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Abstract

E�cient implementations of atomic objects such as concurrent stacks and
queues are especially susceptible to programming errors, and necessitate auto-
matic veri�cation. Unfortunately their correctness criteria � linearizability with
respect to given ADT speci�cations � are hard to verify. Even on classes of
implementations where the usual temporal safety properties like control-state
reachability are decidable, linearizability is undecidable.

In this work we demonstrate that verifying linearizability for certain �xed
ADT speci�cations is reducible to control-state reachability, despite being harder
for arbitrary ADTs. We e�ectuate this reduction for several of the most popular
atomic objects. This reduction yields the �rst decidability results for veri�cation
without bounding the number of concurrent threads. Furthermore, it enables
the application of existing safety-veri�cation tools to linearizability veri�cation.

1. Introduction

E�cient implementations of atomic objects such as concurrent queues and
stacks are di�cult to get right. Their complexity arises from the con�icting
design requirements of maximizing e�ciency/concurrency with preserving the
appearance of atomic behavior. Their correctness is captured by observational
re�nement, which assures that all behaviors of programs using these e�cient
implementations would also be possible were the atomic reference implementa-
tions used instead. Linearizability [11], being an equivalent property [7, 4], is
the predominant proof technique: one shows that each concurrent execution has
a linearization which is a valid sequential execution according to a speci�cation,
given by an abstract data type (ADT) or reference implementation. An ADT
is an object whose logical behavior is de�ned by a set of operations.

Verifying automatically that all executions of a given implementation are
linearizable with respect to a given ADT is an undecidable problem [3], even on
the typical classes of implementations for which the usual temporal safety prop-
erties are decidable, e.g., on �nite-shared-memory programs where each thread
is a �nite-state machine. What makes linearization harder than typical temporal
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safety properties like control-state reachability is the existential quanti�cation
of a valid linearization per execution.

In this work we demonstrate that verifying linearizability for certain �xed
ADTs is reducible to control-state reachability, despite being harder for arbitrary
ADTs. We believe that �xing the ADT parameter of the veri�cation problem is
justi�ed, since in practice, there are few ADTs for which specialized concurrent
implementations have been developed. We provide a methodology for carrying
out this reduction, and instantiate it on four ADTs: the atomic queue, stack,
register, and mutex.

Our reduction to control-state reachability holds on any class of implemen-
tations which is closed under intersection with regular languages and which is
data independent � informally, that implementations can perform only read
and write operations on the data values passed as method arguments. From
the ADT in question, our approach relies on expressing its violations as a �nite
union of regular languages.

In our methodology, we express the atomic object speci�cations using in-
ductive rules to facilitate the incremental construction of valid executions. For
instance in our atomic queue speci�cation, one rule speci�es that a dequeue
operation returning empty can be inserted in any execution, so long as each
preceding enqueue has a corresponding dequeue, also preceding the inserted
empty-dequeue. This form of inductive rule enables a locality to the reasoning
of linearizability violations.

Intuitively, �rst we prove that a sequential execution is invalid if and only
if some subsequence could not have been produced by one of the rules. Under
certain conditions this result extends to concurrent executions: an execution
is not linearizable if and only if some projection of its operations cannot be
linearized to a sequence produced by one of the rules. We thus correlate the �nite
set of inductive rules with a �nite set of classes of non-linearizable concurrent
executions. We then demonstrate that each of these classes of non-linearizable
executions is regular, which characterizes the violations of a given ADT as a
�nite union of regular languages. The fact that these classes of non-linearizable
executions can be encoded as regular languages is somewhat surprising since
the number of data values, and thus alphabet symbols, is, a priori, unbounded.
Our encoding thus relies on the aforementioned data independence property.

To complete the reduction to control-state reachability, we show that lin-
earizability is equivalent to the emptiness of the language intersection between
the implementation and �nite union of regular violations. When the implemen-
tation is a �nite-shared-memory program with �nite-state threads, this reduces
to the coverability problem for Petri nets, which is decidable, and EXPSPACE-
complete.

To summarize, our contributions are:

� a generic reduction from linearizability to control-state reachability,

� its application to the atomic queue, stack, register, and mutex ADTs,

� the methodology enabling this reduction, which can be reused on other
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ADTs, and

� the �rst decidability results for linearizability without bounding the num-
ber of concurrent threads.

Besides yielding novel decidability results, our reduction paves the way for the
application of existing safety-veri�cation tools to linearizability veri�cation.

Section 2 outlines basic de�nitions. Section 3 describes a methodology for
inductive de�nitions of data structure speci�cations. In Section 4 we identify
conditions under which linearizability can be reduced to control-state reacha-
bility, and demonstrate that typical atomic objects satisfy these conditions. Fi-
nally, we prove decidability of linearizability for �nite-shared-memory programs
with �nite-state threads in Section 7.

2. Preliminaries

We �x a (possibly in�nite) set D of data values, and a �nite setM of methods.
We consider that methods have exactly one argument, or one return value.
Return values are transformed into argument values for uniformity.2 We identify
a subset Mi ⊆ M of input methods in order to di�erentiate methods taking an
argument (e.g., the Enq method which inserts the argument value into a queue)
from the other methods (e.g., the Deq method which doesn't take an argument,
and returns the �rst element of a queue).

A method event is composed of a method m ∈M and a data value x ∈ D, and
is denoted (m,x). We de�ne the concatenation of method-event sequences u ⋅ v
in the usual way, and ε denotes the empty sequence.

De�nition 1. A sequential execution is a sequence of method events.

We also �x an arbitrary in�nite set O of operation (identi�ers). A call action
is composed of a method m ∈ M, a data value x ∈ D, an operation o ∈ O, and
is denoted callo m(x). Similarly, a return action is denoted reto m(x). The
operation o is used to match return actions to their call actions.

De�nition 2. A (concurrent) execution e is a sequence of call and return ac-
tions which satisfy a well-formedness property: every return has a call action
before it in e, using the same tuple m,x, o, and an operation o can be used only
twice in e, once in a call action, and once in a return action.

Example 1. callo1 Enq(7) ⋅callo2 Enq(4) ⋅reto1 Enq(7) ⋅reto2 Enq(4) is an
execution, while callo1 Enq(7) ⋅ callo2 Enq(4) ⋅ reto1 Enq(7) ⋅ reto1 Enq(4)
and callo1 Enq(7) ⋅ reto1 Enq(7) ⋅ reto2 Enq(4) are not.

2Method return values are guessed nondeterministically, and validated at return points.
This can be handled using the assume statements of typical formal speci�cation languages,
which only admit executions satisfying a given predicate. The argument value for methods
without argument or return values, or with �xed argument/return values, is ignored.
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De�nition 3. An implementation I is a set of (concurrent) executions.

Implementations represent libraries whose methods are called by external
programs, giving rise to the following closure properties [4]. In the following, c
denotes a call action, r denotes a return action, a denotes any action, and e, e′

denote executions.

� Programs can call library methods at any point in time:
e ⋅ e′ ∈ I implies e ⋅ c ⋅ e′ ∈ I so long as e ⋅ c ⋅ e′ is well formed.

� Calls can be made earlier:
e ⋅ a ⋅ c ⋅ e′ ∈ I implies e ⋅ c ⋅ a ⋅ e′ ∈ I.

� Returns can be made later:
e ⋅ r ⋅ a ⋅ e′ ∈ I implies e ⋅ a ⋅ r ⋅ e′ ∈ I.

Intuitively, these properties hold because call and return actions are not visible
to the other threads which are running in parallel.

For the remainder of this work, we consider only completed executions, where
each call action has a corresponding return action. This simpli�cation is sound
when implementation methods can always make progress in isolation [10]: for-
mally, for any execution e with pending operations, there exists an execution e′

obtained by extending e only with the return actions of the pending operations
of e. Intuitively this means that methods can always return without any help
from outside threads, avoiding deadlock.

We simplify reasoning on executions by abstracting them into histories.

De�nition 4. A history is a labeled partial order (O,<, l) with O ⊆ O and
l ∶ O →M ×D.

