
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

On the Complexity of Checking Transactional Consistency

RANADEEP BISWAS, Universite de Paris, IRIF, CNRS, France

CONSTANTIN ENEA, Universite de Paris, IRIF, CNRS, France

Transactions simplify concurrent programming by enabling computations on shared data that are isolated from

other concurrent computations and are resilient to failures. Modern databases provide different consistency

models for transactions corresponding to different tradeoffs between consistency and availability. In this work,

we investigate the problem of checking whether a given execution of a transactional database adheres to some

consistency model. We show that consistency models like read committed, read atomic, and causal consistency

are polynomial-time checkable while prefix consistency and snapshot isolation are NP-complete in general.

These results complement a previous NP-completeness result concerning serializability. Moreover, in the

context of NP-complete consistency models, we devise algorithms that are polynomial time assuming that

certain parameters in the input executions, e.g., the number of sessions, are fixed. We evaluate the scalability

of these algorithms in the context of several production databases.

CCS Concepts: • General and reference → Validation; • Information systems → Key-value stores; •
Theory of computation → Logic and verification; • Software and its engineering → Consistency;
Dynamic analysis; Formal software verification.

Additional Key Words and Phrases: transactional databases, consistency, axiomatic specifications, testing

ACM Reference Format:
Ranadeep Biswas and Constantin Enea. 2018. On the Complexity of Checking Transactional Consistency. 1, 1

(January 2018), 27 pages.

1 INTRODUCTION
Transactions simplify concurrent programming by enabling computations on shared data that are

isolated from other concurrent computations and resilient to failures. Modern databases provide

transactions in various forms corresponding to different tradeoffs between consistency and avail-

ability. The strongest level of consistency is achieved with serializable transactions [25] whose
outcome in concurrent executions is the same as if the transactions were executed atomically in

some order. Unfortunately, serializability carries a significant penalty on the availability of the

system assuming, for instance, that the database is accessed over a network that can suffer from

partitions or failures. For this reason, modern databases often provide weaker guarantees about

transactions, formalized by weak consistency models, e.g., causal consistency [22] and snapshot

isolation [11].

Implementations of large-scale databases providing transactions are difficult to build and test.

For instance, distributed (replicated) databases must account for partial failures, where some

components or the network can fail and produce incomplete results. Ensuring fault-tolerance relies

on intricate protocols that are difficult to design and reason about. The black-box testing framework

Jepsen [1] found a remarkably large number of subtle problems in many production distributed

databases.

Testing a transactional database raises two issues: (1) deriving a suitable set of testing scenarios,

e.g., faults to inject into the system and the set of transactions to be executed, and (2) deriving

efficient algorithms for checking whether a given execution satisfies the considered consistency

Authors’ addresses: Ranadeep Biswas, Universite de Paris, IRIF, CNRS, Paris, F-75013, France, ranadeep@irif.fr; Constantin

Enea, Universite de Paris, IRIF, CNRS, Paris, F-75013, France, cenea@irif.fr.

2018. XXXX-XXXX/2018/1-ART $15.00

https://doi.org/

, Vol. 1, No. 1, Article . Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Ranadeep Biswas and Constantin Enea

model. The Jepsen framework aims to address the first issue by using randomization, e.g., introduc-

ing faults at random and choosing the operations in a transaction randomly. The effectiveness of

this approach has been proved formally in recent work [24]. The second issue is, however, largely

unexplored. Jepsen checks consistency in a rather ad-hoc way, focusing on specific classes of

violations to a given consistency model, e.g., dirty reads (reading values from aborted transactions).

This problem is challenging because the consistency specifications are non-trivial and they cannot

be checked using, for instance, standard local assertions added to the client’s code.

Besides serializability, the complexity of checking correctness of an execution w.r.t. some consis-

tency model is unknown. Checking serializability has been shown to be NP-complete [25], and

checking causal consistency in a non-transactional context is known to be polynomial time [13].

In this work, we try to fill this gap by investigating the complexity of this problem w.r.t. several

consistency models and, in case of NP-completeness, devising algorithms that are polynomial time

assuming fixed bounds for certain parameters of the input executions, e.g., the number of sessions.

We consider several consistency models that are the most prevalent in practice. The weakest of

them, Read Committed (RC) [11], requires that every value read in a transaction is written by a

committed transaction. Read Atomic (RA) [16] requires that successive reads of the same variable in

a transaction return the same value (also known as Repeatable Reads [11]), and that a transaction

“sees” the values written by previous transactions in the same session. In general, we assume that

transactions are organized in sessions [26], an abstraction of the sequence of transactions performed

during the execution of an application. Causal Consistency (CC) [22] requires that if a transaction

t1 “affects” another transaction t2, e.g., t1 is ordered before t2 in the same session or t2 reads a value
written by t1, then these two transactions are observed by any other transaction in this order. Prefix
Consistency (PC) [15] requires that there exists a total commit order between all the transactions

such that each transaction observes a prefix of this sequence. Snapshot Isolation (SI) [11] further

requires that two different transactions observe different prefixes if they both write to a common

variable. Finally, we also provide new results concerning the problem of checking serializability

(SER) that complement the known result about its NP-completeness.

The algorithmic issues we explore in this paper have led to a new specification framework for

these consistency models that relies on the fact that the write-read relation in an execution (also

known as read-from), relating reads with the transactions that wrote their value, can be defined

effectively. The write-read relation can be extracted easily from executions where each value is

written at most once (a variable can be written an arbitrary number of times). This can be easily

enforced by tagging values with unique identifiers (e.g., a local counter that is incremented with

every new write coupled with a client/session identifier)
1
. Since practical database implementations

are data-independent [27], i.e., their behavior doesn’t depend on the concrete values read or written

in the transactions, any potential buggy behavior can be exposed in executions where each value is

written at most once. Therefore, this assumption is without loss of generality.

Previous work [13, 14, 16] has formalized such consistency models using two auxiliary relations:

a visibility relation defining for each transaction the set of transactions it observes, and a commit
order defining the order in which transactions are committed to the “global” memory. An execution

satisfying some consistency model is defined as the existence of a visibility relation and a commit

order obeying certain axioms. In our case, the write-read relation derived from the execution plays

the role of the visibility relation. This simplification allows us to state a series of axioms defining

these consistency models, which have a common shape. Intuitively, they define lower bounds on

the set of transactions t1 that must precede in commit order a transaction t2 that is read in the

1
This is also used in Jepsen, e.g., checking dirty reads in Galera [2].

, Vol. 1, No. 1, Article . Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

On the Complexity of Checking Transactional Consistency 3

execution. Besides shedding a new light on the differences between these consistency models, these

axioms are essential for the algorithmic issues we investigate afterwards.

We establish that checking whether an execution satisfies RC, RA, or CC is polynomial time,

while the same problem is NP-complete for PC and SI. Moreover, in the case of the NP-complete

consistency models (PC, SI, SER), we show that their verification problem becomes polynomial

time provided that, roughly speaking, the number of sessions in the input executions is considered

to be fixed (i.e., not counted for in the input size). In more detail, we establish that checking SER

reduces to a search problem in a space that has polynomial size when the number of sessions is

fixed. (This algorithm applies to arbitrary executions, but its complexity would be exponential

in the number of sessions in general.) Then, we show that checking PC or SI can be reduced in

polynomial time to checking SER using a transformation of executions that, roughly speaking,

splits each transaction in two parts: one part containing all the reads, and one part containing all

the writes (SI further requires adding some additional variables in order to deal with transactions

writing on a common variable). We extend these results even further by relying on an abstraction

of executions called communication graphs [17]. Roughly speaking, the vertices of a communication

graph correspond to sessions, and the edges represent the fact that two sessions access (read or

write) the same variable. We show that all these criteria are polynomial-time checkable provided

that the biconnected components of the communication graph are of fixed size.

We provide an experimental evaluation of our algorithms on executions of CockroachDB [3],

which claims to implement serializability [4] acknowledging however the possibility of anomalies,

Galera [5], whose documentation contains contradicting claims about whether it implements

snapshot isolation [6, 7], and AntidoteDB [8], which claims to implement causal consistency [9].

Our implementation reports violations of these criteria in all cases. The consistency violations

we found for AntidoteDB are novel and have been confirmed by its developers. We show that

our algorithms are efficient and scalable. In particular, we show that, although the asymptotic

complexity of our algorithms is exponential in general (w.r.t. the number of sessions), the worst-case

behavior is not exercised in practice.

To summarize, the contributions of this work are fourfold:

• We develop a new specification framework for describing common transactional-consistency

criteria (§2);

• We show that checking RC, RA, and CC is polynomial time while checking PC and SI is

NP-complete (§3);

• We show that PC, SI, and SER are polynomial-time checkable assuming that the communica-

tion graph of the input execution has fixed-size biconnected components (§4 and §5);

• We perform an empirical evaluation of our algorithms on executions generated by production

databases (§6);

Combined, these contributions form an effective algorithmic framework for the verification of

transactional-consistency models. To the best of our knowledge, we are the first to investigate the

asymptotic complexity for most of these consistency models, despite their prevalence in practice.

Additional material can be found in [12].

2 CONSISTENCY CRITERIA
2.1 Histories
We consider a transactional database storing a set of variables Var = {x ,y, . . .}. Clients interact with
the database by issuing transactions formed of read and write operations. Assuming an unspecified

, Vol. 1, No. 1, Article . Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Ranadeep Biswas and Constantin Enea

x = 1;
...

x = 2;

...

read(x);

(a)

x = 1;
...

x = 2;
...

read(x);

(b)

x = 1;
...

ABORT;

...

read(x);

(c)

Fig. 1. Examples of transactions used to justify our simplifying assumptions (each box represents a different

transaction): (a) only the last written value is observable in other transactions, (b) reads following writes to

the same variable return the last written value in the same transaction, and (c) values written in aborted

transactions are not observable.

set of values Val and a set of operation identifiers OpId, we let

Op = {readi (x ,v),writei (x ,v) : i ∈ OpId,x ∈ Var,v ∈ Val}

be the set of operations reading a value v or writing a value v to a variable x . We omit operation

identifiers when they are not important.

Definition 2.1. A transaction ⟨O, po⟩ is a finite set of operations O along with a strict total order

po on O , called program order.

We use t , t1, t2, . . . to range over transactions. The set of read, resp., write, operations in

a transaction t is denoted by reads(t), resp., writes(t). The extension to sets of transactions is

defined as usual. Also, we say that a transaction t writes a variable x , denoted by t writes x ,
when writei (x ,v) ∈ writes(t) for some i and v . Similarly, a transaction t reads a variable x when

readi (x ,v) ∈ reads(t) for some i and v .
To simplify the exposition, we assume that each transaction t contains at most one write operation

to each variable x 2
, and that a read of a variable x cannot be preceded by a write to x in the same

transaction
3
. If a transaction would contain multiple writes to the same variable, then only the last

one should be visible to other transactions (w.r.t. any consistency criterion considered in practice).

For instance, the read(x) in Figure 1a should not return 1 because this is not the last value written

to x by the other transaction. It can return the initial value or 2. Also, if a read would be preceded

by a write to the same variable in the same transaction, then it should return a value written in the

same transaction (i.e., the value written by the latest write to x in that transaction). For instance,

the read(x) in Figure 1b can only return 2 (assuming that there are no other writes on x in the

same transaction). These two properties can be verified easily (in a syntactic manner) on a given

execution. Beyond these two properties, the various consistency criteria used in practice constrain

only the last writes to each variable in each transaction and the reads that are not preceded by

writes to the same variable in the same transaction.

