
210

Testing Consensus Implementations using Communication
Closure

CEZARA DRĂGOI, INRIA, France and Informal Systems, France

CONSTANTIN ENEA, Université de Paris, IRIF, CNRS, France

BURCU KULAHCIOGLU OZKAN, MPI-SWS, Germany

RUPAK MAJUMDAR, MPI-SWS, Germany

FILIP NIKSIC, University of Pennsylvania, USA

Large scale production distributed systems are difficult to design and test. Correctness must be ensured when

processes run asynchronously, at arbitrary rates relative to each other, and in the presence of failures, e.g.,

process crashes or message losses. These conditions create a huge space of executions that is difficult to

explore in a principled way. Current testing techniques focus on systematic or randomized exploration of all

executions of an implementation while treating the implemented algorithms as black boxes. On the other

hand, proofs of correctness of many of the underlying algorithms often exploit semantic properties that reduce

reasoning about correctness to a subset of behaviors. For example, the communication-closure property, used in
many proofs of distributed consensus algorithms, shows that every asynchronous execution of the algorithm

is equivalent to a lossy synchronous execution, thus reducing the burden of proof to only that subset. In a lossy

synchronous execution, processes execute in lock-step rounds, and messages are either received in the same

round or lost forever—such executions form a small subset of all asynchronous ones.

We formulate the communication-closure hypothesis, which states that bugs in implementations of distributed

consensus algorithms will already manifest in lossy synchronous executions and present a testing algorithm

based on this hypothesis. We prioritize the search space based on a bound on the number of failures in the

execution and the rate at which these failures are recovered. We show that a random testing algorithm based

on sampling lossy synchronous executions can empirically find a number of bugs—including previously

unknown ones—in production distributed systems such as Zookeeper, Cassandra, and Ratis, and also produce

more understandable bug traces.

CCS Concepts: • Software and its engineering→ Software testing and debugging; • Theory of com-
putation→ Distributed computing models.

Additional Key Words and Phrases: Distributed consensus, Communication closure, Randomized testing

ACM Reference Format:
Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic. 2020. Testing

Consensus Implementations using Communication Closure. Proc. ACM Program. Lang. 4, OOPSLA, Article 210
(November 2020), 29 pages. https://doi.org/10.1145/3428278

1 INTRODUCTION
Large-scale, fault-tolerant, distributed systems are the backbone for many critical software services.

Since they must execute correctly and efficiently in the presence of concurrent and asynchronous

message exchanges as well as benign (message loss, process crash) or Byzantine failures (message

Authors’ addresses: Cezara Drăgoi, INRIA, France , Informal Systems, France; Constantin Enea, Université de Paris, IRIF,

CNRS, France; Burcu Kulahcioglu Ozkan, MPI-SWS, Kaiserslautern, Germany; Rupak Majumdar, MPI-SWS, Kaiserslautern,

Germany; Filip Niksic, University of Pennsylvania, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART210

https://doi.org/10.1145/3428278

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://doi.org/10.1145/3428278
https://doi.org/10.1145/3428278

210:2 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

corruption), the underlying algorithms are intricate. Moreover, even when the algorithms are proven

correct, testing production implementations of these algorithms remains a significant challenge,

precisely because of the enormous number of exceptional conditions that may arise in production.

Testing such distributed systems raises several important challenges:

(C0) Test oracle: Formulating a correctness specification that should hold for the system and a

checker for the property on a given execution.

(C1) Test harness discovery: Devising a suitable set of test harnesses (combinations of user requests)

that are more likely to expose vulnerabilities, e.g., sets of transactions that access a common

set of data fields in the case of a distributed database.

(C2) Enumerating executions: Even if the test harness contains few user requests, the number of

possible executions can still be enormous because of a large number of internal steps that

can interleave in arbitrary ways (the number of executions can be infinite if failures occur

frequently and infinitely-often). An important challenge is to define efficient strategies for

enumerating the execution space that maximizes the probability of exposing vulnerabilities.

(C3) Improving interpretability: Since a vulnerability can be exposed in many different ways, it is

desirable to prioritize showing the user executions that are “easily” interpretable and that

simplify the task of extracting the root cause and a possible repair.

Specifications for distributed systems is a well-studied topic, e.g., [Lynch 1996], and our paper

assumes that a correctness specification is provided. We shall focus on the challenges C1–C3.
Challenge C1 is usually addressed using an exhaustive enumeration of test harnesses with few

user requests. Empirically, these harnesses seem to be enough for exposing most vulnerabilities (an

instance of the so-called “small scope” hypothesis). Therefore, testing techniques today focus on

addressing the challenge C2 and explore message orderings, systematically or randomly, a major

concern being to prioritize the search order [Desai et al. 2015; Izrailevsky and Tseitlin 2011; Killian

et al. 2007; Kingsbury 2018; Leesatapornwongsa et al. 2014; Lukman et al. 2019; Ozkan et al. 2018].

In most existing testing approaches, the underlying distributed protocols are treated as black boxes:

tests explore possible schedules of messages and faults in the implementation without considering

properties of the underlying algorithms. Up to our knowledge, none of the existing techniques

address the challenge C3 of improving interpretability.

In this paper, we describe a testing strategy that addresses both C2 and C3. We pick a subset of

executions of a distributed system that, under some reasonable and frequently occurring assumption

on the underlying algorithms, represents every other possible execution (any other execution is

equivalent to one in this subset). The subset of executions is chosen to follow a symmetric and

regular scheduling policy, e.g., synchronizing message exchanges between different processes. Our

testing strategy explores only this subset of executions, and it is complete in the limit under the

hypothesis that the semantic reduction holds. Since it explores concrete executions of the system

it is clearly sound, in the sense that all reported bugs are genuine. The restriction to a subset of

executions improves the likelihood that a bounded enumeration is able to expose vulnerabilities

(challenge C2) while restricting the scheduling policy improves interpretability (challenge C3).
This semantic reduction is mainly based on a property called communication-closure [Elrad and

Francez 1982], which has been used extensively in designing or proving distributed protocols like

Paxos [Chou and Gafni 1988; Damian et al. 2019; Dragoi et al. 2016; Moses and Rajsbaum 2002; von

Gleissenthall et al. 2019].

A Semantic Reduction Based on Communication-Closure. We model a fault-tolerant dis-

tributed system as a set of processes communicating through message passing. Each process

maintains local state and executes a sequence of send, receive, and state update actions. Under

the standard asynchronous semantics, processes may execute at arbitrarily different speeds and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:3

messages can be arbitrarily delayed or lost (process crashes can be modeled as losing all messages

sent by or to a process). The space of possible executions is enormous since it is defined by all

the interleavings between process actions and all possible ways of introducing message delays or

losses.

As stated above, we consider a semantic reduction for such systems which is based on com-
munication closure. This property relies on a restricted semantics, that we call lossy synchro-
nous [Charron-Bost and Schiper 2009; Gafni 1998; Santoro and Widmayer 1989], and ensures that

every asynchronous execution is indistinguishable from a lossy synchronous execution. Indistin-

guishability means that processes go through the same sequence of local states, modulo stuttering,

in the two executions. Assuming that the system specification cannot make the difference between

indistinguishable executions, which is the case in practice for many specifications of interest,

communication-closure ensures that exploring only lossy synchronous executions is complete.

While our method is not complete for systems that violate communication closure, it is sound (any

reported bug is a true bug).

To define the lossy synchronous semantics, we consider that the behavior of each process is

structured as a sequence of rounds: sequences of send-receive-update actions (this decomposition

can be assumed without loss of generality modulo introducing fictitious actions for sending/receiv-

ing an empty set of messages and update actions leaving the state unchanged). For example, in a

distributed consensus protocol, rounds correspond to preparing a new ballot/view/term, sending

and receiving acknowledgments, proposing values, and communicating promises. The lossy syn-

chronous semantics imposes that processes execute rounds synchronously and in lock-step, but

messages can be lost. Any two processes are in the same round at each point during the execution

and all messages sent in a round are either received in the same round or lost forever (messages

exchanged in one round may be lost while the ones exchanged in the next round delivered without

failure). In contrast, under the asynchronous semantics, processes may be executing different

rounds at a point of time and be ready to receive messages from any round in the past or future.

We reduce the execution space even further for “leader-based” protocols, a widely used technique

for implementing state machine replication. In a leader-based protocol, the communication in each

round goes from one process, called leader, to all the other processes, or from all processes to the

leader. We introduce a restriction of the lossy synchronous semantics, which restricts the way

messages are lost in a given round. We define a uniform lossy synchronous semantics where the

messages that are lost in a given round are precisely those sent or received by a set of processes.

Intuitively, this corresponds to isolating each such process from all the other processes in the

network. This is a restriction of the lossy synchronous semantics. For instance, in the presence

of three processes p1, p2, p3, the uniform semantics does not allow that a message from p1 to p2 is
lost while a message from p1 to p3 is delivered, or it does not allow that a message from p2 to p1 is
lost while a message from p3 to p1 is delivered (p1 is not isolated from all the other processes, but

only from p2). It is rather easy to see that the uniform lossy synchronous semantics is complete for

leader-based protocols (we show in Section 5 that it is complete for a larger class of protocols).

Our testing algorithm enumerates only executions under the uniform lossy synchronous se-

mantics. While proving the validity of the reduction to such a semantics (i.e., that our testing

algorithm is complete in the limit) is very difficult for production systems (the kind we con-

sider in the experimental evaluation), the goal of our work is investigating the following uniform
communication-closure hypothesis: bugs in many distributed systems manifest already at the level

of uniform lossy synchronous executions. The validity of this hypothesis leads to a solution for

challenge C2 since the space of uniform lossy synchronous executions is much smaller than the

whole set of asynchronous executions (see Section 2 for an example) and challenge C3 because the

exchange of messages in such executions is quite regular and easy to interpret in comparison to an

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:4 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

arbitrary asynchronous execution. While it is hard to evaluate the degree of interpretability in an

objective manner, we believe through our own experience that the simple communication patterns

in uniform lossy synchronous executions, the lock-step exchange of messages in particular, are

definitely easier to debug than an arbitrary schedule of such actions.

Testing Algorithm. We define a randomized testing algorithm which samples uniform lossy

synchronous executions. The algorithm takes as input a harness consisting of n processes running

for a maximum of r rounds. Our algorithm limits the sampling space according to several parameters

that bound the choice of isolated processes in each round. Note that process isolation is the only

source of non-determinism in the uniform lossy synchronous semantics since processes execute

rounds in lock-step (the interleaving between actions of different processes is fixed modulo actions

which commute trivially like sends done in parallel by two different processes). The first parameter

is a bound d on the number of isolated processes across all the rounds in the execution while the

second parameter k sets the frequency at which isolated processes re-join the network.

While the choice of the parameter d is motivated by an empirical “small scope” observation that

many bugs in implementations already occur under a rather small number of isolated processes

(transient faults), the second parameter k is motivated by the structure of standard distributed

algorithms, e.g., state machine replication algorithms. Typically, the sequence of rounds in a

process is further decomposed into a sequence of phases (a phase is a sequence of rounds) with
successful phases, when the system makes progress towards its specification, and unsuccessful
phases, when progress is not possible because of failures (e.g., message loss), but some computation

needs to be performed to ensure that the system remains safe. For example, in a state machine

replication algorithm, a successful phase corresponds to committing a single command (transition)

of the machine, provided that enough messages are delivered in each of its rounds. In more faulty

scenarios, i.e., when the network is temporarily partitioned such that there is no majority that

can communicate reliably, the system will execute several unsuccessful phases until the network

delivers sufficiently many messages in a phase to commit a client request. The desirable choice for

the rate k at which processes re-join the network equals the length of a phase in the system under

test. The testing algorithm uses k and d to generate executions that alternate successful phases

(having few to no processes isolated) and unsuccessful phases (having sufficiently many processes

isolated to prevent progress). However, the user is not required to have protocol specific insights

about the length of a phase. The testing algorithm drives the exploration through executions where

the set of isolated processes changes at every k rounds. The sampling space grows as d is increased

and k is decreased, covering the whole space of uniform lossy synchronous executions when d
grows to infinity and k = 1.