The order < is called the happens-before relation, and we say that o1 happens
before o2 when o1 < o2. Since histories arise from executions, their happens-
before relations are interval orders [4]: for distinct o1, o2, o3, o4, if o1 < o2 and
o3 < o4 then either o1 < o4, or o3 < o2. Intuitively, this comes from the fact that
concurrent threads share a notion of global time. Dh ⊆ D denotes the set of data
values appearing in h.

The history of an execution e is de�ned as (O,<, l) where:

� O is the set of operations which appear in e,

� o1 < o2 i� the return action of o1 is before the call action of o2 in e,

� an operation o occurring in a call action callo m(x) is labeled by (m,x).

Example 2. The history of the execution

callo1 Enq(7) ⋅ callo2 Enq(4) ⋅ reto1 Enq(7) ⋅ reto2 Enq(4)

is ({o1, o2},<, l) with l(o1) = Enq(7), l(o2) = Enq(4), and with < being the
empty order relation, since o1 and o2 overlap.
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Let h = (O,<, l) be a history and u a sequential execution of length n. We
say that h is linearizable with respect to u, denoted h ⊑ u, if there is a bijection
f ∶ O → {1, . . . , n} s.t.

� if o1 < o2 then f(o1) < f(o2),

� the method event at position f(o) in u is l(o).

De�nition 5. A history h is linearizable with respect to a set S of sequential
executions, denoted h ⊑ S, if there exists u ∈ S such that h ⊑ u.

A set of histories H is linearizable with respect to S, denoted H ⊑ S if
h ⊑ S for all h ∈H. We extend these de�nitions to executions according to their
histories. In that context, the set S is called a speci�cation.

A sequential execution u is said to be di�erentiated if, for all input methods
m ∈ Mi, and every x ∈ D, there is at most one method event m(x) in u. The
subset of di�erentiated sequential executions of a set S is denoted by S≠. The
de�nition extends to (sets of) executions and histories. For instance, an execu-
tion is di�erentiated if for all input methods m ∈ Mi and every x ∈ D, there is
at most one call action callo m(x).

Example 3. callo1 Enq(7)⋅callo2 Enq(7)⋅reto1 Enq(7)⋅reto2 Enq(7) is not
di�erentiated, as there are two call actions with the same input method (Enq)
and the same data value.

A renaming r is a function from D to D. Given a sequential execution
(resp., execution or history) u, we denote by r(u) the sequential execution
(resp., execution or history) obtained from u by replacing every data value
x by r(x).

De�nition 6. The set of sequential executions (resp., executions or histories)
S is data independent if:

� for all u ∈ S, there exists u′ ∈ S≠, and a renaming r such that u = r(u′),

� for all u ∈ S and for all renaming r, r(u) ∈ S.

When checking that a data-independent implementation I is linearizable
with respect to a data-independent speci�cation S, it is enough to do so for
di�erentiated executions [1]. Thus, in the remainder of the paper, we focus on
characterizing linearizability for di�erentiated executions, rather than arbitrary
ones.

Lemma 1 (Abdulla et al. [1]). A data-independent implementation I is lin-
earizable with respect to a data-independent speci�cation S, if and only if I≠ is
linearizable with respect to S≠.

Proof. (⇒) Let e be a (di�erentiated) execution in I≠. By assumption, it is
linearizable with respect to a sequential execution u in S, and the bijection
between the operations of e and the method events of u, ensures that u is
di�erentiated and belongs to S≠.
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(⇐) Let e be an execution in I. By data independence of I, we know there
exists e≠ ∈ I≠ and a renaming r such that r(e≠) = e. By assumption, e≠ is
linearizable with respect to a sequential execution u≠ ∈ S≠. We de�ne u = r(u≠),
and know by data independence of S that u ∈ S. Moreover, we can use the same
bijection used for e≠ ⊑ u≠ to prove that e ⊑ u.

3. Inductively-De�ned Data Structures

A data-structure S is given as an ordered sequence of rules R1, . . . ,Rn, each
of the form: u1 ⋅ u2⋯uk ∈ S ∧Guard(u1, . . . , uk)⇒ Expr(u1, . . . , uk) ∈ S, where
the variables ui are interpreted over sequential executions, and

� Guard(u1, . . . , uk) is a conjunction of conditions on u1, . . . , uk with atoms

� ui ∈M∗ (M ⊆M)

� matched(m,ui)

� Expr(u1, . . . , uk) is an expression e = a1 ⋅ a2⋯al where

� u1, . . . , uk appear in that order, exactly once, in e,

� each ai is either some uj , a method m, or a Kleene closure m∗ (m ∈
M),

� a method m ∈M appears at most once in e.

We allow k to be 0 for base rules, such as ε ∈ S.
A condition ui ∈M∗ (M ⊆M) is satis�ed when the methods used in ui are all

in M. The predicate matched(m,ui) is satis�ed when, for every method event
(m,x) in ui, there exists another method event in ui with the same data value
x.

Given u = u1 ⋅ . . . ⋅ uk and an expression e = Expr(u1, . . . , uk), we de�ne JeK
as the set of sequential executions which can be obtained from e by replacing
the methods m by a method event (m,x) and the Kleene closures m∗ by 0 or
more method events (m,x). All method events must use the same data value
x ∈ D.

A rule R ≡ u1 ⋅ u2⋯uk ∈ S ∧Guard(u1, . . . , uk) ⇒ Expr(u1, . . . , uk) ∈ S is
applied to a sequential execution w to obtain a new sequential execution w′

from the set:

⋃
w=w1⋅w2⋯wk∧

Guard(w1,...,wk)

JExpr(w1, . . . ,wk)K

We denote this w
RÐ→ w′. The set of sequential executions JSK = JR1, . . . ,RnK is

then de�ned as the set of sequential executions w which can be derived from
the empty word:

ε = w0

Ri1ÐÐ→ w1

Ri2ÐÐ→ w2 . . .
RipÐÐ→ wp = w,
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where i1, . . . , ip is a non-decreasing sequence of integers from {1 . . . , n}. This
means that the rules must be applied in order, and each rule can be applied 0
or several times.

When clear from context, we abuse notation and denote the set of sequential
executions JSK by S. Below we give inductive de�nitions for the atomic queue,
stack, register, and mutex data-structures.

Example 4. The queue has a method Enq to add an element to the data-
structure, and a method Deq to remove the elements in a FIFO order. The
method DeqEmpty can only return when the queue is empty (its parameter is
not used). The only input method is Enq. Formally, Queue is de�ned by the
rules R0,REnq,REnqDeq and RDeqEmpty.

R0 ≡ ε ∈ Queue

REnq ≡ u ∈ Queue ∧ u ∈ Enq∗ ⇒ u ⋅Enq ∈ Queue

REnqDeq ≡ u ⋅ v ∈ Queue ∧ u ∈ Enq∗ ∧ v ∈ {Enq,Deq}∗ ⇒ Enq ⋅ u ⋅Deq ⋅ v ∈ Queue

RDeqEmpty ≡ u ⋅ v ∈ Queue ∧matched(Enq,u)⇒ u ⋅DeqEmpty ⋅ v ∈ Queue

One derivation for Queue is:

ε ∈ Queue
REnqDeqÐÐÐÐÐÐ→ Enq(1) ⋅Deq(1) ∈ Queue

REnqDeqÐÐÐÐÐÐ→ Enq(2) ⋅Enq(1) ⋅Deq(2) ⋅Deq(1) ∈ Queue

REnqDeqÐÐÐÐÐÐ→ Enq(3) ⋅Deq(3) ⋅Enq(2) ⋅Enq(1) ⋅Deq(2) ⋅Deq(1) ∈ Queue

RDeqEmptyÐÐÐÐÐÐÐ→ Enq(3) ⋅Deq(3) ⋅DeqEmpty ⋅Enq(2) ⋅Enq(1) ⋅Deq(2) ⋅Deq(1) ∈ Queue

Similarly, Stack is composed of the rules R0,RPushPop,RPush,RPopEmpty.

