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Effective software specifications enable modular reasoning, allowing clients to establish program properties
without knowing the details of module implementations. While some modules’ operations behave atomically,
others admit weaker consistencies to increase performance. Consequently, since current methodologies do
not capture the guarantees provided by operations of varying non-atomic consistencies, specifications are
ineffective, forfeiting the ability to establish properties of programs that invoke non-atomic operations.

In this work we develop a methodology for specifying software modules whose operations satisfy multiple
distinct consistency levels. In particular, we develop a simple annotation language for specifying weakly-
consistent operations via visibility relaxation, wherein annotations impose varying constraints on the visibility
among operations. To integrate with modern software platforms, we identify a novel characterization of
consistency called sequential happens-before consistency, which admits effective validation. Empirically, we
demonstrate the efficacy of our approach by deriving and validating relaxed-visibility specifications for Java
concurrent objects. Furthermore, we demonstrate an optimality of our annotation language, empirically, by
establishing that even finer-grained languages do not capture stronger specifications for Java objects.
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1 INTRODUCTION
Many software platforms enable high-performance multithreaded code by providing optimized
concurrent objects which encapsulate lock-free shared memory access protocols into high-level
abstract data types. For instance, The jdk provides 16 atomic primitive register types, e.g., with
atomic increment methods, and 14 concurrent data structures, e.g., with atomic offer, peek, and poll
methods. Having been designed and implemented by experts, and scrutinized by a large community
of jdk users, these concurrent objects offer high performance and reliability.
Given the potentially-enormous amount of software that relies on these concurrent objects,

it is important to maintain precise specifications and ensure that implementations adhere to
their specifications. Many methods are expected to behave atomically, meaning that the results
of concurrently-executed invocations match the results of some serial execution of those same
invocations; they are expected to behave atomically despite the heavy optimizations employed to
avoid blocking and exploit parallelism, e.g., by preferential use of specialized machine instructions
like atomic compare and exchange instead of lock-based synchronization.
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While lock-free implementations can increase performance substantially, the insistence on
atomicity generally imposes fundamental synchronization bottlenecks [Gilbert and Lynch 2002].
Therefore, some methods, like the iterator methods of jdk concurrent data structures, embrace
consistency criteria weaker than atomicity. While relaxation from atomicity to “weak consistency”
provides wiggle room for performance optimization, it impedes modular reasoning. Unlike the de
facto guarantee of atomicity which is given a precise formal meaning via linearizability [Herlihy
and Wing 1990], the guarantees provided by “weakly consistent” operations are unclear since there
are many ways in which consistency can be weakened.

For instance, an invocation of a set’s weakly-consistent sizemethod in two parallel threads { add(1);
remove(2) } and { add(2); size() ⇒ n } may return n = 0 in certain executions where invocations
interleave.1 This outcome is not admissible by atomic operations, since n > 0 in every linearization:
n = 2 if size executes between the first thread’s operations; otherwise n = 1. Our intuition of
“weakly-consistent” may admit n = 0 in the example above, by considering executions where size
interleaves with both the first thread’s operations, yet only observes the effect of remove. However,
our intuition would probably not admit n = 100 nor n = −1. Yet, without identifying a precise
semantics to “weak consistency” we forfeit all guarantees, making client reasoning impossible.
In this work we investigate a methodology for the precise specification of concurrent objects

with weakly-consistent operations. Our starting point is existing methodologies for axiomatic
consistency specification of concurrent objects which consider operation visibility [Burckhardt et al.
2014; Perrin et al. 2016]. This approach essentially extends the linearizability-based specification
methodology with a dynamic visibility relation among operations, in addition to the standard
dynamic real-time order and linearization relation. Permitting weaker visibility relations models
outcomes in which an operation may not observe the effects of operations that are linearized before
it. For instance, while n = 1 in the full linearization add(1); add(2); remove(2); size() ⇒ n of the
example above, relaxing the visibility of size admits the n = 0 outcome, in the partially-visible
linearization add(2); remove(2); size() ⇒ n where the first add operation is not visible to size.
While this axiomatic framework enables the precise characterization of weak consistencies, its

general application to software API annotation remains an open problem for two reasons. First,
precise annotation requires a fine-grained categorization of consistency relaxations so that precise
consistencies can be declared and relied upon; previous works elaborate only a few categories of
eventual and causal consistency [Burckhardt et al. 2014; Perrin et al. 2016]. Neither eventual nor
causal consistency precisely capture the n = 0 outcome in the example above; causal consistency
doesn’t allow size to observe the first thread’s remove operation without also observing its add
operation; eventual consistency does not constrain n at all in this case. Second, annotating API
methods requires mixtures of consistency levels since APIs generally include methods of varying
consistencies; previous works, e.g., [Batty et al. 2013; Burckhardt et al. 2014; Doherty et al. 2018;
Dongol et al. 2018; Herlihy and Wing 1990; Perrin et al. 2016], develop only global consistency
levels that apply to all API methods. For instance, a set’s add and remove methods may guaran-
tee atomicity even if the size method does not. The mixture poses a challenge to specification
since the consistencies of individual methods like size generally depend on the other methods’
implementations.

Accordingly, we develop an annotation-based fine-grained consistency specificationmethodology
for software APIs. In particular, we identify visibility relaxation as a key mechanism for consistency
weakening, and several levels of per-method visibility, depicted in Figure 1. In order of decreasing
relaxation, where each level includes the guarantees of previous levels:
(1) weak visibility does not constrain the operations visible to a given operation;

1This outcome is observable in Java’s ConcurrentSkipListSet.
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Fig. 1. The operations (circles) visible to the given
operation (bold circle) depend on its annotation. The
basic annotation implies visibility (dashed arrow) of
happens-before predecessors (horizontal line), while
monotonic implies visibility of those visible (solid
arrow) to predecessors. The peer annotation implies
visibility of predecessors of visible operations, and
causal implies transitive visibility.

ConcurrentHashMap: contains
{ put(1,0); contains(0) } || { put(0,0); put(1,1) }

outcome atomic? frequency

1, true, null, null ✓ 770,621
null, true, null, 0 ✓ 2,074,326
null, false, null, 0 × 3
1, false, null, null × 0

Fig. 2. The contains method of Java’s Concurren-
tHashMap implementation exhibits non-atomic out-
comes. These outcomes are observed with the given
frequencies during 1 second of stress testing the
given program, in which two threads invoke the put
and contains methods. Each outcome is given as a
list of return values following the order of the invo-
cations in the program, e.g., the first value in each
outcome is the return value of put(1,0).

(2) basic visibility requires each operation to see its happens-before predecessors;2
(3) monotonic visibility requires each operation to see those its happens-before predecessors see;
(4) peer visibility requires each operation to see the happens-before predecessors of those it sees;
(5) causal visibility requires each operation to see those visible to those it sees;
(6) complete visibility requires each operation to see those linearized before it.

By distilling each level into a per-method annotation, we devise an annotation language capable of
specifying varying yet precise weak-consistency guarantees among API operations, e.g., allowing
only certain operations to exercise incomplete visibility. For instance, the n = 0 outcome of the
size method above is inconsistent even with peer visibility, since size must not see the predecessor,
add(1), of an operation it sees, remove(2). However, this outcome is consistent with monotonic
visibility, even when add and remove have complete visibility, so long as add(2) is concurrent with
add(1), and can thus be linearized before. Unlike the informal annotation of “weakly consistent”
which guarantees nothing, ascribing monotonic visibility to the size method guarantees 0 ≤ n ≤ 2.

Our annotation language enables fine-grained mixed-consistency specification and validation
for popular software APIs, a claim we substantiate by deriving specifications for Java concurrent
objects using a novel algorithm which combines test generation and stress testing. We find that the
majority of Java methods have complete or monotonic visibility, suggesting that Java’s informal
notion of “weakly consistent” corresponds to monotonic visibility. Furthermore, this suggests
that there are several additional opportunities for potential optimization, by adopting relaxed
specifications which embrace the spectrum of consistency levels our annotations provide.
Of particular technical interest, we introduce novel characterization of linearization-based

consistency specifications we call (relaxed) sequential happens-before consistency, or (R)SHBC.
Unlike the classical linearizability criterion, which admits only linearizations consistent with
real-time invocation order,3 SHBC admits any linearization consistent with the weaker platform-
defined happens-before invocation order, thus including a superset of those admitted classically.
For instance, if an atomic size operation of the thread { add(2); size()⇒ n } executes between the

2The meaning of happens-before is platform dependent, yet generally includes program order, i.e., the static order among a
thread’s invocations, as well as synchronizes-with order, i.e., the dynamic order among conflicting synchronization primitives.
3The real-time order includes all pairs of operations where the first’s return action executes prior to the second’s call action.
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operations of the thread { add(1); remove(2) }, then in both possible linearizations, resolving the
order of add(1) and add(2), its outcome must be n = 2; since SHBC admits additional linearizations,
in which size need not be linearized between the second thread’s operations, both n = 1 and n = 2
outcomes are admitted. While ignoring the real-time order is unsound for validating linearizability,
we argue that sound runtime verification of linearizability is anyhow impossible in practice, for
the same reason, given the lack of effective means to record real-time orders precisely without
interfering with, e.g., weak-memory behaviors of the monitored implementation. Despite this
lack of per-execution precision, soundness is recovered in the limit over all executions, as long as
any given real-time constraint can be enforced by some program, e.g., using synchronization. Of
more practical concern, we demonstrate that (R)SHBC is better adapted to the specifications of
modern software platforms, which generally eschew the mention of real-time ordering guarantees
to allow implementation flexibility. Furthermore, validation can be performed with great efficiency,
e.g., compared to linearizability checking, using off-the-shelf testing tools. This efficiency allows us
to effectively discover violations to incorrect consistency annotations in Java concurrent objects.

To summarize, the contributions of this work are fourfold:
• we develop an annotation language for describing the guarantees of software APIs with
operations of varying relaxed-visibility consistency (§3);

• we develop a novel (relaxed) sequential happens-before consistency to adapt linearization-
based atomicity criteria to modern platforms like Java and C++ (§4);

• we conduct an empirical study deriving and validating relaxed-visibility consistency annota-
tions in Java concurrent objects (§5);

• we demonstrate that our annotation language is optimal, in a sense, by showing that the
derived specifications are no weaker than specifications derived from a much more expressive
language of consistency relaxation (§6).

Combined, these contributions form a simple and effective specification methodology for weakly-
consistent operations which is applicable to modern platforms like Java and C++. Furthermore, they
outline the foundational principles for developing weak-consistency specification mechanisms for
other platforms, to which alternate consistency models may apply. To the best of our knowledge,
we are the first to develop a generic methodology capable of specifying arbitrary software APIs
with operations of varying consistencies, despite their prevalence in practice, e.g., in Java.

Aside from the sections mentioned above, we begin by motivating our development in Section 2,
and end by discussing related work and conclusions in Sections 7 and 8.