Our algorithm samples executions of the harness satisfying the bounds d and k , and guarantees

that each execution is picked with a certain minimum probability. This leads to precise probabilistic

guarantees about hitting a specific execution. This algorithm is sound, i.e., the reported bugs are

not spurious, and complete in the limit when the reduction to the uniform lossy semantics is valid.

Evaluation. We evaluated the effectiveness of our testing algorithm on large scale distributed

systems such as Cassandra, Ratis, and Zookeeper. Our evaluation focuses on detecting consistency

violations, a major source of bugs in distributed systems. We experimentally show that our testing

algorithm (1) compares favorably with testing based on random search: it detects several known

and novel bugs by sampling from a much smaller subset of executions (showing that uniform lossy

executions already cover many bugs), and (2) enables exploration even with little instrumentation of

the source code. In particular, our testing tool was able to detect several previously unknown bugs

in recent versions of Zookeeper and Ratis. Moreover, the buggy traces produced by our algorithm

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:5

are informative. The synchronous traces are more understandable when compared with the usual

asynchronous ones produced by other state-of-the-art techniques.

The generality of our method goes beyond the evaluated benchmarks. Distributed systems

are all about coordination in the absence of a global clock. Communication-closure highlights

rounds, an encoding of a local notion of time which is used by processes to coordinate and

accomplish collective tasks. Rounds are a good abstraction of timestamps, vector clocks, or any

other synchronizations mechanism that must be implemented by a distributed protocol. The

communication-closed executions of a systems are the core of any protocol (even if the protocol

has not been shown communication-closed), because they include the executions for which local

time can be mapped on a global notion of time. Therefore, even for systems where our testing is

not complete, prioritizing communication-closed executions is an important heuristic.

Contributions and Outline. In this paper we propose a framework for reducing the search space

in testing based on communication-closure, a well established design and reasoning principle for

fault-tolerant distributed systems.

Our testing framework complements theoretical concepts from the distributed computing com-

munity (communication closure) with novel search prioritization and randomization techniques

(which are specific to the use of communication closure and the systems under study). Despite

the fact that communication closure is a rather established and well-studied concept in theoretical

terms, it has never been proposed as a way of building better testing tools. Our work transfers the

theoretical insight to testing tools that find bugs in real-world, deployed, applications.

Our contributions and outline are summarized as follows:

• we develop a theoretical framework for stating and using the communication-closure hy-

pothesis in testing (§3 and §4),

• we define the uniform restriction of the lossy synchronous semantics prescribed by

communication-closure which limits message losses to isolating a set of processes and

which is complete for a large class of practical distributed algorithms (§5),

• we define a randomized testing algorithm with precise probabilistic guarantees that samples,

uniform lossy synchronous executions under certain bounds on the occurrence of network

link failures (§6)

• we conduct an empirical evaluation on production distributed systems (§7).

2 OVERVIEW
We demonstrate our testing framework on the distributed protocol listed in Fig. 1, where a set of

processes must agree on a total order between a set of commands. These commands are input one

by one while the protocol is running, and possibly concurrently, at different processes at the same

time. This is a simplified version of state machine replication (based on Paxos [Lamport 2005]) in

which we omit how commands are communicated to the protocol and assume that they are created

by invoking a new_command function (see line 28). Each process maintains a sequence of commands

(in a local variable log) which is outputted when certain conditions are fulfilled (see line 42). The

intended specification is that any two such outputs, possibly from different processes or from the

same process but at different points in time, must be comparable with respect to the standard prefix

order between sequences. The protocol would be incorrect if for instance, two processes would

output a and b, respectively (since neither is a prefix of the other one).

The pseudocode in Fig. 1 is executed an arbitrary number of times by each process participating

in the protocol, and an execution of the protocol is a standard interleaving of steps from different

processes. Like in many other distributed protocols, each process executes a sequence of rounds.
Each round consists of a sequence of message sends, receives, and state updates, in this order. The

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:6 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

1 //Local variables

2 int last = phase = 0

3 var log = ϵ
4 var my_id, leader

5 var step

6

7 //@Round Prepare

8 //@Snd:

9 if (getLeader(phase) == my_id)

10 send to all ("Prepare", phase+1, my_id)

11 receive_messages()

12 //@Upd:

13 if received m=("Prepare", m.phase, m.sender)

14 with m.phase >= phase

15 last = phase //@bugfix remove

16 phase = m.phase

17 leader = m.sender;

18 step = "Ack"

19

20 //@Round Ack

21 //@Snd:

22 if(step=="Ack") send to leader

23 ("Ack", phase, (last, log))

24 receive_messages()

25 //@Upd:

26 if (step=="Ack") && received > n/2 messages

("Ack",phase,_)

27 log = select_log_from_received_messages()

28 log = log @ new_command()

29 step = "Propose"

30 if(my_id != leader) step = "Propose"

25 //@Round Propose

26 //@Snd

27 if (leader == my_id && step == "Propose")

28 send to all ("Propose", phase, log)

29 receive_messages()

30 //@Upd:

31 if received from leader a message

m=("Propose",phase, m.log)

32 log = m.log

33 step = "Promise"

34 //@bugfix add last = phase

35

36 //@Round Promise

37 //@Snd:

38 if(step == "Promise") send to all ("Promise",

phase, log)

39 receive_messages()

40 //@Upd:

41 if received more than n/2 messages ("Promise",

phase, log)

42 output log

Fig. 1. A Paxos-like state machine replication protocol. The number of processes participating in the protocol
is denoted by n. Each process has a number of local variables, listed at lines 2–5: my_id is a constant storing
the id of the process, and log stores the sequence of commands to be outputted (@ denotes sequence
concatenation at line 28). The code represents a phase defined as a sequence of four rounds. Each round
consists of message sends (annotation @Snd), receives, and state updates (annotation @Upd). Each phase has a
designated leader which is set by the call to the deterministic getLeader function.

protocol periodically tries to extend the sequence of commands on which processes agree with a

new command by executing a sequence of four rounds, called phase,1 in each process. In each phase,

a process, called the leader, gets a new command and tries to store into the log of a quorum formed

of more than half of the processes. The quorum is essential for fault tolerance. If all processes

execute synchronously (in lockstep) and all messages are delivered, then each process ends up

extending their local sequence log with the new command. Such an execution is given in Fig. 2(a).

Each process in this execution executes two phases: the first phase appends command a while the

second appends command b. The possible outputs are related by prefix order as expected. If too

many messages are lost (the cardinality constraints at lines 26 and 41 that check for a quorum are

not satisfied) while a process is executing a phase to process a new command, then its log remains

unchanged and it begins a new phase (the same happens if the process executes much faster than

many other processes). Although the protocol should tolerate any such exceptional conditions and

satisfy the intended specification, this is not actually true.

1
In other works, a phase may be called ballot or view.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:7

(b)

a1 a

a a

1

1

a

0

0 2,a

2,a2,a

ab

ab

1

1

a1

a

a

a 2,a

2,a

2,a ab

ab

a

(c)

a

(a)

1 a

a

a

a

a

1

1

1

a

0

0

2,a

2,a

2,a ab2,a

ab

ab

ab

ab

ab

ab

0

0

p1

p2

p3

p1

p2

p3

p1

p2

p3

ab

ab

a a
b

ab

a a
b

a

a

a

b

Fig. 2. Three executions of the protocol in Fig. 1 that involve three processes p1, p2, and p3: (a) a synchronous
execution where no message is lost, (b) a lossy synchronous execution, (c) an asynchronous execution
indistinguishable from the lossy synchronous execution in (b). Each horizontal line shows time progressing for
each process. Boxes contain fragments of local state: the numbers represent the value of the phase variable
while the strings represent the value of log. Colored arrows between the horizontal lines show the messages
exchanged. Dotted arrows in (b) and (c) indicate dropped messages. Double arrows ⇓ denote input commands
(values returned by new_command) while ⇑ denote output command sequences. Each phase ends with a
vertical dotted line in the figures.

a1,0 a

a

1,0

1,0

a

0,0

0,0 2,0

2,02,0

b

b

b

bb3,2

3,03,0

3,2

3,1,a

3,2,e

a1,0 a

a

1,0

1,0

a

0,0

0,0 2,0

2,12,0

b

b

b

bb3,2

3,23,1

4,2

4,1,a

4,3,e

a

b

ba

b

a

Fig. 3. An incorrect execution of the protocol in Fig. 1 (with three processes). We use the same conventions as
in Fig. 2. The pairs of integers, e.g., (1,0) and (2,0), represent the values of the local variables (phase, last).
The log values are e, a and b, where e denotes the empty log.

Fig. 3 shows an execution that violates this specification where the processes output sequences a
and b, which are incomparable w.r.t. prefix order. This execution contains four phases: during the

first phase, enough messages are delivered so that two processes can output a; many messages are

lost in the next two phases, so no process can extend their log; enough messages are delivered

during the fourth phase, but processes end up “forgetting” about command a, and output the

singleton sequence b.
In order to understand the details of the bug in Figure 3, we take a closer look at the implemen-

tation. Each process keeps track of the current phase it executes (using the local variable phase).
Due to faults processes may be in different phases. In each phase a processes executed the four

rounds in Fig. 1; the rounds are named in comments (lines 7, 20, 25, and 36). In the first round the

leader looks for a quorum of processes to learn the most up-to-date log stored by its peers (the

leader might have a stale local log due to faults). To this, the leader broadcasts a Prepare message

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:8 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

that contains the leader’s phase (line 10). The processes that receive the leader’s message join the

leader’s phase by updating the local phase variable to the leader’s phase, unless they are already in

a higher one (line 16). The processes that join the leader’s phase, called followers, store in last
(line 15) the number of the last phase they participated in. In the second round, each follower sends

an Ack message to the leader (line 23), including the values of its local sequence log and the last
phase the follower participated in, which is used to date the sent log. If the leader receives more

than n/2 Ack messages, it has a quorum and sufficient information to compute the most recent

value of the log: it selects the log coming from the process that participated in the most recent

phase, i.e., the one with the highest value of last (line 27). In the third round, the leader sends

the most recent log extended with a new command to all processes in a Propose message (line 28).

The processes that receive the leader’s message update their log accordingly. In the last round,

processes exchange their current log and phase, by sending Promise messages to all the processes

(line 38). A process that receives n/2 Promise messages for the same phase and the same value of

the log, outputs this log value.

The value of the last phase a process participated in is sent along with the value of the log

in the round Ack. This is crucial for correctness because it prevents losing requests. The bug in

Fig. 3 is caused by an incorrect computation of the most recent log after two phases when too

many messages were lost. In the fourth phase the leader receives two log values in round “Ack”:
a from p1 and the empty log from p3. The leader picks the empty log of p3 as being the most

recent one, because the last phase number accompanying it is higher than the last phase number

accompanying the log of p1 containing a. The bug happens because of a misinterpretation of what

“participating” in a ballot means. Processes should recall the last phase when they received a new log

from the leader, not the last phase they joined. Process p3 joins phases 2 and 3 but its algorithmically

meaningful state, i.e., the log, does not change in these phases. Therefore by updating the value of

last when receives a Prepare message from the leader, p3 incorrectly makes its log more recent

than it is. A correct implementation requires removing the update of last from the round Prepare
(line 15) and adding an update of last to phase in round Propose when the process receives the

leader’s new log proposal, in line 34.

Asynchronous vs. Lossy Synchronous Semantics.The standard asynchronous semantics of this

protocol allows arbitrary interleavings of steps from different processes under a non-deterministic

network that can drop arbitrarily many messages. Different processes may execute different rounds

at the same time and they may receive arbitrarily delayed messages. For example, Fig. 2(c) shows

an asynchronous execution where some messages are lost and others are delayed. In this execution,

processes go through two phases: in the first one, the leader p1 transmits the command a to

{p1, p2}, and in the second phase, the leader p2 transmits the second command b to {p2, p3}. The
non-determinism in this semantics due to scheduling and message loss leads to an enormous

number of executions. Standard exhaustive or random enumerations of this space of executions are

very unlikely to be effective in exposing potential vulnerabilities like the one in Fig. 3.