R0 ≡ ε ∈ Stack
RPushPop ≡ u ⋅ v ∈ Stack ∧matched(Push,u) ∧matched(Push, v) ∧ u, v ∈ {Push,Pop}∗

⇒ Push ⋅ u ⋅ Pop ⋅ v ∈ Stack
RPush ≡ u ⋅ v ∈ Stack ∧matched(Push,u) ∧ u, v ∈ {Push,Pop}∗ ⇒ u ⋅ Push ⋅ v ∈ Stack

RPopEmpty ≡ u ⋅ v ∈ Stack ∧matched(Push,u)⇒ u ⋅ PopEmpty ⋅ v ∈ Stack

The register has a method Write used to write a data value, and a method
Read which returns the last written value. The only input method is Write. Its
rules are R0 and RWR:

R0 ≡ ε ∈ Register
RWR ≡ u ∈ Register⇒Write ⋅Read∗ ⋅ u ∈ Register

The mutex has a method Lock, used to take ownership of the Mutex, and a
method Unlock, to release it. The only input method is Lock. It is composed of
the rules R0,RLock and RLU :

R0 ≡ ε ∈Mutex

RLock ≡ Lock ∈Mutex

RLU ≡ u ∈Mutex⇒ Lock ⋅Unlock ⋅ u ∈Mutex

In practice, Lock and Unlock methods do not have a parameter. Here, the
parameter represents a ghost variable which helps us relate Unlock to their
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corresponding Lock. Any implementation will be data independent with respect
to these ghost variables.

We assume that the rules de�ning a data-structure S satisfy a non-ambiguity
property stating that the last step in deriving a sequential execution in JSK is
unique and it can be e�ectively determined. Since we are interested in character-
izing the linearizations of a history and its projections, this property is extended
to permutations of projections of sequential executions which are admitted by
S.

The projection u∣D of a sequential execution u to a subset D ⊆ D of data
values is obtained from u by erasing all method events with a data value not
in D. The set of projections of u is denoted proj(u). We write u ∖ x for the
projection u∣D∖{x}.

Example 5. The projection Enq(1)Enq(2)Deq(1)Enq(3)Deq(2)Deq(3)∖1 is
equal to Enq(2)Enq(3)Deq(2)Deq(3).

We assume that the rules de�ning a data-structure are well-formed, that is:

� for all u ∈ JSK, there exists a unique rule, denoted by last(u), that can
be used as the last step to derive u, i.e., for every sequence of rules
Ri1 , . . . ,Rin leading to u, Rin = last(u). For u /∈ JSK, last(u) is also
de�ned but can be arbitrary, as there is no derivation for u.

� if last(u) = Ri, then for every permutation u′ ∈ JSK of a projection of u,
last(u′) = Rj with j ≤ i. If u′ is a permutation of u, then last(u′) = Ri.

Given a (completed) history h, all the u such that h ⊑ u are permutations of
one another. The last condition of non-ambiguity thus enables us to extend the
function last to histories: last(h) is de�ned as last(u) where u is any sequen-
tial execution such that h ⊑ u. We say that last(h) is the rule corresponding
to h.

Example 6. For Queue, we de�ne last for a sequential execution u as follows:

� if u contains a DeqEmpty operation, last(u) = RDeqEmpty,

� else if u contains a Deq operation, last(u) = REnqDeq,

� else if u contains only Enq's, last(u) = REnq,

� else (if u is empty), last(u) = R0.

Since the conditions we use to de�ne last are closed under permutations, we get
that for any permutation u2 of u, last(u) = last(u2), and last can be extended
to histories. Therefore, the rules R0,REnqDeq,RDeqEmpty are well-formed.

De�nition of last for a sequential execution u ∈ Stack:

� if u contains a PopEmpty operation, last(u) = RPopEmpty,
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� else if u contains an unmatched Push operation, last(u) = RPush,

� else if u contains a Pop operation, last(u) = RPushPop,

� else (if u is empty), last(u) = R0.

De�nition of last for a sequential execution u ∈ Register:

� if u is not empty, last(u) = RWR,

� else, last(u) = R0.

De�nition of last for a sequential execution u ∈Mutex:

� if u contains an Unlock operation, last(u) = RLU ,

� else if u is not empty, last(u) = RLock,

� else, last(u) = R0.

4. Reducing Linearizability to State Reachability

Our end goal for this section is to show that for any data-independent im-
plementation I, and any speci�cation S satisfying several conditions de�ned in
the following, there exists a computable �nite-state automaton A (over call and
return actions) such that:

I ⊑ S ⇐⇒ I ∩A = ∅

Then, given a model of I, the linearizability of I is reduced to checking empti-
ness of the synchronized product between the model of I and A. The automaton
A represents (a subset of the) executions which are not linearizable with respect
to S.

The �rst step in proving our result is to show that, under some conditions, we
can partition the concurrent executions which are not linearizable with respect
to S into a �nite number of classes. Intuitively, each non-linearizable execution
must correspond to a violation for one of the rules in the de�nition of S.

We identify a property, which we call step-by-step linearizability, which is
su�cient to obtain this characterization. Intuitively, step-by-step linearizabil-
ity enables us to build a linearization for an execution e incrementally, using
linearizations of projections of e.

The second step is to show that, for each class of violations (i.e. with respect
to a speci�c rule Ri), we can build a �nite automaton Ai such that: a) when
restricted to well-formed executions, Ai recognizes a subset of this class; b)
each non-linearizable execution has a corresponding execution, obtained by data
independence, accepted by Ai. If such an automaton exists, we say that Ri is
co-regular (formally de�ned later in this section).

We prove that, provided these two properties hold, we have the equivalence
mentioned above, by de�ning A as the union of the Ai's built for each rule Ri.
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4.1. Reduction to a Finite Number of Classes of Violations

Our goal here is to give a characterization of the sequential executions which
belong to a data-structure, as well as to give a characterization of the concur-
rent executions which are linearizable with respect to the data-structure. This
characterization enables us to classify the linearization violations into a �nite
number of classes.

Our characterization relies heavily on the fact that the data-structures we
consider are closed under projection, i.e. for all u ∈ S,D ⊆ D, we have u∣D ∈ S.
The reason for this is that the guards used in the inductive rules are closed
under projection.

Lemma 2. Any data-structure S de�ned in our framework is closed under
projection.

Proof. Let u ∈ S and let D ⊆ D. Since u ∈ S, there is a sequence of applications
of rules starting from the empty word ε which can derive u. We remove from
this derivation all the rules corresponding to a data value x ∉D, and we project
all the sequential executions appearing in the derivation on the set D. Since the
predicates which appear in the conditions are all closed under projection, the
derivation remains valid, and proves that u∣D ∈ S.

A sequential execution u is said to match a rule R with conditions Guard
if there exist a data value x and sequential executions u1, . . . , uk such that u
can be written as JExpr(u1, . . . , uk)K, where x is the data value used for the
method events, and such that Guard(u1, . . . , uk) holds. We call x the witness
of the decomposition. We denote by MS(R) the set of sequential executions
which match R, and we call it the matching set of R.

Example 7. MS(REnqDeq) is the set of sequential executions of the form Enq(x)⋅
u ⋅Deq(x) ⋅ v for some x ∈ D, and with u ∈ Enq∗.

When an execution e is linearizable with respect toMS(R), i.e. to a sequence
u which matches R with some witness x, we say that e is linearizable with respect
to MS(R) with witness x.

Lemma 3. Let S = R1, . . . ,Rn be a data-structure and u be a di�erentiated
sequential execution. Then,

u ∈ S ⇐⇒ proj(u) ⊆ ⋃
i∈{1,...,n}

MS(Ri)

Proof. (⇒) Using Lemma 2, we know that S is closed under projection. Thus,
any projection of a sequential execution u of S is itself in S and has to match
one of the rules R1, . . . ,Rn.

(⇐) By induction on the size of u. We know u ∈ proj(u), so it can be
decomposed to satisfy the conditions Guard of some rule R of S. The recursive
condition is then veri�ed by induction.
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Enq(d1)

Enq(d2)

Enq(d3)

Deq(d1)

Deq(d2)

Deq(d3)

Figure 1: An execution linearizable with respect to MS(REnqDeq) with witness d1, and such
that e ∖ d1 is linearizable with respect to JR0,REnq ,REnqDeqK. Step-by-step linearizability
ensures that e is itself linearizable with respect to JR0,REnq ,REnqDeqK. Time goes from left
to right.