2 MOTIVATION
Precise consistency guarantees are not typically attached to operations in today’s software APIs.
Instead, software API specifications suggest vague guarantees, typically distinguishing whether
operations are “atomic” or “locking.” For instance the Java Platform Standard Edition 10 API
Specification states:4

A concurrent collection is thread-safe, but not governed by a single exclusion lock.
and describes a ConcurrentMap as

A Map providing thread safety and atomicity guarantees.
While these statements suggest that the operations of ConcurrentMaps are atomic and lock-free,
this is later undermined, e.g., in the API specification for ConcurrentSkipListMap which implements
ConcurrentMap:5

4Package java.util.concurrent: https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/package-summary.html
5Class ConcurrentSkipListMap: https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
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ConcurrentHashMap: size
{ put(1,0); put(1,1); size() } || { remove(1) }

outcome atomic? frequency

null, 0, 0, 1 ✓ 949
null, 0, 1, 1 ✓ 746,263
null, 0, 1, null ✓ 2,614,780
null, null, 1, 0 ✓ 14,833
null, null, 2, 0 × 35

Fig. 3. A non-atomic outcome for the size method.
Each outcome is given as a list of return values fol-
lowing the order of the invocations in the program,
e.g., the first value in each outcome is the return
value of put(1,0).

ConcurrentHashMap: isEmpty
{ put(1,1) } || { put(1,2); isEmpty() }

outcome atomic? frequency

2, null, false ✓ 680,432
null, 1, false ✓ 3,456,201
null, 1, true × 57

Fig. 4. A non-atomic outcome for isEmpty. Each out-
come is given as a list of return values following the
order of the invocations in the program, e.g., the
first value in each outcome is the return value of
put(1,1).

Iterators and spliterators are weakly consistent.
whose meaning is elaborated elsewhere:

They are guaranteed to traverse elements as they existed upon construction exactly once,
and may (but are not guaranteed to) reflect any modifications subsequent to construction.

The specification proceeds to undermine the atomicity guarantees of several other operations:6

Beware that, unlike in most collections, the size method is not a constant-time operation.
Because of the asynchronous nature of these maps, determining the current number of
elements requires a traversal of the elements, and so may report inaccurate results if this
collection is modified during traversal. Additionally, the bulk operations putAll, equals,
toArray, containsValue, and clear are not guaranteed to be performed atomically. For
example, an iterator operating concurrently with a putAll operation might view only some
of the added elements.

The specifications above are ambiguous about the consistency guarantees provided by various
operations. While one expects the core Map operations like put, get, remove, and containsKey to be
atomic and lock-free, it is unclear what to expect from the others since the specification undermines
guarantees for many operations, and “weakly consistent” provides only broad guarantees. Besides
those broad guarantees on iterators, non-atomic operations would provide absolutely no guarantees,
effectively sabotaging any client-side reasoning, and enabling even nonsensical optimizations.

Many other operations are not atomic. Figures 2–4 list a few multi-threaded programs invoking
methods of Java’s ConcurrentHashMap, and their corresponding outcomes as observed during one
second of stress testing each. ConcurrentHashMap’s get and put methods are believed to behave
atomically, and so we focus on the apparently non-atomic methods contains, size, and isEmpty.
An atomic implementation of contains, as invoked in Figure 2, should never return false, since

the value 0 is present during the invocation of contains in every linearization: if the entry ⟨1, 1⟩
has overwritten ⟨1, 0⟩, then the entry ⟨0, 0⟩ must also be present. However, Java’s implementation
allows the non-atomic outcome where contains returns false, in order to avoid the expensive
synchronization otherwise imposed by examining all map entries atomically.7 Intuitively, contains
can begin executing before key 0 is present, stepping over its hash bucket, and proceed to the hash

6The first two sentences are present only up to Version 9 of the Java Platform Specification.
7All empirical observations are drawn from the Java Platform Standard Edition 9.
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bucket for key 1. If interrupted by the second thread, the entry ⟨1, 0⟩ can be replaced by ⟨1, 1⟩
before contains resumes, in which case contains does not find value 0, and returns false.

To enable precise reasoning about the admittance of behaviors which are non-atomic by design,
we propose a principled mechanism called visibility relaxation to weakening atomicity. This mecha-
nism essentially allows operations to behave as if they do not observe the effects of certain other
operations. To impose guarantees in the presence of relaxed visibilities, we introduce per-method
annotations which constrain the operations whose effects an invocation of the given method
must observe. For instance, the complete visibility forces the observation of all linearized-before
operations. When all methods have complete visibility, only atomic behaviors are admitted. Figure 1
illustrates the semantics of visibility annotations graphically, and Section 3 describes them precisely.
To admit the aforementioned non-atomic outcome of the contains method in Figure 2, we may

relax contains’ visibility to account for the fact that it might not observe concurrently-inserted
entries, e.g., ⟨0, 0⟩. The monotonic visibility, which requires that contains see its happens-before
predecessors, i.e., put(1,0), along with any operations seen by them, admits this additional outcome
only. It turns out that this is the strongest valid visibility annotation for the contains method. On
the one hand, the weak visibility, which does not constrain what contains observes, admits the
additional unwitnessed outcome of Figure 2, in which contains returns false even after its happens-
before predecessor has observed the presence of ⟨1, 1⟩. On the other hand, the peer visibility, which
requires that contains see the happens-before predecessors of visible operations, is inconsistent
with the observed non-atomic outcome, since ⟨0, 0⟩ would be visible too if ⟨1, 1⟩ were.

The non-atomic outcomes of Figures 3 and 4 are due to a distinct optimization: in order to quickly
return entry counts without re-scanning all entries, Java’s ConcurrentHashMap implementation
maintains an entry counter which is kept only loosely in sync with the actual entry count. On
the one hand, there is no visibility relaxation which can account for size returning 2, since at
no time may the map contain more than one entry. The implementation allows this outcome by
effectuating the removal of ⟨1, 0⟩ in the second thread before being interrupted by the insertion
of ⟨1, 1⟩, yet decrementing the entry count only after size returns. On the other hand, the weak
visibility relaxation can account for the non-atomic behavior of isEmpty, since isEmpty need not
observe the addition of ⟨1, 2⟩ by its happens-before predecessor. The implementation allows this
outcome by effectuating the insertion of ⟨1, 1⟩ in the first thread before being interrupted by the
insertion of ⟨1, 2⟩, yet incrementing the entry count only after isEmpty returns; the implementation
avoids incrementing the counter for the second entry, since it replaces the existing entry.
While many of Java’s concurrent objects methods are non-atomic, the majority can still be

given precise and checkable specifications using our proposed visibility-relaxation annotations. We
exemplify Java specifications here because Java is mainstream, yet the lack of precise consistency
specifications for software APIs is pervasive. This problem is profound since without consistency
guarantees client-side reasoning, validation, and sound optimization are all impossible.

3 VISIBILITY RELAXATION
To specify the non-atomic operations of typical software APIs, we propose a simple annotation
language which captures the phenomena of limited observation described in Section 2. The se-
mantics of this annotation language is based on an abstract notion of executions, which captures
observed return values and ordering constraints among program invocations. Besides considering
various linearizations of invocations, our semantics considers which invocations may or may
not be observed by any given invocation occurring later in a given linearization. Specifications
then dictate the abstract executions admitted by a given abstract data type (ADT) by imposing
constraints on this observation relation. Our annotation language supplements the functional

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 60. Publication date: January 2019.



Weak-Consistency Specification via Visibility Relaxation 60:7

specifications of APIs, given by abstract data types, to determine whether the observed behaviors
of their implementations shall be admitted.8

Without loss of generality — see Remark 1 — we consider a simplistic notion of programs with
trivial control and data flow. Formally, anm-invocation i is a method namem, along with a vector ®v
of argument values, and an identifier capable of distinguishing invocations to the same method with
the same argument values; anM-invocation is anm-invocation for some methodm ∈ M . An opera-
tion is an invocation paired with a return value. An abstract data typeA over methodsM is a mapping
from M-invocation sequences i0i1 . . . in to return-value sequences A(i0i1 . . . in) = v0v1 . . .vn . A
program p = ⟨po, hbs⟩ over an abstract data type A (over methodsM) is a partial program order po
on M-invocations, given as a union of total orders representing threads, along with a set hbs of
happens-before partial orders on the invocations of po, each including po. Besides program order,
these happens-before orders generally represent the platform-defined synchronization constraints
imposed externally to API invocations, including the release-to-acquire ordering of monitor actions,
and the ordering from write-to-read actions of sequentially-consistent objects.9 Rather than model-
ing synchronization actions directly, we capture only their impact via the possible happens-before
orders among invocations in a given program.

Throughout this work we write program orders using a familiar notation, as parallel compositions
{...}||{...} of invocation sequences, e.g., {i1;i2;i3}, as in Figures 2–4. The corresponding
program order po relates invocations within sequences, e.g., ⟨i1, i2⟩ ∈ po, but not invocations
of distinct sequences. Our notion of programs supposes that the possible happens-before orders
can be determined, and enumerated, statically. While this is not generally possible for programs
arbitrary control and data flow, our simple notion of programs enables this static determination for
common synchronization primitives like locks and volatile variables — see Remark 1.

Example 3.1. Consider the Java programs listed in Figure 5, in which two threads invoke the add
method of a concurrent set. Numbering invocations by their argument values, both programs corre-
spond to the same program order po = {⟨2, 3⟩}. The left-hand side program imposes happens-before
constraints through the use of volatile variables, and there are three possible orders, all statically
predictable, depending on the values read by the second thread: either hb1 = {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩},
when a = 42, or hb2 = {⟨1, 3⟩, ⟨2, 3⟩}, when a = 0 and b = 42, or hb3 = {⟨2, 3⟩}, when a = b = 0.
The corresponding program in our notation is ⟨po, {hb1,hb2,hb3}⟩. Note that neither Invocation 2
nor 3 may happen before 1, since the first thread does not read synchronization variables. Similarly,
the right-hand side program imposes happens-before constraints through the use of locks, and there
are two possible orders, both statically predictable, depending on the order of critical sections: either
hb4 = {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}, when the first thread’s precedes the second’s, or hb5 = {⟨2, 1⟩, ⟨2, 3⟩},
in the reverse. The corresponding program according to our notation is ⟨po, {hb4,hb5}⟩.

We consider an abstract notion of executions, or behaviors, which captures observed return
values and platform-defined happens-before order among invocations in a given program. Formally,
an outcome of a program p = ⟨po, hbs⟩ is a mapping ret from invocations i of p to return values ret(i).
An abstract execution, or behavior, b = ⟨hb, ret⟩ of p is a partial happens-before order hb ∈ hbs,
along with an outcome ret of p. An implementation Impl of an abstract data type A maps programs
p over A to sets Impl(p) = {b1,b2, . . .} of behaviors of p. We refer to the behaviors of Impl(p) as
observed behaviors.

Remark 1. Our notion of programs includes only trivial control and data flow, and statically-
predictable happens-before constraints. For instance, we exclude conditional statements and loops,
8The functional (ADT) specification of an API determines the permissible return values for API invocation sequences.
9Java’s volatile variables guarantee sequentially-consistent reads and writes.
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class Main {

static volatile int v;

public static void main(String[] args) {

var s = new ConcurrentSkipListSet();

new Thread(() -> {

s.add(1); v = 42;

}).start();

new Thread(() -> {

var a = v; s.add(2); var b = v; s.add(3);

}).start();

}

}

class Main {

static Lock l = new ReentrantLock();

public static void main(String[] args) {

var s = new ConcurrentSkipListSet();

new Thread(() -> {

l.lock(); s.add(1); l.unlock();

}).start();

new Thread(() -> {

l.lock(); s.add(2); l.unlock(); s.add(3);

}).start();

}

}

Fig. 5. Two multithreaded Java programs invoking the add method of a concurrent set object, with three and
two statically-predictable happens-before orders, respectively.

as well as passing return values as arguments, in favor of straight-line code with literal argument
values. Nevertheless, this simple notion is expressive enough to capture any possible behavior,
according to the aforementioned notion of behavior, of programs with arbitrarily complex control
flow, data flow, and synchronization. To see this, consider the behavior b = ⟨hb, ret⟩ admitted by
some execution of a program with arbitrarily complex control and data flow. The simple program
order po in which each thread invokes the operations executed by one unique thread of the
original complex program, passing as literals the argument values to those executed invocations,
is guaranteed to admit the exact same outcome ret. Combined with the original behavior b’s
happens-before order hb, the program ⟨po, {hb}⟩ is guaranteed to admit b.