Consistency criteria are formalized on an abstract view of an execution called history. A history

includes only successful or committed transactions. In the context of databases, it is always assumed

that the effect of aborted transactions should not be visible to other transactions, and therefore,

they can be ignored. For instance, the read(x) in Figure 1c should not return the value 1 written by

the aborted transaction. The transactions are ordered according to a (partial) session order so which

represents ordering constraints imposed by the applications using the database. Most often, so is a

union of sequences, each sequence being called a session. We assume that the history includes a

write-read relation that identifies the transaction writing the value returned by each read in the

2
That is, for every transaction t , and every write(x, v), write(y, v ′) ∈ writes(t), we have that x , y .

3
That is, for every transaction t = ⟨O, po⟩, if write(x, v) ∈ writes(t) and there exists read(x, v) ∈ reads(t), then we have

that ⟨read(x, v), write(x, v)⟩ ∈ po

, Vol. 1, No. 1, Article . Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

On the Complexity of Checking Transactional Consistency 5

execution. As mentioned before, such a relation can be extracted easily from executions where

each value is written at most once. Since in practice, databases are data-independent [27], i.e., their

behavior does not depend on the concrete values read or written in the transactions, any potential

buggy behavior can be exposed in such executions.

Definition 2.2. A history ⟨T , so,wr⟩ is a set of transactions T along with a strict partial order so

called session order, and a relation wr ⊆ T × reads(T) called write-read relation, s.t.

• the inverse of wr is a total function, and if (t , read(x ,v)) ∈ wr, then write(x ,v) ∈ t , and
• so ∪ wr is acyclic.

To simplify the technical exposition, we assume that every history includes a distinguished trans-

action writing the initial values of all variables. This transaction precedes all the other transactions

in so. We use h, h1, h2, . . . to range over histories.

We say that the read operation read(x ,v) reads value v from variable x written by t when
(t , read(x ,v)) ∈ wr. For a given variable x , wrx denotes the restriction of wr to reads of variable

x , i.e., , wrx = wr ∩ (T × {read(x ,v) | v ∈ Val}). Moreover, we extend the relations wr and wrx to

pairs of transactions as follows: ⟨t1, t2⟩ ∈ wr, resp., ⟨t1, t2⟩ ∈ wrx , iff there exists a read operation

read(x ,v) ∈ reads(t2) such that ⟨t1, read(x ,v)⟩ ∈ wr, resp., ⟨t1, read(x ,v)⟩ ∈ wrx . We say that the

transaction t1 is read by the transaction t2 when ⟨t1, t2⟩ ∈ wr, and that it is read when it is read by

some transaction t2.

2.2 Axiomatic Framework
We describe an axiomatic framework to characterize the set of histories satisfying a certain con-

sistency criterion. The overarching principle is to say that a history satisfies a certain criterion if

there exists a strict total order on its transactions, called commit order and denoted by co, which

extends the write-read relation and the session order, and which satisfies certain properties. These

properties are expressed by a set of axioms that relate the commit order with the session-order and

the write-read relation in the history.

The axioms we use have a uniform shape: they define mandatory co predecessors t2 of a trans-
action t1 that is read in the history. For instance, the criterion called Read Committed (RC) [11]

requires that every value read in the history was written by a committed transaction, and also,

that the reads in the same transaction are “monotonic” in the sense that they do not return values

that are older, w.r.t. the commit order, than other values read in the past
4
. While the first condition

holds for any history (because of the surjectivity of wr), the second condition is expressed by

the axiom Read Committed in Figure 2a. This axiom states that for any transaction t1 writing a

variable x that is read in a transaction t , the set of transactions t2 writing x and read previously in

the same transaction must precede t1 in commit order. For instance, Figure 3a shows a history and

a (partial) commit order that does not satisfy this axiom because read(x) returns the value written
in a transaction “older” than the transaction read in the previous read(y). An example of a history

and commit order satisfying this axiom is given in Figure 3b.

More precisely, the axioms are first-order formulas
5
of the following form:

∀x , ∀t1, t2, ∀α . t1 , t2 ∧ ⟨t1,α⟩ ∈ wrx ∧ t2 writes x ∧ ϕ(t2,α) ⇒ ⟨t2, t1⟩ ∈ co

where ϕ is a property relating t2 and α (i.e., the read or the transaction reading from t1) that varies
from one axiom to another. Intuitively, this axiom schema states the following: in order for α to

read specifically t1’s write on x , it must be the case that every t2 that also writes x and satisfies

4
This monotonicity property corresponds to the fact that in the original formulation of Read Committed [11], every write

is guarded by the acquisition of a lock on the written variable, that is held until the end of the transaction.

5
These formulas are interpreted on tuples ⟨h, co⟩ of a history h and a commit order co on the transactions in h as usual.

, Vol. 1, No. 1, Article . Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Ranadeep Biswas and Constantin Enea

t1

t2
writes x

α

β

wrx

wr

po

co

∀x, ∀t1, t2, ∀α . t1 , t2 ∧
⟨t1, α ⟩ ∈ wrx ∧ t2 writes x ∧
⟨t2, α ⟩ ∈ wr ; po
⇒ ⟨t2, t1 ⟩ ∈ co

(a) Read Committed

t1 t3

t2
writes x

wrx

wr ∪ so

co

∀x, ∀t1, t2, ∀t3 . t1 , t2 ∧
⟨t1, t3 ⟩ ∈ wrx ∧ t2 writes x ∧
⟨t2, t3 ⟩ ∈ wr ∪ so
⇒ ⟨t2, t1 ⟩ ∈ co

(b) Read Atomic

t1 t3

t2
writes x

wrx

(wr ∪ so)+

co

∀x, ∀t1, t2, ∀t3 . t1 , t2 ∧
⟨t1, t3 ⟩ ∈ wrx ∧ t2 writes x ∧
⟨t2, t3 ⟩ ∈ (wr ∪ so)+

⇒ ⟨t2, t1 ⟩ ∈ co

(c) Causal

t1 t3

t2
writes x

t4

wrx

co
∗

(wr ∪ so)co

∀x, ∀t1, t2, ∀t3 . t1 , t2 ∧
⟨t1, t3 ⟩ ∈ wrx ∧ t2 writes x ∧
⟨t2, t3 ⟩ ∈ co∗ ; (wr ∪ so)
⇒ ⟨t2, t1 ⟩ ∈ co

(d) Prefix

t1 t3
writes y

t2
writes x

t4

writes y

wrx

co
∗

co

co

∀x, ∀t1, t2, ∀t3, t4, ∀y . t1 , t2 ∧
⟨t1, t3 ⟩ ∈ wrx ∧ t2 writes x ∧

t3 writes y ∧ t4 writes y ∧
⟨t2, t4 ⟩ ∈ co∗ ∧⟨t4, t3 ⟩ ∈ co
⇒ ⟨t2, t1 ⟩ ∈ co

(e) Conflict

t1 t3

t2
writes x

wrx

co

co

∀x, ∀t1, t2, ∀t3 . t1 , t2 ∧
⟨t1, t3 ⟩ ∈ wrx ∧ t2 writes x ∧
⟨t2, t3 ⟩ ∈ co
⇒ ⟨t2, t1 ⟩ ∈ co

(f) Serializability

Fig. 2. Definitions of consistency axioms. The reflexive and transitive, resp., transitive, closure of a relation rel is
denoted by rel∗, resp., rel+. Also, ; denotes the composition of two relations, i.e., rel1 ; rel2 = {⟨a,b⟩|∃c .⟨a, c⟩ ∈
rel1 ∧ ⟨c,b⟩ ∈ rel2}.

ϕ(t2,α) was committed before t1. Note that in all cases we consider, ϕ(t2,α) already ensures that t2
is committed before the read α , so this axiom schema ensures that t2 is furthermore committed

before t1’s write.
The axioms used throughout the paper are given in Figure 2. The property ϕ relates t2 and α

using the write-read relation and the session order in the history, and the commit order.

In the following, we explain the rest of the consistency criteria we consider and the axioms

defining them. Read Atomic (RA) [16] is a strengthening of Read Committed defined by the

axiom Read Atomic, which states that for any transaction t1 writing a variable x that is read in a

transaction t3, the set of wr or so predecessors of t3 writing x must precede t1 in commit order.

The case of wr predecessors corresponds to the Repeatable Read criterion in [11] which requires

that successive reads of the same variable in the same transaction return the same value, Figure 3b

showing a violation, and also that every read of a variable x in a transaction t returns the value
written by the maximal transaction t ′ (w.r.t. the commit order) that is read by t , Figure 3d showing a
violation (for any commit order between the transactions on the left, either read(x) or read(y) will
return a value not written by the maximal transaction). The case of so predecessors corresponds to

the “read-my-writes” guarantee [26] concerning sessions, which states that a transaction t must

observe previous writes in the same session. For instance, read(y) returning 1 in Figure 3c shows

that the last transaction on the right does not satisfy this guarantee: the transaction writing 1 to

y was already visible to that session before it wrote 2 to y, and therefore the value 2 should have

, Vol. 1, No. 1, Article . Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

On the Complexity of Checking Transactional Consistency 7

x = 1;

x = 2;
y = 2;

read(y); // 2

read(x); // 1

co po

(a) Read Committed violation.

x = 1;

x = 2;

read(x); // 1

read(x); // 2

co po

(b) Repeatable Read violation.

x = 1;
y = 1;

read(x); // 1
y = 2;

read(x); // 1

read(y); // 1

so

po

(c) Read My Writes violation.

x = 1;
y = 1;

x = 2;
y = 2;

read(y); // 2

read(x); // 1

po

(d) Repeatable Read violation.

x = 1;
read(x); // 1
x = 2;

read(x); // 1
read(y); // 1

read(x); // 2
y = 1;

(e) Causal violation.

x = 1;
y = 1;

read(x); // 1
x = 2;

read(y); // 1
y = 2;

read(x); // 2
read(y); // 1

read(y); // 2
read(x); // 1

(f) Prefix violation.

x = 1;

read(x); // 1
x = 2;

read(x); // 1
x = 3;

(g) Conflict violation.

x = 1;
y = 1;

read(x); // 1
read(y); // 1
x = 2;

read(x); // 1
read(y); // 1
y = 2;

(h) Serializability violation.

Fig. 3. Examples of histories used to explain the axioms in Figure 2. For readability, the wr relation is defined

by the values written in comments with each read.

Consistency model Axioms

Read Committed (RC) Read Committed

Read Atomic (RA) Read Atomic

Causal consistency (CC) Causal

Prefix consistency (PC) Prefix

Snapshot isolation (SI) Prefix ∧ Conflict

Serializability (SER) Serializability

Table 1. Consistency model definitions

been read. Read Atomic requires that the so predecessor of the transaction reading y be ordered in

co before the transaction writing 1 to y, which makes the union co ∪ wr cyclic.

The following lemma shows that for histories satisfyingRead Atomic, the inverse ofwrx extended

to transactions is a total function.

Lemma 2.3. Let h = ⟨T , so,wr⟩ be a history. If ⟨h, co⟩ satisfies Read Atomic, then for every transac-
tion t and two reads readi1 (x ,v1), readi2 (x ,v2) ∈ reads(t), wr

−1(readi1 (x ,v1)) = wr
−1(readi2 (x ,v2))

and v1 = v2.

Causal Consistency (CC) [22] is defined by the axiom Causal, which states that for any

transaction t1 writing a variable x that is read in a transaction t3, the set of (wr ∪ so)
+
predecessors

of t3 writing x must precede t1 in commit order ((wr ∪ so)+ is usually called the causal order). A
violation of this axiom can be found in Figure 3e: the transaction t2 writing 2 to x is a (wr ∪ so)+

, Vol. 1, No. 1, Article . Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Ranadeep Biswas and Constantin Enea

predecessor of the transaction t3 reading 1 from x because the transaction t4, writing 1 to y, reads x
from t2 and t3 reads y from t4. This implies that t2 should precede in commit order the transaction

t1 writing 1 to x, which again, is inconsistent with the write-read relation (t2 reads from t1).
Prefix consistency (PC) [15] is a strengthening of CC, which requires that every transaction

observes a prefix of a commit order between all the transactions. With the intuition that the

observed transactions are wr ∪ so predecessors, the axiom Prefix defining PC, states that for any

transaction t1 writing a variable x that is read in a transaction t3, the set of co
∗
predecessors of

transactions observed by t3 writing x must precede t1 in commit order (we use co
∗
to say that even

the transactions observed by t3 must precede t1). This ensures the prefix property stated above.