A smaller space of executions can be defined by considering a synchronous semantics in which

each round is executed at the same time by all processes and every message is delivered. An

execution fragment where each process executes a round is called a synchronized round. Fig. 2(a)
shows such an execution with 8 synchronized rounds. This semantics is however too restricted

since it cannot exercise the protocol’s capabilities of tolerating faults, e.g., message loss.

An intermediate point is the lossy synchronous semantics, which is a weakening of the synchro-

nous semantics where messages can be dropped arbitrarily. An execution under this semantics is

still a sequence of synchronized rounds, but messages can be either delivered in the same synchro-

nized round they were sent or dropped and never delivered in the future. Fig 2(b) shows such an

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:9

execution: the leader p1 of the first phase sends the command a but only p1 and p2 receive it, and

in the second phase, the command b sent by the leader p2 is received only by p2 and p3.

In general, the lossy synchronous semantics contains a subset of the possible executions (under the

asynchronous semantics). However, most distributed protocols are designed to be communication-
closed, i.e., so that the two semantics are equivalent (every asynchronous execution is equivalent

to a lossy synchronous one) [Dragoi et al. 2016; Elrad and Francez 1982]. The protocol in Fig. 1 is

communication-closed. For example, the asynchronous execution in Fig. 2(c) is equivalent to the

one in Fig. 2(b), in the sense that each process passes through the same sequence of local states in

both executions.

The key observation in our testing algorithm is that, when testing for a given specification, we

can restrict attention only to lossy synchronous executions, instead of the much larger class of

asynchronous executions. Note that the bug in Fig. 3 is an incorrect lossy synchronous execution.

This execution represents a large class of equivalent asynchronous executions (all bugs). When the

underlying protocol is communication-closed, there is no loss of generality.

Uniform Lossy Synchronous Semantics. In fact, our testing algorithm considers a further

restriction of the lossy synchronous semantics, called uniform, which limits the choice of messages

to be dropped in a synchronized round. Consider for instance the first synchronized round in

Fig. 3. Choosing to drop the message from the first to the third process is the same as choosing to

isolate the third process from the rest of the processes (meaning that all the messages sent by or

to the third process are dropped). Equating dropping messages with isolating a set of processes

is valid for synchronized rounds where a single process sends messages or when all messages

are sent to the same process. In practice, to minimize the number of exchanged messages, many

distributed protocols are defined in such a way, each round (phase) having a designated leader
(like in the first three rounds in Fig. 1). For synchronized rounds with a different communication

structure, e.g., the last round in our protocol, choosing only to isolate a set of processes instead of

dropping a specific set of messages may be a restriction that leads to incompleteness. For instance,

the last synchronized round in Fig. 3 corresponds to isolating the second process. Dropping another

message, say from p1 to p3, could not be simulated as a set of isolated processes. As we show in

Section 5 this restriction is actually complete even for this protocol.

Our Testing Algorithm. Our testing algorithm randomly samples uniform lossy synchronous

executions where the number of isolated processes in the run is at most d and where every isolated

process can reconnect to the network every k-th round. The values of d and k are inputs to the

algorithm. Intuitively, d is a bound on the number of messages that can be dropped during an

execution while k should ideally correspond to the number of rounds in a phase of the protocol

(this is however not a requirement and k can be arbitrary). The latter is motivated by the fact that

in many algorithms, once a process becomes isolated in a phase, it cannot make progress (change

its local state) during the same phase even if it reconnects later. For the protocol in Fig. 1, if a

process does not receive a “Prepare” message in the first round, it cannot change its state because

of messages received in the later rounds of the same phase. As d increases and k decreases, the

algorithm covers more and more of the execution space. For each execution, the algorithm applies

a user-provided procedure for checking the intended specification.

Advantage of Our Algorithm: Smaller Sample Set of Executions. Sampling from uniform

lossy synchronous executions reduces the size of the sample set of executions significantly. Consider

the protocol execution in Fig. 1 with 3 processes, 16 synchronized rounds, and k = 4 (these

constraints are those satisfied by the buggy execution in Fig. 3; the picture omits the last two rounds

from the second and third phase because no process sends any message). The number of uniform

lossy synchronous executions of the protocol is about 10
7
(each one of 3 processes can be isolated

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:10 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

at one of k = 4 rounds in 16/4 = 4 phases). In comparison, the number of lossy synchronous

executions which are not necessarily uniform is about 10
43
(any subset of the 9 communication

links between the processes can be lossy in a round).

3 DISTRIBUTED PROTOCOLS
We describe the theoretical foundation of our work in the context of an abstract notion of protocols

that abstracts away from a particular syntax. We define the standard asynchronous semantics for

such protocols, which allows arbitrary interleavings of steps from different processes and arbitrary

loss of messages.

Protocols. We fix a set P of process identifiers and an arbitrary set V of message payloads. A

message is a triple (p,q,v) ∈ P×P×Vwherep represents the source of the message, q its destination,
and v the payload. The set of all messages is denoted byM. A process with identifier p is a tuple

A = (Σ, s0, Snd,Upd) where:
• Σ is a set of process local states, and s0 is the initial state of the process,
• Snd : Σ→ 2

M
is the message sending function: Snd(s) = M denotes the fact that p sends the

set of messagesM when in local state s . As expected, we assume that p is the source of all

the messages inM .

• Upd : Σ × 2M → Σ is the state-update function: Upd(s,M) is the next state of the process p
given its current state s and that it received the set of messagesM (we assume that p is the

destination of all the messages inM).

Given a process A, we refer to components of A using A.Σ, A.s0, and so on.

A protocol P maps each process identifier p ∈ P to a process P(p) with identifier p.

Example 3.1. Consider the protocol in Fig. 1. A state is a valuation of the process local variables

(declared in the protocol) including a variable representing the control location. The initial state

s0 of any process, has an the empty log of requests, s0(log_val) = ϵ , the ballot counter is zero,
s0(ballot) = 0, s0(step) = Prepare, and s0(last) = 0.

The functions Snd and Upd are based on the code snippets that send messages, respectively

update the local state (highlighted in the figure with matching labels). For example, for any process

p, given a state s ∈ Σ with the program counter at lines 10 (the send of the round Prepare),

Snd(s) =

{
{(p,q, (“Prepare”, s(ballot))) | q ∈ P} if get_leader()== p,

∅ otherwise.

For any process in some state s , if the program counter is at line 14 (the update of the round

Prepare) then Upd(s,M) = s ′ if there is m ∈ M s.t. m.ballot > s(ballot) and Upd(s,M) = s other-
wise, whereM is the current set of received messages and s ′ differs from s on the following variables:
s ′(last) = s(ballot), s ′(ballot) = s(m.ballot), s ′(step) = Ack, s ′(leader) = m.sender.

A configuration of a protocol P is a tuple (pool, ls) where pool is a set of messages in transit

and ls maps each process identifier p ∈ P to a process local state in P(p).Σ. Given a configuration

c = (pool, ls) we use c .pool and c .ls to refer to its components.

Asynchronous Semantics. The asynchronous semantics of a protocol P is defined using a set of

transition rules given in Figure 4. The rule Send represents a transition in which a given process p
sends all messages prescribed by its message sending function Snd in a given state. These messages

are added to the pool of messages in transit and the process local states remain unchanged. The

rule A-Update represents a transition in which a set of messagesM is delivered to a process p and

p updates its local state according to its state-update function Upd. The set of messagesM is chosen

non-deterministically from the set pool of messages in transit with destination p. This models

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:11

Send

P(p).Snd(ls(p)) = M

(pool, ls)
send(p)
−−−−−→ (pool ∪M, ls)

Environment

M ⊆ pool

(pool, ls)
env(M)
−−−−−→ (M, ls)

A-Update

M ⊆ pool ∩ (P × {p} × V) and P(p).Upd(ls(p),M) = s

(pool, ls)
a-update(p)
−−−−−−−−→ (pool \M, ls[p 7→ s])

S-Update

M = pool ∩ (P × {p} × V) and P(p).Upd(ls(p),M) = s

(pool, ls)
s-update(p)
−−−−−−−−→ (pool \M, ls[p 7→ s])

Fig. 4. Transition rules for protocol semantics.

adversarial networks in which messages can be delayed arbitrarily. The rule Environment is used

to model networks that can also drop messages arbitrarily. It defines a set of transitions that can

delete an arbitrary set of messages from the pool of messages in transit. These transitions are labeled

by send(p), a-update(p), and env(M) where M is the set of messages kept by an Environment

transition, respectively.

An asynchronous execution of a protocol P is a sequence of transitions between configurations

c0
ℓ0
−→ c1

ℓ1
−→ . . .

ℓm−1
−−−−→ cm where each ℓi ∈ {send(p), a-update(p), env(M) : p ∈ P,M ⊆ M}, for all

0 ≤ i ≤ m − 1. The set of asynchronous executions of a protocol P is denoted by AsyncEx(P).

Example 3.2. Fig. 2(c) shows an asynchronous execution of the protocol in Fig. 1. Each square

represents a state update transition, each filled circle represents a send transition, and each edge

represents a message produced by the sending function. The initial states are given by circles

labeled with the initial ballot number. The execution omits send transitions that produce an empty

set of messages, e.g. the first and third send actions of process p2. The interleaving of transitions
performed by different processes is represented by the order between squares and filled circles.

Each solid edge represents a message produced during the send transition where it starts and

delivered during the state update transition where it ends. Each dotted edge represents a message

dropped by environment transitions. Note that some messages are delayed, i.e., they are delivered

during a state update transition that occurs later in the execution and not immediately after the send

transition that generated them. For instance, the message (p2, (“Promise”, 1, a),p1) represented by

the bold edge arrives with a long delay to process p1. The fact that the asynchronous executions
can interleave send and update transitions arbitrarily is essential for modeling such delays.

4 COMMUNICATION-CLOSED PROTOCOLS
In this section we define the lossy synchronous semantics exploited by the testing algorithm,

and the communication-closure property stating that this semantics is indistinguishable from the

standard asynchronous semantics.

Lossy Synchronous Semantics.We consider a lossy synchronous semantics where executions

are sequences of synchronized rounds in which all processes start by sending the set of messages

determined by their local state before updating their local state using a non-deterministically

chosen set of messages to receive. These rounds are communication-closed in the sense that the

messages which are sent but not received within one round are lost. There is no fixed relation

between the messages lost in different rounds.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:12 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

Formally, a synchronized round between two configurations c0 and c2·n+1 with a set of processes

P = {p0, . . . ,pn−1} is a sequence of transitions

c0
send(p0)
−−−−−−−→ c1 . . .

send(pn−1)
−−−−−−−−−→ cn

env(M)
−−−−−−→ cn+1

s-update(p0)
−−−−−−−−−−→ cn+2 . . .

s-update(pn−1)
−−−−−−−−−−−−→ c2·n+1

where the s-update(·) transitions are defined by the rule S-Update in Figure 4. These transitions

represent a variation of the update transitions from the asynchronous semantics where all messages

which are still in transit are received and used to update the state of a process. A process may still

receive a subset of the sent messages because of the env(·) transition scheduled before all update

transitions.

We use c0
round(M)
−−−−−−−→ c2·n+1 to denote the sequence of transitions in a synchronized round. A lossy

synchronous execution is a sequence of synchronized rounds c0
round(M0)
−−−−−−−−→ c1 . . .

round(Mm−1)
−−−−−−−−−−→ cm .

The set of lossy synchronous executions of a protocol P is denoted by SyncEx(P). All synchronous
executions we consider are lossy synchronous.

Example 4.1. Fig. 2(a) and Fig. 2(b) show two lossy synchronous executions of the protocol in

Fig. 1. The conventions for representing send and update transitions, and messages are the same as

in Example 3.2. The transitions that are aligned vertically are ordered from top to bottom.

For the execution in Fig. 2(a), it is assumed that the environment transitions preserve the content

of the pool of messages in transit (no messages are dropped). Under the synchronous semantics

no messages are delayed and all send and update transitions are executed in lock-step: the k
th

send (resp., update) is executed simultaneously on all processes. This execution goes through eight

rounds, each process iterating twice over the code in Fig. 1.