Our annotation language semantics relies on a few basic notions of sequences and orders. We
denote the prefix of a sequence σ up to and including an element α by σ (α), and the prefix of a
partial order π up to and including α by π (α) = {⟨α1,α2⟩ ∈ π : ⟨α2,α⟩ ∈ π or α2 = α }. A sequence
σ1 is called a subsequence of another sequence σ2, denoted by σ1 ⪯ σ2, when σ1 is obtained from
σ2 by deleting elements. We extend the notion of subsequence to partial orders and say that an
order π1 is a suborder of another order π2 if π1 ⊆ π2. For uniformity, we write π1 ⪯ π2 when π1 is a
suborder of π2. Also, for simplicity, we don’t make the distinction between sequences and total
orders, reusing notions like prefix and subsequence in the context of total orders. Finally, we write
i ∈ σ when i is an element of the sequence σ and i ∈ π when i is an element of the partial order π ,
i.e., there exists j such that ⟨i, j⟩ or ⟨j, i⟩ is included in π .

Extending the usual notion to include invocations’ observations, a linearization ℓ = ⟨lin, vis⟩ of
the behavior b = ⟨hb, ret⟩ is:

• a total order lin, which includes hb,10 and
• a function vis, mapping each invocation i to a subsequence of lin(i) including i .

We say an invocation i1 is visible to i2 when i1 ∈ vis(i2), and that i2 sees i1. The linearization ℓ is
admitted by an abstract data type A when for each invocation i of ℓ, the outcome ret ′ = A(vis(i))
of the invocations visible to i is consistent with ret on i’s return value, i.e., ret(i) = ret ′(i) — the
outcomes ret and ret ′ may disagree on return values for the other invocations visible to i . The
behavior b is admitted by A when some linearization of b is, and an outcome ret is admitted by A
when some behavior with outcome ret is.
10Unlike linearizability [Herlihy and Wing 1990], which considers linearizations of the dynamic real-time order among
invocations, we consider linearizations of the weaker dynamic happens-before order, i.e., a superset. This distinction is
orthogonal to the relaxation of visibilities, but enables validation. Section 4 considers this distinction in depth.
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weak(i, ℓ,b) ⇔ true

basic(i, ℓ,b) ⇔ hb(i) ⪯ vis(i)

monotonic(i, ℓ,b) ⇔ ∀j ∈ hb(i). vis(j) ⪯ vis(i)

peer(i, ℓ,b) ⇔ ∀j ∈ vis(i). hb(j) ⪯ vis(i)

∧monotonic(i, ℓ,b)

causal(i, ℓ,b) ⇔ ∀j ∈ vis(i). vis(j) ⪯ vis(i)

∧ basic(i, ℓ,b)

complete(i, ℓ,b) ⇔ vis(i) = lin(i)

Fig. 6. The semantics of visibility predicates, given a
linearization ℓ = ⟨lin, vis⟩ of a behavior b = ⟨hb, _⟩ of
program p = ⟨po, _⟩.

function expected({ po, hbs }, Impl, S) {

for (let hb of hbs) {

for (let { lin, vis } of hb.lins()) {

if (!S.isSatisfied(lin, vis))

continue;

let ret = {};

for (let i of lin) {

let seq = vis(i);

let res = Impl.execute(seq);

ret[i] = res[res.length - 1];

}

yield { hb, ret };

} } }

Fig. 7. Computing the expected behaviors for a
given program and specification, based on the
sequential executions of a given implementation.

We define our annotation language around a small set of predicates which constrain the observa-
tions made by a given invocation. Formally, a visibility predicate φ(i, ℓ,b) is a first-order predicate
on invocations i in linearizations ℓ of behaviors b. Figure 6 defines the semantics of six increasingly
stronger visibility predicates: weak, basic, monotonic, peer, causal, and complete. Figure 1 illustrates
this semantics graphically, besides for weak and complete, since their constraints are independent
from the visibilities of other methods.

The predicates of our annotation language are adapted from happens-before consistency [Manson
et al. 2005], sequential consistency [Lamport 1979], and concepts from distributed systems, including
causal consistency [Lamport 1978] and session guarantees [Terry et al. 1994]. Both causal consistency
and the causal predicate require that visibilities be transitive, though our notion is at the per-
method granularity rather than per-API granularity. Sequential consistency (and linearizability
– see Section 4) is related to the complete predicate: both require that invocations observe their
predecessors in linearization order. The basic predicate requires invocations to see their happens-
before predecessors, which coincides, e.g., with the wording of the Java Language Specification: “if
one action happens-before another, then the first is visible and ordered before the second.”

More subtle is the connection to session guarantees for replicated databases [Terry et al. 1994]. In
that context, a session is an abstraction for the sequence of database operations performed during
the execution of a program. The basic, monotonic, and peer predicates correspond to guarantees
on database read and update operations. Specifically:

• our basic predicate corresponds to a strengthening (from program order to happens-before
order) of the read-your-writes guarantee, which states that the updates made within a session
are visible to reads within that session;

• our monotonic predicate corresponds to the monotonic reads guarantee, which states that
reads observe an increasingly up-to-date state of the database, i.e., increasing sets of updates;

• our peer predicate corresponds to the monotonic writes guarantee, which states that a read
can observe an update only if it has observed all the preceding updates from its session, in
our case, all the other updates that happen-before that update.

Besides the fact that our notions are at the per-method granularity rather than per-API, these
notions differ as we define predicates to satisfy the following linear order to simplify specification.
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Lemma 3.2. For each invocation i in a linearization ℓ of behavior b:

complete(i, ℓ,b) ⇒ causal(i, ℓ,b) ⇒ peer(i, ℓ,b)

⇒ monotonic(i, ℓ,b) ⇒ basic(i, ℓ,b) ⇒ weak(i, ℓ,b).

Our specification methodology annotates each method with a visibility predicate according
to the semantics above. To map visibility predicate semantics to method annotations, we define
φ(m, ℓ,b) iff φ(i, ℓ,b) for allm-invocations i in linearization ℓ of behavior b.

Definition 3.3. A visibility specification S of an abstract data type over methodsM is a mapping
from methodsm ∈ M to visibility predicates S(m).

3.1 Client-Side Reasoning
While we focus here on characterizing the relaxations admitted by existing implementations,
client-side reasoning using relaxed-visibility specifications is also an important consideration.
One possible direction could be to extend existing methodologies for linearizable objects, wherein
programmers reason about sequences of ADT invocations using ADT specifications only, without
implementation details. To extend this methodology to relaxed visibility, the programmer could also
consider the possible visibilities among invocations in a given sequence; an operation’s return value
is determined by the subsequence of its visible invocations, maintaining the utility of completely-
sequential ADT specifications. We intend to explore such client-side reasoning in future work.

3.2 Validating Implementations
To characterize the relaxations admitted by existing implementations, we establish a heterogeneous
notion of validity, allowing methods to exercise distinct visibilities, along with a practical validation
procedure. A linearization ℓ of a behavior b of a program p over abstract data type A satisfies a
visibility specification S when φ(m, ℓ,b) holds for eachm ∈ dom(S) and φ = S(m). Then b satisfies
S when some linearization ℓ does, and is expected when that ℓ is admitted by A. An implementation
Impl of A satisfies S when each observed behavior is expected, for every program over A.

Definition 3.4. The visibility-specification validity problem is to determine whether a given imple-
mentation Impl satisfies a given visibility specification S .

In this work we reduce the validity problem to assertion checking. For a given program and
specification, we compute the set of expected behaviors, and add instrumentation to the program to
record an observed behavior, along with a single assertion ensuring that the observed behavior is
among the expected behaviors. This assertion fails whenever the given program admits a behavior
inconsistent with the specification. The algorithm of Figure 7 demonstrates the calculation of
expected behaviors using the sequential executions of the given implementation as a stand-in for
its abstract data type. This substitution is useful in practice, since the abstract data type of a given
implementation is typically not specified formally. We assume that the method hb.lins returns
the linearizations of its target happens-before order, the method S.isSatisfied returns true iff its
argument linearization satisfies its target visibility specification, and the method Impls.execute
returns the sequence of values returned by its argument invocation sequence.

Remark 2. Besides determining the validity of operations’ return values, API specifications can
contribute to happens-before, e.g., the insertion of a given element in a Java collection happens-
before its corresponding retrieval. While we do not address this aspect of API specification directly
in this work, our validation methodology applies equally well on under the following assumption:
any given sequence of ADT operations cannot yield a happens-before constraint that relates an
invocation to some predecessor. Under this assumption, any happens-before constraints contributed
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ConcurrentHashMap: contains
{ put(1,0); contains(0) } || { put(0,0); put(1,1) }

linearization visibility of contains outcome
put(1,0); contains(0); put(0,0); put(1,1) put(1,0) null, true, null, 0

put(1,0); put(0,0); contains(0); put(1,1) put(1,0) null, true, null, 0
put(1,0); put(0,0) null, true, null, 0

put(1,0); put(0,0); put(1,1); contains(0) put(1,0) null, true, null, 0
put(1,0); put(0,0) null, true, null, 0
put(1,0); put(1,1) null, false, null, 0
put(1,0); put(0,0); put(1,1) null, true, null, 0

put(0,0); put(1,1); put(1,0); contains(0) put(0,0); put(1,1); put(1,0) 1, true, null, null

put(0,0); put(1,0); put(1,1); contains(0) put(0,0); put(1,0) null, true, null, 0
put(0,0); put(1,0); put(1,1) null, true, null, 0

put(0,0); put(1,0); contains(0); put(1,1) put(0,0); put(1,0) null, true, null, 0

Table 1. Computing expected behaviors for the program in Figure 2.

within a given linearization is guaranteed to be consistent with that linearization. This implies that
the behaviors computed in Figure 7, augmented with the contributed happens-before constraints,
are valid, and precisely characterize the behaviors of multi-object programs as well.

The computation of expected behaviors for the program in Figure 2, with respect to a visibility
specification where contains has monotonic visibility and the rest of the methods have complete
visibility, is given in Table 1. The enumeration of linearizations consistent with happens-before
order is nested with an enumeration of visibilities for contains — the remaining invocations’
visibilities being fixed — where contains sees at least as many invocations as its predecessor put(1,0)
in program order, by the monotonicity assumption. This enumeration yields the three observed
outcomes of Figure 2, which coincide exactly with three expected behaviors, given the unique
happens-before order which is equal to program order, due to the lack of additional synchronization.

4 SEQUENTIAL HAPPENS-BEFORE CONSISTENCY
Unlike the familiar notion of atomicity formalized by linearizability [Herlihy and Wing 1990], the
visibility specifications described in Section 3 are agnostic to the real-time order among invocations
in an execution.11 Instead of real-time order, our notion of linearization is only required to include
the platform-defined happens-before order among invocations. By ignoring real-time order, our
notion is more akin to the linearizations of sequential consistency [Lamport 1978], which are only
required to include program order. Requiring linearizations to include the stronger happens-before
order, instead of program order alone, provides a stronger criterion which is more aligned with
the specifications of modern platforms like Java and C++. Such platforms provide happens-before
ordering guarantees among the actions of shared-memory synchronization objects without posing
constraints on the real-time order in which unrelated actions execute. These guarantees permit
high-level program reasoning even amidst drastic low-level program optimizations. To reflect
our alignment with the happens-before order as defined by platform specifications, specialized to
objects with sequential specifications,12 we refer to the corresponding criterion as (relaxed-visibility)
sequential happens-before consistency.