An example of a PC violation can be found in Figure 3f: the two transactions on the bottom read

from the three transactions on the top, but any serialization of those three transactions will imply

that one of the combinations x=1, y=2 or x=2, y=1 cannot be produced at the end of a prefix in this

serialization.

Snapshot Isolation (SI) [11] is a strengthening of PC that disallows two transactions to observe

the same prefix of a commit order if they conflict, i.e., write to a common variable. It is defined by

the conjunction of Prefix and another axiom called Conflict, which requires that for any transaction

t1 writing a variable x that is read in a transaction t3, the set of co
∗
predecessors writing x of

transactions conflicting with t3 and before t3 in commit order, must precede t1 in commit order.

Figure 3g shows a Conflict violation.

Finally, Serializability (SER) [25] is defined by the axiom with the same name, which requires

that for any transaction t1 writing to a variable x that is read in a transaction t3, the set of co

predecessors of t3 writing x must precede t1 in commit order. This ensures that each transaction

observes the effects of all the co predecessors. Figure 3h shows a Serializability violation.

Lemma 2.4. The following entailments hold:

Causal⇒ Read Atomic⇒ Read Committed

Prefix⇒ Causal

Serializability⇒ Prefix ∧ Conflict

Definition 2.5. Given a set of axioms X defining a criterion C like in Table 1, a history h =
⟨T , so,wr⟩ satisfies C iff there exists a strict total order co such that wr ∪ so ⊆ co and ⟨h, co⟩
satisfies X .

Definition 2.5 and Lemma 2.4 imply that each consistency criterion in Table 1 is stronger than its

predecessors (reading them from top to bottom), e.g., CC is stronger than RA and RC. This relation

is strict, e.g., RA is not stronger than CC.

3 CHECKING CONSISTENCY CRITERIA
This section establishes the complexity of checking the different consistency criteria in Table 1

for a given history. More precisely, we show that Read Committed, Read Atomic, and Causal

Consistency can be checked in polynomial time while the problem of checking the rest of the

criteria is NP-complete.

Intuitively, the polynomial time results are based on the fact that the axioms defining those

consistency criteria do not contain the commit order (co) on the left-hand side of the entailment.

Therefore, proving the existence of a commit order satisfying those axioms can be done using a

saturation procedure that builds a “partial” commit order based on instantiating the axioms on

the write-read relation and the session order in the given history. Since the commit order must

, Vol. 1, No. 1, Article . Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

On the Complexity of Checking Transactional Consistency 9

x = 1;
y = 1;

x = 2;
y = 2;

z = 2;

read(x); // 1

read(y); // 2

read(z); // 2

po
co

po

co

(a) Violation of Read Atomic

x = 1;

x = 2;

read(x); // 2
y = 1;

read(x); // 1
read(y); // 1

so

(b) Valid w.r.t. Read Atomic

x = 1;

x = 2;

read(x); // 2
y = 1;

read(x); // 1
read(y); // 1

so
wrx

co

wrx ;w
ry

wrx wry

(c) Violation of Causal Consistency

Fig. 4. Applying the RA and CC checking algorithms.

Input: A history h = ⟨T , so, wr ⟩
Output: true iff h satisfies Causal consistency

1 if so ∪ wr is cyclic then
2 return false;
3 co← so ∪ wr;

4 foreach x ∈ vars(h) do
5 foreach t1 , t2 ∈ T s.t. t1 and t2 write x do
6 if ∃t3 . ⟨t1, t3 ⟩ ∈ wrx ∧ ⟨t2, t3 ⟩ ∈ (so ∪ wr)+ then
7 co← co ∪ {⟨t2, t1 ⟩ };
8 if co is cyclic then
9 return false;

10 else
11 return true;

Algorithm 1: Checking Causal consistency

be an extension of the write-read relation and the session order, it contains those two relations

from the beginning. This saturation procedure stops when the order constraints derived this way

become cyclic. For instance, let us consider applying such a procedure corresponding to RA on the

histories in Figure 4a and Figure 4b. Applying the axiom in Figure 2b on the first history, since the

transaction on the right reads 2 from y, we get that its wrx predecessor (i.e., the first transaction

on the left) must precede the transaction writing 2 to y in commit order (the red edge). This holds

because the wrx predecessor writes on y. Similarly, since the same transaction reads 1 from x , we
get that its wry predecessor must precede the transaction writing 1 to x in commit order (the blue

edge). This already implies a cyclic commit order, and therefore, this history does not satisfy RA.

On the other hand, for the history in Figure 4b, all the axiom instantiations are vacuous, i.e., the

left part of the entailment is false, and therefore, it satisfies RA. Checking CC on the history in

Figure 4c requires a single saturation step: since the transaction on the bottom right reads 1 from

x , its wrx ;wry predecessor that writes on x (the transaction on the bottom left) must precede in

commit order the transaction writing 1 to x . Since this is already inconsistent with the session

order, we get that this history violates CC.

Algorithm 1 lists our procedure for checking CC. As explained above, co is initially set to so∪wr,

and then, it is saturated with other ordering constraints implied by non-vacuous instantiations of

the axiom Causal (where the left-hand side of the implication evaluates to true). The algorithms

concerning RC and RA are defined in a similar way by essentially changing the test at line 6 so that

it corresponds to the left-hand side of the implication in the corresponding axiom. Algorithm 1

can be rewritten as a Datalog program containing straightforward Datalog rules for computing

, Vol. 1, No. 1, Article . Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Ranadeep Biswas and Constantin Enea

transitive closures and relation composition, and a rule of the form
6

⟨t2, t1⟩ ∈ co :- t1 , t2, ⟨t1, t3⟩ ∈ wrx , ⟨t2, t3⟩ ∈ (so ∪ wr)
+

to represent the Causal axiom. The following is a consequence of the fact that these algorithms run

in polynomial time (or equivalently, the Datalog programs can be evaluated in polynomial time

over a database that contains the wr and so relations in a given history).

Theorem 3.1. For any criterion C ∈ {Read Committed,Read Atomic,Causal consistency},
the problem of checking whether a given history satisfies C is polynomial time.

On the other hand, checking PC, SI, and SER is NP-complete in general. We show this using a

reduction from boolean satisfiability (SAT) that covers uniformly all the three cases. In the case of

SER, it provides a new proof of the NP-completeness result by Papadimitriou [25] which uses a

reduction from the so-called non-circular SAT and which cannot be extended to PC and SI.

Theorem 3.2.For any criterionC ∈{Prefix Consistency,Snapshot Isolation,Serializability}
the problem of checking whether a given history satisfies C is NP-complete.

Proof. Given a history, any of these three criteria can be checked by guessing a total commit

order on its transactions and verifying whether it satisfies the corresponding axioms. This shows

that the problem is in NP.

To show NP-hardness, we define a reduction from boolean satisfiability. Therefore, let φ =
D1∧ . . .∧Dm be a CNF formula over the boolean variables x1, . . . ,xn where eachDi is a disjunctive

clause withmi literals. Let λi j denote the j-th literal of Di .

We construct a history hφ such that φ is satisfiable if and only if hφ satisfies PC, SI, or SER. Since

SER ⇒ SI ⇒ PC , we show that (1) if hφ satisfies PC, then φ is satisfiable, and (2) if φ is satisfiable,

then hφ satisfies SER.

The main idea of the construction is to represent truth values of each of the variables and literals

in φ with the polarity of the commit order between corresponding transaction pairs. For each

variable xk , hφ contains a pair of transactions ak and bk , and for each literal λi j , hφ contains a set

of transactionswi j , yi j and zi j
7
. We want to have that xk is false if and only if ⟨ak ,bk ⟩ ∈ co, and

λi j is false if and only if

〈
yi j , zi j

〉
∈ co (the transactionwi j is used to "synchronize" the truth value

of the literals with that of the variables, which is explained later).

The history hφ should ensure that the co ordering constraints corresponding to an assignment

that falsifies the formula (i.e., one of its clauses) form a cycle. To achieve that, we add all pairs〈
zi j ,yi,(j+1)%mi

〉
in the session order so. An unsatisfied clause Di , i.e., every λi j is false, leads to a

cycle of the form yi1
co

−→ zi1
so

−→ yi2
co

−→ zi2 · · · zimi

so

−→ yi1.
The most complicated part of the construction is to ensure the consistency between the truth

value of the literals and the truth value of the variables, e.g., λi j = xk is false iff xk is false. We use

special sub-histories to enforce that if history hφ satisfies PC (i.e., the axiom Prefix), then there

exists a commit order co such that

〈
hφ , co

〉
satisfies Prefix (Figure 2d) and:

⟨ak ,bk ⟩ ∈ co iff

〈
yi j , zi j

〉
∈ co when λi j = xk , and (1)

⟨ak ,bk ⟩ ∈ co iff

〈
zi j ,yi j

〉
∈ co when λi j = ¬xk .

6
We write Datalog rules using a standard notation head :- body where head is a relational atom (written as ⟨a, b ⟩ ∈ R
where a, b are elements and R a binary relation) and body is a list of relational atoms.

7
We assume that the transactions ak and bk associated to a variable xk are distinct and different from the transactions

associated to another variable xk′ , xk or to a literal λi j . Similarly, for the transactions wi j , yi j and zi j associated to a

literal λi j .

, Vol. 1, No. 1, Article . Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

On the Complexity of Checking Transactional Consistency 11

ak

bkwi j

yi j

writes vi j

zi j

zi, j−1

yi, j+1

cocococo

wrvi j

so

so

so

so

(a) λi j = xk

bk

akwi j

yi j

writes vi j

zi j

zi, j−1

yi, j+1

co cococo

wrvi j

so

so

so

so

(b) λi j = ¬xk

Fig. 5. Sub-histories included in hφ for each literal λi j and variable xk .

Figure 5a shows the sub-history associated to a positive literal λi j = xk while Figure 5b shows the

case of a negative literal λi j = ¬xk .
For a positive literal λi j = xk (Figure 5a), (1) we enrich session order with the pairs

〈
yi j ,ak

〉
and〈

bk ,wi j
〉
, (2) we include writes to a variable vi j in the transactions yi j and zi j , and (3) we makewi j

read from zi j , i .e .,
〈
zi j ,wi j

〉
∈ wrvi j . The case of a negative literal is similar, switching the roles of

ak and bk .
This construction ensures that if the co goes downwards on the right-hand side (⟨ak ,bk ⟩ ∈ co

in the case of a positive literal, and ⟨bk ,ak ⟩ ∈ co in the case of a negative literal), then it must

also go downwards on the left-hand side (

〈
yi j , zi j

〉
∈ co) to satisfy Prefix. For instance, in the case

of a positive literal, note that if ⟨ak ,bk ⟩ ∈ co, then

〈
yi j ,wi j

〉
∈ so ; co ; so. Therefore, for every

commit order co such that

〈
hφ , co

〉
satisfies Prefix, ⟨ak ,bk ⟩ ∈ co implies

〈
yi j , zi j

〉
∈ co. Indeed, if

⟨ak ,bk ⟩ ∈ co, instantiating the Prefix axiom where yi j plays the role of t2, zi j plays the role of t1,
andwi j plays the role of t3, we obtain that

〈
yi j , zi j

〉
∈ co.

In contrast, when the co goes upwards on the right-hand side (⟨bk ,ak ⟩ ∈ co in the case of a

positive literal, and ⟨ak ,bk ⟩ ∈ co in the case of a negative literal) then it imposes no constraint on

the direction of co on the left-hand side. Therefore, any commit order co satisfying Prefix that goes

upwards on the right-hand side (e.g., ⟨bk ,ak ⟩ ∈ co in the case of a positive literal) and downwards

on the left-hand side (

〈
yi j , zi j

〉
∈ co) in some sub-history (associated to some literal), thereby

contradicting Property (1), can be modified into another commit order satisfying Prefix that goes

upwards on the left-hand side as well. Formally, let co be a commit order such that

〈
hφ , co

〉
satisfies

Prefix and

⟨bk ,ak ⟩ ∈ co ∧
〈
yi j , zi j

〉
∈ co

for some literal λi j = xk (the case of negative literals can be handled in a similar manner). Let co1

be the restriction of co on the set of tuples

{⟨ak ′,bk ′⟩, ⟨bk ′,ak ′⟩|1 ≤ k ′ ≤ n} ∪ {
〈
yi′j′, zi′j′

〉
,
〈
zi′j′,yi′j′

〉
|for each i ′, j ′} ∪ so ∪ wr.