For the execution in Fig. 2(b), the environment transitions drop the messages represented by

dotted edges.

Communication-Closed Protocols. The behavior of a process p in a (synchronous or asynchro-

nous) execution η = c0
ℓ0
−→ c1

ℓ1
−→ . . .

ℓm−1
−−−−→ cm , denoted by η ↓ p, is the sequence of states of p in the

configurations c0,. . ., cm , i.e., η ↓ p = c0.ls(p) . . . cm .ls(p). Two sequences of local states σ and σ ′ are
called equivalent up to stuttering, denoted σ ≡ σ ′, when they coincide modulo removing consecutive

repetitions of the same state. An execution η1 is indistinguishable from another execution η2, which
is denoted by η1 ≡ η2, if η1 ↓ p ≡ η2 ↓ p for each p ∈ P.

Example 4.2. The executions in Fig. 2(b) and Fig. 2(c) are indistinguishable. The executions show

only (the modification of) the values of the variables ballot and log_val. The values of the other
variables are also equal modulo stuttering. For example, p1 goes through the states s0, s1, s2, s3, s4 in
both executions where s0 is the initial state, s1(ballot) = 1, s1(log_val) = ϵ , s1(step) = “Prepare”
s2(ballot) = 1, s2(log_val) = a and s2(step) = “Propose”. The states s3 and s4 differ from s2 only
in the value of the variable step, i.e. s3(step) = “Promise” and s4(step) = “Prepare”.

Definition 4.3. A protocol P is called communication-closed when for each asynchronous execu-

tion η1 ∈ AsyncEx(P) there is a lossy synchronous execution η2 ∈ SyncEx(P) such that η1 ≡ η2.

Communication-closure is a property which is met by all the replicated state machine or con-

sensus protocols we are aware of, e.g., Paxos [Lamport 2005], Multi-Paxos [Chandra et al. 2007],

EPaxos [Moraru et al. 2013], ViewStamped [Oki and Liskov 1988]. Intuitively, this property is

achieved using the following principles: (1) each process uses a set of variables to encode a local

notion of time, called round number, which is monotonically increasing, (2) every message carries

some metadata that associates it with some unique round number, and (3) a process updates its state

using only messages whose round number equals the process’s local round number. Assuming these

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:13

constraints, any asynchronous execution can be rewritten to an indistinguishable synchronous

execution by essentially, reordering commutative transitions [Damian et al. 2019; Elrad and Francez

1982; Moses and Rajsbaum 2002].

For example, the round number of the protocol in Fig. 1 is defined by the values of the pair of

variables (ballot, step). We consider the lexicographic order over the values of (ballot, step)
where the four values of the variable step are ordered as “Prepare” < “Ack” < “Propose” < “Promise”

(ballot is an integer variable and its values are ordered as usual), and define the round number of a

process in state s as the position in the lexicographic order of the values of (ballot, step) in s . Then,
every sent message m has two fields m.ballot and m.step that represent its round number (in the

same way as the pair of local variables (ballot, step) represents the process’s local round number).

The third condition relates message round numbers with process round numbers. Before using the

payload of a received message to update the local state, e.g., before reading m.sender at line 18
or m.log_val at line 27 and storing their values in some local variable, the code ensures that the

round number of the message equals the process’s local round number, i.e., m.ballot == ballot
and m.step == step. If this is not the case, the message is either not used to update the local state

or the round number of the process is first increased to match the message’s round number at

line 16 before using the message’s content to update the state at line 18.

When systems are not known to be communication-closed, one can identify the subset of

communication-closed executions. In this case, the lossy synchronous executions represent a subset

of the set of executions of the distributed system.

5 UNIFORM EXECUTIONS
In this section, we present a restriction of the lossy synchronous semantics in which the faults

(message losses) modeled by the environment transitions are uniform, that is the messages send

by a subset of the process are received. This restriction is complete for standard state machine

replication and consensus protocols, up to indistiguishability.

A synchronized round c
round(M)
−−−−−−−→ c ′ is called uniform if there exists a set of processes Π such

that the set of messages received in the round (by some process) is exactly the set of messages sent

by a process from Π to a process in Π, i.e,(
(p,q,v) ∈ P(p).Snd(c .ls(p)) ∧ {p,q} ⊆ Π

)
⇔ (p,q,v) ∈ M,

for every p,q,v . The set of processes Π is called the kernel of the round. A lossy synchronous

execution is called uniform when it is a sequence of uniform rounds.

Example 5.1. The synchronous executions in Fig. 2(a), Fig. 2(b) (described also in Example 4.1),

and Fig 3 are uniform. In Fig. 2(a), the kernel of each synchronized round is the set of all processes.

For the execution in Fig. 2(b), Π1 = {p1,p2} is the kernel of the first four synchronized rounds

(the first phase), Π2 = {p2,p3} is the kernel of the next three synchronized rounds (the first three

rounds of the second phase), and Π3 = {p3} is the kernel of the last synchronized round.

Figure 5(a) shows a non-uniform execution, where in the last synchronized round, process p1
receives messages from {p1,p2}, the message from p3 being lost, and p2 receives messages from

{p2,p3}, the message from p1 being lost.

A synchronized round c
round(M)
−−−−−−−→ c ′ is one-to-all if there exists at most one process p sending

messages in this round, i.e., P(q).Snd(c .ls(q)) = ∅ for every q , p, and all-to-one if all processes
send messages to a single process p, i.e., for every q, if P(q).Snd(c .ls(q)) , ∅, then there exists

v ∈ V such that P(q).Snd(c .ls(q)) = {(q,p,v)}. A protocol P is leader-based iff all its synchronous

executions are sequences of one-to-all or all-to-one synchronized rounds.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:14 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

a

(a)

1 a

a

a

a

a

1

1

1

a

0

0

p1

p2

p3

a

(b)

1 a

a

a

a

a

1

1

1

a

0

0

p1

p2

p3

a a
a a

Fig. 5. Two synchronous executions of the protocol in Figure 1.

Example 5.2. For the protocol in Example 3.1 (Figure 1), a synchronized round where the leader

sends a “Prepare”message to all processes (the first round a phase) is one-to-allwhile a synchronized
round where processes send an “Ack” message to the leader is an all-to-one round (the second round
a phase). Note that all refers to the maximum number of processes that can receive, resp., send

messages, in a synchronized round (messages can be dropped during an environment transition).

The following theorem implies that the restriction to uniform lossy synchronous executions is

complete for leader-based protocols which are also communication closed.

Theorem 5.3. Every lossy synchronous execution of a leader-based protocol is uniform.

All benign consensus and replicated state machine implementations [Junqueira et al. 2011; Lak-

shman and Malik 2010; Moraru et al. 2013] are leader-based, and hence satisfy Th. 5.3. However, our

running example in Fig. 1 is not leader-based since the last round uses an all-to-all communication.

In the Promise round, all processes that received the leader’s proposed log (in the previous round)

broadcast this proposal to all the processes in the network. A process that receives more than

n/2 messages, having as payload the same log value, transmits this log to the client. The uniform

executions with all-to-all communication are a strict subset of the lossy synchronous executions.

The protocol in Fig. 1 confirms, beyond leader-based algorithms, the hypothesis that bugsmanifest

in uniform executions, as the incorrect execution from Fig. 3 is uniform. The underlying principle is

that for any non-uniform execution of the protocol in Fig. 1 either there exists an indistinguishable

uniform execution or there exists a uniform execution that exposes the same log values to the client.

Fig. 5(b) shows a uniform execution that is indistinguishable from the execution in Fig. 5(a). The

equivalence relation between non-uniform and uniform executions (w.r.t. the client’s observations)

is proved using a key insight from consensus proofs: a process communicates with the client only

when the system is in a univalent (global) state, i.e., |{p | log(p) = val ∧ last(p) ≥ b}| > n/2 for
some integer b, which means that val is a stable prefix of the log.

Finally, note that the protocol in Fig. 1 continues to solve state machine replication if we replace

the last all-to-all round with an all-to-one round. In the modified Promise round processes send a

Promise message only to the leader (instead of broadcasting it) acknowledging its proposal and

only the leader transmits the log to the client, in case it received n/2 Promise messages.

6 RANDOM SAMPLING FROM UNIFORM EXECUTIONS
We now present our testing algorithm. Theoretically, the effectiveness of the testing algorithm is

based on the fact that it samples from a relatively small (yet, complete in the limit) set of executions,

rather than from all possible executions of a protocol.

6.1 The Space of Executions
Before giving the sampling procedure, let us consider the size of the space of executions, and

compare the space of executions to other techniques. For the comparison, we consider a test

harness consisting of n processes running a total of r rounds. In addition to these parameters, we

consider two additional parameters to prioritize the search: the periodicity k and the number of

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:15

Table 1. The comparison of sample set sizes of different algorithms.

Set of executions with: Upper bound on the size

Arbitrary message losses 2
n2r

k-periodic losses kn
2r /k

d-bounded k-periodic losses ≤ C(n2r, d) ≤ (n2r)d

Arbitrary uniform executions 2
nr

k-periodic uniform executions knr /k

d-bounded k-periodic uniform executions ≤ C(nr, d) ≤ (nr)d

Arbitrary reorderings ≤ (n2r)!
d-bounded reorderings (PCT) ≤ w ·C(nr, (d − 1)) · (d − 1)!

isolated processes d . Given a lossy synchronous execution τ , we say that a process p starts at round
i in τ if p is included in the kernel of the i-th round in τ but it is not included in the kernel of the

previous round (round i − 1). Then, a uniform execution τ is k-periodic if a process can start only at

a round which is a multiple of k .
Consider the uniform execution in Figure 3. It has 4 phases and 4 rounds in each phase. The

figure omits the last two “empty” rounds in the second and third phase, where no messages are

sent. The 4-periodic execution of this example recovers isolated processes after every k = 4 rounds,

that is in the beginning the second phase with ballot 2, the third phase with ballot 3, and the

fourth phase with ballot 4. The k-periodic executions take the empty rounds into account.

k-periodic uniformity. Consider an execution with n processes running a protocol with r rounds.
In a non-uniform execution, any subset of the n2 communication links can have a message loss

in each round, resulting in 2
n2r

possible executions. In a uniform execution, the corresponding

number is 2
nr
. In a k-periodic non-uniform execution, each of the links can be broken at any k

rounds in all r/k phases, resulting in kn
2r/k

executions. In a k-periodic uniform execution, by a

similar argument, the number of executions is knr/k . For the example in Figure 3 with 3 processes,

4 rounds and 4 phases, the sample set of executions is around 10
43
for non-uniform executions and

only around 10
7
for 4-periodic uniform executions.

d-bounding. While k-periodic uniformity already reduces the size of the execution space, bound-

ing the set to d-bounded k-periodic uniform executions, i.e., executions with d isolated processes

over all rounds, further reduces it. This bound reduces the asymptotic size of the space of executions

so that it is exponential only in the bounding parameter d but polynomial in the number of rounds

and processes. The bounded version of the non-uniform case has an upper bound of (n2r)d . When

we further restrict to the uniform case, we get an upper bound of (nr)d . The actual sample set is

smaller for d > n since we cannot isolate more than n processes into a period of k rounds.
2

Table 1 summarizes upper bounds on the number of executions for various choices (arbitrary

message losses vs. uniform executions, k-periodic, and d-bounded k-periodic). Additionally, it
shows the number of executions explored by a state-of-the-art sampling algorithm (PCT [Ozkan

et al. 2018]) that is oblivious to rounds.

The size of the set of d-bounded k-periodic uniform executions is asymptotically smaller than

the others on Table 1. Moreover, the characterization of the bounding parameter for k-periodic
uniform executions requires a smaller value of d to reproduce an execution.