11Two invocations are real-time ordered when the first invocation’s return event is executed before the second’s call event.
12In this work we consider objects whose concurrent behaviors are explained as the results of linear sequences of invocations.
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In this section we compare the linearizability criterion with sequential happens-before consis-
tency (SHBC).13 Since the relaxation of visibilities within a given linearization is an orthogonal
concern, for the remainder of this section we assume only visibility specifications in which every
method is annotated as complete, and thus consider only linearizations in which every invocation
sees all previously-linearized invocations. We argue that while linearizability is generally stronger
than SHBC, its direct monitoring is impractical on modern platforms like Java and C++ whose
specifications do not expose the real-time order among invocations directly. Instead, these platform
specifications expose only a happens-before order, which is not generally implied by real-time
order. Thus, according to platform specifications, SHBC is in some sense the strongest criterion
comparable to linearizability for which runtime verification is possible. Nevertheless, despite the
disparity between linearizability and SHBC per execution, surfacing when real-time orderings
are not exposed by happens-before, we demonstrate that with varying platform assumptions,
linearizability and SHBC are equivalent to varying degrees, e.g., in the limit over all executions
of all programs invoking a given implementation. The remainder of this section formalizes these
arguments, and provides a general framework under which linearization-based criteria can be
adapted to modern platforms like Java and C++.

We recall the notion of abstract execution of an implementation Impl of an abstract data typeA and
program p overA from Section 3, i.e., a behavior b = ⟨hb, ret⟩ recording the happens-before order hb
and outcomes ret among invocations of p. For the purposes of this section we consider an analogous
notion of concrete execution e = ⟨rt, ret⟩ which records the real-time order rt among invocations.
Furthermore, we identify the executions of p with Impl as pairs Impl(p) = {⟨b1, e1⟩, ⟨b2, e2⟩, . . .} of
abstract and concrete executions as being recorded simultaneously from some physical execution of
a given platform, requiring the outcomes of bi and ei to be identical. We say that an execution ⟨b, e⟩
is sequentially happens-before consistent (SHBC) or linearizable, respectively, with a given abstract
data type A when there exists some linearization ℓ = ⟨lin, vis⟩ of b or e , respectively, admitted by
A such that vis(i) = lin(i) for all invocations i , and lin includes hb or rt, respectively. Intuitively,
an execution is linearizable if each individual invocation appears to take effect instantaneously
at some point between its call and return actions, hence the relevance of real-time order. We say
that the implementation Impl of a given abstract data type A satisfies criteria χ , e.g., linearizability,
when all executions of Impl(p) satisfy χ , for all programs p over A.

Formally, we characterize a platform by the set of implementations that can be realized thereon,
implicitly quantifying implementations with respect to a given platform. We say that a platform
is real-time sound (RTS) when happens-before order implies real-time order: if ⟨i, j⟩ ∈ hb then
⟨i, j⟩ ∈ rt, for all invocations i and j of all executions ⟨b, e⟩ ∈ Impl(p)withb = ⟨hb, _⟩ and e = ⟨rt, _⟩,
for all implementations Impl of abstract data type A and programs p over A. RTS justifies SHBC as
complete yet potentially-unsound approximation to linearizability.

Theorem 4.1. Linearizable executions are SHBC on RTS platforms.

Proof. An execution ⟨⟨hb, ret⟩, ⟨rt, ret⟩⟩ being linearizable implies the existence of a lineariza-
tion ℓ = ⟨lin, vis⟩ admitted by A where rt ⊆ lin and vis(i) = lin(i) for all invocations i . The RTS
property implies that hb ⊆ rt, which is enough to conclude that hb ⊆ lin, hence ⟨b, e⟩ is SHBC. □

Corollary 4.2. Linearizability implies SHBC on RTS platforms.

Real-time soundness captures the intent of platform-defined happens-before orders: even when
the invocations of synchronization primitives overlap, when one happens-before another, the
invocations preceding the first are generally guaranteed to complete before those succeeding the
second begin. For the remainder of this section, we assume that all platforms are real-time sound.
13Here we focus on enforcement, as opposed to other considerations like compositionality [Dongol et al. 2018]; see §7.
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To state a corresponding notion of completeness, we must leverage platform specifications to
ensure the manifestation of ordering constraints. We say that a function θ is a synchronization
transformation when for any program p = ⟨po, hbs⟩ the program θ (p) = ⟨po, hbs′⟩ has identical
invocations, yet a possibly distinct set of happens-before orders. Then we say that a platform is
real-time complete (RTC) when there exists some synchronization transformation θ such that for
all implementations Impl of an abstract data type A and programs p over A:

• θ (p) preserves the concrete executions of p: for any execution ⟨_, e⟩ of Impl(p) there exists
an execution ⟨_, e ′⟩ of Impl(θ (p)) with e = e ′, and

• real-time order in θ (p) implies happens-before: if ⟨i, j⟩ ∈ rt then ⟨i, j⟩ ∈ hb for all invocations
i and j of any execution ⟨b, e⟩ ∈ Impl(θ (p)) with b = ⟨hb, _⟩ and e = ⟨rt, _⟩.

We refer to transformations θ meeting the properties above as real-time instrumentations.
These properties are not generally guaranteed by modern platforms like Java and C++. In par-

ticular, the first property is rather demanding: it essentially stipulates the possibility of adding
synchronization which does not interfere with existing operations. While modern platform specifi-
cations do not contradict this property, it is unlikely to be met on typical platform implementations
since, e.g., memory barriers typically synchronize the accesses to all memory locations, rather
than individual memory locations independently. The second property, also not contradicted by
modern platform specifications, is more likely to be realizable. It essentially stipulates the ability
to treat invocation call and return actions as read-acquire and write-release actions, respectively.
Note that this ability is of little value without the first property, since interference among these
actions and with existing operations would render operations directly atomic, thus masking possible
inconsistent behaviors of the unmonitored program.

Example 4.3. Typical software platforms generally provide two possible approaches for real-time
instrumentation. On the one hand, the memory-based approach, as exemplified by Figure 8, uses
auxiliary shared variables (vs1, vs2) that are read from and written to, respectively, immediately
before and after each ADT invocation, in order to record the happens-before order (hbs). To be a
valid real-time instrumentation, this approach requires at least three platform guarantees. First, the
platform must not reorder accesses to the shared variables (vs1, vs2); while this could easily be
achieved by marking them as volatile, this would almost certainly cause interference, and mask
possible inconsistent behaviors. Second, the platform must not allow delays, e.g., context switching,
between shared-variable reads and invocation call actions, nor between return actions and the
corresponding writes. Finally, the platform must guarantee independence between the writes to
distinct memory locations, in order to prevent interference from the shared variable accesses. This
ability is akin to the partial-store ordering (PSO) memory model [SPARC International 1994], rather
than the total-store ordering (TSO) model [Sewell et al. 2010], in which writes to all locations
share the same write-back buffer, and thus interfere. While certain platform implementations may
provide some of these guarantees, modern platform specifications generally guarantee neither.
On the other hand, the clock-based approach, as exemplified by Figure 9, uses system clock

values (read into ts1 and ts2) before and after each ADT invocation. Compared to the memory-
based approach, the clock-based approach is less likely to suffer from memory-access interference,
but still requires that the platform does not allow delays, e.g., context switching, between clock
accesses and invocation call or return actions. However, to be a valid real-time instrumentation, this
approach also imposes at least two other platform requirements. First, the platform must guarantee
sufficiently high-precision such that two distinct accesses read two distinct values; otherwise actual
real-time orderings will be unobservable. Second, the platform must guarantee negligible latency
compared to invocations’ call and return actions; otherwise the clock-value accesses can themselves
interfere with the sensitive timing constraints under which certain executions are admitted. Again,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 60. Publication date: January 2019.



60:14 Michael Emmi and Constantin Enea

class Main {

static boolean vs1[] = { false };

static boolean vs2[] = { false, false };

static boolean hbs[][][] = new boolean[2][][];

public static void main(String[] args) {

Set s = new ConcurrentSkipListSet();

var t1 = new Thread(() -> {

boolean[] hb1 = { vs2[0], vs2[1] }; s.add(1);

vs1[0] = true;
boolean[][] hb = { hb1 }; hbs[0] = hb;

});

var t2 = new Thread(() -> {

boolean[] hb1 = { vs1[0] }; s.add(2);

vs2[0] = true;
boolean[] hb2 = { vs1[0] }; s.add(3);

vs2[1] = true;
boolean[][] hb = { hb1, hb2 }; hbs[1] = hb;

});

t1.start(); t2.start(); t1.join(); t2.join();

// happens before is recorded in hbs[][][]

} }

Fig. 8. Memory-based real-time instrumentation.

class Main {

static long ts1[] = { Long.MAX_VALUE };

static long ts2[] = { Long.MAX_VALUE, Long.MAX_VALUE };

static boolean hbs[][][] = new boolean[2][][];

public static void main(String[] args) {

Set s = new ConcurrentSkipListSet();

var t1 = new Thread(() -> {

var t1 = System.nanoTime(); s.add(1);

ts1[0] = System.nanoTime();

boolean[] hb1 = { ts2[0]-t1 < 0, ts2[1]-t1 < 0 };

boolean[][] hb = { hb1 }; hbs[0] = hb;

});

var t2 = new Thread(() -> {

var t1 = System.nanoTime(); s.add(2);

ts2[0] = System.nanoTime();

var t2 = System.nanoTime(); s.add(3);

ts2[1] = System.nanoTime();

boolean[] hb1 = { ts1[0] - t1 < 0 };

boolean[] hb2 = { ts1[0] - t2 < 0 };

boolean[][] hb = { hb1, hb2 }; hbs[1] = hb;

});

t1.start(); t2.start(); t1.join(); t2.join();

// happens before is recorded in hbs[][][]

} }

Fig. 9. Clock-based real-time instrumentation.

while certain platform implementations may provide some of these guarantees, we find that modern
platform specifications do not generally guarantee all of them together.

Since the definition of real-time completeness requires the addition of program synchronization
to witness real-time constraints, we do not compare linearizability to SHBC directly on arbitrary
programs. Instead, we consider a notion of equivalence which considers programs instrumented
with additional synchronization. For a given synchronization transformation θ , we say that a
program θ (p) is instrumented. We say that two criteria χ1 and χ2 are equivalent when for every
implementation Impl of a given abstract data typeA, Impl satisfies χ1 iff Impl satisfies χ2. In the case
of RTC platforms, every execution of an instrumented program captures real-time order precisely.

Theorem 4.4. SHBC executions of instrumented programs are linearizable on RTC platforms.

Proof. Let ⟨⟨hb, ret⟩, ⟨rt, ret⟩⟩ be an SHBC execution of an instrumented program θ (p). Then,
there exists a linearization ℓ = ⟨lin, vis⟩ admitted by A where hb ⊆ lin and vis(i) = lin(i) for all
invocations i . By RTC, we have rt ⊆ hb, implying rt ⊆ lin, and that the execution is linearizable. □

Since there exists an instrumented program capturing the concrete executions of every non-
instrumented program precisely on RTC platforms, in the limit over all programs invoking the
methods of a given ADT, linearizability is equivalent to SHBC.