Since co1 ⊆ co, we have that co1 is acyclic. Let co2 be a relation obtained from co1 by flipping

the order between yi j and zi j (i.e., co2 = co1 \ {
〈
yi j , zi j

〉
} ∪ {

〈
zi j ,yi j

〉
}). This flipping does not

introduce any cycle because co2 contains no path ending in zi j (see Fig 5a). Also, co2 still satisfies

the Prefix axiom (since ⟨bk ,ak ⟩ ∈ co2 there is no path from yi j towi j satisfying the constraints in

the Prefix axiom). Since co2 is acyclic, it can be extended to a total commit order co3 that satisfies

Prefix. This is a consequence of the following lemma whose proof follows easily from definitions

(the part of this lemma concerning Serializability will be used later).

, Vol. 1, No. 1, Article . Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Ranadeep Biswas and Constantin Enea

Lemma 3.3. Let co be an acyclic relation that includes so ∪wr, ⟨ak ,bk ⟩ or ⟨bk ,ak ⟩, for each k , and〈
yi j , zi j

〉
or

〈
zi j ,yi j

〉
, for each i , j . For each axiom A ∈ {Prefix, Serializability}, if

〈
hφ , co

〉
satisfies A,

then there exists a total commit order co′ such that co ⊆ co
′ and

〈
hφ , co

′
〉
satisfies A.

Therefore,

〈
hφ , co3

〉
satisfies Prefix, and ⟨bk ,ak ⟩ ∈ co3 ∧

〈
zi j ,yi j

〉
∈ co3 (co3 goes upwards on

both sides of a sub-history like in Figure 5a). This transformation can be applied iteratively until

obtaining a commit order that satisfies both Prefix and Property (1).

Next, we complete the correctness proof of this reduction. For the “if” direction, if hφ satisfies

PC, then there exists a total commit order co between the transactions described above, which

together with hφ satisfies Prefix. The assignment of the variables xk explained above (defined by

the co order between ak and bk , for each k) satisfies the formula φ since there exists no cycle

between the transactions yi j and zi j , which implies that for each clause Di , there exists a j such
that

〈
yi j , zi j

〉
< co which means that λi j is satisfied. For the “only-if” direction, let γ be a satisfying

assignment for φ. Also, let co′ be a binary relation that includes so and wr such that if γ (xk) = false,
then ⟨ak ,bk ⟩ ∈ co

′
,

〈
yi j , zi j

〉
∈ co

′
for each λi j = xk , and

〈
zi j ,yi j

〉
∈ co

′
for each λi j = ¬xk ,

and if γ (xk) = true, then ⟨bk ,ak ⟩ ∈ co
′
,

〈
zi j ,yi j

〉
∈ co

′
for each λi j = xk , and

〈
yi j , zi j

〉
∈ co

′
for

each λi j = ¬xk . Note that co
′
is acyclic: no cycle can contain wi j because wi j has no “outgoing”

dependency (i.e., co
′
contains no pair withwi j as a first component), there is no cycle including

some pair of transactions ak , bk and some pair yi j , zi j because there is no way to reach yi j or zi j
from ak or bk , there is no cycle including only transactions ak and bk because ak1 and bk1 are not
related to ak2 and bk2 , for k1 , k2, there is no cycle including transactions yi1, j1 , zi1, j1 and yi2, j2 ,
zi2, j2 for i1 , i2 since these are disconnected as well, and finally, there is no cycle including only

transactions yi j and zi j , for a fixed i , because φ is satisfiable. By Lemma 3.3, the acyclic relation

co
′
can be extended to a total commit order co which together with hφ satisfies the Serializability

axiom. Therefore, hφ satisfies SER. □

4 CHECKING CONSISTENCY OF BOUNDED-WIDTH HISTORIES
In this section, we show that checking prefix consistency, snapshot isolation, and serializability

becomes polynomial time under the assumption that the width of the given history, i.e., the

maximum number of mutually-unordered transactions w.r.t. the session order, is bounded by a

fixed constant. If we consider the standard case where the session order is a union of transaction

sequences (modulo the fictitious transaction writing the initial values), i.e., a set of sessions, then

the width of the history is the number of sessions. We start by presenting an algorithm for checking

serializability that is polynomial time when the width is bounded by a fixed constant. In general,

the asymptotic complexity of this algorithm is exponential in the width of the history, but this

worst-case behavior is not exercised in practice as shown in Section 6. Then, we prove that checking

prefix consistency and snapshot isolation can be reduced in polynomial time to the problem of

checking serializability.

4.1 Checking Serializability
We present an algorithm for checking serializability of a given history which constructs a valid

commit order (satisfying Serialization), if any, by “linearizing” transactions one by one in an order

consistent with the session order. At any time, the set of already linearized transactions is uniquely

determined by an antichain of the session order (i.e., a set of mutually-unordered transactions

w.r.t. so), and the next transaction to linearize is chosen among the immediate so successors of the

transactions in this antichain. The crux of the algorithm is that the next transaction to linearize can

be chosen such that it does not produce violations of Serialization in a way that does not depend

on the order between the already linearized transactions. Therefore, the algorithm can be seen as a

, Vol. 1, No. 1, Article . Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

On the Complexity of Checking Transactional Consistency 13

x = 0;

t0

read(x); // 0t1

x = 1;t3

read(x); // 0 t2

x = 2; t4

so so

so

so

(a)

⟨t0⟩

⟨t1⟩

⟨t3⟩ ⟨t1, t2⟩

⟨t3, t2⟩

⟨t3, t4⟩

(b)

Fig. 6. Applying the serializability checking algorithm checkSER (Algorithm 2) on the serializable history

on the left. The right part pictures a search for valid extensions of serializable prefixes, represented by their

boundaries. The red arrow means that the search is blocked (the prefix at the target is not a valid extension),

while blue arrows mean that the search continues.

search in the space of so antichains. If the width of the history is bounded (by a fixed constant),

then the number of possible so antichains is polynomial in the size of the history, which implies

that the search can be done in polynomial time.

A prefix of a historyh = ⟨T , so,wr⟩ is a set of transactionsT ′ ⊆ T such that all the so predecessors

of transactions in T ′ are also in T ′, i.e., ∀t ∈ T . so−1(t) ∈ T . A prefix T ′ is uniquely determined by

the set of transactions in T ′ that are maximal w.r.t. so. This set of transactions forms an antichain
of so, i.e., any two elements in this set are incomparable w.r.t. so. Given an antichain {t1, . . . , tn}
of so, we say that {t1, . . . , tn} is the boundary of the prefix T ′ = {t : ∃i . ⟨t , ti ⟩ ∈ so ∨ t = ti }. For
instance, given the history in Figure 6a, the set of transactions {t0, t1, t2} is a prefix with boundary

{t1, t2} (the latter is an antichain of the session order).

A prefix T ′ of a history h is called serializable iff there exists a partial commit order co on the

transactions in h such that the following hold:

• co does not contradict the session order and the write-read relation in h, i.e., wr ∪ so ∪ co is

acyclic,

• co is a total order on transactions in T ′,
• co orders transactions in T ′ before transactions in T \T ′, i.e., ⟨t1, t2⟩ ∈ co for every t1 ∈ T

′

and t2 ∈ T \T
′
,

• co does not order any two transactions t1, t2 < T
′

• the history h along with the commit order co satisfies the axiom defining serializability, i.e.,

⟨h, co⟩ |= Serialization.

For the history in Figure 6a, the prefix {t0, t1, t2} is serializable since there exists a partial commit

order co that orders t0, t1, t2 in this order, and both t1 and t2 before t3 and t4. The axiom Serialization

is satisfied trivially, since the prefix contains a single transaction writing x and all the transactions

outside of the prefix do not read x .
A prefix T ′ ⊎ {t} of h is called a valid extension of a serializable prefix T ′ of h 8

, denoted by

T ′ ▷ T ′ ⊎ {t}if:

• t does not read from a transaction outside of T ′, i.e., for every t ′ ∈ T \T ′, ⟨t ′, t⟩ < wr, and
• for every variable x written by t , there exists no transaction t2 , t outside of T ′ that reads a
value of x written by a transaction t1 in T

′
, i.e., for every x written by t and every t1 ∈ T

′

and t2 ∈ T \ (T
′ ⊎ {t}), ⟨t1, t2⟩ < wr.

8
We assume that t < T ′ which is implied by the use of the disjoint union ⊎.

, Vol. 1, No. 1, Article . Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Ranadeep Biswas and Constantin Enea

Input: A history h = (T , so,wr), a serializable prefix T ′ of h
Output: true iff T ′ ▷∗ h

1 if T ′ = T then
2 return true;
3 foreach t < T ′ s.t. ∀t ′ < T ′. ⟨t ′, t⟩ < wr ∪ so do
4 if T ′ ̸▷ T ′ ⊎ {t} then
5 continue;

6 if T ′ ⊎ {t} < seen ∧ checkSER(h,T ′ ⊎ {t}) then
7 return true;
8 seen← seen ∪ {(T ′ ⊎ {t})};
9 return false;

Algorithm 2: The algorithm checkSER for checking serializabilty. seen is a global variable

storing a set of prefixes of h (which are not serializable). It is initialized as the empty set.

For the history in Figure 6a, we have {t0, t1} ▷ {t0, t1} ⊎ {t2} because t2 reads from t0 and it

does not write any variable. On the other hand {t0, t1} ▷̸ {t0, t1} ⊎ {t3} because t3 writes x and the

transaction t2, outside of this prefix, reads from the transaction t0 included in the prefix.

Let ▷∗ denote the reflexive and transitive closure of ▷.

The following lemma is essential in proving that iterative valid extensions of the initial empty

prefix can be used to show that a given history is serializable.

Lemma 4.1. For a serializable prefix T ′ of a history h, a prefix T ′ ⊎ {t} is serializable if it is a valid
extension of T ′.

Proof. Let co
′
be the partial commit order forT ′ which satisfies the serializable prefix conditions.

We extend co
′
to a partial order co = co

′ ∪ {⟨t , t ′⟩|t ′ < T ′ ⊎ {t ′}}. We show that ⟨h, co⟩ |=
Serialization. The other conditions for T ′ ⊎ {t} being a serializable prefix are satisfied trivially by

co.

Assume by contradiction that ⟨h, co⟩ does not satisfy the axiom Serialization. Then, there exists

t1, t2, t3, x ∈ vars(h) s.t. ⟨t1, t3⟩ ∈ wrx and t2 writes on x and ⟨t1, t2⟩, ⟨t2, t3⟩ ∈ co. Since ⟨h, co′⟩
satisfies this axiom, at least one of these two co ordering constraints are of the form ⟨t , t ′⟩ where
t ′ < T ′ ⊎ {t}:

• the case t1 = t and t2 < T
′ ⊎ {t} is not possible because co′ contains no pair of the form

⟨t ′, _⟩ ∈ co′ with t ′ < T ′ (recall that ⟨t2, t3⟩ should be also included in co).

• If t2 = t then, ⟨t1, t2⟩ ∈ co
′
and ⟨t2, t3⟩ for some t3 < T

′ ⊎ {t}. But, by the definition of valid

extension, for all variables x written by t , there exists no transaction t3 < T
′ ⊎ {t} such that

it reads x from t1 ∈ T
′
. Therefore, this is also a contradiction. □

Algorithm 2 lists our algorithm for checking serializability. It is defined as a recursive procedure

that searches for a sequence of valid extensions of a given prefix (initially, this prefix is empty)

until covering the whole history. Figure 6b pictures this search on the history in Figure 6a. The

right branch (containing blue edges) contains only valid extensions and it reaches a prefix that

includes all the transactions in the history.

Theorem 4.2. A history h is serializable iff checkSER(h, ∅) returns true.

