference can be organized into the “molecules
of inference” (synthetic connectives) and that there can be a great deal of computation that can be

10
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placed into such synthetic connectives [10, 20]. Proof certificates will be based on these molecules
of inference and since the range of molecules one can describe is essentially endless, the structure
of such certificates will similarly be endless. On the other hand, checking certificates can be, in
principle, simple: the checkers need only be designed to handle the small (closed) set of atomic
inferences and the “rules of chemistry” that describe how molecules are assembled from atoms
(how some atoms stick together and how others cleave apart). For example, such chemistry makes
it possible to place computation within inference rules, thereby allowing the engineer of proof
certificates to move the boundary between deduction and computation in any number of ways.

ProofCert will take these basic insights into how inference can be organized and will develop
them into technologies that can be concretely tested and universally deployed.

3.3 Objective elaborated: four desiderata for proof certificates

We now list four desiderata (D1 - D4) that are necessary for proof certificates to achieve success
and broad acceptance.

D1: A simple checker can, in principle, check if a proof certificate denotes a proof.

Proof checkers should be, in principle, simple and well structured so that they can be inspected
and possibly proved formally correct. The correctness of a checker should be much easier to
establish than the correctness of a theorem prover: a proof checker removes the need to have
trust in theorem provers [29]. The separation of proof generation from proof checking is a well
understood principle: for example, Pollack [26] argues for value of independent checking of proofs
and the Coq proof system has a trusted kernel that checks proposed proof objects before accepting
them [32].

D2: The proof certificate format supports a wide range of proof systems.

In other words, a given prover should be able to take the internal representation of the witness of
a proof object that it has built and output essentially that structure as the proof certificate. Thus,
this one proof certificate format should be usable to encode natural deduction proofs, tableaux
proofs, and resolution refutations, to name a few. Thus, if a system builds a proof using a resolu-
tion refutation, it should be possible to output a certificate that contains an object that is roughly
isomorphic to the retained refutation.

A theorem prover is said to satisfy the “de Bruijn criterion” if that prover produces a proof
object that can be checked by a simple checker [5]. Desiderata D1 and D2 together imply a
“global” version of the de Bruijn criterion: if every theorem prover can output a proper proof
certificate, then any prover can trust any other prover simply by using their own trusted checker.
We examine here a couple implications of desiderata D1 and D2.

Marketplaces for proofs A proof certificate that satisfies desiderata D1 and D2 makes it possi-
ble to develop a marketplace for proofs in the following sense. Assume that the Acme company
needs a formal proof of its next generation safety critical system (such as might be found in avion-
ics, electric cars, and medical equipment). Acme can submit to the marketplace a formula that
needs to be proved: this can be done by publishing a proof certificate in which the entire proof is
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elided. The market then works as follows: anyone who can fill the hole in that certificate in such
a way that Acme’s trusted proof checker can validate it will get paid. This marketplace can be
open to anyone: any theorem prover or combination of theorem provers can be used. The provers
themselves do not need to be known to be correct. If someone working in the marketplace finds
a counterexample to a proposed theorem, then one should also get paid for that discovery. In this
sense, a comprehensive approach to proof certificates should also formally allow counterexamples:
we address this issue of counterexamples later in Section 3.4.4.

Libraries of proofs Once proof certificates are produced they can be archived within libraries.
In fact, libraries might be trusted agents that are responsible for checking proof certificates. Since
checking proof certificates is likely to be computationally expensive in many cases, libraries could
focus significant computational resources (e.g., large machines and optimizing compilers) on proof
checking. Once a proof certificate is checked and admitted to a library, others might be willing
to trust the library and to use its theorems without rechecking the certificate. To the extent that
formal proofs have economic value, libraries will have economic incentives to make certain that
the software that they use to validate certificates is trustable. If someone else (a competing library,
for example) finds that a non-theorem is accepted into a library, trust in that library could collapse
along with its economic reason for existing. Besides trust, libraries can also provide other ser-
vices: they could allow people to search their theorems and they could provide some structuring
to collections of theorems.

We now present two additional desiderata for proof certificates that will lead ProofCert in
novel and distinctive directions.

D3: A proof certificate denotes a proof in the sense of structural proof theory.