Corollary 4.5. SHBC is equivalent to linearizability on RTC platforms.

Proof. By Corollary 4.2, if an implementation is linearizable, then it is SHBC. For the reverse,
let Impl be an SHBC implementation, and assume by contradiction that there is an execution
⟨⟨hb, ret⟩, ⟨rt, ret⟩⟩ of a program p which is not linearizable. By the RTC property, there exists an
execution ⟨⟨hb′, ret⟩, ⟨rt, ret⟩⟩ of θ (p)where rt ⊆ hb′. Since the original execution is not linearizable,
we have that there exists no linearization ℓ = ⟨lin, vis⟩ admitted by A where rt ⊆ lin and vis(i) =
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lin(i) for all invocations i . Since rt ⊆ hb′, we get that the latter execution is not SHBC which
contradicts the hypothesis. □

Real-time completeness corresponds to a fairly demanding assumption on the platforms which
programs execute, but it is not the weakest assumption for which SHBC and linearizability coincide.
In particular, the first requirement, which demands that the synchronization transformation θ
preserves real-time executions can be relaxed, to demand only that the happens-before order of
some other execution reflects the original real-time orders. Formally, we say that a platform is
real-time limit complete (RTLC) when there exists some synchronization transformation θ such
that for all implementations Impl of an abstract data type A and programs p over A:

• θ (p) reflects the concrete executions of p as abstract executions: for any execution ⟨_, e⟩ of
Impl(p) there exists an execution ⟨b, _⟩ of Impl(θ (p)) such that rt = hb and ret = ret ′, where
e = ⟨rt, ret⟩ and b = ⟨hb, ret ′⟩.

Individual SHBC executions of instrumented programs on RTLC platforms are not guaranteed to
be linearizable, since there is no guarantee that the real-time order of a given execution is reflected
in the happens-before order of the same execution. Nevertheless, in the limit over all executions,
the real-time order of every concrete execution is guaranteed to be reflected by the happens-before
order of some abstract execution. Thus the same notion of equivalence for RTC platforms ultimately
applies to RTLC platforms.

Theorem 4.6. SHBC is equivalent to linearizability on RTLC platforms.

Proof. By Corollary 4.2, linearizable implementations are SHBC. For the reverse, let Impl be an
SHBC implementation, and assume by contradiction that there is an execution ⟨⟨hb, ret⟩, ⟨rt, ret⟩⟩ of
a program p which is not linearizable. By the RTLC property, there exists an execution ⟨⟨hb, ret⟩, _⟩
of θ (p) where hb = rt. Since the original execution is not linearizable, we have that there exists
no linearization ℓ = ⟨lin, vis⟩ admitted by A where rt ⊆ lin and vis(i) = lin(i) for all invocations i .
Since hb = rt, we get that the latter execution is not SHBC which contradicts the hypothesis. □

5 EMPIRICAL RESULTS
To assess the value of visibility relaxation and sequential happens-before consistency (SHBC) as
practical specification and validation methodologies, we have studied their application to Java
concurrent objects.14 Our evaluation aims to verify the following hypotheses:
(1) Java’s concurrent object methods are not generally atomic.15
(2) The majority of these methods have consistent visibility relaxations.
(3) SHBC-based validation is effective in uncovering consistency violations.

While the first hypothesis could be deduced from the second, by showing maximality for the relaxed-
visibility consistencies, we include it to emphasize an unheralded fact: consistency relaxation is
hidden in plain sight. The architects of the most-mainstream programming languages willfully
compromise consistency for efficiency in widely-used concurrent object implementations.
We validate these hypotheses in turn in Sections 5.1–5.3 using an open-source and publicly-

available prototype implementation of SHBC-based consistency checking, which we developed for
this purpose.16 Our prototype takes the API specification of a single Java class as input, including
a signature and (complete, causal, peer, monotonic, basic, or weak) visibility annotation for each
14Our study is based on the Java SE Development Kit 9.
15While the term atomic for concurrent objects is generally understood as linearizable, here we equate the term with SHBC.
Since SHBC violations are also linearizability violations — see Section 4 — our reported consistency violations are valid for
both interpretations of the term.
16The Violat consistency-checking tool: https://github.com/michael-emmi/violat
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method, and operates in one of two modes. The single-program mode takes a program invoking
methods of the given class as an additional input, while the automatic mode generates a sequence
of programs automatically. Programs are expressed as sequences of threads, each thread invoking a
sequence of methods, without any other statements nor loss of generality. Our prototype identifies
SHBC-violations of the given class’s consistency specification in executions of the given program(s).
Section 5.4 discusses the efficacy of validation based on testing.

In automatic mode, our prototype generates a bounded sequence of programs at random, given
minimum and maximum bounds on the number of threads, invocations, and argument values.
By default, we generate programs with 2 threads, from 3 to 6 invocations, and up to 2 values.
Since Java’s concurrent objects are essentially generic collection types, argument value types are
essentially unconstrained. For simplicity we suppose that argument values are either integers from
0 . . .n, collections of integers, or integer-to-integer maps. We leave the handling of higher-order
argument values to future work. To avoid an excessive enumeration of programs which invoke only
read-only methods, which are unlikely to expose consistency violations, or invoke only non-atomic
methods, which impedes the diagnosis of consistency violations, we consider a weighted random
selection of invocation targets: atomic mutators are 3 times as likely to be selected as non-atomic
or read-only methods; this distribution is somewhat arbitrary, but guided by experience.

To simplify our evaluation, we consider only programs without synchronization between threads
— beyond that which is already present in the implementation of API methods. This is generally
unsound, since, in principle, the only inconsistent behaviors admitted by a given implementation
may have happens-before orders stronger than program order. However, as discussed in Section 5.3,
our empirical study demonstrates that a vast number of inconsistent behaviors are admitted with
program order alone, and so we have left it to future work to generate and test programs with addi-
tional synchronization. This restriction yields a notable optimization to our testing methodology:
rather than enumerating and recording entire program behaviors, we can reason about program
outcomes only, significantly simplifying both enumeration and recording. Accordingly, for the
remainder of this section we reduce the scope of consistency from behaviors to outcomes. The
extension to behaviors is straightforward, since behaviors can be reconstituted from the outcomes
of programs with additional volatile variable accesses, e.g., similarly to the memory-based instru-
mentation of Section 4 — the key difference being that interference in this case is intended when
witnessing happens-before orderings, i.e., as opposed to witnessing real-time orderings.

To validate the executions of individual programs, our prototype leverages an off-the-shelf stress
testing tool,17 subjecting each program to 1 second of stress testing; this default setting is sufficient
in our experience. We construct tests according to Section 3, by enumerating the expected outcomes,
i.e., the invocation results consistent with the relaxed visibilities of the API specification. For each
tested execution, the stress testing framework checks that invocations’ return values collectively
match one of the expected outcomes. Unexpected outcomes indicate consistency violations, which
our prototype reports, along with their corresponding program.
Our empirical evaluation covers 100K randomly generated programs for each of 7 out of 14

classes from Java’s concurrent object package.18 Those excluded either did not exhibit atomicity
violations, or are not characterized by sequential specifications.19 We also exclude sequentially-
nondeterministic methods like hashCode,20 bulk operations,21 iterators, higher-order functions,
and methods with mutable output parameters, all of which require orthogonal extensions.

17The Java Concurrency Stress tests (jcstress): http://openjdk.java.net/projects/code-tools/jcstress/.
18The generation and testing of 100K programs takes roughly 10 hours on a quad-core 4Ghz Intel Core i7 iMac.
19Classes like SynchronousQueue rely on inter-thread interaction, and cannot be characterized by sequential behaviors.
20The default hashCode implementation depends on objects’ memory addresses.
21Bulk operations include putAll, addAll, containsAll, removeAll, retainAll.
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5.1 Non-Atomicity of Java Concurrent Object Methods
Our initial finding is that Java’s concurrent object methods are not generally atomic. Table 2
witnesses the non-atomicity of over 50 methods across the classes evaluated. Each row lists the
violation of the given visibility level, for the given method, invoked in the given program, as
witnessed by the given outcome. Since a violation to any of the visibility levels is also a violation of
atomicity, none of the listed methods are atomic. In order to attribute a given violation to the given
method under test, we assume a small number of atomic methods per class. Specifically, we assume
the atomicity of sets’ add, remove, and contains methods, of maps’ put, get, remove, and containsKey
methods, and queues’ offer, poll, and peek methods. This assumption is reasonable in our experience,
since these basic methods are heavily scrutinized by both researchers and practitioners.

While non-atomicity is somewhat unsurprising for some methods, since their official API speci-
fications refer to weakened consistency, the specifications of several methods lack any mention
of relaxation. For instance, the getLast, peekLast, pollLast, removeLast, addFirst, and offerFirst
methods of the ConcurrentLinkedDeque are surprisingly non-atomic, while their getFirst, peekFirst,
pollFirst, removeFirst, addLast, and offerLast methods do behave atomically. We suspect that many
or all of these methods are expected to be atomic, since further investigation reveals the subtle
omission of Java’s final keyword attached to certain local variables initialized from memory, which
has implications on the admission of weak-memory effects.
Consequently, some of these violations correspond to existing bug reports: the clear method

of ConcurrentSkipListMap and ConcurrentSkipListSet,22 and the addFirst, peekLast, and pollLast
methods of ConcurrentLinkedDeque;23 the latter report was submitted by the authors of this work.24
These non-atomic behaviors were acknowledged as bugs and patched in upcoming versions of Java.
These admissions underscore the need for precise specification and validation methodologies like
ours, without which such bugs are difficult to identify.

5.2 Relaxed Visibility of Java Concurrent Object Methods
Our second finding is that the majority of Java’s concurrent object methods are consistent with
relaxed-visibility specifications.25 Table 3 lists the strongest consistent specifications for the classes
evaluated, in the sense that escalating any of the givenmethods’ visibility annotations is inconsistent.
Table 2 substantiates the strength of each method’s annotation by listing observed violations to
stronger annotations. For example, we annotate ConcurrentHashMap’s contains method with
monotonic visibility because it is consistent with all test programs, yet peer visibility is inconsistent
with some test programs, e.g., the program listed in Table 2.