Proof. The “if” direction is a direct consequence of Lemma 4.1. For the reverse, assume that

h = ⟨T , so,wr⟩ is serializable with a (total) commit order co. Let coi be the set of transactions in the

prefix of co of length i . Since co is consistent with so, we have that coi is a prefix of h, for any i . We

, Vol. 1, No. 1, Article . Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

On the Complexity of Checking Transactional Consistency 15

show by induction that coi+1 is a valid extension of coi . The base case is trivial. For the induction

step, let t be the last transaction in the prefix of co of length i + 1. Then,

• t cannot read from a transaction outside of coi because co is consistent with the write-read

relation wr,

• also, for every variable x written by t , there exists no transaction t2 , t outside of coi that
reads a value of x written by a transaction t1 ∈ coi . Otherwise, ⟨t1, t2⟩ ∈ wrx , ⟨t , t2⟩ ∈ co,

and ⟨t1, t⟩ ∈ co which implies that ⟨h, co⟩ does not satisfy Serializability.

This implies that checkSER(h, ∅) returns true. □

Algorithm 2 enumerates prefixes of the given history h, each prefix being uniquely determined

by an antichain of h containing the so-maximal transactions in that prefix. By definition, the size

of each antichain of a history h is smaller than the width of h. Therefore, the number of possible

antichains (prefixes) of a history h isO(size(h)width(h)) where size(h), resp., width(h), is the number

of transactions, resp., the width, of h. Since the valid extension property can be checked in quadratic

time, the asymptotic time complexity of the algorithm defined by checkSER is upper bounded by

O(size(h)width(h) · size(h)3). The following corollary is a direct consequence of these observations.

Corollary 4.3. For an arbitrary but fixed constant k ∈ N, the problem of checking serializability
for histories of width at most k is polynomial time.

4.2 Reducing Prefix Consistency to Serializability
We describe a polynomial time reduction of checking prefix consistency of bounded-width histories

to the analogous problem for serializability. Intuitively, as opposed to serializability, prefix consis-

tency allows that two transactions read the same snapshot of the database and commit together

even if they write on the same variable. Based on this observation, given a history h for which we

want to check prefix consistency, we define a new history hR |W where each transaction t is split
into a transaction performing all the reads in t and another transaction performing all the writes in

t (the history hR |W retains all the session order and write-read dependencies of h). We show that

if the set of read and write transactions obtained this way can be shown to be serializable, then

the original history satisfies prefix consistency, and vice-versa. For instance, Figure 7 shows this

transformation on the two histories in Figure 7a and Figure 7c, which represent typical anomalies

known as “long fork” and “lost update”, respectively. The former is not admitted by PC while the

latter is admitted. It can be easily seen that the transformed history corresponding to the “long

fork” anomaly is not serializable while the one corresponding to “lost update” is serializable. We

show that this transformation leads to a history of the same width, which by Corollary 4.3, implies

that checking prefix consistency of bounded-width histories is polynomial time.

Thus, given a history h = ⟨T ,wr, so⟩, we define the history hR |W = ⟨T
′,wr ′, so′⟩ as follows:

• T ′ contains a transaction Rt , called a read transaction, and a transactionWt , called a write
transaction, for each transaction t in the original history, i.e., T ′ = {Rt |t ∈ T } ∪ {Wt |t ∈ T }
• the write transactionWt writes exactly the same set of variables as t , i.e., for each variable x ,
Wt writes to x iff t writes to x .
• the read transaction Rt reads exactly the same values and the same variables as t , i.e., for
each variable x , wrx

′ = {
〈
Wt1 ,Rt2

〉
|⟨t1, t2⟩ ∈ wrx }

• the session order between the read and the write transactions corresponds to that of the

original transactions and read transactions precede their write counterparts, i.e.,

so
′ = {⟨Rt ,Wt ⟩|t ∈ T } ∪ {

〈
Rt1 ,Rt2

〉
,
〈
Rt1 ,Wt2

〉
,
〈
Wt1 ,Rt2

〉
,
〈
Wt1 ,Wt2

〉
|⟨t1, t2⟩ ∈ so}

The following lemma is a straightforward consequence of the definitions.

, Vol. 1, No. 1, Article . Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Ranadeep Biswas and Constantin Enea

read(x); // 0
x = 1;

read(y); // 0
y = 1;

read(x); // 1
read(y); // 0

read(x); // 0
read(y); // 1

(a) Long fork

read(x); // 0

x = 1;

read(y); // 0

y = 1;

read(x); // 1
read(y); // 0

read(y); // 1
read(x); // 0

// empty // empty

so so
so so

(b) Long fork (transformed)

read(x); // 0
x = 1;

read(x); // 0
x = 2;

(c) Lost update

read(x); // 0

x = 1;

read(x); // 0

x = 2;

so so

(d) Lost update (transformed)

Fig. 7. Reducing PC to SER. Initially, the value of every variable is 0.

Lemma 4.4. The histories h and hR |W have the same width.

Next, we show that hR |W is serializable if h is prefix consistent. Formally, we show that

∀co. ∃co′. ⟨h, co⟩ |= Prefix⇒
〈
hR |W , co

′
〉
|= Serializability

Thus, let co be a commit (total) order on transactions of h which together with h satisfies the prefix

consistency axiom. We define two partial commit orders co
′
1
and co

′
2
, co
′
2
a strengthening of co

′
1
,

which we prove that they are acyclic and that any linearization co
′
of co

′
2
is a valid witness for

hR |W satisfying serializability.

Thus, let co
′
1
be a partial commit order on transactions of hR |W defined as follows:

co
′
1
= {⟨Rt ,Wt ⟩|t ∈ T } ∪ {

〈
Wt1 ,Wt2

〉
|⟨t1, t2⟩ ∈ co} ∪ {

〈
Wt1 ,Rt2

〉
|⟨t1, t2⟩ ∈ wr ∪ so}

We show that if co
′
1
were to be cyclic, then it contains a minimal cycle with one read transaction,

and at least one but at most two write transactions. Then, we show that such cycles cannot exist.

Lemma 4.5. The relation co
′
1
is acyclic.

Proof.We first show that if co
′
1
were to be cyclic, then it contains a minimal cycle with one read

transaction, and at least one but at most two write transactions. Then, we show that such cycles can-

not exist. Therefore, let us assume that co
′
1

is cyclic. Then,

Wt1 Wt2

co
′+
1

co
′+
1

co
′
1

(a)

〈
Wt1 ,Wt2

〉
∈ co′

1

Wt1 Wt2

co
′+
1

co
′+
1

co
′
1

(b)

〈
Wt2 ,Wt1

〉
∈ co′

1

Fig. 8. Cycles with non-consecutive write

transactions.

• Since

〈
Wt1 ,Wt2

〉
∈ co

′
1
implies ⟨t1, t2⟩ ∈ co, for

every t1 and t2, a cycle in co
′
1
cannot contain only

write transactions. Otherwise, it will imply a cycle

in the original commit order co. Therefore, a cycle

in co
′
1
must contain at least one read transaction.

• Assume that a cycle in co
′
1
contains two write trans-

actions Wt1 and Wt2 which are not consecutive,

like in Figure 8. Since either

〈
Wt1 ,Wt2

〉
∈ co

′
1
or〈

Wt1 ,Wt2
〉
∈ co′

1
, there exists a smaller cycle in co

′
1

where these two write transactions are consecutive.

If

〈
Wt1 ,Wt2

〉
∈ co′

1
, then co

′
1
contains the smaller cycle on the lower part of the original cycle

(Figure 8a), and if

〈
Wt2 ,Wt1

〉
∈ co

′
1
, then co

′
1
contains the cycle on the upper part of the

original cycle (Figure 8b). Thus, all the write transactions in a minimal cycle of co
′
1
must be

consecutive.

• If a minimal cycle were to contain three write transactions, then all of them cannot be

consecutive unless they all three form a cycle, which is not possible. So a minimal cycle

contains at most two write transactions.

, Vol. 1, No. 1, Article . Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

On the Complexity of Checking Transactional Consistency 17

• Since co
′
1
contains no direct relation between read transactions, it cannot contain a cycle

with two consecutive read transactions, or only read transactions.

This shows that a minimal cycle of co
′
1
would include a read transaction and a write transaction,

and at most one more write transaction. We prove that such cycles are however impossible:

• if the cycle is of size 2, then it contains two transactionsWt1 and Rt2 such that

〈
Wt1 ,Rt2

〉
∈ co′

1

and

〈
Rt2 ,Wt1

〉
∈ co

′
1
. Since all the

〈
R_,W_

〉
dependencies in co

′
1
are of the form ⟨Rt ,Wt ⟩,

it follows that t1 = t2. Then, we have
〈
Wt1 ,Rt1

〉
∈ co

′
1
which implies ⟨t1, t1⟩ ∈ wr ∪ so, a

contradiction.

• if the cycle is of size 3, then it contains three transactions Wt1 , Wt2 , and Rt3 such that〈
Wt1 ,Wt2

〉
∈ co′

1
,

〈
Wt2 ,Rt3

〉
∈ co′

1
, and

〈
Rt3 ,Wt1

〉
∈ co′

1
. Using a similar argument as in the

previous case,

〈
Rt3 ,Wt1

〉
∈ co′

1
implies t3 = t1. Therefore, ⟨t1, t2⟩ ∈ co and ⟨t2, t1⟩ ∈ wr ∪ so,

which contradicts the fact that wr ∪ so ⊆ co. □

We define a strengthening of co
′
1
where intuitively, we add all the dependencies from read

transactions t3 to write transactions t2 that “overwrite” values read by t3. Formally, co
′
2
= co

′
1
∪

RW(co′
1
) where

RW(co′
1
) = {⟨t3, t2⟩|∃x ∈ vars(h). ∃t1 ∈ T ′. ⟨t1, t3⟩ ∈ wrx ′, ⟨t1, t2⟩ ∈ co′1, t2 writes x}

It can be shown that any cycle in co
′
2
would correspond to a Prefix violation in the original

history. Therefore,

Lemma 4.6. The relation co
′
2
is acyclic.

Wt1 Rt3

Wt2

writes x

Wt4

wrx

co
′∗
1

co
′
1

co
′
1

R
W
(co ′

1)

(a) Minimal cycle in co
′
2
.

t1 t3

t2

writes x

t4

wrx

co
∗

wr ∪ so
co

(b) Prefix violation in ⟨h, co⟩.

Fig. 9. Cycles in co
′
2
correspond to Prefix violations.

Proof. Assume that co
′
2
is cyclic. Any min-

imal cycle in co
′
2
still satisfies the properties of

minimal cycles of co
′
1
proved in Lemma 4.5 (be-

cause all write transactions are still totally or-

dered and co
′
2
doesn’t relate directly read trans-

actions). So, a minimal cycle in co
′
2
contains a

read transaction and a write transaction, and

at most one more write transaction.

Since co
′
1
is acyclic, a cycle in co

′
2
, and in

particular a minimal one, must necessarily contain a dependency from RW(co′
1
). Note that a

minimal cycle cannot contain two such dependencies since this would imply that it contains two

non-consecutivewrite transactions. The red edges in Figure 9a show aminimal cycle of co
′
2
satisfying

all the properties mentioned above. This cycle contains a dependency

〈
Rt3 ,Wt2

〉
∈ RW(co′

1
) which

implies the existence of a write transactionWt1 in hR |W s.t.

〈
Wt1 ,Rt3

〉
∈ wrx

′
and

〈
Wt1 ,Wt2

〉
∈ co′

1

andWt1 ,Wt2 write on x (these dependencies are represented by the black edges in Figure 9a). The

relations between these transactions of hR |W imply that the corresponding transactions of h are

related as shown in Figure 9b:

〈
Wt1 ,Wt2

〉
∈ co

′
1
and

〈
Wt2 ,Wt4

〉
∈ co

′∗
1
imply ⟨t1, t2⟩ ∈ co and

⟨t2, t4⟩ ∈ co
∗
, respectively,

〈
Wt1 ,Wt3

〉
∈ wrx

′
implies ⟨t1, t3⟩ ∈ wrx , and

〈
Wt4 ,Rt3

〉
∈ co

′
1
implies

⟨t4, t3⟩ ∈ wr ∪ so. This implies that ⟨h, co⟩ doesn’t satisfy the Prefix axiom, a contradiction. □

Lemma 4.7. If a history h satisfies prefix consistency, then hR |W is serializable.