This characterization enables us to get rid of the recursion, so that we only
have to check non-recursive properties. We want a similar lemma to characterize
e ⊑ S for an execution e. This is where we introduce the notion of step-by-step
linearizability, as the lemma will hold under this condition.

De�nition 7. A data-structure S = R1, . . . ,Rn is said to be step-by-step lin-
earizable if for any di�erentiated execution e, any i ∈ {1, . . . , n} and x ∈ D, if e
is linearizable with respect to MS(Ri) with witness x, we have:

e ∖ x ⊑ JR1, . . . ,RiK Ô⇒ e ⊑ JR1, . . . ,RiK

Example 8. The execution e of Fig 1 is linearizable with respect to toMS(REnqDeq)
with witness d1. This means that Enq(d1) is minimal amongst all operations
and that Deq(d1) is minimal amongst all dequeue operations. The rest of
the execution e ∖ d1 is linearizable with respect to JR0,REnq,REnqDeqK (into
Enq(d2) ⋅Enq(d3) ⋅Deq(d2) ⋅Deq(d3)). The notion of step-by-step linearizabil-
ity ensures that e is also linearizable with respect to JR0,REnq,REnqDeqK (into
Enq(d1) ⋅Enq(d2) ⋅Enq(d3) ⋅Deq(d1) ⋅Deq(d2) ⋅Deq(d3)).

This notion applies to the usual data-structures, as we will prove in Section 5.
Intuitively, step-by-step linearizability will help us prove the right-to-left direc-
tion of Lemma 4 by allowing us to build a linearization for e incrementally, from
the linearizations of projections of e. Lemma 4 is a key step in our reasoning,
and can be seen as a generalization of Lemma 3 from sequential to concurrent
executions.

Lemma 4. Let S be a data-structure with rules R1, . . . ,Rn. Let e be a di�er-
entiated execution. If S is step-by-step linearizable, we have (for any j):

e ⊑ JR1, . . . ,RjK ⇐⇒ proj(e) ⊑ ⋃
i≤j

MS(Ri)

Proof. (⇒) We know there exists u ∈ JR1, . . . ,RjK such that e ⊑ u. Each pro-
jection e′ of e can be linearized with respect to some projection u′ of u, which
belongs to ⋃i≤j MS(Ri) according to Lemma 3.
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(⇐) By induction on the size of e. We know e ∈ proj(e) so it can be linearized
with respect to a sequential execution u matching some rule Rk (k ≤ j) with
some witness x. Let e′ = e ∖ x.

Since S is well-formed, we know that no projection of e can be linearized
to a matching set MS(Ri) with i > k, and in particular no projection of e′.
Thus, we deduce that proj(e′) ⊑ ⋃i≤k MS(Ri), and conclude by induction that
e′ ⊑ JR1, . . . ,RkK.

We �nally use the fact that S is step-by-step linearizable to deduce that
e ⊑ JR1, . . . ,RkK and e ⊑ JR1, . . . ,RjK because k ≤ j.

Using Lemma 4, if we're looking for an execution e which is not linearizable
with respect to some step-by-step linearizable data-structure S, we must prove
that proj(e) /⊑ ⋃iMS(Ri), i.e. we must �nd a projection e′ ∈ proj(e) which is not
linearizable with respect to any MS(Ri) (e′ /⊑ ⋃iMS(Ri)).

This is challenging as it is di�cult to check that an execution is not lineariz-
able with respect to a union of sets simultaneously. Using non-ambiguity, we
simplify this check by making it more modular, so that we only have to check
one set MS(Ri) at a time.

Lemma 5. Let S be a data-structure with rules R1, . . . ,Rn. Let e be a di�er-
entiated execution. If S is step-by-step linearizable, we have:

e ⊑ S ⇐⇒ ∀e′ ∈ proj(e). e′ ⊑MS(R) where R = last(e′)

Proof. (⇒) Let e′ ∈ proj(e). By Lemma 4, we know that e′ is linearizable with
respect to MS(Ri) for some i. Since S is well-formed, last(e′) is the only rule
such that e′ ⊑MS(R) can hold, which ends this part of the proof.
(⇐) Particular case of Lemma 4.

Lemma 5 gives us the �nite kind of violations that we mentioned in the
beginning of the section. More precisely, if we negate both sides of the equiva-
lence, we have: e /⊑ S ⇐⇒ ∃e′ ∈ proj(e). e′ /⊑MS(R) (where R = last(e′)). This
means that whenever an execution is not linearizable with respect to S, there
can be only �nitely reasons, namely there must exist a projection which is not
linearizable with respect to the matching set of its corresponding rule.

4.2. Regularity of Each Class of Violations

Our goal is now to construct, for each R, a (non-deterministic) �nite-state
automaton A which recognizes (a subset of) the executions e, which have a
projection e′ such that e′ /⊑ MS(R). More precisely, we want the following
property.

De�nition 8. A rule R is said to be co-regular if we can build an automaton
A such that, for any data-independent implementation I, we have:

I ∩A ≠ ∅ ⇐⇒ ∃e ∈ I≠, e′ ∈ proj(e). last(e′) = R ∧ e′ /⊑MS(R)

A data-structure S is co-regular if all of its rules are co-regular.
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Formally, the alphabet of A is the set EvS(D), de�ned as:

{call m(x) ∣ m ∈M, x ∈D} ∪ {ret m(x) ∣ m ∈M, x ∈D}

for a �nite subset D ⊆ D. (The automaton doesn't read operation identi�ers,
thus, when taking the intersection with I, we ignore them and read events
callo m(x) and reto m(x) as call m(x) and ret m(x).)

As we will show in Section 6, all the data-structures we de�ned are co-
regular. When we have a data-structure which is both step-by-step linearizable
and co-regular, we can make a linear time reduction from the veri�cation of
linearizability with respect to S to a reachability problem, as illustrated in
Theorem 1.

Theorem 1. Let S be a step-by-step linearizable and co-regular data-structure
and let I be a data-independent implementation. There exists a �nite automaton
A such that:

I ⊑ S ⇐⇒ I ∩A = ∅

Proof. Let A1, . . . ,An be the �nite automata used to show that R1, . . . ,Rn are
co-regular, and let A be the (non-deterministic) union of the Ai's.
(⇒) Assume there exists an execution e ∈ I ∩ A. From the de�nition of

�co-regular�, there exists e′′ ∈ I≠ and e′ ∈ proj(e′′) such that e′ /⊑MS(Ri), where
Ri is the rule corresponding to e′. By Lemma 5, e′′ is not linearizable with
respect to S.
(⇐) Assume there exists an execution e ∈ I which is not linearizable with

respect to S. By Lemma 1, we can assume that e is di�erentiated. By Lemma 5,
it has a projection e′ ∈ proj(e) such that e′ /⊑ MS(Ri), where Ri is the rule
corresponding to e′. By de�nition of co-regularity, this means that I ∩Ai ≠ ∅,
and that I ∩A ≠ ∅.

5. Step-by-step Linearizability

The goal of this section is to prove that all data-structures considered so
far are step-by-step linearizable. More speci�cally, we want to prove, given a
data-structure S with rules R1, . . . ,Rn, that for any di�erentiated history h, if
h is linearizable with respect to MS(Ri) with witness x, we have:

h ∖ x ⊑ JR1, . . . ,RiK Ô⇒ h ⊑ JR1, . . . ,RiK.

The proofs follow a generic schema which consists in the following: we let
u′ ∈ JR1, . . . ,RiK be a sequential execution such that h ∖ x ⊑ u′ and build a graph
G from u′, whose acyclicity implies that h ⊑ JR1, . . . ,RiK. Then we show that
we can always choose u′ so that this G is acyclic.

Lemma 6. Queue, Stack, Register, and Mutex are step-by-step linearizable.
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Proof. For better readability we make a sublemma per data-structure. We begin
by proving that Queue is step-by-step linearizable. Concerning rule REnqDeq,
our goal is to prove that, if a history h has an Enq(x) which is minimal (among
all operations), and a corresponding Deq(x) which is minimal among all Deq
operations such that h ∖ x is linearizable, then h is linearizable as well.