Ourmethodology for deriving specifications is amenable to automation, andworks by considering
the annotation for each weakly-consistent method m individually. As noted in Section 5.1, we
assume a small set M of atomic methods per class, e.g., sets’ add, remove, and contains methods.
Starting with the complete visibility form, we enumerate random test programs invokingM ∪ {m}.
Upon discovering a violation we weakenm’s visibility, e.g., from complete to causal, until either we
discover violations even with weak visibility, in which casem cannot be given an annotation, or we
obtain sufficient confidence in the current annotation. Unsoundness due to eager termination of this
step can be caught in a subsequent step, after individual methods’ annotations have been derived, in
which we enumerate random test programs invoking any methods which carry annotations. While
the overall process is also unsound, since we may never generate certain programs expressing a

22ConcurrentSkipListSet.clear() can leave the set in an invalid state: https://bugs.openjdk.java.net/browse/JDK-8166507.
23ConcurrentLinkedDeque linearizability: http://bugs.java.com/bugdatabase/view_bug.do?bug_id=8188900.
24The bug report does not reveal the authors’ name.
25We tested each implementation on 100K programs over roughly 10 hours on a quad-core 4Ghz Intel Core i7 iMac.
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ConcurrentHashMap
program / method outcome

violated
visibility frequency

{put(0,0); put(1,1); put(1,1)} || {put(0,1); clear()} N,N,N,N,() weak 1 / 2,845,260
{put(0,0);remove(1)} || {put(1,0);contains(0)} N,0,N,F peer 6 / 1,508,770
{get(1);containsValue(1)} || {put(1,1);put(0,1);put(1,0)} 1,F,N,N,1 peer 1 / 3,993,110
{put(0,1);put(1,0)} || {elements()} N,N,[0] peer 3 / 1,665,650
{put(0,1);put(1,0)} || {entrySet()} N,N,[1=0] peer 23 / 2,688,890
{ put(1,1) } || { put(1,2); isEmpty() } N,1,T basic 57 / 4,136,690
{put(0,1);put(1,1)} || {keySet()} N,N,[1] peer 18 / 5,048,060
{keys()} || {put(0,1);put(1,1)} [1],N,N peer 13 / 1,721,300
{put(1,0); put(1,1); mappingCount()} || {remove(1)} N,N,2,0 weak 52 / 2,231,190
{put(1,0); put(1,1); size()} || {remove(1)} N,N,2,0 weak 57 / 2,659,700
{put(0,1);put(1,1)} || {toString()} N,N,1=1 peer 120 / 3,948,560
{put(0,1);put(1,0)} || {values()} N,N,[0] peer 99 / 2,836,280

ConcurrentSkipListMap

{put(1,1);clear();remove(1);containsKey(1)} || {get(1);put(0,0)} N,N,N,T,1,N weak 8 / 3,296,430
{put(0,0);remove(1)} || {put(1,0);containsValue(0)} N,0,N,F peer 2 / 3,418,150
{put(0,1);entrySet()} || {put(0,0);put(1,1)} N,[0=1,1=1],1,N peer 148 / 1,271,070
{put(0,1);put(1,0)} || {put(1,1);pollFirstEntry();get(1);remove(0)} N,1,N,1=0,N,1 weak 1 / 1,532,650
{get(0);put(1,0);put(0,0)} || {put(0,1);pollLastEntry();put(0,1)} N,N,1,N,0=0,N weak 5 / 1,513,130
{put(0,1);remove(1)} || {put(1,1);size()} N,1,N,0 peer 1 / 3,898,810
{put(0,1);containsKey(0);put(0,0);put(1,0)} || {tailMap(0)} N,T,1,N,{0=1,1=0} peer 56 / 2,291,450
{put(0,1);put(1,1)} || {put(0,0);toString()} 0,N,N,[0=0,1=1] peer 8 / 2,269,590
{put(0,1);put(1,1)} || {put(0,0);values()} 0,N,N,{0,1} peer 12 / 2,069,060

ConcurrentSkipListSet

{add(0);contains(1)} || {add(1);clear();remove(1);contains(1)} T,T,T,N,F,T weak 398 / 2,589,570
{remove(0);remove(1)} || {add(0);add(1);headSet(2)} T,T,T,T,[0] peer 106 / 1,643,840
{add(0);add(1);contains(0)} || {add(1);pollFirst();remove(1)} T,F,T,T,1,F weak 22 / 1,955,120
{add(1);add(0);contains(0);add(0)} || {add(0);pollLast()} T,F,F,T,T,0 weak 8 / 2,128,990
{add(0);remove(1)} || {add(1);size()} T,T,T,0 peer 1 / 2,785,410
{subSet(0,3)} || {add(1);add(0);add(2)} {1,2},T,T,T peer 836 / 1,970,550
{tailSet(0)} || {add(1);add(0);remove(0);remove(1)} {0},T,T,T,T peer 631 / 2,340,020
{remove(0);remove(1)} || {add(0);add(1);toArray()} T,T,T,T,[0] peer 1 / 739,050
{add(0);add(1);toString()} || {remove(0);remove(1)} T,T,[0],T,T peer 23 / 1,843,310

ConcurrentLinkedQueue

{peek();clear()} || { offer(0);peek();offer(0);poll()} N,N,T,N,T,N weak 8 / 2,646,350
{poll();offer(0)} || {offer(1);size()} 1,T,T,2 peer 3 / 3,458,050
{toArray()} || {offer(1);poll();offer(0)} [1,0],T,1,T peer 23 / 1,340,340
{offer(0);poll();offer(0)} || {toString()} T,0,T,[0,0] peer 21 / 3,845,190

LinkedTransferQueue

{clear()} || {offer(0);poll();offer(1);peek();peek()} N,T,N,T,1,N weak 6 / 1,996,060
{size()} || {offer(0);poll();offer(1)} 2,T,0,T peer 13 / 3,475,350
{toArray()} || {offer(1);poll();offer(0)} [1,0],T,1,T peer 103 / 322,400
{poll();offer(1)} || {offer(1);toString()} 1,T,T,[1,1] peer 55 / 1,867,010

LinkedBlockingQueue

{offer(0);peek();poll()} || {poll();poll();offer(1)} T,1,N,0,N,T weak 2 / 2,276,340

ConcurrentLinkedDeque

{poll();peek();poll()} || {addFirst(1);peek();offer(0)} 0,1,1,N,1,T weak 1 / 3,666,240
{offer(0);clear()} || {offer(0);peek();offer(1);poll()} T,N,T,N,T,N weak 2,555 / 1,994,800
{offer(1);getLast()} || {offer(0);poll()} T,E,T,1 peer 18 / 4,236,420
{poll();poll()} || {offerFirst(0);peek();offer(1);offer(1)} 1,0,T,0,T,T weak 4 / 2,181,330
{offer(1);peekLast()} || {offer(0);poll()} T,N,T,1 peer 22 / 3,540,930
{offer(0); offer(1); peek(); poll()} || { pollLast()} T,T,0,1,0 weak 644 / 2,921,465
{peek(); removeLastO..(1); poll()} || {offer(1); offer(1); poll()} 1,F,1,T,T,1 weak 1 / 3,933,030
{offer(0); poll() } || {offer(1); removeLast(); poll()} T,1,T,E,0 weak 164 / 3,032,894
{offer(1);poll();offer(1)} || {size()} T,1,T,2 peer 1 / 3,817,410
{peek(); offer(1); offer(0); toArray()} || {poll(); poll()} N,T,T,[1],1,0 basic 68 / 2,156,940
{poll(); poll()} || {offer(1); offer(0);toString()} 1,0,T,T,[1] basic 4 / 1,236,452

Table 2. Non-atomic outcomes in Java collections. We list return values in program-text order, and abbreviate
null (N), true (T), false (F), exception (E), map entries (key=val), arrays/lists ([elems]), and sets/maps ({elems}).
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ConcurrentHashMap
visibility methods

complete put, get, remove, containsKey, replace,
putIfAbsent

monotonic contains, containsValue, keys, values,
elements, entrySet, keySet, toString

weak isEmpty

none clear, size, mappingCount

ConcurrentSkipListMap

complete put, get, remove, putIfAbsent, isEmpty,
containsKey, replace, floorKey, firstKey,
ceilingKey, lastKey, higherKey, lowerKey,
keySet, headMap

monotonic containsValue, entrySet, size, tailMap,
toString, values

none clear, pollFirstEntry, pollLastEntry

ConcurrentSkipListSet

complete add, remove, contains, isEmpty, ceiling,
floor, first, last, lower, higher

monotonic headSet, subSet, tailSet, size, toArray,
toString

none clear, pollFirst, pollLast

ConcurrentLinkedQueue,
LinkedTransferQueue

visibility methods

complete offer, peek, poll, add, isEmpty, remove,
contains, remove(Object), element

monotonic size, toArray, toString

none clear

LinkedBlockingQueue

complete offer, poll, add, put, take, clear, isEmpty,
remove, element, size, toArray, toString,
remove(Object), contains,
remainingCapacity

none peek

ConcurrentLinkedDeque

complete offer, peek, poll, add, addLast, isEmpty,
offerLast, getFirst, remove, removeFirst,
remove(Object), peekFirst, element,
pollFirst, contains,
removeFirstOccurrence

monotonic getLast, peekLast, size

weak toArray, toString

none clear, addFirst, offerFirst, pollLast,
removeLast, removeLastOccurrence

Table 3. Relaxed-visibility annotations for Java concurrent objects.

given violation, the probability of this diminishes as we generate more and more programs within
given bounds, i.e., on threads, invocations, and values. In our study, this second step was somewhat
superfluous, since we did not encounter a case where some consistency violation manifests only
with two non-atomic methods; every violation to a given methodm’s annotation also surfaced in
programs wherem was the only non-atomic method.

It is interesting to note that among the classes evaluated, their strongest visibility specifications
use only the complete, monotonic, and weak annotations, leaving absent causal, peer, and basic.
While we cannot soundly conclude their absence, e.g., across all Java classes, we conjecture that
objects designed around conventional single- and multi-core microprocessor architectures may
not generally exploit the optimizations which are characterized by the causal and peer visibilities.
These visibilities are likely to be more prevalent in distributed and non-uniform memory access
(NUMA) architectures, where replication and messaging is employed in place of shared-memory
access. In these settings, the causal and peer visibilities naturally capture consistency mechanisms
based on the transmission of messages. Relaxing monotonic to basic visibility captures, e.g., replica
storage optimizations which disregard previously-received messages. In any case, strongest-possible
specifications are often undesired since they constrain future optimizations. It is conceivable that
architects might opt for, e.g., causal over complete visibility, to avoid imposing synchronization
bottlenecks in the specification.
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ConcurrentHashMap: contains
{ put(0,0) } || { remove(1) } || { put(1,0); contains(0) }

outcome atomic? frequency

null, null, null, true ✓ 2,621,646
null, 0, null, true ✓ 134,083
null, 0, null, false ✓ 11

ConcurrentHashMap: contains
{ put(0,0); remove(1) } || { put(1,0); contains(0) }

outcome atomic? frequency

null, null, null, true ✓ 1,224,150
null, 0, null, true ✓ 1,827,063
null, 0, null, false × 7

Fig. 10. While SHBC cannot identify atomicity violations in executions of the left program, in which the
first thread’s put is real-time ordered before the second thread’s remove, and contains returns false, SHBC
does identify the same violation in executions of the right program, which imposes the essential ordering
constraint on program order.

5.3 Efficacy of Sequential Happens-Before Consistency
Our third finding is that SHBC-based validation is an effective means of exposing consistency
violations. Our experience demonstrates that consistency violations are readily witnessed in small
programs, quickly, without the additional resolution provided by real-time order.

As argued in Section 4, we can explain the robustness of SHBC as follows: even if SHBC cannot
identify a consistency violation in the executions of a given program, i.e., since a crucial real-time
ordering is unobserved, SHBCmay identify the same violation in the executions of another program,
i.e., whose happens-before, or even program order, witnesses the crucial ordering constraint. For
instance, consider the SHBC-based test results of the two programs in Figure 10. The left program
exhibits an atomicity violation in executions inwhich contains returns false, and the first thread’s put
operation is ordered in real-time before the second thread’s remove operation. Without observing
this real-time order, this outcome is consistent, since the first thread’s put operation could have
executed after contains, which may observe an empty map. However, SHBC can identify this very
same atomicity violation in the right program, since the crucial ordering constraint between put
and remove is enforced by the program order of the first thread. In fact, this is even a violation of
sequential consistency. While the theoretical soundness of SHBC for determining linearizability
is unclear, since it requires some mechanism by which programs can witness arbitrary real-time
orders without perturbing, e.g., possible weak-memory effects — see Section 4 — our results and
experience suggest that SHBC is effective at exposing violations in practice, without the need to
monitor real-time invocation order.