2
The size of d-bounded k-periodic set of executions can be more precisely characterized by inclusion-exclusion principle

[Charalambides 2018] or using q-binomial coefficients [Kac and Cheung 2001].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:16 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

Input: A test harness with a set P of n processes and at most r rounds
Input Parameters :A period k and a bound d on the number of isolated processes

1 distribute d into d0, . . . ,d(r/k−1) s.t.
∑

0≤i<r/k di = d and d
0≤i<r/k ≤ |P|;

2 for i := 0 to r − 1 do
3 phase := i /k ;

4 roundInPhase := i %k ;

5 if roundInPhase = 0 then
6 choose u.a.r. dphase processes from P as Pphase ;

7 choose u.a.r. f : Pphase ⇀ [0,k − 1];

8 schedule round with kernel P \ f −1([0, roundInPhase]);
9 check specification on execution trace

Algorithm 1: Randomized sampling from k-periodic uniform executions with bound d .

6.2 The Sampling Algorithm
Our testing algorithm (Algorithm 1) takes a test harness consisting of a set P of n processes running

at most r rounds, and randomly samples from the set of k-periodic uniform executions with at

most d isolated processes, i.e., from a sample space of size at most (nr)d . The algorithm ensures

that each execution is picked with probability at least 1/(nr)d .
Given the set of processes P, upper bound on rounds r , and the parameters k and d , the algorithm

distributes the d failures into r /k phases (line 1). For each phase, in its first round (line 5), the

algorithm selects a set of dphase processes to isolate in the current phase (line 6). For each of the dphase
selected processes, the algorithm chooses the first round in which the process is isolated (line 7). The

algorithm isolates these processes by simply dropping them from the kernel of the corresponding

rounds (line 8). We write f −1([0, n]) to denote

⋃
0≤i≤n f −1(i) and use this to propagate process

isolation in a phase until the end of that phase. The algorithm simulates re-establishment of faulty

links by resetting the isolated set of processes in every k rounds.

The algorithm can be modified to sample executions with an unbounded number of isolated

processes. For this, we omit the parameter d together with the lines 1 and 6 in the algorithm. On

line 7, we isolate any process at any round.

Proposition 6.1 (Soundness and Relative Completeness). (1) Algorithm 1 samples each
synchronous uniform executions of periodicity k and up to d isolated processes with probability at least
1/(nr)d . (2) Let P be a leader-based communication-closed distributed protocol. For any asynchronous
execution of P, there is a test harness and parameters d and k such that Algorithm 1 run on the harness
with (d,k) samples an indistinguishable execution with positive probability.

The bugs reported by the testing algorithm are not spurious as the testings enumerates actual

executions of the system under test. The applicability does not depend on whether the system under

test is indeed communication-closed, that is if all asynchronous executions have a synchronous

indistinguishable counter-part. If the system is not communication closed the algorithm will cover

an important sub-set of executions.

7 EXPERIMENTAL EVALUATION
We present an empirical evaluation of our approach on production implementations of three fault-

tolerant protocols: Cassandra’s Paxos [Lakshman and Malik 2010], Zookeeper’s atomic broadcast

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:17

(ZAB) [Hunt et al. 2010], and the Raft [Ongaro and Ousterhout 2014] implementation in Ratis. This

evaluation addresses the following research questions:

RQ1 Is our testing algorithm effective at detecting fault tolerance bugs in large scale systems?

RQ2 How do the algorithm parameters affect the efficacy in detecting bugs?

RQ3 How do different implementations of our algorithm affect the effectiveness at detecting bugs?

To address RQ1 we show that our framework is indeed able to discover bugs in these implemen-

tations, some of them being unknown before our work. We also compare its effectiveness with a

baseline approach that explores arbitrary asynchronous executions with arbitrary message losses.

For RQ2, we tested each system under varying bounds for the number of isolated processes. For

Cassandra, we also evaluated the effect of varying the periodicity of isolation recovery.

For RQ3, we experimented with three implementations of Algorithm 1, that provide different

approximations of the lossy synchronous semantics. These implementations differ in the instru-

mentation effort and required information about the internals of the system under test.

Heavy system instrumentation. This is a precise implementation of Algorithm 1 that instruments the

system in order to enforce the lossy synchronous semantics and to control the isolation of processes

precisely. This requires identifying the messages sent in a certain round and controlling their

delivery so that they are delivered only in the context of the same synchronized round they were

sent (or dropped). The round of a message is identified by looking at the metadata stored in that

message. The presence of such metadata is actually a common design principle for fault-tolerant

systems [Fekete and Lynch 1990]. To control the delivery of messages, the instrumentation adds a

layer on top of the network which collects the messages in flight, and enforces their delivery to be

synchronous. We used this implementation to test Cassandra.

Lightweight system instrumentation. This implementation looks at the metadata stored in the

messages to identify those that should be dropped according to Algorithm 1, but it only approximates

the lossy synchronous semantics. In this approximation, processes execute a phase in lockstep,

but they may run the rounds inside the same phase asynchronously. The lockstep execution of

phases is enforced using high-enough timeouts, which ensure that each process terminates a phase

before advancing in the execution (a phase usually corresponds to handling one client request). We

implemented this approach for testing Ratis.

No system instrumentation. A coarse version of Algorithm 1 can be implemented using only the

API methods of the system under test (treating the system as a black-box). The tester uses timeouts

to enforce a lockstep execution of phases, but does not look inside messages to decide which ones

should be dropped. Instead, it uses API methods for stopping or starting a process at the beginning

of a phase as an approximation for isolating/deisolating a process during a phase. We used this

approach for testing Ratis and Zookeeper.

7.1 Cassandra
Cassandra ensures serializability of transactions using an implementation of Paxos. This protocol is

used to make different processes (replicas) agree on an order in which to execute the transactions

submitted by the client. Each phase consists of six “one-to-all” or “all-to-one” rounds similar to those

in Fig. 1: Prepare/Promise, Propose/Accept, and Commit/Ack (therefore all its lossy synchronous

executions are uniform).

We test Cassandra using a harness with three processes and three transactions, two of which

update the same key. At the end of the tests, we read the values of the keys and check for the

serializability of the processed transactions. This harness admits a difficult to detect buggy behavior

in Cassandra 2.0.0 when messages are lost at subtle points of execution [Apache 2013]: one of the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:18 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

Table 2. The number of buggy executions detected by sampling from d-bounded k-uniform executions. On
the left, we list the results for d = 8 and varying k . On the right, we list them for k = 6 and varying d .

k-uniform #rnds #rnds✓ #phs #phs✓ #msgs #buggy

k = 1 21.67 18.14 3.61 2.87 49.13 0

k = 2 21.60 18.07 3.60 2.87 48.87 0

k = 4 22.80 17.53 3.80 2.64 46.76 0

k = 6 22.86 17.10 3.81 2.63 44.78 2

k = 8 23.71 6.61 3.95 1.03 20.23 0

k = 10 23.81 6.36 3.97 0.94 19.60 0

d-bounded #rnds #rnds✓ #phs #phs✓ #msgs #buggy

d = 3 19.08 18.08 3.18 3.00 48.47 0

d = 4 20.11 18.29 3.35 2.99 48.62 0

d = 5 20.91 18.17 3.48 2.93 47.90 1

d = 6 21.69 17.98 3.61 2.86 47.13 1

d = 8 22.86 17.10 3.81 2.63 44.78 2

d = 10 23.61 15.72 3.93 2.31 41.83 1

processes does not receive the messages sent during the rounds processing the first two transactions,

and when this process becomes a leader instead of trying to process a third transaction, it recommits

the first one that was already executed, violating serializability.

We tested Cassandra using a precise implementation of Algorithm 1, that controls the messages

to be dropped or their delivery (the “heavy system instrumentation” described above). We bounded

the length of the executions to at most 24 rounds.
3

The effect of varying parameters. We evaluate the effect of varying the values of the parameters

d and k when testing with the harness described above. For each assignment of parameters, we

sampled 1000 executions. For each set of tests, we report in Table 2 the average number of rounds

and phases that are executed by a quorum of processes
4
(as #rnds✓ and #phs✓), in addition to the

average number of rounds (#rnds), phases (#phs), messages (#msgs), and the number of times a

buggy execution is sampled (#buggy). We mark a round to have a quorum if the kernel of that round

consists of a majority of processes. Similarly, we mark a phase to have a quorum if the corresponding

user request takes effect (i.e., a written value is committed) on a majority of processes.

The left of Table 2 lists the results when varying k = {1, 2, 3, 4, 6, 8} and fixing d = 8 (this value

of d is high-enough for reproducing the bug). For values of k smaller than the number of rounds

in a phase, executions have a higher number of rounds and phases with a quorum. This can be

explained by the fact that the isolated processes get a chance to recover from message losses during

the execution of the phase. As k increases, fewer rounds have a quorum, resulting in an increase in

the total number of rounds. When k > 6, links are not re-established at the beginning of a phase

and faults propagate to succeeding phases. This causes the protocol to fail to process user requests

in later phases. Only about a single phase is successful for k = 8, 10 on average.

The data on the right of Table 2 shows that as d increases, the average number of rounds and

phases executed by a quorum of processes decreases due to a higher frequency of message losses.

Consistently, the average of the total number of rounds and phases in an execution increases due

to the repetition of no-quorum phases. In the extreme case with an unbounded number of isolated

processes, a minority of rounds are executed by a quorum, failing to process even a single request on

average. Tests with a bounded number of isolated processes produce executions with both quorum

and no-quorum phases which are more likely produce a buggy behavior. In our experiments, we

could reproduce the bug by taking d ∈ {5, 6, 8, 10}.

Testing Cassandra with a baseline algorithm. As a baseline for testing fault tolerance of a system
against network failures, we consider a naive randomized algorithm. This algorithm samples from

the set of executions with arbitrary message losses, by randomly dropping a message with some

probability. We tested Cassandra 1000 times using different probabilities p = 0.125, 0.25, 0.5. In our

evaluation, none of those tests could hit the bug in the system. The infrequency of hitting the bug

3
Source code at https://github.com/burcuku/explorer-server

4
The parameters d and k affect the distribution of the isolated processes in an execution, which in turn may affect the

length of an execution. The processing of the three transactions can finish in 18 rounds if no messages are lost, or more

rounds when processes are isolated and quorums cannot be formed.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://github.com/burcuku/explorer-server

Testing Consensus Implementations using Communication Closure 210:19

is not surprising since the bug in Cassandra is known to be a difficult bug and it is reproduced only

in few executions in previous works [Leesatapornwongsa et al. 2014; Ozkan et al. 2019].

7.2 Ratis
Ratis [Apache 2020] is an implementation of the Raft protocol [Ongaro and Ousterhout 2014],

usable in large-scale systems such as Hadoop Ozone key-value store. Ratis is in early stages of

development, currently in version 0.6.0. Raft is a consensus protocol for state machine replication.

Similarly to Paxos and our motivating example, operations on the state machine are sent to the

leader of the Ratis cluster. The leader appends operations to its log and replicates the operations

to other servers. An operation is committed once the leader receives acknowledgements from a

majority of servers. Differently from Paxos, a server can become leader only if its log is at least as up-

to-date with the other servers. Raft consists of leader election or log replication rounds. The servers

exchange RequestVote/RequestVoteReply messages for leader election, and AppendEntries/
AppendEntriesReply messages for log replication and as heartbeat messages. Similarly to other

consensus protocols, Raft uses only “one-to-all” and “all-to-one” rounds.

We tested Ratis using an implementation of our algorithm based on lightweight instrumentation.
5

A test harness consists of a number of client requests submitted to the Ratis cluster and the maximal

number of rounds in an execution, approximated using a timeout. When processed, each request

extends the replicated log with some message. During the processing of the requests, we introduced

message losses as prescribed by our algorithm. At the end of a test, we ran the system without

failures for some time to allow the cluster to recover and synchronize its servers. Finally, we

checked whether the system could tolerate the introduced message losses by checking the following

properties extracted from [Ongaro and Ousterhout 2014] and the unit tests in Ratis:

P1 The servers eventually elect a leader.

P2 All servers eventually store all log entries.

P3 After sending a request, a client eventually receives a reply.

While these specifications are liveness properties, we checked for bounded-liveness variations

where they are required to be satisfied within a bounded amount of time. To define the time bounds

we use a heuristic similar to [Killian et al. 2007]. We run the system without any message loss

(failures) several times to determine the average time required to synchronize the servers. In our

tests, we allowed the system to run significantly longer to recover after the message losses.