Similarly, with rule RDeqEmpty, we will prove that if a history h is linearizable
with respect to the matching set of RDeqEmpty, i.e. it can be linearized to u ⋅
DeqEmpty ⋅v � with matched(Enq,u) � and h withoutDeqEmpty is linearizable
with respect to Queue, then h itself is linearizable with respect to Queue.

Lemma 7. Queue is step-by-step linearizable.

Proof. Let h be a di�erentiated history, and u a sequential execution such that
h ⊑ u. We abuse notation and mix labels with operations themselves, as opera-
tion labels of the form Enq(x) or Deq(x) are unique in a di�erentiated history.
For instance, we will reference an (the) operation labeled by Enq(d) as Enq(d).
We have three cases to consider:

1) u matches REnq with witness x: let h′ = h∖x and assume h′ ⊑ JR0,REnqK.
Since u matches REnq, we know h only contain Enq operations. The set
JR0,REnqK is composed of the sequential executions formed by repeating the
Enq method events, which means that h ⊑ JR0,REnqK.

2) u matches REnqDeq with witness x: let h′ = h ∖ x and assume h′ ⊑
JR0,REnq,REnqDeqK. Let u′ ∈ JR0,REnq,REnqDeqK such that h′ ⊑ u′. We de-
�ne a graph G whose nodes are the operations of h and there is an edge from
operation o1 to o2 if either:

1. o1 happens before o2 in h, or

2. the method event corresponding to o1 in u
′ is before the one corresponding

to o2, or

3. o1 = Enq(x) and o2 is any other operation, or

4. o1 =Deq(x) and o2 is any other Deq operation.

If G is acyclic, any total order compatible with G forms a sequence u2 such that
h ⊑ u2 and such that u2 can be built from u′ by adding Enq(x) at the beginning
and Deq(x) before all Deq method events. Thus, u2 ∈ JR0,REnq,REnqDeqK and
h ⊑ JR0,REnq,REnqDeqK.

Assume that G has a cycle, and consider a cycle C of minimal size. We show
that there is only one kind of cycle possible, and that this cycle can be avoided
by choosing u′ appropriately. Such a cycle can only contain one happens-before
edge (edges of type 1), because if there were two, we could apply the interval
order property to reduce the cycle. Similarly, since the order imposed by u′ is
a total order, it also satis�es the interval order property, meaning that C can
only contain one edge of type 2.

Moreover, C can also contain only one edge of type 3, otherwise it would
have to go through Enq(x) more than once. Similarly, it can contain only one
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edge of type 4. It cannot contain a type 3 edge Enq(x) → o1 at the same time
as a type 4 edge Deq(x)→ o2, because we could shortcut the cycle by a type 3
edge Enq(x)→ o2.

Finally, it cannot be a cycle of size 2. For instance, a type 2 edge cannot
form a cycle with a type 1 edge because h′ ⊑ u′. The only form of cycles left are
the two cycles of size 3 where:

� Enq(x) is before o1 (type 3), o1 is before o2 in u′ (type 2), and o2 happens
before Enq(x) (type 1): this is not possible, because h is linearizable with
respect to u which matches REnqDeq with x as a witness. This means
that u starts with the method event Enq(x), and that no operation can
happen-before Enq(x) in h.

� Deq(x) is before o1 (type 4), o1 is before o2 in u′ (type 2), and o2 happens
before Deq(x) (type 1): by de�nition, we know that o1 is a Deq operation;
moreover, since h is linearizable with respect to u which matches REnqDeq

with x as a witness, no Deq operation can happen-before Deq(x) in h,
and o2 is an Enq operation. Let d1, d2 ∈ D such that Deq(d1) = o1 and
Enq(d2) = o2.
Since o1 is before o2 in u′, we know that d1 and d2 must be di�erent.
Moreover, there is no happens-before edge from o1 to o2, or otherwise,
by transitivity of the happens-before relation, we'd have a cycle of size 2
between o1 and Deq(x).
Assume without loss of generality that o1 is the rightmost Deq method
event which is before o2 in u

′, and let o12, . . . , o
s
2 be the Enq method events

between o1 and o2. There is no happens-before edge o1<oi2, because by
applying the interval order property with the other happens-before edge
o2<Deq(x), we'd either have o1<Deq(x) (forming a cycle of size 2) or
o2<oi2 (not possible because h′ ⊑ u′ and oi2 is before o2 in u′).

Let u′2 be the sequence u′ where Deq(d1) has been moved after o2. Since
we know there is no happens-before edge from Deq(d1) to oi2 or to o2,
we can deduce that: h′ ⊑ u′2. Moreover, if we consider the sequence of
deductions which proves that u′ ∈ JR0,REnq,REnqDeqK, we can alter it
when we insert the pair Enq(d1) and o1 = Deq(d1) by inserting o1 after
the oi2's and after o2, instead of before (the conditions of the rule REnqDeq

allow it).

Cycles of size 3 of the form (type 3 or 4, type 1, type 2) are not possible
as the operations Enq(x) and Deq(x) do not belong to u′. This concludes
case 2), as we're able to choose u′ so that G is acyclic, and prove that h ⊑
JR0,REnq,REnqDeqK. After transforming u′ to u′2, if there are any cycles left,
we can reapply the procedure. This procedure can only be applied a �nite
number of times, as at each step, the number of pairs (o1, o2) where o1 is a
dequeue operation and o2 is an enqueue operation is getting smaller. As we
move Deq(d1) to the right of (at least one) enqueue operations, this number for
u′2 is strictly smaller than for u′.
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3) u matches RDeqEmpty with witness x: let o be the DeqEmpty operation
corresponding to the witness. Let h′ = h ∖ x and assume h′ ⊑ Queue. Without
loss of generality, we assume that u does not contain a Deq(d) operation before
its corresponding Enq(d) operation, for some d ∈ D. The reason is that, when
Deq(d) is before Enq(d) in u, we can move Deq(d) to the right, and Enq(d) to
the left, until Enq(d) becomes to the left of Deq(d) in the sequence u, and still
have h ⊑ u. Indeed, it is not possible that there exist (possibly equal) operations
o1, o2 such that Deq(d) happens before o1 (in h), o2 happens before Enq(d),
and Deq(d), o1, o2, Enq(d) appear in that order in u. (Operation o1 prevents
Deq(d) from being moved to the right, while o2 prevents Enq(d) from being
moved to the left.) The happens-before relation (of h) being an interval order,
that would imply either Deq(d) happens before Enq(d) contradicting h′ ⊑ u′,
or o2 happens before o1 contradicting h ⊑ u.

Let L be the set of operations which are before o in u, and R the ones
which are after. Let DL be the data values appearing in L and DR be the data
values appearing in R. Since u matches RDeqEmpty, we know that L contains
no unmatched Enq operations.

Let u′ ∈ Queue such that h′ ⊑ u′. Let u′L = u′∣DL
and u′R = u′∣DR

. Since
Queue is closed under projection, u′L, u

′
R ∈ Queue. Let u2 = u′L ⋅ o ⋅ u′R. We can

show that u2 ∈ Queue by using the derivations of u′L and u′R. Intuitively, this
is because Queue is closed under concatenation when the left-hand sequential
execution has no unmatched Enq method event, like u′L.

Moreover, we have h ⊑ u2, as shown in the following. We de�ne a graph G
whose nodes are the operations of h and there is an edge from operation o1 to
o2 if either:

1. o1 happens before o2 in h, or

2. the method event corresponding to o1 in u2 is before the one corresponding
to o2.

Assume there is a cycle inG, meaning there exists o1, o2 such that o1 happens
before o2 in h, but the corresponding method events are in the opposite order
in u2.

� If o1, o2 ∈ L, or o1, o2 ∈ R, this contradicts h′ ⊑ u′.

� If o1 ∈ R and o2 ∈ L, this contradicts h ⊑ u.

� If o1 ∈ R and o2 = o, or if o1 = o and o2 ∈ L, this contradicts h ⊑ u.

This shows that h ⊑ u2 as it proves that the happens-before relation of h is a
subset of the relation induced by the sequence u2. Thus, we have h ⊑ Queue and
concludes the proof that the Queue is step-by-step linearizable.