Besides the ability to recognize violations, SHBC-based testing can be performed efficiently, with
off-the-shelf concurrency testing frameworks. By pre-computing consistent outcomes/behaviors
prior to testing a given program, SHBC enables the exploration of millions of executions per second,
avoiding the imposition of overhead due to recording the real-time order among operations, and
computing linearizations per execution. This distinction is significant, since prior linearization-
based approaches spend over 30 seconds per program to uncover violations (see Section 7) instead
of the 1 second our technique spends. Furthermore, our experience is that memory-based program
instrumentation for recording the real-time order, required by linearizability checking, interferes
with potential weak-memory reorderings, thus suppressing the expression of weak-memory behav-
iors. While the use of hardware timers in place of memory-based instrumentation could alleviate
this interference in principle, we have found that among the available timers: millisecond timers are
too imprecise to witness real-time orderings in the small programs we tested; high-precision timers
are too costly, in terms of cycle counts, and thus suppress the expression of interesting interleavings
between the methods under test. Note that while our simplified implementation checks only the
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outcomes of programs without additional happens-before constraints, the extension to behaviors
of programs with additional memory operations is straightforward, and left for future work. In our
experience such extensions do not incur significant overhead in our testing methodology.

5.4 Efficacy of Randomized Stress Testing as Validation
While we currently lack techniques capable of proving the validity of a given relaxed-visibility
specification, our experience has instilled a certain amount of confidence based on two key factors.
First, we observe that stress testing is effective exposing a wide range of thread interleavings
and weak-memory effects, ultimately leading to the expression of possible consistency violations.
Even one second of stress testing per program exercises millions of executions, which makes the
expression of such violations fairly likely in practice.
The second major confidence-instilling factor is in our automated random enumeration of pro-

grams. Besides the need for automated enumeration, which we discuss next, we have found random
generation particularly useful in discovering violations quickly, since systematic enumerations tend
to get stuck for long periods of time exploring spaces of very similar programs which fail to express
violations for similar reasons. Besides avoiding such locally-consistent program spaces, random
enumeration is also less prone to the over-exploration of symmetric programs, e.g., differing only
in the order of threads in program text, e.g., equivalent up to renaming of argument values.
More generally speaking, automated enumeration is essential since manually constructing

programs which express inconsistent behaviors is infeasible without deeply understanding the
implementation under test. The expression of consistency violations is fairly brittle, since very
small program variations often suppress violations. For instance, Figure 11 lists 16 variations on
the same program with different argument values, only 4 of which exhibit atomicity violations.
Essentially, this program exhibits a bug in the clear method of Java 8’s ConcurrentSkipListMap broke
fundamental data-structure invariants when invoked concurrently with other methods, allowing
subsequent insertions to disappear. The top-left program exhibits the corresponding consistency
violation, by invoking containsKey on the key inserted after returning from clear. Besides the
knowledge or luck required to consider this test program in the first place, additional knowledge or
luck is required for picking the right argument values. To begin with, there are 16 other programs
not considered, which do not exhibit violations, in which the keys passed to put and containsKey
are distinct. Of the 16 remaining programs depicted, 8 of these (bottom of figure) pass the same key
to the concurrent put operations, masking the bug. Only half of the remaining 8 programs expose
the violation, due to subtleties around key ordering in the ConcurrentSkipListMap’s underlying
data structures: choosing key 1 exposes the violation, while key 0 does not. In our experience, this
sort of implementation dependency makes the manual derivation of tests infeasible, yet makes
automated random generation rather effective.

6 OPTIMALITY OF VISIBILITY SPECIFICATION
Given the simplicity of our visibility-annotation language, one may wonder whether this simplicity
comes at the cost of expressive power: perhaps a more nuanced annotation language could provide
stronger specifications which further boost clients’ reasoning ability.
In this section we argue for a relative optimality of our annotation language, by considering

alternative languages which are more expressive along a few different axes. We refer to the total
order lin in a linearization ℓ = ⟨lin, vis⟩ as the linearization order. In particular, we consider specifi-
cation mechanisms which allow for the relaxation of linearization orders as well as visibilities (§6.1),
joint constraints between linearization orders and visibilities (§6.2), and pairwise method annota-
tions enabling target-dependent visibility (§6.3). We characterize these extensions in Section 6.4
with a fine-grained axiomatic specification language, which enables the systematic exploration of
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ConcurrentSkipListMap: containsKey
{ put(0,x) } || { clear(); put(1,y); containsKey(1) }

outcome atomic? frequency

null, _, null, true ✓ 99.4%
null, _, null, false × 0.6%

{ put(1,x) } || { clear(); put(1,y); containsKey(1) }

outcome atomic? frequency

null, _, null, true ✓ 98.2%
y, _, null, true ✓ 1.5%
null, _, x, true ✓ 0.3%

{ put(1,x) } || { clear(); put(0,y); containsKey(0) }

outcome atomic? frequency

null, _, null, true ✓ 100%

{ put(0,x) } || { clear(); put(0,y); containsKey(0) }

outcome atomic? frequency

null, _, null, true ✓ 99.8%
y, _, null, true ✓ 0.2%
null, _, x, true ✓ 3e-4%

Fig. 11. Only 4 of 16 argument-value variations of the depicted program, where x ,y ∈ {0, 1}, exhibit atomicity
violations; the other 16 argument-value variations (not depicted) exhibit no violations.

finer-grained specifications. Empirically, we find that despite the additional expressive power, the
visibility specifications for Java concurrent objects derived in our simple annotation language, as
reported in Section 5, correspond to maximally-strong specifications in this finer-grained language.
While this does not preempt the general possibility of stronger consistency specifications, e.g., by
considering ad-hoc annotation predicates rather than a fixed set of keywords, we believe this result
is anyhow a meaningful indicator of optimality.

6.1 Linearization Relaxation
As a first language refinement, we consider allowing linearization orders which are not consis-
tent with happens-before. While enabling great flexibility, we observe few cases in which the
behaviors allowed by such relaxed linearization orders are not also allowed by other lineariza-
tions consistent with happens-before but with possibly more relaxed visibilities. For instance,
consider again the { put(1,0); contains(0) } || { put(0,0); put(1,1) } program of Figure 2, whose outcome
⟨null, false, null, 0⟩ is explained by the relaxed linearization order:

contains(0); put(1,0); put(0,0); put(1,1),
in which the first thread’s invocations are reordered, together with a complete visibility where
each invocation sees all its predecessors in the sequence. However, as argued in Section 2, this
outcome is also explained by relaxing the visibility of contains in the linearization order:

put(1,0); put(0,0); put(1,1); contains(0)
such that it does not see put(0,0).
Allowing behaviors which are only justified by linearization relaxations is not ideal because it

complicates client reasoning. For instance, consider this ConcurrentLinkedDeque client:26

{ offer(0); poll() } || { offer(1); removeLast(); poll() }
The outcome ⟨true, 1, true, NoSuchElementException27, 0⟩ is only explained by the linearization:

offer(1); offer(0); poll(); poll(); removeLast(),
26The ConcurrentLinkedDeque is a double-ended queue with offer and poll methods for adding and removing elements,
respectively, to the back and from the front of the queue. The removeLast method removes elements from the back of the
queue.
27NoSuchElementException indicates an empty queue.
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where the removeLast and poll invocations of the second thread are reordered (each invocation sees
all its predecessors in the sequence).28 For such clients, the main difficulty is designing reasoning
principles that don’t rely on the syntactic structure of the program, e.g., based on validating standard
assertions in the client code, which is similar in spirit to the issues addressed in the context of
reasoning about programs running on weak-memory platforms [Alglave and Cousot 2017; Lahav
and Vafeiadis 2015; Turon et al. 2014].

6.2 Relating Linearizations And Visibilities
As a second refinement, we consider additional predicates relating visibilities and linearization
orders. First, discerning whether the visibility of an invocation is a prefix of the linearization order,
rather than a subsequence, as in the definition of the visibility mapping. Second, discerning whether
the visibility of invocations increases according to their order in the linearization. These relations
are formalized as the following visibility predicates:

linPrefix(i, ℓ) ⇔ ∀j ∈ vis(i). lin(j) ⪯ vis(i)

linMonotonic(i, ℓ) ⇔ ∀j ∈ lin(i). (vis(j) \ {j}) ⪯ vis(i)

where i is an invocation and ℓ = ⟨lin, vis⟩ is a linearization. For instance, consider the non-relaxed
linearization order of the contains method from Section 6.1, and the visibility mapping where
contains does not see put(0,0). The invocation of contains does not satisfy linPrefix since its visibility
is not a complete prefix of the linearization order (it sees put(1,1) but not its predecessor put(0,0) in
the linearization order), and also, it does not satisfy linMonotonic since the visibility of put(1,1) is
complete, and thus includes put(0,0), but the visibility of its successor contains(0) in the linearization
order does not contain put(0,0). The predicate linPrefix corresponds to prefix consistency [Terry
et al. 1995], a consistency criterion used in the context of distributed databases, while linMonotonic
is analogous tomonotonic, except that the visibility “grows” with respect to the linearization order
instead of the happens-before order.

These predicates may offer finer-grain guarantees about the consistency of the API, but they are
more difficult to reason about. The predicates we chose to include in our visibility specifications
constrain the visibility in terms of the happens-before order, which we assume that it can be
derived syntactically, rather than the linearization order which is related to the semantics of the
implementation and changes from behavior to behavior. Furthermore, since the visibility mapping
is consistent with the linearization order, i.e., vis(i) is a subsequence of lin(i), and the linearization
order is consistent with happens-before, these relations between visibility and linearization can
be inferred from the visibility predicates defined in Section 3 in all cases except for causal (note
however that causal is not exercised by the Java objects we considered). For instance, let i be an
invocation that satisfiesweak(i, ℓ,b), for some linearization ℓ of a behaviorb, and does not satisfy all
the predicates stronger than and including basic(i, ℓ,b). Since linPrefix(i, ℓ) implies causal(i, ℓ,b) for
any behavior b (because vis(j) is a subsequence of lin(j)), we get that i does not satisfy linPrefix(i, ℓ).
Also, linMonotonic(i, ℓ) implies a weakening of monotonic(i, ℓ,b) defined by

monotonic*(i, ℓ,b) ⇔ ∀j ∈ hb(i). (vis(j) \ {j}) ⪯ vis(i)

which excludes the guarantees of basic, i.e., we have thatmonotonic(i, ℓ,b) ⇔ (monotonic*(i, ℓ,b)∧
basic(i, ℓ,b)) for every b. This entailment holds because hb(i) is a subsequence of lin(i). Therefore, i
does not satisfy linMonotonic(i, ℓ). A similar reasoning can be applied when the strongest predicate
satisfied by i is basic, monotonic, peer, or complete.