By “structural proof theory” we mean the topic surrounding the analysis of proofs in which restrict-
ing to “analytic proofs” (e.g., cut-free sequent proofs or normal natural deductions) still preserves
completeness. For references to the literature on structural proof theory, see [12, 25, 27, 33].
Checking a certificate will be based on attempting to discover (at least in principle) a formal proof
in the sense of structural proof theory that the certificate describes in some but not necessarily all
details. This desideratum guarantees that the structure of certificates is not based on some ad hoc
design: the certificate, as an artifact, should be viewable as a notation for a proof in a framework
with rich formal properties (cut-elimination, normalization, etc) and rich forms of abstraction.
Given this desideratum, it should be possible to meaningfully browse and explore proof certifi-
cate: in particular, formal proofs in structural proof theories allow for rich reorganizations of their
structure (via permutations of inference rules and via substitutions into proofs). While readability
is not a necessary desideratum of proof certificates, being able to explore their meaning should
be possible and should make understanding their structure much more rewarding that some more
static requirement of “readability”.

Our final desideratum (D4 below) addresses the problem of proof size. Proofs will often be
large and, as such, will tax computational resources to store, communicate, and check them. Thus,
any approach to proof certificates must provide some mechanism for making them compact even if
the proof they denote is huge. One approach to making proofs smaller could be “cut-introduction”:
that is, one can examine an existing proof for repeated subproofs and then introduce a lemma that
accounts for the commonality in those subproofs. In this way, the lemma could be proved once
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and the various similar subproofs could be replaced by “cutting-in” instances of that lemma (such
a transformation can, for example, change a tree-structured proof into a more efficient directed-
acyclic graph). There are clearly situations where cut-introduction can make a big difference in
proof size (such as tabled deduction used in logic programming and model checking [21]). Proof
certificates must, obviously, permit the use of lemmas (clearly permitted by desideratum D3).
But this one technique alone seems unlikely to be effective in general since proofs without cuts
(without lemmas) can be so large that they cannot be discovered in the first place. Desideratum
D4 suggests another way to compress a proof.

D4: A proof certificate can simply leave out details of the intended proof.

Things that can be left out might include entire subproofs, terms for instantiating quantifiers, which
disjunct of a disjunction to select, etc. Thus, proof checking may need to incorporate proof search
in order to check a proof certificate in which some details have been left out. This desideratum
forces the design of proof certificates in rather particular directions.

3.4 Methodology

We now outline the major methodological aspects of the ProofCert project.

3.4.1 Building molecules of inference from the atoms of inference

Gentzen’s sequent calculus [12] and Girard’s linear logic [13] provide us with both “atoms of
inference” as well as a framework for assembling those atoms into “molecules of inference”.
Proof theory provides us with certain “chemistry rules” that describe how atoms may either stick
together to make the larger connectives or cleave so that clear boundaries describe the size of
connectives: these rules of chemistry can be found in recent work on focused proof systems [1, 16]
and super-deduction [7]. These rules of chemistry allow those working with proofs to move from
one level of abstraction (the micro-connectives, the atoms) to another level of abstraction (the
macro-connectives, the molecules). A remarkable aspect of this chemistry is that this next level
of abstraction provides another proper logic, in the sense that the important analytic techniques
of proof theory (namely, cut-elimination, the existence of various kinds of normal forms, etc) all
hold for this new level of abstraction. Also remarkable about the chemistry is that it is surprisingly
flexible and that there are several “dials” that can be adjusted to achieve widely varying molecules
that are built from the same atoms.

By analogy, there are two levels (at least) of abstraction also when studying DNA: at one level,
DNA can be described as as sequences of carbon, oxygen, nitrogen, and hydrogen molecules but
on another level, it can be described as being composed of the molecules of adenine (C5H5N5),
cytosine (C4H5N3O), guanine (C5H5N5O), and thymine (C5H6N2O2). Much about DNA can be
studied by starting with the abstraction that sees it as a sequences of A, C, G, and T.