Proving that Stack is step-by-step linearizable can be done like for the rule
RDeqEmpty of Queue. The idea is again to combine two linearizations of subhis-
tories into a linearization for the full history h.

16



Lemma 8. Stack is step-by-step linearizable.

Proof. Let h be a di�erentiated history, and u a sequential execution such that
h ⊑ u. We have three cases to consider:

1) (very similar to case 3 of the Queue) u matches RPushPop with witness
x: let a and b be respectively the Push and Pop operations corresponding to
the witness. Let h′ = h ∖ x and assume h′ ⊑ JR0,RPushPopK. Let L be the set of
operations which are before b in u, and R the ones which are after. Let DL be
the data values appearing in L and DR be the data values appearing in R. Since
u matches RPushPop, we know that L contains no unmatched Push operations.

Let u′ ∈ JR0,RPushPopK such that h′ ⊑ u′. Let u′L = u′∣DL
and u′R = u′∣DR

.
Since JR0,RPushPopK is closed under projection, u′L, u

′
R ∈ JR0,RPushPopK. Let

u2 = a ⋅u′L ⋅b ⋅u′R. We can show that u2 ∈ JR0,RPushPopK by using the derivations
of u′L and u′R.

Moreover, we have h ⊑ u2, because if the total order of u2 didn't respect
the happens-before relation of u2, it could only be because of four reasons, all
leading to a contradiction:

� the violation is between two L operations or two R operations, contradict-
ing h′ ⊑ u′

� the violation is between a L and an R operation, contradicting h ⊑ u

� the violation is between b and another operation, contradicting h ⊑ u

� the violation is between a and another operation contradicting h ⊑ u

This shows that h ⊑ JR0,RPushPopK and concludes case 1.
2) u matches RPush with witness x: similar to case 1
3) u matches RPopEmpty with witness x: identical to case 3 of the Queue

Proving step-by-step linearizability for Register and Mutex is similar to the
REnqDeq rule of Queue.

Lemma 9. Register is step-by-step linearizable.

Proof. Let h be a di�erentiated history, and u a sequential execution such that
h ⊑ u and such that u matches the rule RWR with witness x. Let a and b1, . . . , bs
be respectively the Write and Read's operations of h corresponding to the
witness.

Let h′ = h∖x and assume h′ ⊑ JR0,RWRK. Let u′ ∈ JR0,RWRK such that h′ ⊑
u′. Let u2 = a ⋅ b1 ⋅ b2⋯bs ⋅u′. By using rule RWR on u′, we have u2 ∈ JR0,RWRK.
Moreover, we prove that h ⊑ u2 by contradiction. Assume that the total order
imposed by u2 doesn't respect the happens-before relation of h. All three cases
are not possible:

� the violation is between two u′ operations, contradicting h′ ⊑ u′,

� the violation is between a and another operation, i.e. there is an operation
o which happens before a in h, contradicting h ⊑ u,
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� the violation is between some bi and a u′ operation, i.e. there is an oper-
ation o which happens before bi in h, contradicting h ⊑ u.

Thus, we have h ⊑ u2 and h ⊑ JR0,RWRK, which ends the proof.

Lemma 10. Mutex is step-by-step linearizable.

Proof. Identical to the Register proof, except there is only one Unlock operation
(b), instead of several Read operations (b1, . . . , bs).

6. Co-Regularity

Our goal in this section is to prove that each rule R we considered is
co-regular, meaning, we can build an automaton A such that, for any data-
independent implementation I, we have:

A ∩ I ≠ ∅ ⇐⇒ ∃e ∈ I≠, e′ ∈ proj(e). last(e′) = R ∧ e′ /⊑MS(R).

We have a generic schema to build the automaton, which is �rst to charac-
terize a violation by the existence of a cycle of some kind, and then build an
automaton recognizing such cycles. For some of the rules, we prove that these
cycles can always be bounded, thanks to a small model property. For the others,
even though the cycles can be unbounded, we can still build an automaton.

We prove the co-regularity of REnqDeq and RDeqEmpty respectively in Sec-
tion 6.1 and Section 6.2. The two rules require di�erent approaches, but all
other rules we consider will look like one of these two. We will then explain
the similarities with the rules of Stack in Section 6.3. The co-regularity of the
Register and Mutex rules are similar to the co-regularity of REnqDeq.

6.1. Co-Regularity of REnqDeq

Our approach in this section is to prove a small model property for the
rule REnqDeq. More precisely, we want to prove that when a history is not
linearizable with respect to the matching set of REnqDeq, then it has a small
projection which not linearizable either. We can then build an automaton which
only recognizes the small violations.

Lemma 11. Given a history h, if ∀d1, d2 ∈ Dh, h∣{d1,d2} ⊑ MS(REnqDeq), then
h ⊑MS(REnqDeq).

Note: Claims 1, 2, 3 are part of the proof of Lemma 11.

Proof. We �rst identify constraints which are su�cient to prove h ⊑MS(REnqDeq).

Claim 1. Let h be a history and d1 a data value of Dh. If Enq(d1) />Deq(d1),
and for all operations o, we have Enq(d1) /> o, and for all Deq operations o, we
have Deq(d1) /> o, then h is linearizable with respect to MS(REnqDeq)
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Proof. We de�ne a graph G whose nodes are the elements of h, and whose edges
include both the happens-before relation as well as the constraints given by the
Lemma. G is acyclic by assumption and any total order compatible with G
corresponds to a linearization of h which is in MS(REnqDeq).

Notice that this doesn't necessarily mean that h is linearizable with respect
to the Queue, but that it's possible to linearizable h into a sequence where
Enq(d1) is at the beginning and Deq(d1) is before all Deq operations.

Given d1, d2 ∈ Dh, we denote by d1 Wh,MS(R) d2 the fact that h∣{d1,d2} is
linearizable with respect to MS(R), by using d1 as a witness. We reduce the
notation to d1 W d2 when the context is not ambiguous.

First, we show that if the same data value d1 can be used as a witness for
all projections on 2 data values, then we can linearize the whole history (using
this same data value as a witness).

Claim 2. For d1 ∈ Dh, if ∀d ≠ d1, d1 W d, then h ⊑MS(REnqDeq).

Proof. Since ∀d ≠ d1, d1 W d, the happens-before relation of h respects the
constraints given by Lemma 1, and we can conclude that h ⊑MS(REnqDeq).

Next, we show the key characterization, which enables us to reduce non-
linearizability with respect to MS(REnqDeq) to the existence of a cycle in the
��W relation.

Claim 3. If h /⊑MS(REnqDeq), then h has a cycle d1 ��W d2 ��W . . . ��W dt ��W d1

Proof. Let d1 ∈ Dh. By Lemma 2, we know there exists d2 ∈ Dh such that
d1 ��W d2. Likewise, we know there exists d3 ∈ Dh such that d2 ��W d3. We
continue this construction until we form a cycle.

We can now prove the small model property stated in Lemma 11. Assume
h /⊑ MS(R). By Lemma 3, it has a cycle d1 ��W d2 ��W . . . ��W dt ��W d1. If
there exists a data value x such that Deq(x) happens before Enq(x), then
h∣{x} /⊑MS(REnqDeq), which contradicts our assumptions.

For each i, there are two possible reasons for which di ��W d(i mod t)+1. The
�rst one is that Enq(di) is not minimal in the projection on {di, d(i mod t)+1}
(reason (a)). The second one is that Deq(di) is not minimal with respect to the
Deq operations (reason (b)).

We label each edge of our cycle by either (a) or (b), depending on which
one is true (if both are true, pick arbitrarily). Then, using the interval order
property, we have that, if di��W d(i mod t)+1 for reason (a), and dj ��W d(j mod t)+1
for reason (a) as well, then either di ��W d(j mod t)+1, or dj ��W d(i mod t)+1 (for
reason (a)). This enables us to reduce the cycle and leave only one edge for
reason (a).