Proof. Let co
′
be any total order consistent with co

′
2
. Assume by contradiction that

〈
hR |W , co

′
〉

doesn’t satisfy Serializability. Then, there exist t ′
1
, t ′
2
, t ′
3
∈ T ′ such that

〈
t ′
1
, t ′
2

〉
,
〈
t ′
2
, t ′
3

〉
∈ co

′
and

t ′
1
, t ′
2
write on some variable x and

〈
t ′
1
, t ′
3

〉
∈ wrx

′
. But then t ′

1
, t ′
2
are write transactions and co

′
1

must contain

〈
t ′
1
, t ′
2

〉
. Therefore, RW(co′

1
) and co

′
2
should contain

〈
t ′
3
, t ′
2

〉
, a contradiction with co

′

being consistent with co
′
2
. □

, Vol. 1, No. 1, Article . Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Ranadeep Biswas and Constantin Enea

Finally, it can be proved that any linearization co
′
of co

′
2
satisfies Serializability (together with

hR |W). Moreover, it can also be shown that the serializability of hR |W implies that h satisfies PC.

Therefore,

Theorem 4.8. A history h satisfies prefix consistency iff hR |W is serializable.

t1 t3

t2

writes x

t4

wrx

co
∗

wr ∪ so
co

(a) Prefix violation in ⟨h, co⟩

Wt1 Rt3

Wt2

writes x

Wt4

wrx
′

co
′∗

wr
′ ∪ so′

co
′

co
′

(b) Cycle in co
′
.

Fig. 10. Prefix violations correspond to cycles in co
′
.

Proof. The “only-if” direction is proven

by Lemma 4.7. For the reverse, we show that

∀co′. ∃co. 〈hR |W , co′〉 |= Serializability

⇒ ⟨h, co⟩ |= Prefix

Thus, let co
′
be a commit (total) order on

transactions of hR |W which together with

hR |W satisfies the serializability axiom. Let

co be a commit order on transactions of h
defined by co = {⟨t1, t2⟩|

〈
Wt1 ,Wt2

〉
∈ co

′}

(co is clearly a total order). If co were not to

be consistent withwr∪ so, then there would

exist transactions t1 and t2 such that ⟨t1, t2⟩ ∈ wr ∪ so and ⟨t2, t1⟩ ∈ co, which would imply that〈
Wt1 ,Rt2

〉
,
〈
Rt2 ,Wt2

〉
∈ wr ∪ so and

〈
Wt2 ,Wt1

〉
∈ co′, which violates the acylicity of co

′
. We show

that ⟨h, co⟩ satisfies Prefix. Assume by contradiction that there exists a Prefix violation between t1,
t2, t3, t4 (shown in Figure 10a), i.e., for some x ∈ vars(h), ⟨t1, t3⟩ ∈ wrx and t2 writes x , ⟨t1, t2⟩ ∈ co,
⟨t2, t4⟩ ∈ co

∗
and ⟨t4, t3⟩ ∈ wr ∪ so. Then, the corresponding transactionsWt1 ,Wt2 ,Wt4 ,Rt3 in

hR |W would be related as follows:

〈
Wt1 ,Wt2

〉
∈ co

′
and

〈
Wt1 ,Rt3

〉
∈ wrx

′
because ⟨t1, t3⟩ ∈ wrx

and ⟨t1, t2⟩ ∈ co. Since co
′
satisfies Serializability, then

〈
Rt3 ,Wt2

〉
∈ co

′
. But ⟨t2, t4⟩ ∈ co

∗
and

⟨t4, t3⟩ ∈ wr ∪ so imply that

〈
Wt2 ,Wt4

〉
∈ co′∗ and

〈
Wt4 ,Rt3

〉
∈ wr ′ ∪ so

′
, which show that co

′
is

cyclic (the red cycle in Figure 10b), a contradiction. □
Since the history hR |W can be constructed in linear time, Lemma 4.4, Theorem 4.8, and Corol-

lary 4.3 imply the following result.

Corollary 4.9. For an arbitrary but fixed constantk ∈ N, the problem of checking prefix consistency
for histories of width at most k is polynomial time.

4.3 Reducing Snapshot Isolation to Serializability
We extend the reduction of prefix consistency to serializability to the case of snapshot isolation.

Compared to prefix consistency, snapshot isolation disallows transactions that read the same

snapshot of the database to commit together if they write on a common variable (stated by the

Conflict axiom). More precisely, for any pair of transactions t1 and t2 writing to a common variable,

t1 must observe the effects of t2 or vice-versa. We refine the definition of hR |W such that any

“serialization” (i.e.., commit order satisfying Serializability) disallows that the read transactions

corresponding to two such transactions are ordered both before their write counterparts. We do

this by introducing auxiliary variables that are read or written by these transactions. For instance,

Figure 11 shows this transformation on the two histories in Figure 11a and Figure 11c, which

represent the anomalies known as “lost update” and “write skew”, respectively. The former is not

admitted by SI while the latter is admitted. Concerning “lost update”, the read counterpart of the

transaction on the left writes to a variable x12 that is read by its write counterpart, but also written

by the write counterpart of the other transaction. This forbids that the latter is serialized in between

the read and write counterparts of the transaction on the left. A similar scenario is imposed on the

transaction on the right, which makes that the transformed history is not serializable. Concerning

, Vol. 1, No. 1, Article . Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

On the Complexity of Checking Transactional Consistency 19

read(x); // 0
x = 1;

read(x); // 0
x = 2;

(a) Lost update

read(x); // 0
x12 = 1;

x = 1;
read(x12); // 1
x21 = 2;

read(x); // 0
x21 = 1;

x = 2;
read(x21); // 1
x12 = 2;

so so

(b) Lost update (trans-

formed)

read(x); // 0
read(y); // 0
x = 1;

read(x); // 0
read(y); // 0
y = 1;

(c) Write skew

read(x); // 0
read(y); // 0

x = 1;

read(x); // 0
read(y); // 0

y = 1;

so so

(d) Write skew (trans-

formed)

Fig. 11. Reducing SI to SER.

the “write skew” anomaly, the transformed history is exactly as for the PC reduction since the two

transactions don’t write on a common variable. It is clearly serializable.

For a history h = ⟨T ,wr, so⟩, the history hcR |W = ⟨T ′,wr ′, so′⟩ is defined as hR |W with the

following additional construction: for every two transactions t1 and t2 ∈ T that write on a common

variable,

• Rt1 andWt2 (resp., Rt2 andWt1) write on a variable x1,2 (resp., x2,1),
• the write transaction of ti reads xi, j from the read transaction of ti , for all i , j ∈ {1, 2}, i.e.,
wrx1,2 = {

〈
Rt1 ,Wt1

〉
} and wrx2,1 = {

〈
Rt2 ,Wt2

〉
}.

Note that hR |W and hcR |W have the same width (the session order is defined exactly in the same

way), which implies, by Lemma 4.4, that h and hcR |W have the same width.

The following result can be proved using similar reasoning as in the case of prefix consistency.

Theorem 4.10. A history h satisfies snapshot isolation iff hcR |W is serializable.

Note that hcR |W and h have the same width, and that hcR |W can be constructed in linear time.

Therefore, Theorem 4.10, and Corollary 4.3 imply the following result.

Corollary 4.11. For an arbitrary but fixed constant k ∈ N, the problem of checking snapshot
isolation for histories of width at most k is polynomial time.

5 COMMUNICATION GRAPHS
In this section, we present an extension of the polynomial time results for PC, SI, and SER, which

allows to handle histories where the sharing of variables between different sessions is sparse. For
the results in this section, we take the simplifying assumption that the session order is a union

of transaction sequences (modulo the fictitious transaction writing the initial values), i.e., each

transaction sequence corresponding to the standard notion of session 9
. We represent the sharing

of variables between different sessions using an undirected graph called a communication graph.
For instance, the communication graph of the history in Figure 12a is given in Figure 12b. For

readability, the edges are marked with the variables accessed by the two sessions.

We show that the problem of checking PC, SI, or SER is polynomial time when the size of every

biconnected component of the communication graph is bounded by a fixed constant. This is stronger

than the results in Section 4 because the number of biconnected components can be arbitrarily

large which means that the total number of sessions is unbounded. In general, we prove that the

time complexity of these consistency criteria is exponential only in the maximum size of such a

biconnected component, and not the whole number of sessions.

An undirected graph is biconnected if it is connected and if any one vertex were to be removed, the

graph will remain connected, and a biconnected component of a graphG is a maximal biconnected

9
The results can be extended to arbitrary session orders by considering maximal transaction sequences in session order

instead of sessions.

, Vol. 1, No. 1, Article . Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Ranadeep Biswas and Constantin Enea

S1

x = 1;

read(x);

so

S2

t = 1;

y = 1;
read(x);

so

S3

read(y);

read(z);

so

S4

z = 1;
read(w);

read(t);

so

S5

w = 1;

(a) A history with 5 sessions.

S1 S2

S3

S4 S5
x

y z

t w

(b) The communication graph and its de-

composition in biconnected components.

Fig. 12. A history and its communication graph.

subgraph ofG . Figure 12b shows the decomposition in biconnected components of a communication

graph. This graph contains 5 sessions while every biconnected component is of size at most 3.

Intuitively, any potential consistency violation associated to a history will contain a consistency

violation that contained in sessions in the same biconnected component. Therefore, checking

any of these criteria can be done in isolation for each biconnected component (more precisely,

on sub-histories that contain only sessions in the same biconnected component). Actually, this

decomposition argument works even for RC, RA, and CC. For instance, in the case of the history in

Figure 12a, any consistency criterion can be checked looking in isolation at three sub-histories: a

sub-history with S1 and S2, a sub-history with S2, S3, and S4, and a sub-history with S4 and S5.
Formally, a communication graph of a history h is an undirected graph Comm(h) = (V ,E) where

the set of vertices V is the set of sessions in h 10
, and (v,v ′) ∈ E iff the sessions v and v ′ contain

two transactions t1 and t2, respectively, such that t1 and t2 read or write a common variable x .
We begin with a technical lemma showing that minimal paths of certain form in the graph

representing a history h and a relation co (on the transactions of h) lie within a single biconnected

component of the underlying communication graph. This is used to show that any consistency

violation can be exposed by looking at a single biconnected component at a time. The graph

representing a history h and a relation co on the transactions of h is denoted by G(h, co) 11.
Given a graph G(h, co) and r a term over the relations so, wr, and co, e.g., (wr ∪ so)+, a path of

form r (or r -path) is a sequence of edges representing so, wr, or co dependencies as specified by

the term r , e.g., a sequence of wr or so dependencies.

Lemma 5.1. Let B1,. . .,Bn be the biconnected components of Comm(h) for a history h = ⟨T ,wr, so⟩.
For each Bi , let coi be a total order on the transactions of Bi 12 extending the session order so on the
transactions of Bi . Also, let co =

⋃
i coi . Then, for every term r ∈ {co+, (wr ∪ so)+}, any minimal

r -path in the graph G(h, co) between two transactions from the same biconnected component includes
only transactions of that biconnected component.