We tested Ratis using n = 3 servers, 4 client requests, and a varying number of failures (isolated

processes) distributed into r = 8 rounds. The number of rounds is counted based on the size of

the replicated log (which is observed by the instrumentation). We used a period k = 2 to recover

isolated processes. At the end of the 8 rounds, we continue running the system without any failures

leaving a timeout of 2 seconds to allow the servers synchronize. Ratis has significant amount of

support code for the transport layer libraries it uses, namely gRPC and Netty. This can lead to

different system behavior when run with different transport options. To cover both behaviors, we

tested Ratis using both gRPC and Netty libraries.

Testing Ratis using the lightweight system instrumentation.We tested an instrumented version of

Ratis which enables our algorithm to read the content of in flight messages and be able to drop

them. The algorithm uses the information in the messages (more specifically, the size of the sender’s

log) to identify the current round of a server. Then, we isolate selected servers in selected rounds

by dropping the messages of those rounds from/to the isolated servers.

We tested Ratis 1000 times using different values for the bound on the number of isolated

processes d = 1, .., 7. In Table 3, we list the number of violations to the specifications P1, P2 and P3

5
Source code is available at https://github.com/burcuku/explorer-server.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://github.com/burcuku/explorer-server

210:20 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

Table 3. The number of violations to properties P1, P2 and P3 in Ratis detected by our algorithm using
lightweight system instrumentation.

d 1 2 3 4 5 6 7

Ratis with gRPC
P1 0 0 0 0 0 0 0

P2 121 199 242 192 103 65 61

P3 0 0 2 5 22 64 111

Ratis with Netty P1 17 291 418 576 917 986 995

P1 362 592 710 778 958 989 995

P2 151 285 331 472 888 984 992

Table 4. The number of violations to properties P1, P2 and P3 in Ratis detected by our algorithm without
system instrumentation. On the left, we list the results for the implementation using server blocking methods
in Ratis test API. On the right, we list them for the implementation using server kill/restart methods.

d 1 2 3 4 5 6 7

Ratis with gRPC P1 0 0 0 0 0 0 0

P2 0 0 0 1 0 0 0

P3 0 1 16 88 182 366 523

Ratis with Netty P1 0 0 2 0 0 0 0

P2 0 0 1 1 0 2 9

P3 0 9 69 159 262 497 620

d 1 2 3 4 5 6 7

Ratis with gRPC P1 0 0 0 0 0 0 0

P2 0 0 0 12 23 47 57

P3 0 18 110 197 205 276 319

Ratis with Netty P1 0 0 1 3 1 3 7

P2 0 0 1 0 0 0 0

P3 0 16 11 96 93 118 79

Table 5. The number of violations detected in Ratis by using a baseline randomized testing algorithm which
drops messages with a given probability. We rely on our instrumentation for selectively dropping messages.

p : probability of dropping a message 0.125 0.25 0.50 p : probability of dropping a message 0.125 0.25 0.50

Ratis with gRPC P1 1 2 6 Ratis with Netty P1 994 971 497

P2 0 1 25 P2 998 983 462

P3 0 2 155 P3 999 996 179

detected in our tests for each value of d . In many test executions with gRPC, we observed violations

to P2 or P3. In the failing tests, a follower server has inconsistent entries with the leader, and sends

a negative reply to leader’s AppendEntries message. Inconsistency in the servers logs can arise

when the leader cannot fully replicate all of the entries in its log, e.g., when it disconnects before

sending AppendEntries messages. In the problematic executions, the leader and the follower with

inconsistent entries repeatedly send the same messages to each other and fail to synchronize in

hundreds of exchanged messages. Our bug report for this problem is currently open.
6
In our failing

tests with Netty, we discovered a liveness bug which causes the violation of P3. In the buggy

execution, the leader gets disconnected from the cluster after it receives a client request. Then,

the cluster elects a new leader. While the client is successfully redirected to the new leader in the

implementation for the gRPC adapter, the implementation for Netty causes the client to indefinitely

wait for a reply from the old leader. Our bug report for this problem is already acknowledged by the

Ratis developers.
7
We also observed high number of tests where the servers cannot elect a leader

(failing P1) when some messages are dropped. This violation occurs frequently and it is produced

by dropping almost any message in the log synchronization of the servers. Our bug report for this

violation is also currently open.
8

6
https://issues.apache.org/jira/projects/RATIS/issues/RATIS-946

7
https://issues.apache.org/jira/projects/RATIS/issues/RATIS-844

8
https://issues.apache.org/jira/projects/RATIS/issues/RATIS-1048

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://issues.apache.org/jira/projects/RATIS/issues/RATIS-946
https://issues.apache.org/jira/projects/RATIS/issues/RATIS-844
https://issues.apache.org/jira/projects/RATIS/issues/RATIS-1048

Testing Consensus Implementations using Communication Closure 210:21

Testing Ratis without additional instrumentation. We also implemented two coarser versions of our

algorithm where we only use the methods provided by Ratis test API. In one of the implemen-

tations, we isolated the servers by using Ratis test API’s server isolation methods which block

outgoing/incoming messages from/to servers. In the other one, we used server kill and restart

methods to isolate servers for some duration. In our implementations, we distributed d number of

process isolations into a number of phases which are approximately determined by some timeouts.

At the beginning of each phase, we isolated a randomly sampled subset of processes. If the phase

has a majority of processes alive, we wait until the system elects a leader (the Ratis API provides a

method for checking the leader of a cluster) and submitted 3 client requests. After that, we isolated

some other randomly sampled processes and we wait for 2 seconds for the servers to process the

requests. At the end of the phase, we recover the isolated processes for the next phase. We ran the

system 1000 times for each value of d = 1, .., 7.
On the right of Table 4, we list the number of violations to P1, P2 and P3 detected by testing

the system using the Ratis API blocking methods. Some tests detects violations of P3, where the

executions fail to serve some client requests within timeout. However, the frequency of executions

violating P1 or P2 is very low. A reason for these tests to miss violations might be the behavior

of process isolation methods in the Ratis test API. Instead of dropping messages, the isolation

methods block messages of a process by sleeping the thread delivering the message until the server

is deisolated. This might result in servers to process blocked messages once they are deisolated. In

our instrumentation, messages from/to the isolated process are dropped completely.

On the left of Table 4, we list the number of violations by testing the system using the Ratis

server kill/restart methods. In these tests we can observe violations to all P1, P2 and P3, in smaller

numbers than the tests with instrumentation. A reason for that might be blocking processes for

some duration is coarse grained and less selective on which particular messages will be dropped.

Testing Ratis with a baseline algorithm. Table 5 lists the number of violations detected by a naive

random algorithm, which samples from the set of executions with arbitrary message losses. We

rely on our instrumentation for dropping messages. The algorithm takes a probability value p
as input and drops a message with the probability p. For each different value of the probability,

p = 0.125, 0.25, 0.5we tested the systemwith 1000 executions. In Netty, the tests produce executions

which violate P1 and therefore P2 due to lack of synchronization in the absence of the leader.

However, only a few of the tests could hit an execution with inconsistent servers using gRPC

adapter.

In conclusion, in the context of Ratis, the implementation of Algorithm 1 based on a lightweight

system instrumentation is quite effective and it hits a higher number of problematic executions

in comparison to the coarse-grain implementation (based solely on the Ratis API without any

instrumentation) or testing with a baseline randomized algorithm.

7.3 Zookeeper
We tested Apache Zookeeper, a strongly consistent distributed key-value store that relies on the ZAB

(Zookeeper Atomic Broadcast) protocol, using a coarse-grained implementation of our sampling

algorithm based exclusively on the API of the system, without additional instrumentation.
9

Our implementation enforces lockstep execution of abstract phases, which subsume a sequence

of phases at the algorithmic level, starting from an event that causes the servers to start exchanging

messages to a steady state. The length of an abstract phase is approximated in two ways. First, after

starting a set of servers, a steady state is reached once the client-facing handlers detect that the

servers have been started. During this time, the servers will have executed part of the ZAB protocol

9
Source code is available at https://github.com/fniksic/zootester.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://github.com/fniksic/zootester

210:22 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

to agree on the most recent log of client requests. Second, after a client request, reaching a steady

state is approximated with a 100ms timeout, empirically sufficient for the servers to commit the

request. We use the system API to approximate points in execution where the system reaches a

steady state and to inject faults (isolate servers) only at these points. This relaxed approach loses

completeness, but it is easier to deploy since it does not require instrumentation. As we demonstrate

in this section, it is sufficient for exposing interesting behaviors and bugs in Zookeeper.

Our tool programmatically starts Zookeeper servers as threads, making them easier to manipulate

than if they were separate processes. Each server is paired with a client-facing handler, which is

also part of the Zookeeper API. The handler is used to detect a change in the server’s state (is it up

or down), and to initiate a client request (get or set a key-value pair).

A test is parameterized by the number of servers n, a fault budget d , and a test harness. The
test harness is determined by the client requests and the number of abstract phases, which are

organized as a sequence of steps. A step can be either an empty step or a request step. An empty

step, denoted as empty, consists of a single abstract phase that involves starting a set of servers
and waiting for them to reach steady state. A request step consists of two abstract phases: the first

one is like in the empty step, and the second one involves initiating a client request and waiting for

steady state, this time approximated with a 100ms timeout. We support two kinds of client requests:

a write request and a conditional write request. A write request for setting key k to value v on

server s is written as s : k ← v , and a conditional write request for setting key k2 to value v2 on
server s , provided that key k1 is set to v1, is written as s : k1 = v1 ? k2 ← v2. In our tests we use

integer values. We identify requests and request steps and use the same notation for both.

A test with n servers, a fault budget d , and a test harness with p steps is executed in the following

way. First there is an initial step in which all keys appearing in the harness are set to zero. Then

we use a version of Algorithm 1 to sample a random execution of the harness with d faults: we

distribute d faults over p steps, and additionally, if a step is a request step consisting of two abstract

phases, we randomly assign some of the faults to the second abstract phase in the step. At the

beginning of a step, we randomly choose a kernel of servers to start according to the number

of faults assigned to the first abstract phase in the step. If there is a second abstract phase, we

randomly choose servers to stop, again according to the number of faults assigned to the abstract

phase. At the end of a step, we stop all servers and proceed to the next step. Finally, once all steps

are executed, we start all servers and check that they are in the same final state, and that the final

state is allowed under some sequentially consistent execution of the requests.

In our first experiment, we focus on exposing bug ZK-2832
10
, reported to occur in Zookeeper

3.4.9. The bug causes the servers to diverge; thus, we will refer to the bug as the divergence bug.
The reporter of the bug provided a test with the exact steps to deterministically reproduce the bug.

The steps involve three servers handling two client requests in presence of four faults. The client

requests set new values to two different keys. At the end the servers diverge: two servers disagree

on the value associated with one of the keys.

Interestingly, the deterministic test provided by the bug’s reporter fails to reproduce the bug in

releases of Zookeeper more recent than 3.4.9. Even though the bug report was still open at the time

of writing, it may seem that the bug has disappeared. Unfortunately, this is not the case: we were

able to reproduce the bug in Zookeeper 3.5.8, released in May 2020.

Using our tool, we can represent the steps from the deterministic test as the following harness

involving servers s0, s1, s2 and keys k0,k1: Hdiv = [s1 : k0 ← 101; empty; s2 : k1 ← 302]. The exact

values assigned to the keys in the harness are not important, as long as they are distinct.

10
https://issues.apache.org/jira/browse/ZOOKEEPER-2832

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://issues.apache.org/jira/browse/ZOOKEEPER-2832
https://issues.apache.org/jira/browse/ZOOKEEPER-2832

Testing Consensus Implementations using Communication Closure 210:23

Table 6. Testing Zookeeper. On the left, we list the number of Zookeeper executions with harness Hdiv
exhibiting bugs listed in the first column, for varying d (we ran 1,000 executions for each value of d and for the
baseline test). On the right, the number of Zookeeper executions exhibiting bugs listed in the first column for
randomly sampled harnesses. For each of the two choices of parameters we randomly sampled 12 harnesses
and ran 1,000 executions per harness.

d 0 1 2 3 4 5 6 7 8 9 baseline

divergence 0 0 0 2 2 0 5 4 3 0 2

client dropped 0 0 0 0 0 0 0 0 0 0 1

unsuccessful 0 0 0 1 0 1 0 0 0 1 8

req = 2,p = 3 req = 4,p = 5

d = 4 d = 6

divergence 15 13

failure of SC 0 1

client dropped 0 7

unsuccessful 4 8

Table 7. Number of Zookeeper executions with harness Hsc exhibiting bugs listed in the first column, for
varying d . We ran 1,000 executions for each value of d and for the baseline test.