The same applies for reason (b). This allows us to reduce the cycle to a cycle
of size 2 (one edge for reason (a), one edge for reason (b)) or to a cycle (size 1)
(reason (a)), which corresponds to the fact that there exists a data value x such
that Deq(x) happens before Enq(x). Self-loop cycles (size 1) (reason (b)) are
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not possible, as projections over 1 data value contain only one Deq operation.
For cycles of size 2, if d1 and d2 are the two data values appearing in the cycle,
we have: h∣{d1,d2} /⊑MS(REnqDeq), which is what we wanted to prove.

Having the small model property, we can build a �nite automaton which
recognizes each of the small violations, to prove that indeed rule REnqDeq is
co-regular.

Lemma 12. The rule REnqDeq is co-regular.

Proof. We prove in Lemma 11 that if a di�erentiated history h is not linearizable
with respect to MS(REnqDeq), then it has a projection over 1 or 2 data values
which is not linearizable with respect to MS(REnqDeq) either. Violations of
histories with two values are: i) there is a value x such that Deq(x) happens
before Enq(x) (or Enq(x) doesn't exist in the history) or ii) there are two
operations Deq(x) in h or, iii) there are two values x and y such that Enq(x)
happens before Enq(y), and Deq(y) happens before Deq(x) (Deq(x) doesn't
exist in the history).

q0 q1 q2 q3 q4

EvQueue(3)

call Deq(2)

EvQueue(3) EvQueue(3) EvQueue(3) EvQueue(3)

call Enq(1) ret Enq(1) call Enq(2) ret Deq(2)

q8 q9

EvQueue(2) EvQueue(2)

call Deq(1)

ret Deq(1)
q5 q6 q7

EvQueue({1,2}) EvQueue({1,2}) EvQueue({1,2})

call Deq(1)

ret Deq(1) ret Deq(1)

Figure 2: A non-deterministic automaton recognizing REnqDeq violations. The top-left branch
recognizes executions which have a Deq with no corresponding Enq. The top-right branch
recognizes two Deq's returning the same value, which is not supposed to happen in a di�eren-
tiated execution. The bottom branch recognizes FIFO violations. By the closure properties
of implementations, we can assume the call Deq(2) are at the beginning.

The automatonAREnqDeq
in Fig 2 works on the �nite alphabet EvQueue({1,2,3})

and recognizes all such small violations (top-left branch for i, top-right branch
for ii, bottom branch for iii).

Let I be any data-independent implementation. We show that

AREnqDeq
∩ I ≠ ∅ ⇐⇒ ∃e ∈ I≠, e′ ∈ proj(e).

last(e′) = REnqDeq ∧ e′ /⊑MS(REnqDeq)
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(⇒) Let e ∈ I be an execution which is accepted by AREnqDeq
. By data

independence, let e≠ ∈ I and r a renaming such that e = r(e≠), and assume
without loss of generality that r doesn't rename the data values 1 and 2. If
e is accepted by one of the top two branches of AREnqDeq

, we can project e≠
on value 1 to obtain a projection e′ such that last(e′) = REnqDeq and e′ /⊑
MS(REnqDeq). Likewise, if e is accepted by the bottom branch, we can project
e≠ on {1,2}, and obtain again a projection e′ such that last(e′) = REnqDeq and
e′ /⊑MS(REnqDeq).
(⇐) Let e≠ ∈ I≠ such that there is a projection e′ such that last(e′) =

REnqDeq and e′ /⊑ MS(REnqDeq). As recalled at the beginning of the proof, we
know e≠ has to contain a violation of type i, ii, or ii. If it is of type i or ii,
we de�ne the renaming r, which maps x to 1, and all other data values to 2.
The execution r(e≠) can then be recognized by on of the top two branches of
AREnqDeq

and belongs to I by data independence.
Likewise, if it is of type iii, r will map x to 1, and y to 2, and all other

data values to 3, so that r(e≠) can be recognized by the bottom branch of
AREnqDeq

.

6.2. Co-Regularity of RDeqEmpty

As opposed to REnqDeq, the rule RDeqEmpty doesn't have a small model
property. Yet, we show that we can still de�ne a �nite automaton to recognize
violations. We �rst de�ne the notion of covering3, which intuitively corresponds
to an interval in an execution where the queue cannot be empty.

De�nition 9. Let h = (O,<, `) be a di�erentiated history and o ∈ O. We say
that o is covered by d1, . . . , dt ∈ Dh if

� Enq(d1) happens before o in h, and

� Enq(di) happens before Deq(di−1) in h for 1 < i, and

� o happens before Deq(dt), or Deq(dt) doesn't exist in h.

The following de�nitions enable us to compare the times at which two oper-
ations end, or the times at which two operations start.

De�nition 10. Let h = (O,<, `) be a history, and o1, o2 ∈ O. We de�ne the
predicate endsBefore(o1, o2) that holds if for all o ∈ h, o2 happens before o implies
o1 happens before o. We say that o1 ends before o2. By de�nition of interval
orders, the relation endsBefore is a total order over the operations of h.

Similarly, we de�ne the predicate startsBefore(o1, o2) that holds if for all
o ∈ h, o happens before o1 implies o happens before o2. We say that o1 starts
before o2.

Next, we prove that whenever a history contains a projection that violates
rule RDeqEmpty, there must exist a DeqEmpty operation which is covered.

3Our de�nition is similar to the de�nition of Henzinger et al. [10].
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Lemma 13. Let h be a di�erentiated history that has a projection h′ with
last(h′) = RDeqEmpty and h′ /⊑ MS(RDeqEmpty). Then h has a DeqEmpty
operation o and data values d1, . . . , dt ∈ Dh such that o is covered by d1, . . . , dt ∈
Dh.

Proof. Consider a minimal projection h′ of h such that last(h′) = RDeqEmpty

and h′ /⊑MS(RDeqEmpty). By de�nition of last(h′) = RDeqEmpty, h
′ contains a

DeqEmpty operation o.
We sort the Enq operations of h′ by the endsBefore comparison operator,

and de�ne d1, . . . , dt ∈ Dh′ to be the data values corresponding to these Enq
operations, in order.

We prove that:

1. Enq(d1) happens before o in h′, and

2. Enq(di) happens before Deq(di−1) in h′ for 1 < i ≤ t, and

3. Deq(di−1) starts before Deq(di) in h′ for 1 < i < t, and

4. o happens before Deq(dt), or Deq(dt) doesn't exist in h′.

We �rst prove Condition 1. Assume by contradiction that Enq(d1) does not
happen before o. Then by de�nition of endsBefore, no Enq operation of h ends
before o. This entails that h′ ⊑MS(RDeqEmpty), by linearizing o before all Enq
operations, which contradicts our assumption.

Then, we prove by induction conditions 2 and 3. Assume that for some 1 <
j < t, we have proved that, Enq(di) happens before Deq(di−1), and Deq(di−1)
starts before Deq(di) for all 1 < i ≤ j.

Our goal is �rst to prove that Enq(dj+1) happens before Deq(dj). Assume
by contradiction that Enq(dj+1) does not happen before Deq(dj). Then we can
linearize h′ into a sequence u ⋅DeqEmpty ⋅ v ∈ MS(RDeqEmpty) where u does
not have unmatched Enq operations. More precisely, we de�ne u and v so that
u contains (at least) all operations with a data value di with 1 ≤ i ≤ j, and
v contains all other enqueue operations in v. This contradicts our assumption
that h′ /⊑MS(RDeqEmpty).

Then if j < t − 1, our goal is to prove that Deq(dj) starts before Deq(dj+1).
Assume by contradiction that Deq(dj) does not start before Deq(dj+1), i.e. that
Deq(dj+1) starts before Deq(dj). Consider the projection h′′ of h′ that removes
the operations with data value dj+1. By minimality of h′′, h′′ ⊑MS(RDeqEmpty),
and h′′ ⊑ u ⋅DeqEmpty ⋅ v where u does not have unmatched Enq operations.
Since Enq(d1) happens before o, we know Enq(d1) must belong to u. Since u
does not have unmatched Enq operations, Deq(d1) must belong to u. Similarly,
using the fact that Enq(di) happens before Deq(di−1) for all 1 < i ≤ j, we
conclude that Deq(dj) must belong to u as well. Moreover, since Enq(dj+1)
happens before Deq(dj), and Deq(dj+1) starts before Deq(dj), we can de�ne
u′ such that h′ ⊑ u′ ⋅DeqEmpty ⋅ v, and u′ contains Enq(dj+1), Deq(dj+1), and
the operations of u. Therefore, u′ does not contain unmatched Enq operations,
which contradicts h′ /⊑MS(RDeqEmpty).
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Finally, we prove Condition 4. Assume by contradiction that Deq(dt) exists
and that o does not happen before Deq(dt). Following the same reasoning as in
the induction above, we can linearize h′ into a sequence u ⋅DeqEmpty ⋅v, where
u does not contain any unmatched Enq operation, by linearizing all operations
before o. This contradicts h′ /⊑MS(RDeqEmpty).