The rules of chemistry, in this setting, provide important distinctions that go to the heart of
the nature of logical connectives and their roles in building proof. These distinctions sometimes
have little relevance if we are only thinking to the truth-functional natural of logical formulas. For
example, the distinction that we have learned from linear logic about additive and multiplicative
versions of logical connectives has no barring on the truth conditions for such connectives: how-
ever, that distinction can make a large difference in the size (at the molecular level) of proofs.
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For example, using the additive conjunction in the usual definition of the Fibonacci sequence (as
a recursive Horn clause specification) leads to proofs that are exponential in size. If we switch
instead to the multiplicative conjunction, proofs can be of linear size. Such differences in proof
size and structure is critical for any study of proof certificates.

3.4.2 Which logic to choose?

Proofs are, of course, based on logical formulas and judgments about them. Hence, we must select
a logic on which to build the entire edifice for our proposal for proof certificates.

Logic instead of type theory There is a continuum between what is a predicate in logic and
what is a type in a type theory. Generally, types are predicates for which well established inference
procedures can operate (e.g., type inference) while no such procedures are assumed for predicates.
Since types seems to be a topic of continual evolution and design, it seems natural to instead pick
the logic of predicates as the foundation for proof certificates. There is also a good deal of evidence
that many type theories can be effectively encoded in logic without a loss of expressiveness [8, 11,
31]. Since we need a common denominator for a wide range of deductive systems, we shall chose
logic over type theory.

Higher-order logic The choice of having higher-order principles in our logic seems natural:
inside higher-order logic one can easily identify both propositional and (multi-sorted) first-order
logics. For example, it is trivial to see the propositional formulas in SAT solving as also being
higher-order formulas. Also, higher-order logics provide rich forms of abstractions (usually via
λ-abstraction) that can prove invaluable for specifying encoding. On top of these reasons, it is also
the case that many popular theorem provers and type system today directly encode higher-order
principles.

Classical and intuitionistic logic One of the most unfortunate fractures of logic occurs along
the classical versus intuitionistic divide. A great many provers assume a classical logic foun-
dations while an equally large number of provers assume an intuitionistic (“constructive”) logic
foundation. In many ways, this divide is necessary and has been around since the very first formal
studies of modern proof theory (starting with, for example, Hilbert and Gentzen). In order to make
for a truly universal framework for proof certificates, one must be able to represent and to relate
proofs for both classical and intuitionistic logic within a single framework. Gentzen [12] made
progress on such a goal with his presentation of sequent calculus which described the differences
between classical proof (LK) and intuitionistic proof (LJ) as essentially one about structural rules.
Later Girard’s linear logic [13] provided a richer treatment of structural rules and their relation-
ship to the logical connectives. Based on that work, Girard presented his “Logic of Unity” (LU)
calculus [14] that combined classical, intuitionistic, and linear logic. In many ways, the LU logic
is too ambitious and too awkward: although it has been close to two decades since that logic was
invented, no one has yet figured a way to actually use that logic in practice. More recently, Liang
and Miller have presented a novel merging of classical and intuitionistic logic into a single logic
called “Polarized Intuitionistic Logic” (PIL) [17, 18]. In this logic, proof rules for both of these
logics live together and can interact (via, for example, cut-elimination).

Within ProofCert, our logic shall be a higher-order version (in the sense of Church’s Simple
Theory of Types [9]) of the PIL logic. As a result, we will not need to have two different proof
formats: one for classical proofs and one for intuitionistic proofs. One framework will work for
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both classical and intuitionistic inference.

3.4.3 One logic in two stages

There is, however, one remaining issue that must be addressed when we attempt to integrate a
wide range of deduction technologies. In particular, there has been a long standing rift between
theorem proving and model checking: in a truly universal approach to proof certificates, evidence
of proofs generated by model checkers (often provided by “tables”) must be admissible within
the same space of proofs that are returned from theorem provers. Notice that we do not need to
bring unity to the algorithms and data structures that are used in these different technologies: in
fact, a proper framework for proof certificates should permit these different deductive systems to
have widely varying implementation. Instead, we only need to capture the evidence returned from
model checkers within the proof certificate framework.

Recent work into the proof theory of fixed points and inductive and co-inductive definitions
allowed us to view model checking as deduction and to allow one to view the results of model
checking as proofs within proof systems that directly treat least and greatest fixed point as logical
connectives [2, 3]. In such a setting, the result of a model checking process, say the production of
a simulation or of a winning strategy, can be viewed directly as a rather direct and natural (sequent
calculus) proof object [4, 21].