28We assume that the invocations of offer and poll, which are intended to be atomic, have a complete visibility.
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6.3 From Unary to Binary Visibility Predicates
The visibility predicates define lower bounds for invocations’ visibilities. For instance, basic(i, ℓ,b)
requires invocation i to see at least its happens-before predecessors. These lower bounds could
be weakened by keeping only invocations of certain methods, e.g., redefining basic(i, ℓ,b) as
basic(i, ℓ,b,m) to say that i sees at least all the invocations ofm which precede it in happens-before.
For instance, consider the following program of ConcurrentHashMap:

{ get(0); put(1,0); isEmpty() } || { get(1); put(1,1); elements()}.
The observed outcome ⟨null, 1, true, null, null, [1]⟩ could be explained by the linearization

get(0); get(1); put(1,1); elements(); put(1,0); isEmpty()
where all invocations besides isEmpty have complete visibility; isEmpty sees all invocations except
for put(1,1) and put(1,0), the latter being a predecessor in program order (and happens-before).
This outcome shows that isEmpty does not satisfy basic. However, letting i denote the invocation
of isEmpty in this linearization, the predicate basic(i, ℓ,b, get) defined above would hold since i
sees the invocation of get which precedes it in program order (and happens-before). The same
transformation from unary to binary predicates can be also applied to the other predicates besides
basic. Such binary predicates enable more precise specifications at the expense of rendering these
specifications much more difficult to apprehend, e.g., disabling a modular documentation of the
API, where each method is specified in isolation.

6.4 Systematic Exploration of Fine-Grained Specifications
To reason about the possible (combinations of) refinements to our visibility specifications, we
consider a language of consistency models defined by axioms which characterize linearizations of
behaviors. For simplicity, these axioms use a representation of the visibility mapping vis as a binary
relation between invocations defined by {⟨i, j⟩ : i ∈ vis(j) and i , j}. By an abuse of notation, this
binary relation is named vis as well. The (left) composition R1 ◦ R2 of two binary relations R1 and
R2 is the set of pairs ⟨x , z⟩ such that ⟨x ,y⟩ ∈ R1 and ⟨y, z⟩ ∈ R2 for some y. We denote the identity
binary relation {⟨x ,x⟩ : x ∈ X } on a set X by [X ], and we write [x] to denote [{x}].
The following grammar of consistency axioms ϕ is parameterized by sets of method names M

characterizing sets of invocations in a given abstract execution:

ϕ ::= qrel ⊇ rel qrel ::= lin | vis rel ::= qrel | hb | [M] | rel ◦ rel

M is interpreted as the set ofM-invocations. A consistencymodel Φ is a set {ϕ1,ϕ2, . . .} of consistency
axioms. The interpretation of these axioms over pairs of behaviors and linearizations of a program
p = ⟨po, hbs⟩ is defined as expected:

⟨⟨hb, ret⟩, ⟨lin, vis⟩⟩ |= ϕ( ®M)

iff ϕ[hb/hb][lin/lin][vis/vis][{i ∈ po : i is anMj -invocation }/Mj ]j is valid

We extend this semantics to consistency models as ⟨b, ℓ⟩ |= Φ iff ⟨b, ℓ⟩ |= ϕ for all ϕ ∈ Φ. We
say that consistency model Φ1 is stronger than Φ2, written Φ1 ⇒ Φ2, when ⟨b, ℓ⟩ |= Φ1 implies
⟨b, ℓ⟩ |= Φ2 for every behavior-linearization pair ⟨b, ℓ⟩. For a consistency model Φ, we say that a
behavior b of a program p over abstract data type A is expected when there exists a linearization ℓ
of b admitted by A such that ⟨b, ℓ⟩ satisfies Φ. An implementation Impl of A satisfies Φ when each
observed behavior is expected, for every program over A.

We have considered a bounded space of consistency models, each containing the axiom lin ⊇ vis.
The remaining axioms are instantiated from the schemas enumerated in Table 4. These axioms
describe both the visibility specifications of Section 3, as well as the refinements outlined in
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schema name definition

HbConsistentLin(M1, M2) lin ⊇ [M1] ◦ hb ◦ [M2]
ReadPreviousOps(M1, M2) vis ⊇ [M1] ◦ hb ◦ [M2]
HbMonotonicReads(M1, M2) vis ⊇ [M1] ◦ vis ◦ hb ◦ [M2]
ReadHbPrefix(M1, M2) vis ⊇ [M1] ◦ hb ◦ vis ◦ [M2]
SingleOrder(M1, M2) vis ⊇ [M1] ◦ lin ◦ [M2]
LinMonotonicReads(M1, M2) vis ⊇ [M1] ◦ vis ◦ lin ◦ [M2]
ReadLinPrefix(M1, M2) vis ⊇ [M1] ◦ lin ◦ vis ◦ [M2]
TransVis(M1, M2) vis ⊇ [M1] ◦ vis ◦ vis ◦ [M2]

M1, M2 are sets of method names

Table 4. Consistency axiom schemas.

{ lin ⊇ vis,
HbConsistentLin(Mw ∪Mm ∪Mc , Mw ∪Mm ∪Mc ),
ReadPreviousOps(Mw ∪Mm ∪Mc , Mm ∪Mc ),
HbMonotonicReads(Mw ∪Mm ∪Mc , Mm ∪Mc ),
ReadHbPrefix(Mw ∪Mm ∪Mc , Mc ),
TransVis(Mw ∪Mm ∪Mc , Mc ),
SingleOrder(Mw ∪Mm ∪Mc , Mc ),
LinMonotonicReads(Mw ∪Mm ∪Mc , Mc ),
ReadLinPrefix(Mw ∪Mm ∪Mc , Mc )}

Table 5. A strongest consistency model for Java con-
current collections, where Mw , Mm , and Mc are the
sets of weak, monotonic, and respectively, complete
methods defined in Table 3.

Sections 6.1–6.3. Thus, a visibility specification S over methodsM can be expressed as a consistency
model Φ which includes lin ⊇ vis, HbConsistentLin(M,M), as well as:

ReadPreviousOps(M,m), for eachm such that S(m) ∈ {basic,monotonic, peer, causal}

HbMonotonicReads(M,m), for eachm such that S(m) ∈ {monotonic, peer}

ReadHbPrefix(M,m), for eachm such that S(m) ∈ {peer}

TransVis(M,m), for eachm such that S(m) ∈ {causal}

SingleOrder(M,m), for eachm such that S(m) ∈ {complete}

To compare the expressive power of this refined language of consistency models with our sim-
ple annotation language, we have conducted a systematic exploration of the maximally-strong
consistency models. We have automated this exploration by implementing a testing-based proce-
dure, similarly to the validator described in Section 5, to derive maximal models by filtering out
consistency axioms which are inconsistent with observed behaviors. Generally speaking, an API
implementation may satisfy multiple incomparable consistency models, and we have implemented
certain heuristics to guide the selection among maximals according to the discussions of Sec-
tions 6.1–6.3, e.g., we prefer avoiding linearization order relaxations. According to these heuristics,
we have automatically derived one particular maximal consistency model, among other maximals,
for each of the Java classes evaluated in Section 5, which is no stronger than the specification
derived from our simple annotation language, as listed in Table 3. For each class, this derived
consistency model corresponds to an instantiation of the schema of Table 5: the setsMw ,Mm , and
Mc are precisely the sets of methods with weak, monotonic, and complete visibility annotations,
respectively, for a given class, as listed in Table 3. This correspondence demonstrates an empirical
optimality of our simple annotation language: even this expressive language of consistency models
cannot derive stronger specifications for the existing Java concurrent objects.

7 RELATEDWORK
Our specificationmethodology follows a long line of work around consistency criteria for concurrent
objects. Herlihy and Wing [1990] described linearizability, the de-facto criterion. While Batty et al.
[2013] adapt linearizability to a single modern platform, C/C++, we describe a general adaptation by
abstracting from the platform-specifics of the happens-before (HB) order among API invocations.
Motivated by replication-based distributed systems, Burckhardt [2014]; Burckhardt et al. [2014]
describe a more general axiomatic framework for specifying weaker consistencies like eventual
consistency [Terry et al. 1995] and causal consistency [Ahamad et al. 1995; Lamport 1978]. While
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these axiomatic specifications facilitate general reasoning for uniformly-weak operations, they
do not enable the specification of objects with operations of varying consistencies. Sergey et al.
[2016] describe API-specific per-operation consistency specifications which are not portable across
APIs. In contrast, the annotation keywords of our relaxed-visibility specifications are generic: their
meaning is independent from the functional specifications of the APIs they annotate.
Recently Doherty et al. [2018]; Dongol et al. [2018] proposed a notion of causal happens-before

linearizability which appears to be equivalent to complete sequential happens-before consistency
(SHBC), i.e., without visibility relaxation, for APIs which do not contribute to happens-before. Their
definition also requires implementations to guarantee specified happens-before contributions —
e.g., that the insertion of a given element in a Java collection happens-before its corresponding
retrieval — which is orthogonal to return-value consistency. Beyond the similarity of these defini-
tions, our scientific contributions are distinct. On the one hand, Dongol et al. have demonstrated
how an implementation may guarantee its specified happens-before contributions, and that their
definition admits compositionality for APIs meeting a certain condition: non-commutative opera-
tions are related by happens-before. On the other hand, we demonstrate that SHBC is an effective
criterion for real platforms like Java, in that it admits sound and efficient per-execution validation
procedures (unlike linearizability — see §4), and actually holds (modulo visibility relaxation) over
all observed executions of several high-performance implementations. On the contrary, it is not
apparent that Dongol et al.’s compositionality condition is met by popular API specifications: Java
collections only order operations accessing the same element, yet many multi-element operations
are non-commutative, e.g., queue insertions, e.g., size methods.

Our concurrent-object testing methodology joins many others. Pradel and Gross [2012] consider
thread safety, which prohibits unexpected exceptions and deadlocks, but not inconsistency with
functional specifications. Samak and Ramanathan [2015] consider the atomicity of lock-based
implementations, ignoring, e.g., the majority of Java’s concurrent objects. Shacham et al. [2011]
exploit commutativity for testing linearizability of operations composed of other linearizable objects.
Line-Up [Burckhardt et al. 2010] checks linearizability by enumerating linearizations per execution,
spending an average of 31.5s per test program, a cost we avoid by precomputing expected behaviors;
spending just 1s per program effectively speeds-up Line-Up by 30×. Moreover, Line-Up’s model
checker can interfere with weak-memory behaviors, and test generation requires user-specified
argument-value ranges.We avoid invasive recording of real-time order, and include argument values
in the test discovery process, exposing violations which only occur with unexpected combinations.

Our testing-based methodology is perhaps most similar to litmus testing for validating hardware
memory-consistency specifications, which checks the observed outcomes from a given program
against a precomputed set of expected outcomes, and can be applied to the validation of sequential
consistency [Alglave et al. 2014; Mador-Haim et al. 2010]. Our approach essentially generalizes
litmus testing from memory operations to the operations of arbitrary ADTs, and from return-value
outcomes to behaviors, i.e., including an underlying platform-defined happens-before ordering.

8 CONCLUSION
Our specification methodology enables the precise specification of software modules whose op-
erations provide varying consistency guarantees. Besides delineating boundaries against which
to validate potential optimizations, our methodology enables module clients to establish program
properties which rely on precise module guarantees. Without such a characterization of relaxed
consistency, the invocation of even a single non-atomic operation essentially forfeits any guarantees
for all operations. In contrast, our simple annotation language yields precise yet generic consistency
guarantees for actual software APIs with operations of varying consistencies. To the best of our
knowledge, we are the first to develop such a methodology.
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While Java’s concurrency API already justifies our simplified categorization of relaxed consisten-
cies, our experience suggests that further refinement is called for. In particular, we expect that some
of the methods which fall below our baseline of weak visibility (see §5) are correct, in the sense
that they actually exhibit their intended consistencies. We believe that extending our approach to
handle bulk mutators like the clear method, which modify multiple collection elements, could assign
meaningful consistencies, avoiding their total loss of guarantees. It is important to distinguish
these cases from other losses of consistency, which indicate implementation bugs.
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