Proof. We consider the case r = co
+
. Consider a minimal co+-path π = t0, . . . , tn between two

transactions t0 and tn from the same biconnected component B of Comm(h) (i.e., from sessions

in B). Assume by contradiction, that π traverses multiple biconnected components. We define a

path πs = v0, . . . ,vm between sessions, i.e., vertices of Comm(h), which contains an edge (vj ,vj+1)
iff π contains an edge (ti , ti+1) with ti a transaction of session vj and ti+1 a transaction of session

vj+1 , vj . Since any graph decomposes to a forest of biconnected components, this path must

necessarily leave and enter some biconnected component B1 to and from the same biconnected

component B2, i.e., πs must contain two vertices vj1 and vj2 in B1 such that the successor vj1+1
of vj1 and the predecessor vj2−1 of vj2 are from B2. Let t1, t2, t3, t4 be the transactions in the

10
The transaction writing the initial values is considered as a distinguished session.

11
The nodes of G(h, co) correspond to transactions in h and the edges connect pairs of transactions in so, wr, or co.

12
That is, transactions that are included in the sessions in Bi .

, Vol. 1, No. 1, Article . Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

On the Complexity of Checking Transactional Consistency 21

path π corresponding to vj1 , vj2 , vj1+1, and vj2−1, respectively. Now, since any two biconnected

components share at most one vertex, it follows that t3 and t4 are from the same session and

t3 t4

t1 t2

B2

B1

co
+
2

co
∗
1

co
∗
1

co
+
2

so

(a) ⟨t3, t4⟩ ∈ so

t3 t4

t1 t2

B2

B1

co
+
2

co
∗
1

co
∗
1

co
+
2

so

(b) ⟨t4, t3⟩ ∈ so

Fig. 13. Minimal paths between transactions

in the same biconnected component.

• if ⟨t3, t4⟩ ∈ so, then there exists a shorter path be-
tween t0 and t1 that uses the so relation between
⟨t3, t4⟩ (we recall that so ⊆

⋃
i coi) instead of the

transactions in B2, pictured in Figure 13a, which

is a contradiction to the minimality of π ,
• if ⟨t4, t3⟩ ∈ so, then, we have a cycle in

⋃
i coi ∪

so, pictured in Figure 13b, which is also a con-

tradiction.

The case r = (wr ∪ so)+ can be proved in a similar

manner since the reasoning outlined in Figure 13 re-

duces to short-circuiting a path using a single so edge

(and so is included in (wr ∪ so)+). □

Now we prove our final claim. For a history h = (T , so,wr) and biconnected component B
of Comm(h), the projection of h over transactions in sessions of B is denoted by h ↓ B, i.e.,
h ↓ B = (T ′, so′,wr ′) where T ′ is the set of transactions in sessions of B, so′ and wr

′
are the

projections of so and wr, respectively, on T ′.

Theorem 5.2. For any criterion C ∈ {RA, RC,CC, PC, SI, SER}, a history h satisfies C iff for every
biconnected component B of Comm(h), h ↓ B satisfies C .

Proof. The “only-if” direction is obvious. For the “if” direction, we first consider the cases

C ∈ {RA,RC,CC, SER}. The proof concerning PC and SI is based on the reduction to SER outlined in

Section 4.2 and Section 4.3, respectively, and it is given afterwards. Let B1,. . .,Bn be the biconnected

components of Comm(h).
Let C ∈ {RA,RC,CC, SER} and let coi be the commit order that witnesses that h ↓ Bi satisfies

C , for each 1 ≤ i ≤ n. The union
⋃

i coi is acyclic since otherwise, any minimal cycle would be a

minimal path between transactions of the same biconnected component Bj , and, by Lemma 5.1, it

will include only transactions of Bj which is a contradiction to coj being a total order. We show

that any linearization co of

⋃
i coi along with h satisfies the axioms of C . The axioms defining

RA, RC, CC, and SER involve transactions that write or read a common variable, which implies

that they belong to the same biconnected component (we refer to the transactions t1, t2, and t3
in Figure 2). Furthermore, by Lemma 5.1, minimal paths witnessing the dependencies in those

axioms, e.g., (wr ∪ so)+ for CC, are also formed of transactions included in the same biconnected

component. Therefore, co satisfies any of those axioms provided that each coi does.

We now consider the case where C = PC. Assume that each Bi satisfies PC. Based on the

reduction in Section 4.2, h satisfies PC iff hR |W satisfies SER. Moreover, since hR |W is obtained from

h by splitting each transaction t into a read transaction Rt and a write transactionWt while keeping

all session order dependencies, each session in h corresponds to a session in hR |W that reads or

writes exactly the same set of variables. Therefore, Comm(h) is isomorphic to Comm(hR |W). Since
Bi satisfies PC, we get that the corresponding biconnected component B′i of Comm(hR |W) satisfies
SER, for every i . Therefore, hR |W satisfies SER, which implies that h satisfies PC. The case of SI is

proved in a similar way using the reduction to the serializability of hcR |W presented in Section 4.3

(note that two transactions of hcR |W may read or write an additional common variable only if they

were writing a common variable in the original history and therefore, Comm(h) is still isomorphic

to Comm(hcR |W)). □

, Vol. 1, No. 1, Article . Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Ranadeep Biswas and Constantin Enea

(a) Sessions. (b) Transactions per session. (c) Operations per transaction.

(d) Variables.

Fig. 14. Scalability of our Serializability checking algorithm (Algorithm 2), and a comparison to a SAT encoding.

The x-axis represents the varying parameter while the y-axis represents the wall clock time in logarithmic

scale. The circular, resp., triangle, dots represent wall clock times of our algorithm, resp., the SAT encoding.

The red, green, and blue dots represent invalid, valid and resource exhausted instances, respectively.

Since the decomposition of a graph into biconnected components can be done in linear time,

Theorem 5.2 implies that any of the criteria PC, SI, or SER can be checked in timeO(size(h)bi-size(h) ·
size(h)3 ·bi-nb(h))where bi-size(h) and bi-nb(h) are the maximum size of a biconnected component

in Comm(h) and the number of biconnected components of Comm(h), respectively. The following
corollary is a direct consequence of this observation.

Corollary 5.3. For an arbitrary but fixed constant k ∈ N and any criterion C ∈ {PC, SI, SER},
the problem of checking if a history h satisfies C is polynomial time, provided that the size of every
biconnected component of Comm(h) is bounded by k .

6 EXPERIMENTAL EVALUATION
To demonstrate the practical value of the theory developed in the previous sections, we argue that

our algorithms:

• are efficient and scalable,

• enable an effective testing framework allowing to expose consistency violations in production

databases.

We focus on three of the criteria introduced in Section 2: serializability which is NP-complete

in general and polynomial time when the number of sessions is considered to be a constant,

snapshot isolation which can be reduced in linear time to serializability, and causal consistency
which is polynomial time in general. As benchmark, we consider histories extracted from three

distributed databases: CockroachDB [3], Galera [5], and AntidoteDB [8]. Following the approach

in Jepsen [1], histories are generated with random clients. For the experiments described hereafter,

the randomization process is parametrized by: (1) the number of sessions (#sess), (2) the number

of transactions per session (#trs), (3) the number of operations per transaction (#ops), and (4) an

, Vol. 1, No. 1, Article . Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

On the Complexity of Checking Transactional Consistency 23

upper bound on the number of used variables (#vars) 13. For any valuation of these parameters,

half of the histories generated with CockroachDB and Galera are restricted such that the sets of

variables written by any two sessions are disjoint (the sets of read variables are not constrained).

This restriction is used to increase the frequency of valid histories.

In a first experiment, we investigated the efficiency of our serializability checking algorithm

(Algorithm 2) and we compared its performance with a direct SAT encoding
14
of the serializability

definition in Section 2 (we used MiniSAT [18] to solve the SAT queries). We used histories extracted

from CockroachDB which claims to implement serializability, acknowledging however the pos-

sibility of anomalies [4]. The sessions of a history are uniformly distributed among 3 nodes of a

single cluster. To evaluate scalability, we fix a reference set of parameter values: #sess=6, #trs=30,
#ops=20, and #vars = 60 × #sess, and vary only one parameter at a time. For instance, the number

of sessions varies from 3 to 15 in increments of 3. We consider 100 histories for each combination

of parameter values. The experimental data is reported in Figure 14. Our algorithm scales well even

when increasing the number of sessions, which is not guaranteed by its worst-case complexity (in

general, this is exponential in the number of sessions). Also, our algorithm is at least two orders of

magnitude more efficient than the SAT encoding. While the performance of SAT solvers is known

to be heavily affected by the specific encoding of the problem, we strove to make the SAT formula

as succinct as possible and optimize its construction. We have fixed a 10 minutes timeout, a limit of

10GB of memory, and a limit of 10GB on the files containing the formulas to be passed to the SAT

solver. The blue dots represent resource exhausted instances. The SAT encoding reaches the file

limit for 148 out of 200 histories with at least 12 sessions (Figure 14a) and for 50 out of 100 histories

with 60 transactions per session (Figure 14b), the other parameters being fixed as explained above.

We have found a large number of violations, whose frequency increases with the number of

sessions, transactions per session, or operations per transaction, and decreases when allowing more

variables. This is expected since increasing any of the former parameters increases the chance of

interference between different transactions while increasing the latter has the opposite effect. The

second and third column of Table 2 give a more precise account of the kind of violations we found

by identifying for each criterion X, the number of histories that violate X but no other criterion

weaker than X, e.g., there is only one violation to SI that satisfies PC.

The second experiment measures the scalability of the SI checking algorithm obtained by applying

the reduction to SER described in Section 4.3 followed by the SER checking algorithm in Algorithm 2,

and its performance compared to a SAT encoding of SI. Actually, the reduction to SER is performed

on-the-fly, while traversing the history and checking for serializability (of the transformed history).

The SAT encoding follows the same principles as in the case of serializability. We focus on its

behavior when increasing the number of sessions (varying the other parameters leads to similar

results). As benchmark, we used the same CockroachDB histories as in Figure 14a and a number

of histories extracted from Galera
15
whose documentation contains contradicting claims about

whether it implements snapshot isolation [6, 7]. We use 100 histories per combination of parameter

values as in the previous experiment. The results are reported in Figure 15a and Figure 15b. We

observe the same behavior as in the case of SER. In particular, the SAT encoding reaches the file

limit for 150 out of 200 histories with at least 12 sessions in the case of the CockroachDB histories,

13
We ensure that every value is written at most once.

14
For each ordered pair of transactions t1, t2 we add two propositional variables representing ⟨t1, t2 ⟩ ∈ (wr ∪ so)+ and

⟨t1, t2 ⟩ ∈ co, respectively. Then we generate clauses corresponding to: (1) singleton clauses defining the relation wr ∪ so

(extracted from the input history), (2) ⟨t1, t2 ⟩ ∈ wr ∪ so implies ⟨t1, t2 ⟩ ∈ co, (3) co being a total order, and (4) the axioms

corresponding to the considered consistency model. This is an optimization that does not encode wr and so separately,

which is sound because of the shape of our axioms (and because these relations are fixed apriori).

15
In order to increase the frequency of valid histories, all sessions are executed on a single node.

, Vol. 1, No. 1, Article . Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Ranadeep Biswas and Constantin Enea

(a) Checking SI (CockroachDB) (b) Checking SI (Galera) (c) Checking CC (AntidoteDB)

Fig. 15. Scalability of our SI checking algorithm (Section 4.3) and CC checking algorithm (Algorithm 1), and

a comparison to a SAT encoding. The x-axis represents the varying parameter while the y-axis represents

the wall clock time in logarithmic scale. The circular, resp., triangle, dots represent wall clock times of

our algorithm, resp., the SAT encoding. The red, green, and blue dots represent invalid, valid and resource

exhausted instances, respectively.

and for 162 out of 300 histories with at least 9 sessions in the case of the Galera histories. The last

two columns in Table 2 classify the set of violations depending on the weakest criterion that they

violate.

We also evaluated the performance of the CC checking algorithm in Section 3 when increasing

the number of sessions, on histories extracted from AntidoteDB, which claims to implement causal

consistency [9]. The results are reported in Figure 15c. In this case, the SAT encoding reaches the

file limit for 150 out of 300 histories with at least 9 sessions. All the histories considered in this

experiment are valid. However, when experimenting with other parameter values, we have found

several violations. The smallest parameter values for which we found violations were 3 sessions, 14

transactions per session, 14 operations per transaction, and 5 variables. The violations we found are

also violations of Read Atomic. For instance, one of the violations contains two transactions t1 and
t2, each of them writing to two variables x1 and x2, and another transaction t3 that reads x1 from t1
and x2 from t2 (t1 and t2 are from different sessions while t3 is an so successor of t1 in the same

session). These violations are novel and they were confirmed by the developers of AntidoteDB.