While we have strong evidence to feel that we have a proof theory that allows encoding proofs
from both model checking and theorem proving into one setting, we are aware that the technology
for checking such rich proof certificates is still an open question. In particular, checking proofs in
both settings separately makes use of the unification of term structures. When checking theorem
proving style proofs, this unification is for one set of variables (the so called “logic variables”
or “existential variables”). On the other hand, when checking model checking style proofs, this
unification must instead instantiate “eigenvariables” or “universal variables.” When these two
unification processes must exist together, we do not yet have the tools and technology to describe
fully their interaction. Since this proposal is mainly about developing the technology and tools
related to proof certificates, this development must proceed in two stages.

Stage 1: Let the higher-order version of a classical-intuitionistic logic PIL be referred to
simply as L. The implementation of proof search and unification for this logic is known, so tool
development can proceed immediately.

Stage 2: Let µL be the logic that extends L with the least and greatest fixed point operators
(along with the equality connective for terms) along the lines of the development of the µMALL
and µLJ logics described in [3]. While the proof theory for this logic is mostly understood, a key
elements for the implementation for a proof checker (namely, the implementation of unification
for both eigenvariables and logic variables) is still insufficiently understood. Tool development for
this stronger logic must be delayed until these key implementation tasks are better understood.

3.4.4 A single framework for proofs, partial proofs, and counterexamples

The development of a proof for a proposed theorem is likely to be a distributed effort by many
people using an assortment of different tools (theorem provers, model checkers, static analyzers,
etc). Since proof development might take a long time, one must be able to encode partial proofs.
Thus the proof certificate format must be able to support such partial objects and allow them to be
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checked and shared between participants. Different groups must then be able to build on different
parts of the proposed proof in order to complete it. In fact, a partial proof might be used to
distribute work to different groups based on their tool set: for example, some subproofs might be
quite shallow and involve a lot of checking and computation. In that case, a model checker might
be the tool of choice and the team that is expert with that tool would be delegated that subproof.
Of course, other parts of a proof might require more in-depth knowledge of certain mathematical
abstractions and inductive invariants: an interactive theorem prover with richer proof principles
might be necessary for this.

But the modularity of construction permitted by partial proofs is only part of their possible
value. In fact, a partial proof may have significant economic value: that is, although they are
partial, they might be useful to someone who requested a (complete) proof. In particular, browsing
a partial proof (using appropriate browsing tools) might convince the requesters that their proposed
theorem is not, in fact, the theorem that they need: as a result, further developing of a proof could
terminate. Certain details of the proposed theorem and the domain might come to light while
viewing the partial proof development.

Of course, the following scenario is also likely: Acme places into the marketplace a proposed
theorem (a certificate with a missing proof). A team picks up on that proof certificate and discovers
a counterexample. Of course, that counterexample could be highly valued by Acme as well, at
least if it can be properly communicated and checked by Acme. In this sense, counterexamples
must be part of the possibilities of “proof certificates”. Notice also the rich possibilities that exist
between counterexamples and partial proofs: as teams build a partial proof of a proposed theorem,
someone might discover that a particular open subproof actually has a counterexample. Since
proofs are based on a declarative proof format (via the structural proof theory requirement of
desideratum D3), it will be possible to use that counterexample to discover which parts of that
partial proof must be retracted or revised. Allowing for partial proofs and counterexamples as part
of the concept of proof certificates will allow for truly flexible and dynamic construction of proofs
by distributed groups of people and tools.

3.5 Specific tasks

We list below the various major tasks that are required to realize ProofCert. Resources are re-
quested for the following personnel.

• Three PhD students are requested: their appointments are for three years and their start and
finish dates will be staggered. They will be given topics that require some foundational
development. They will also work on designing prototype implementations and developing
examples, both of which will serve to valid and redirect their theoretical investigations.

• Eight years of postdoc support is also requested. We hope to attract postdocs who can stay
with the effort for 2 or 3 years. During years 2, 3, and 4, we plan to have two postdocs
working simultaneously. We plan to attract postdocs with some maturity in theoretical ma-
terial but who are looking for means for adding some system design and building effort to
their background. Their involvement on ProofCert is one of building and testing the proof
certificate formats and implementing proof checker and back-end proof certificate printers.