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 baseline

divergence 0 0 0 2 1 2 2 5 6 0 0 0 0 0 0 0 7

client dropped 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2

unsuccessful 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 19

We ran the harness with different values of the fault budget d . For each d from 0 to 9 we ran

1,000 executions and observed divergence in 0 to 5 executions per test. As a comparison, we ran a

baseline test in which we execute harness steps in 5-second intervals, while at the same time we

crash and restart servers in intervals randomly distributed according to Poisson distribution with

the mean of 2 seconds. In the baseline test, we observe divergence in 2 out of 1,000 executions. In

addition to the divergence bug, one of the executions of the baseline test shows what seems to be a

new issue: at the end, one of the clients is unable to connect to any of the servers. We believe this

cannot be correct behavior. We refer to this issue as client dropped. The left of Table 6 summarizes

the results. The last row in the table shows executions that were unsuccessful: occasionally a client

fails to read a value from a server. These executions are more likely to be a result of our tool not

being perfectly robust than of an actual issue with Zookeeper.

In our next experiment, we experimented with our tool in the context of a random enumeration

of harnesses. To restrict the space of harnesses, we fixed the number of servers to 3, and the number

of keys to 2. In one experiment, we additionally fixed the number of requests req = 2, the total

number of steps p = 3, and the fault budget d = 4. In another experiment, we fixed the additional

parameters as req = 4,p = 5,d = 6. For each choice of parameters, we sampled 12 harnesses and

ran 1,000 executions per harness.

The highlight of our findings is that, in addition to observing more divergence and dropped

clients, we observe a new issue: in 1 out of 12,000 executions with req = 4,p = 5,d = 6, the servers

converge to the same state, but this state is not allowed under sequential consistency. We refer to

the issue as failure of sequential consistency. We have created a test that deterministically reproduces

the violating execution and reported the issue as ZK-3875.
11
The issue occurs in Zookeeper 3.5.8,

but not in the more recent branch 3.6 of stable releases. At the time of writing it was still unclear

which change in the 3.6 branch seems to resolve the issue. The results are summarized on the right

of Table 6.

11
https://issues.apache.org/jira/browse/ZOOKEEPER-3875

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://issues.apache.org/jira/browse/ZOOKEEPER-3875
https://issues.apache.org/jira/browse/ZOOKEEPER-3875

210:24 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

2

2 3 2

2 3 3 2 2

121 3 3

2

2 3 2

2 3 3 2 2

121 3 3

Fig. 6. A synchronous buggy trace sampled by our algorithm and a buggy trace sampled by PCT, both for
Cassandra’s Paxos bug.

In our final experiment, we isolated the harness that yielded the execution exhibiting the failure

of sequential consistency:

Hsc = [s1 : k1 = 0 ? k1 ← 101; empty; s0 : k1 = 101 ? k0 ← 200;

s1 : k1 = 0 ? k1 ← 301; s0 : k1 = 0 ? k0 ← 400]

In the incorrect execution, the final state on all servers is {k0 = 200,k1 = 301}. In the experiment,

we wanted to see if we can detect failure of sequential consistency again, either by our sampling

algorithm or by the baseline test. Therefore, we fixed the harness to Hsc and varied the fault budget

d from 0 to 15. We observe divergence in 0 to 6 executions for our sampling algorithm, and in 7

executions for the baseline test. We observe clients dropped in 2 executions, both in our sampling

algorithm and the baseline test. However, were not able to catch the failure of sequential consistency

again, which shows that it is a rare bug. Table 7 summarizes the results.

7.4 Summary of Evaluation
Our experimental evaluation shows that our algorithm can detect new bugs in large scale systems

as well as reproduce known bugs. In our tests, small values of d and values of k allowing a client

request to be processed between recovery points could successfully detect bugs. This confirms our

hypothesis that uniform executions with a small number of isolations are sufficient to find many

bugs. We discovered new bugs in the recent versions of Zookeeper and Ratis. We inspected the

buggy executions and have already reported some of them in the projects’ issue tracker sites; some

bugs in Ratis have already been fixed in the master branch of the project.

A limitation of some testing tools for distributed systems is the instrumentation burden. Our

experimentation with different levels of precision on the identification of rounds and phases shows

that sampling from uniform executions provides an effective approach for testing fault tolerance in

general, even with coarse-grained instrumentation. All three versions of the implementation of

our algorithm outperform a baseline random testing algorithm and can expose bugs in large scale

systems.

Debuggability.We conclude by demonstrating that buggy executions detected by our algorithm

can be easier to understand than the traces obtained by exploring all (asynchronous) executions.

While the interpretability of the generated traces depends on the precision of the analysis of rounds

in implementation, in general our algorithm produces execution traces that omit messages in a

more structured way than reordering or dropping messages arbitrarily. Fig. 6 shows two buggy

executions from Cassandra found by our algorithm and PCT [Ozkan et al. 2018], respectively. Our

algorithm returns a synchronous execution trace which lists messages in the expected protocol

order, making it more explicit which processes are isolated in each round. On the other hand, the

programmer needs to follow the complicated message interleavings across phases to discover the

delayed/dropped messages in the asynchronous trace.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

Testing Consensus Implementations using Communication Closure 210:25

8 RELATEDWORK AND CONCLUSION
We have proposed a new testing methodology for implementations of consensus algorithms based

on communication-closure as the starting point. Communication closure offers an elegant abstraction

at the level of algorithm design, and our testing methodology uses the abstraction as a way to focus

attention on a much smaller sample space of executions. For many common classes of distributed

algorithms, the reduction remains complete. We have shown that exploring uniform executions with

a small number of faults is sufficient to find bugs in production distributed systems like Cassandra,

Zookeeper, or Ratis.

Using algorithmic insights into testing distributed systems to reduce the space of executions is a

point of departure from existing work in randomized or systematic testing of implementations of

distributed systems. At the same time, our insight is orthogonal to the many reduction techniques

already exploited in existing tools, such as depth bounding [Ozkan et al. 2018], partial order

reduction [Ozkan et al. 2019; Yuan et al. 2018], or semantics-aware analyses [Leesatapornwongsa

et al. 2014; Lukman et al. 2019].

Several execution prioritization techniques are designed for efficient analysis of concurrent

software [Thomson et al. 2014]. Context bounding [Qadeer and Rehof 2005] or preemption-

bounding [Musuvathi and Qadeer 2007] are designed for shared memory programs, defining

a prioritization scheme based on multithreading concepts. While delay bounding [Emmi et al.

2011] or probabilistic prioritization in PCT [Burckhardt et al. 2010] are applicable to message

passing systems, they consider the state space of message reorderings, hence parameterize the

set of asynchronous executions. In this work, we provide an approach for exploring the set of

synchronous executions of a distributed system. Note that we are not aware of any notion similar

to communication closure that applies to shared-memory programs.

While we address fault tolerance bugs due to message losses in this work, a related source of

bugs is erroneous crash recovery of servers [Gao et al. 2018; Gunawi et al. 2015; Lu et al. 2019].

Erroneous recovery causes the servers not to restart properly and leads to bugs in the system.

Since message losses in network and server crashes are orthogonal sources of faults, producing

executions with both kinds of faults may be promising for more extensive testing.

Our work is inspired by the quest for an easier to understand subset of representative asyn-

chronous executions, and simpler proofs of algorithms, which led to the communication closure

property. Communication-closed layered systems [Charron-Bost and Schiper 2009; Chou and

Gafni 1988; Gafni 1998; Moses and Rajsbaum 2002; Santoro and Widmayer 1989] capture both

lossy synchronous and lossy asynchronous behaviors and solve consensus under the partial syn-

chrony network assumption [Dwork et al. 1988]. They rely on easier to interpret synchronous

lock-step executions and simpler proof arguments. For example an equivalence relation between

asynchronous and communication closed executions is established for systems that solve consensus

in [Chaouch-Saad et al. 2009; Elrad and Francez 1982; Moses and Rajsbaum 2002].

Motivated by the impossibility of solving consensus over asynchronous faulty networks [Fischer

et al. 1985] synchronous abstractions offer an alternative view of distributed systems. They have

beed studied to simplify programming distributed, concurrent, and parallel systems, e.g., virtual

synchrony [Birman and Joseph 1987], bulk programming [Valiant 1990], for designing theoretical

solutions for consensus [Dwork et al. 1988], and to simplify reasoning about a system’s traces [Elrad

and Francez 1982]. Implementations of consensus protocols have been proposed for these synchro-

nous programming paradigms, e.g., virtual synchrony [Birman and Cooper 1991] or PSync [Dragoi

et al. 2016] (a programming paradigm based on communication-closure). However, in production

asynchronous state machine replication systems are still to be understood if they have an implemen-

tation in synchronous programming models. In contrast, using communication-closure in testing

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

210:26 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

increases the confidence we have in production systems without having to reimplement them.

In [Damian et al. 2019] communication-closure is defined based on conditions on the sequential

code independently of the specification of the systems and it is applied to semi-automatically

prove correct several consensus protocols. The complexity and scale of the verified code is far from

production system. No previous work studies the relation between communication closure and

testing distributed systems.

Finally, recent developments in verifying replicated statemachine and consensus protocols [Chaud-

huri et al. 2010; Hawblitzel et al. 2015; Padon et al. 2017; von Gleissenthall et al. 2019; Wilcox et al.

2015] allow fully verified implementations to be developed. However, these verified implemen-

tations lack the performance of production systems, are small scale implementations that have

prototype clients and minimal deployment. Formalization is important, however bugs may still

arise [Fonseca et al. 2017; Sutra 2019].

ACKNOWLEDGMENTS
Kulahcioglu Ozkan and Majumdar were supported in part by the Deutsche Forschungsgemeinschaft

project 389792660 TRR 248 and by the European Research Council under the Grant Agreement

610150 (ERC Synergy Grant ImPACT). Constantin Enea was supported in part by the European

Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-

gramme (grant agreement No 678177). This work was done mainly when Cezara Drăgoi was

affiliated with INRIA supported by the French National Research Agency ANR project SAFTA

(12744-ANR-17-CE25-0008-01).

REFERENCES
Apache. 2013. CASSANDRA-6023: CAS should distinguish promised and accepted ballots. Retrieved January 26, 2020 from

http://issues.apache.org/jira/browse/CASSANDRA-6023

Apache. 2020. Apache Ratis. Retrieved May 14, 2020 from http://ratis.incubator.apache.org/

Kenneth P. Birman and Robert Cooper. 1991. The ISIS Project: Real Experience with a Fault Tolerant Programming System.

ACM SIGOPS Oper. Syst. Rev. 25, 2 (1991), 103–107. https://doi.org/10.1145/122120.122133

Kenneth P. Birman and Thomas A. Joseph. 1987. Exploiting Virtual Synchrony in Distributed Systems. In Proceedings of the
Eleventh ACM Symposium on Operating System Principles, SOSP 1987, Stouffer Austin Hotel, Austin, Texas, USA, November
8-11, 1987, Les Belady (Ed.). ACM, 123–138. https://doi.org/10.1145/41457.37515

Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. 2010. A randomized scheduler with

probabilistic guarantees of finding bugs. In Proceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylvania, USA, March 13-17, 2010, James C.

Hoe and Vikram S. Adve (Eds.). ACM, 167–178. https://doi.org/10.1145/1736020.1736040

Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made live: an engineering perspective. In

Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC 2007, Portland,
Oregon, USA, August 12-15, 2007, Indranil Gupta and Roger Wattenhofer (Eds.). ACM, 398–407. https://doi.org/10.1145/

1281100.1281103

Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. 2009. A Reduction Theorem for the Verification of

Round-Based Distributed Algorithms. In Reachability Problems, 3rd International Workshop, RP 2009, Palaiseau, France,
September 23-25, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5797), Olivier Bournez and Igor Potapov (Eds.).