The refinement of the algorithms above based on communication graphs, described in Section 5,

did not have a significant impact on their performance. The histories we generated contained few

biconnected components (many histories contained just a single biconnected component) which

we believe is due to our proof of concept deployment of these databases on a single machine that

did not allow to experiment with very large number of sessions and variables.

7 RELATEDWORK
Cerone et al. [16] give the first formalization of the criteria we consider in this paper, using the

specification methodology of Burckhardt et al. [14]. This formalization uses two auxiliary relations,

a visibility relation which represents the fact that a transaction “observes” the effects of another

transaction and a commit order, also called arbitration order, like in our case. Executions are

abstracted using a notion of history that includes only a session order and the adherence to some

consistency criterion is defined as the existence of a visibility relation and a commit order satisfying

certain axioms. Motivated by practical goals, our histories include a write-read relation, which

enables more uniform and in our opinion, more intuitive, axioms to characterize consistency criteria.

Our formalizations are however equivalent with those of Cerone et al. [16]. Moreover, Cerone et al.

[16] do not investigate algorithmic issues as in our paper.

, Vol. 1, No. 1, Article . Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

On the Complexity of Checking Transactional Consistency 25

Serializability checking Snapshot Isolation checking

Weakest CockroachDB CockroachDB Galera Galera

criterion violated (disjoint writes) (no constraints) (disjoint writes) (no constraints)

Read Committed 19 50

Read Atomic 180 547 91 139

Causal Consistency 339 382 88 43

Prefix Consistency 2 7

Snapshot Isolation 1 1

Serializability 25

Total number of violations 546/1000 937/1000 198/250 233/250

Table 2. Violation statistics. The “disjoint writes” columns refer to histories where the set of variables written

by any two sessions are disjoint.

Papadimitriou [25] showed that checking serializability of an execution is NP-complete. Moreover,

it identifies a stronger criterion called conflict serializability which is polynomial-time checkable.

Conflict serializability assumes that histories are given as sequences of operations and requires that

the commit order be consistent with a conflict-order between transactions defined based on this

sequence (roughly, a transaction t1 is before a transaction t2 in the conflict order if it accesses some

variable x before t2 does). This result is not applicable to distributed databases where deriving such

a sequence between operations submitted to different nodes in a network is impossible.

Bouajjani et al. [13] showed that checking several variations of causal consistency on executions

of a non-transactional distributed database is polynomial time (they also assume that every value

is written at most once). Assuming singleton transactions, our notion of CC corresponds to the

causal convergence criterion in Bouajjani et al. [13]. Therefore, our result concerning CC can be

seen as an extension of this result concerning causal convergence to transactions.

There are some works that investigated the problem of checking consistency criteria like sequen-

tial consistency and linearizability in the case of shared-memory systems. Gibbons and Korach [21]

showed that checking linearizability of the single-value register type is NP-complete in general, but

polynomial time for executions where every value is written at most once. Using a reduction from

serializabilty, they showed that checking sequential consistency is NP-complete even when every

value is written at most once. Emmi and Enea [19] extended the result concerning linearizability

to a series of abstract data types called collections, that includes stacks, queues, key-value maps,

etc. Sequential consistency reduces to serializability for histories with singleton transactions (i.e.,

formed of a single read or write operation). Therefore, our polynomial time result for checking

serializability of bounded-width histories (Corollary 4.3) implies that checking sequential consis-

tency of histories with a bounded number of threads is polynomial time. The latter result has been

established independently by Abdulla et al. [10].

The notion of communication graph is inspired by the work of Chalupa et al. [17] which investi-

gates partial-order reduction (POR) techniques for multi-threaded programs. In general, the goal

of partial-order reduction [20] is to avoid exploring executions which are equivalent w.r.t. some

suitable notion of equivalence, e.g., Mazurkiewicz trace equivalence [23]. They use the acyclicity

of communication graphs to define a class of programs for which their POR technique is optimal.

The algorithmic issues they explore are different than ours and they don’t investigate biconnected

components of this graph as in our results.

, Vol. 1, No. 1, Article . Publication date: January 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Ranadeep Biswas and Constantin Enea

8 CONCLUSIONS
Our results provide an effective means of checking the correctness of transactional databases with

respect to a wide range of consistency criteria, in an efficient way. We devise a new specification

framework for these criteria, which besides enabling efficient verification algorithms, provide a

novel understanding of the differences between them in terms of set of transactions that must be
committed before a transaction which is read during the execution. These algorithms are shown to

be scalable and orders of magnitude more efficient than standard SAT encodings of these criteria (as

defined in our framework). While the algorithms are quite simple to understand and implement, the

proof of their correctness is non-trivial and benefits heavily from the new specification framework.

One important venue for future work is identifying root causes for a given violation. The fact that

we are able to deal with a wide range of criteria is already helpful in identifying the weakest criterion

that is violated in a given execution. Then, in the case of RC, RA, and CC, where inconsistencies

correspond to cycles in the commit order, the root cause could be attributed to a minimal cycle

in this relation. We did this in our communication with the Antidote developers to simplify the

violation we found which contained 42 transactions. In the case of PC, SI, and SER, it could be

possible to implement a search procedure similar to CDCL in SAT solvers, in order to compute the

root-cause as a SAT solver would compute an unsatisfiability core.

ACKNOWLEDGMENTS
This work is supported in part by the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 678177).

REFERENCES
[1] [n. d.]. http://jepsen.io Retrieved March 28th, 2019.

[2] [n. d.]. https://github.com/jepsen-io/jepsen/blob/master/galera/src/jepsen/galera/dirty_reads.clj Retrieved March

28th, 2019.

[3] [n. d.]. https://github.com/cockroachdb/cockroach Retrieved March 28th, 2019.

[4] [n. d.]. https://www.cockroachlabs.com/docs/v2.1/transactions.html#isolation-levels Retrieved March 28th, 2019.

[5] [n. d.]. http://galeracluster.com Retrieved March 28th, 2019.

[6] [n. d.]. http://galeracluster.com/documentation-webpages/faq.html Retrieved March 28th, 2019.

[7] [n. d.]. http://galeracluster.com/documentation-webpages/isolationlevels.html#

intra-node-vs-inter-node-isolation-in-galera-cluster Retrieved March 28th, 2019.

[8] [n. d.]. https://www.antidotedb.eu Retrieved March 28th, 2019.

[9] [n. d.]. https://antidotedb.gitbook.io/documentation/overview/configuration Retrieved March 28th, 2019.

[10] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos (Kostis)

Sagonas. 2019. Optimal Stateless Model Checking for Read-from Equivalence under Sequential Consistency. PACMPL
OOPSLA.

[11] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and Patrick E. O’Neil. 1995. A Critique

of ANSI SQL Isolation Levels. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of
Data, San Jose, California, USA, May 22-25, 1995., Michael J. Carey and Donovan A. Schneider (Eds.). ACM Press, 1–10.

https://doi.org/10.1145/223784.223785

[12] Ranadeep Biswas and Constantin Enea. 2019. On the Complexity of Checking Transactional Consistency. abs/1908.04509

(2019). arXiv:1908.04509 https://arxiv.org/abs/1908.04509

[13] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On verifying causal consistency. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 626–638. http://dl.acm.org/citation.cfm?

id=3009888

[14] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated data types: specification,

verification, optimality. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 271–284.

https://doi.org/10.1145/2535838.2535848

, Vol. 1, No. 1, Article . Publication date: January 2018.

http://jepsen.io
https://github.com/jepsen-io/jepsen/blob/master/galera/src/jepsen/galera/dirty_reads.clj
https://github.com/cockroachdb/cockroach
https://www.cockroachlabs.com/docs/v2.1/transactions.html#isolation-levels
http://galeracluster.com
http://galeracluster.com/documentation-webpages/faq.html
http://galeracluster.com/documentation-webpages/isolationlevels.html#intra-node-vs-inter-node-isolation-in-galera-cluster
http://galeracluster.com/documentation-webpages/isolationlevels.html#intra-node-vs-inter-node-isolation-in-galera-cluster
https://www.antidotedb.eu
https://antidotedb.gitbook.io/documentation/overview/configuration
https://doi.org/10.1145/223784.223785
http://arxiv.org/abs/1908.04509
https://arxiv.org/abs/1908.04509
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1145/2535838.2535848

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

On the Complexity of Checking Transactional Consistency 27

[15] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. 2015. Global Sequence Protocol:

A Robust Abstraction for Replicated Shared State. In 29th European Conference on Object-Oriented Programming,
ECOOP 2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs), John Tang Boyland (Ed.), Vol. 37. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 568–590. https://doi.org/10.4230/LIPIcs.ECOOP.2015.568

[16] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for Transactional Consistency Models

with Atomic Visibility. In 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September
1.4, 2015 (LIPIcs), Luca Aceto and David de Frutos-Escrig (Eds.), Vol. 42. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 58–71. https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

[17] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2018. Data-centric

dynamic partial order reduction. PACMPL 2, POPL (2018), 31:1–31:30. https://doi.org/10.1145/3158119

[18] Niklas Eén and Niklas Sörensson. 2003. An Extensible SAT-solver. In Theory and Applications of Satisfiability Testing,
6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers (Lecture
Notes in Computer Science), Enrico Giunchiglia and Armando Tacchella (Eds.), Vol. 2919. Springer, 502–518. https:

//doi.org/10.1007/978-3-540-24605-3_37

[19] Michael Emmi and Constantin Enea. 2018. Sound, complete, and tractable linearizability monitoring for concurrent

collections. PACMPL 2, POPL (2018), 25:1–25:27. https://doi.org/10.1145/3158113

[20] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction for model checking software. In

Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005, Jens Palsberg and Martín Abadi (Eds.). ACM, 110–121. https:

//doi.org/10.1145/1040305.1040315

[21] Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memories. SIAM J. Comput. 26, 4 (1997), 1208–1244.
https://doi.org/10.1137/S0097539794279614

[22] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (1978),

558–565. https://doi.org/10.1145/359545.359563

[23] Antoni W. Mazurkiewicz. 1986. Trace Theory. In Petri Nets: Central Models and Their Properties, Advances in Petri
Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986 (Lecture Notes in
Computer Science), Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg (Eds.), Vol. 255. Springer, 279–324.

https://doi.org/10.1007/3-540-17906-2_30

[24] Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Befrouei, and Georg Weissenbacher. 2018.

Randomized testing of distributed systems with probabilistic guarantees. PACMPL 2, OOPSLA (2018), 160:1–160:28.

https://doi.org/10.1145/3276530

[25] Christos H. Papadimitriou. 1979. The serializability of concurrent database updates. J. ACM 26, 4 (1979), 631–653.

https://doi.org/10.1145/322154.322158

[26] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent B. Welch. 1994. Session

Guarantees for Weakly Consistent Replicated Data. In Proceedings of the Third International Conference on Parallel and
Distributed Information Systems (PDIS 94), Austin, Texas, USA, September 28-30, 1994. IEEE Computer Society, 140–149.

https://doi.org/10.1109/PDIS.1994.331722

[27] Pierre Wolper. 1986. Expressing Interesting Properties of Programs in Propositional Temporal Logic. In Conference
Record of the Thirteenth Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
USA, January 1986. ACM Press, 184–193. https://doi.org/10.1145/512644.512661

, Vol. 1, No. 1, Article . Publication date: January 2018.

https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/3158119
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/3158113
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/3276530
https://doi.org/10.1145/322154.322158
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1145/512644.512661

	Abstract
	1 Introduction
	2 Consistency Criteria
	2.1 Histories
	2.2 Axiomatic Framework

	3 Checking Consistency Criteria
	4 Checking Consistency of Bounded-Width Histories
	4.1 Checking Serializability
	4.2 Reducing Prefix Consistency to Serializability
	4.3 Reducing Snapshot Isolation to Serializability

	5 Communication graphs
	6 Experimental Evaluation
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