• A staff programmer is requested for years 2 - 5. S/he will help extend, polish, organize, and
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T1: Design the proof certificates specifically for L. The goal is to define a certificate format that
is flexible and allows for trade-offs between proof checking and (bounded/restricted) proof
search.

T2: Build a reference proof checker for proof certificates in L. Start with the Teyjus virtual
machine for λProlog and develop simplifications and optimizations.

T3: Use the proof certificate and checker to encode a number of proof systems (natural deduction,
tableaux, resolution refutations, DPLL, etc). Build back-ends to popular provers.

T4: Develop the foundations for moving from L to µL: combining unification, disunification, and
constrained unification. Develop an implementation of these ideas: exploit and improve on
the Bedwyr model checker [4].

T5: Use the extended proof certificate and checker to encode a number of additional deductive
systems including model checking (tables, simulations, winning strategies, etc).

T6: Incorporate partial proofs and counterexamples into proof certificates. Develop the proof
theory for these additions.

T7: Build back-end proof certificate printers into a number of popular inductive theorem provers
and model checkers.

T8: Build reference proof checker for µL. Provide at least two implementation models for it, one
based on logic programming and one on functional programming

T9 Performance of checker. Proof certificates will be large logic programs. Determine ways to
optimize and compile them in order to improve checking time. Develop approach that will
allow us to trust such optimizations.

Figure 1: Nine majors tasks numbered T1-T9 along with a brief description

Personnel Year 1 Year 2 Year 3 Year 4 Year 5
Staff - T2 T3 T7 T8, T9
PhD1 T1 T1 T1 - -
PhD2 - T4 T4 T4 -
PhD3 - - T6 T6 T6
PostDocs T2 T2,T3 T3 T5,T7 T8,T9

Figure 2: The assignment of tasks to team member and project year.
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maintain the systems that will be produced by this effort. Many parts of ProofCert should
succeed in attracting attention and users long before all aspects of the project are completed.
Having someone making sure that research prototypes can move into a public forum will
greatly help attract interest and additional support in the ProofCert effort.

The specific tasks and a time-line that associates tasks to personnel and year is given in Figures
1 and 2. We also plan to invited various colleagues and experts in the area of “computerized proof
systems”. In addition, we also plan to make use of several internships (via our access to resources
from Ecole Polytechnique and via INRIA) in the first years of this project in order to carry out
several experiments in encoding various existing proof systems.

3.6 Risk evaluation: high-risk but high-gain

The unification of the formal method community around a standard for logic and proof is a major
benefit of this proposal. European industry will benefit greatly from the many improvements and
tools that will come from this effort. Europe is also well positioned to capitalize on this line of
research since there are many European academic and industrial sites that currently understand
and use formal methods.

At the same time, there are a number of risks involved in this project: as we detail below, these
risks offer opportunities as well.

Risk 1: What if proof certificates are really too big to communicate? There are at least two
approaches to addressing such a problem in this setting. First, checkers could be given more re-
sources (more memory, more processors) and the computations that are part of proof certificates
can be optimized using logic programming compilation techniques. Second, one can use reflec-
tion: if one proves that a particular prover component is correct, its certificates do not need to be
checked.

Risk 2: How richly can we integrate model checking and theorem proving? As was mentioned
before in describing the difference between the sublogic L of µL, no one has yet developed a
complete approach for a proof checker to fill in the missing information (unification in that setting
is not fully understood). While we shall attempt to find a complete solution to this problem, we
many also need to consider studying real world examples to see to what extent these two kinds of
partial proofs overlap and cause problems.

Risk 3: Aren’t theorems and their proofs developed within theories? What about theories? Most
developments of theorems take place within theories (sets of assumptions). It is not enough then
to relate two theorems and their proofs without accounting for differences between their theories,
if any. Standard mathematical techniques for “coercing” between different theories should allow,
say, results about complex numbers developed on Cartesian coordinates to be applied in a theory
where they are developed with polar coordinates. While (higher-order) logic and proof theory
should allow suitable abstraction mechanisms to relate theories, this important topic has not been
tested in a proof theoretical setting. Addressing this risk will provide the exciting prospects of
developing structured ways to handle mathematical theories both declaratively and effectively.
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