Springer, 93–106. https://doi.org/10.1007/978-3-642-04420-5_10

Charalambos A Charalambides. 2018. Enumerative combinatorics. Chapman and Hall/CRC.

Bernadette Charron-Bost and André Schiper. 2009. The Heard-Of model: computing in distributed systems with benign

faults. Distributed Comput. 22, 1 (2009), 49–71. https://doi.org/10.1007/s00446-009-0084-6

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. 2010. Verifying Safety Properties with the TLA+

Proof System. In Automated Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010.
Proceedings (Lecture Notes in Computer Science, Vol. 6173), Jürgen Giesl and Reiner Hähnle (Eds.). Springer, 142–148.

https://doi.org/10.1007/978-3-642-14203-1_12

Ching-Tsun Chou and Eli Gafni. 1988. Understanding and Verifying Distributed Algorithms Using Stratified Decomposition.

In Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing, Toronto, Ontario, Canada,
August 15-17, 1988, Danny Dolev (Ed.). ACM, 44–65. https://doi.org/10.1145/62546.62556

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

http://issues.apache.org/jira/browse/CASSANDRA-6023
http://ratis.incubator.apache.org/
https://doi.org/10.1145/122120.122133
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1007/978-3-642-04420-5_10
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/978-3-642-14203-1_12
https://doi.org/10.1145/62546.62556

Testing Consensus Implementations using Communication Closure 210:27

Andrei Damian, Cezara Dragoi, Alexandru Militaru, and Josef Widder. 2019. Communication-Closed Asynchronous

Protocols. In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer,

344–363. https://doi.org/10.1007/978-3-030-25543-5_20

Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. 2015. Systematic testing of asynchronous reactive systems. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September
4, 2015, Elisabetta Di Nitto, Mark Harman, and Patrick Heymans (Eds.). ACM, 73–83. https://doi.org/10.1145/2786805.

2786861

Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: a partially synchronous language for fault-tolerant

distributed algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM,

400–415. https://doi.org/10.1145/2837614.2837650

Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. 1988. Consensus in the presence of partial synchrony. J. ACM
35, 2 (1988), 288–323. https://doi.org/10.1145/42282.42283

Tzilla Elrad and Nissim Francez. 1982. Decomposition of Distributed Programs into Communication-Closed Layers. Sci.
Comput. Program. 2, 3 (1982), 155–173. https://doi.org/10.1016/0167-6423(83)90013-8

Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-bounded scheduling. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
Thomas Ball and Mooly Sagiv (Eds.). ACM, 411–422. https://doi.org/10.1145/1926385.1926432

Alan Fekete and Nancy A. Lynch. 1990. The Need for Headers: An Impossibility Result for Communication over Unreliable

Channels. In CONCUR ’90, Theories of Concurrency: Unification and Extension, Amsterdam, The Netherlands, August 27-30,
1990, Proceedings (Lecture Notes in Computer Science, Vol. 458), Jos C. M. Baeten and Jan Willem Klop (Eds.). Springer,

199–215. https://doi.org/10.1007/BFb0039061

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 1985. Impossibility of Distributed Consensus with One Faulty

Process. J. ACM 32, 2 (1985), 374–382. https://doi.org/10.1145/3149.214121

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. 2017. An Empirical Study on the Correctness of

Formally Verified Distributed Systems. In Proceedings of the Twelfth European Conference on Computer Systems, EuroSys
2017, Belgrade, Serbia, April 23-26, 2017. ACM, 328–343. https://doi.org/10.1145/3064176.3064183

Eli Gafni. 1998. Round-by-Round Fault Detectors: Unifying Synchrony and Asynchrony (Extended Abstract). In Proceedings
of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’98, Puerto Vallarta, Mexico,
June 28 - July 2, 1998, Brian A. Coan and Yehuda Afek (Eds.). ACM, 143–152. https://doi.org/10.1145/277697.277724

Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui Huang, Li Zhou, and Yongming Wu. 2018. An

empirical study on crash recovery bugs in large-scale distributed systems. In Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. 539–550. https://doi.org/10.1145/3236024.3236030

Haryadi S. Gunawi, Thanh Do, Agung Laksono, Mingzhe Hao, Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, and Riza O.

Suminto. 2015. What Bugs Live in the Cloud?: A Study of Issues in Scalable Distributed Systems. login Usenix Mag. 40, 4
(2015). https://www.usenix.org/publications/login/aug15/gunawi

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and Brian

Zill. 2015. IronFleet: proving practical distributed systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 1–17.

https://doi.org/10.1145/2815400.2815428

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010. ZooKeeper: Wait-free Coordination for

Internet-scale Systems. In 2010 USENIX Annual Technical Conference, Boston, MA, USA, June 23-25, 2010.
Yury Izrailevsky and Ariel Tseitlin. 2011. The Netflix Simian army. The Netflix Tech Blog (2011).

Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab: High-performance broadcast for primary-backup

systems. In Proceedings of the 2011 IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2011,
Hong Kong, China, June 27-30 2011. IEEE Compute Society, 245–256. https://doi.org/10.1109/DSN.2011.5958223

Victor Kac and Pokman Cheung. 2001. Quantum calculus. Springer Science & Business Media.

Charles Edwin Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. 2007. Life, Death, and the Critical Transition:

Finding Liveness Bugs in Systems Code (Awarded Best Paper). In 4th Symposium on Networked Systems Design and
Implementation (NSDI 2007), April 11-13, 2007, Cambridge, Massachusetts, USA, Proceedings, Hari Balakrishnan and Peter

Druschel (Eds.). USENIX. http://www.usenix.org/events/nsdi07/tech/killian.html

Kyle Kingsbury. 2013–2018. Jepsen. Retrieved January 26, 2020 from http://jepsen.io/

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage system. Operating Systems
Review 44, 2 (2010), 35–40. https://doi.org/10.1145/1773912.1773922

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://doi.org/10.1007/978-3-030-25543-5_20
https://doi.org/10.1145/2786805.2786861
https://doi.org/10.1145/2786805.2786861
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/42282.42283
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1007/BFb0039061
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/277697.277724
https://doi.org/10.1145/3236024.3236030
https://www.usenix.org/publications/login/aug15/gunawi
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1109/DSN.2011.5958223
http://www.usenix.org/events/nsdi07/tech/killian.html
http://jepsen.io/
https://doi.org/10.1145/1773912.1773922

210:28 Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical Report MSR-TR-2005-33. 60 pages. https://www.microsoft.

com/en-us/research/publication/generalized-consensus-and-paxos/

Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi. 2014. SAMC:

Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, Jason Flinn and Hank

Levy (Eds.). USENIX Association, 399–414. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/

leesatapornwongsa

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and Liang You. 2019. CrashTuner: detecting crash-recovery

bugs in cloud systems via meta-info analysis. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019. 114–130. https://doi.org/10.1145/3341301.3359645

Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Daniar H. Kurniawan, Dikaimin Simon, Satria Priambada,

Chen Tian, Feng Ye, Tanakorn Leesatapornwongsa, Aarti Gupta, Shan Lu, and Haryadi S. Gunawi. 2019. FlyMC: Highly

Scalable Testing of Complex Interleavings in Distributed Systems. In Proceedings of the Fourteenth EuroSys Conference
2019, Dresden, Germany, March 25-28, 2019, George Candea, Robbert van Renesse, and Christof Fetzer (Eds.). ACM,

20:1–20:16. https://doi.org/10.1145/3302424.3303986

Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more consensus in Egalitarian parliaments.

In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013,
Michael Kaminsky and Mike Dahlin (Eds.). ACM, 358–372. https://doi.org/10.1145/2517349.2517350

Yoram Moses and Sergio Rajsbaum. 2002. A Layered Analysis of Consensus. SIAM J. Comput. 31, 4 (2002), 989–1021.

https://doi.org/10.1137/S0097539799364006

Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for systematic testing of multithreaded programs.

In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007, Jeanne Ferrante and Kathryn S. McKinley (Eds.). ACM, 446–455. https://doi.org/10.

1145/1250734.1250785

Brian M. Oki and Barbara Liskov. 1988. Viewstamped Replication: A General Primary Copy. In Proceedings of the Seventh
Annual ACM Symposium on Principles of Distributed Computing, Toronto, Ontario, Canada, August 15-17, 1988, Danny
Dolev (Ed.). ACM, 8–17. https://doi.org/10.1145/62546.62549

Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In 2014 USENIX Annual
Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014, Garth Gibson and Nickolai Zeldovich

(Eds.). USENIX Association, 305–319. https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

Burcu Kulahcioglu Ozkan, RupakMajumdar, Filip Niksic, Mitra Tabaei Befrouei, and GeorgWeissenbacher. 2018. Randomized

testing of distributed systems with probabilistic guarantees. Proc. ACM Program. Lang. 2, OOPSLA (2018), 160:1–160:28.

https://doi.org/10.1145/3276530

Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. 2019. Trace aware random testing for distributed systems.

Proc. ACM Program. Lang. 3, OOPSLA (2019), 180:1–180:29. https://doi.org/10.1145/3360606

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017. Paxos made EPR: decidable reasoning about distributed

protocols. Proc. ACM Program. Lang. 1, OOPSLA (2017), 108:1–108:31. https://doi.org/10.1145/3140568

Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of Concurrent Software. In Tools and Algorithms for
the Construction and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in
Computer Science, Vol. 3440), Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 93–107. https://doi.org/10.1007/978-

3-540-31980-1_7

Nicola Santoro and Peter Widmayer. 1989. Time is Not a Healer. In STACS 89, 6th Annual Symposium on Theoretical Aspects
of Computer Science, Paderborn, FRG, February 16-18, 1989, Proceedings (Lecture Notes in Computer Science, Vol. 349),
Burkhard Monien and Robert Cori (Eds.). Springer, 304–313. https://doi.org/10.1007/BFb0028994

Pierre Sutra. 2019. On the correctness of Egalitarian Paxos. CoRR abs/1906.10917 (2019). arXiv:1906.10917 http://arxiv.org/

abs/1906.10917

Paul Thomson, Alastair F. Donaldson, and Adam Betts. 2014. Concurrency testing using schedule bounding: an empirical

study. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, Orlando, FL, USA,
February 15-19, 2014, José E. Moreira and James R. Larus (Eds.). ACM, 15–28. https://doi.org/10.1145/2555243.2555260

Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun. ACM 33, 8 (1990), 103–111. https:

//doi.org/10.1145/79173.79181

Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and Ranjit Jhala. 2019. Pretend synchrony:

synchronous verification of asynchronous distributed programs. Proc. ACM Program. Lang. 3, POPL (2019), 59:1–59:30.

https://doi.org/10.1145/3290372

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/leesatapornwongsa
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/leesatapornwongsa
https://doi.org/10.1145/3341301.3359645
https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1137/S0097539799364006
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/62546.62549
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/3276530
https://doi.org/10.1145/3360606
https://doi.org/10.1145/3140568
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/BFb0028994
https://arxiv.org/abs/1906.10917
http://arxiv.org/abs/1906.10917
http://arxiv.org/abs/1906.10917
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3290372

Testing Consensus Implementations using Communication Closure 210:29

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, David
Grove and Steve Blackburn (Eds.). ACM, 357–368. https://doi.org/10.1145/2737924.2737958

Xinhao Yuan, Junfeng Yang, and Ronghui Gu. 2018. Partial Order Aware Concurrency Sampling. In Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II. 317–335.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 210. Publication date: November 2020.

https://doi.org/10.1145/2737924.2737958

	Abstract
	1 Introduction
	2 Overview
	3 Distributed Protocols
	4 Communication-Closed Protocols
	5 Uniform Executions
	6 Random Sampling from Uniform Executions
	6.1 The Space of Executions
	6.2 The Sampling Algorithm

	7 Experimental Evaluation
	7.1 Cassandra
	7.2 Ratis
	7.3 Zookeeper
	7.4 Summary of Evaluation

	8 Related Work and Conclusion
	Acknowledgments
	References