Conversely, if a DeqEmpty operation is covered, then h must contain a
projection which violates rule RDeqEmpty.

Lemma 14. Let h be a di�erentiated history. If h contains a DeqEmpty oper-
ation o and data values d1, . . . , dt ∈ Dh such that o is covered by d1, . . . , dt ∈ Dh,
then h has a projection h′ with last(h′) = RDeqEmpty and h′ /⊑MS(RDeqEmpty).

Proof. De�ne h′ to be the projection of h that contains operation o, as well as all
operations with data values d1, . . . , dt ∈ Dh. Assume by contradiction that h′ ⊑
MS(RDeqEmpty). This means there exist u and v such that h′ ⊑ u ⋅DeqEmpty ⋅ v
and u does not contain unmatched Enq operations.

By de�nition of covering, Enq(d1) must belong to u. Moreover, since u does
not contain unmatched Enq operations, Deq(d1)must belong to u as well. Since
Enq(d2) happens before Deq(d1), Enq(d2) belongs to u too. By continuing this
reasoning, we obtain that Enq(dt) belongs to u as well. Then, we know by the
de�nition of covering that, either Deq(dt) does not exist, or o happens before
Enq(dt). The �rst case contradicts that u does not contain unmatched Enq
operations, while the second case contradicts the fact that Deq(dt) must be in
u.

The following corollary is a combination of lemmas 13 and 14, and charac-
terizes the violation with respect to rule RDeqEmpty.

Corollary 1 (Characterization of violations with respect to RDeqEmpty). Let
h be a di�erentiated history. There is a projection h′ of h such that last(h′) =
RDeqEmpty and h′ /⊑ MS(RDeqEmpty) if and only if h contains a DeqEmpty
operation o and data values d1, . . . , dt ∈ Dh such that o is covered by d1, . . . , dt ∈
Dh.

We now make an automaton to recognize a covering of a DeqEmpty opera-
tion, allowing us to detect violations with respect to the rule RDeqEmpty.

Lemma 15. The rule RDeqEmpty is co-regular.

Proof. We proved in Corollary 1 that a history has a projection such that
last(h′) = RDeqEmpty and h

′ /⊑MS(RDeqEmpty) if and only if it has aDeqEmpty
operation which is covered by other operations, as depicted in Fig 3. The au-
tomaton ARDeqEmpty

in Fig 4 recognizes such violations.
Let I be any data-independent implementation. We show that

ARDeqEmpty
∩ I ≠ ∅ ⇐⇒ ∃e ∈ I≠, e′ ∈ proj(e).

last(e′) = RDeqEmpty ∧ e′ /⊑MS(RDeqEmpty)
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DeqEmpty(2)
Enq(1)

Enq(1)
Enq(1)

Enq(1)

Deq(1)
Deq(1)

Deq(1)
Deq(1)

Figure 3: A four-pair RDeqEmpty

violation. Lemma 15 demonstrates
that this pattern with arbitrarily-
many pairs is regular.

q0

q1 q2

q3

q4

EvQueue(3)

EvQueue(3) EvQueue(3)

EvQueue(3)

EvQueue(3)

call Enq(1)

ret Enq(1)

call DeqEmpty(2) ret DeqEmpty(2)

ret Enq(1)call Deq(1)

ret Deq(1)

Figure 4: An automaton recognizing RDeqEmpty vi-
olations, for which the queue is non-empty, with data
value 1, for the span of DeqEmpty. We assume all
call Enq(1) actions occur initially without loss of
generality due to implementations' closure proper-
ties.

(⇒) Let e ∈ I be an execution which is accepted by ARDeqEmpty
. By data

independence, let e≠ ∈ I and r a renaming such that e = r(e≠). Let d1, . . . , dt be
the data values which are mapped to value 1 by r.

Let d be the data value which is mapped to value 2 by r. Let o be the
DeqEmpty operation with data value d. By construction of the automaton
we can prove that o is covered by d1, . . . , dt, and using Lemma 14, conclude
that the history h of e has a projection such that last(h′) = RDeqEmpty and
h′ /⊑MS(RDeqEmpty).
(⇐) Let e≠ ∈ I≠ such that there is a projection e′ such that last(e′) =

RDeqEmpty and e′ /⊑ MS(RDeqEmpty). Let d1, . . . , dt be the data values given
by Lemma 13, and let d be the data value corresponding to the DeqEmpty
operation.

Let r be the renaming which maps d1, . . . , dt to 1, d to 2, and all other
values to 3. Let e = r(e≠). The execution e can be recognized by the automaton
ARDeqEmpty

, and belongs to I by data independence.

6.3. Co-Regularity of the Stack rules

The Stack rule RPushPop is very similar to the RDeqEmpty rule of the Stack.
We use the notion of gap, which intuitively corresponds to a point in an execution
where the Stack could be empty.

De�nition 11. Let h = (O,<, l) be a di�erentiated history. A gap is a partition
O = L ⊎R satisfying:

� L has no unmatched Push operations, and

� no operation of R happens before an operation of L.

A gap is non-trivial if L ≠ ∅ and R ≠ ∅.
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Lemma 16. A di�erentiated history h has a projection h′ such that last(h′) =
RPushPop and h′ /⊑MS(RPushPop) if and only if either:

� there exists an unmatched Pop(d) operation, or

� there is a Pop(d) which happens before Push(d), or

� there exists a projection h′′ of h such that:

� for any minimal Push of h′′, the corresponding Pop is not maximal
in h′′, and

� h′′ does not have a non-trivial gap.

Proof. (⇐) We have three cases to consider

� there exists an unmatched Pop(d) operation: de�ne h′ = h∣{d},

� there is a Pop(d) which happens before Push(d): de�ne h′ = h∣{d},

� there exists a projection h′′ of h such that:

� for any minimal Push of h′′, the corresponding Pop is not maximal
in h′′, and

� h′′ does not have a non-trivial gap.

In that case, we can de�ne h′ to be h′′.

(⇒) Let h′ be a projection of h such that last(h′) = RPushPop and h′ /⊑
MS(RPushPop). Assume there are no unmatched Pop(d) operations, and that
for every d, Pop(d) doesn't happen-before Push(d). This means that h′ is
made of pairs of Push(d) and Pop(d) operations. We choose h′ so that h′ is a
minimal projection satisfying last(h′) = RPushPop and h′ /⊑MS(RPushPop).

We then de�ne h′′ to be h′, and prove the necessary conditions on h′. Since
h′ /⊑MS(RPushPop), we know there is no Push operation which is minimal in h′

and whose corresponding Pop operation is maximal in h′. It remains to prove
that h′ does not have a non-trivial gap. Assume by contradiction that h′ has a
non-trivial gap L ⊎R. We choose a non-trivial gap where L is minimal.

By minimality of L, the history hL = h′∣L does not have a non-trivial gap.
Moreover, by minimality of h′, and hL being a (strict) projection of h′, and since
last(hL) = RPushPop, we have hL ⊑MS(RPushPop). Therefore, there must exist
a minimal Push(d) operation in hL such that Pop(d) is maximal in hL. This
entails that h′ ⊑ MS(RPushPop) (by using d as a witness), contradicting our
original assumption.

Lemma 17. The rule RPushPop is co-regular.

Proof. The automaton Fig 5 recognizes the violations given by Lemma 16. The
proof is similar to Lemma 15. The loop over state q1 ensures there is no non-
trivial gap in the execution.
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q0 q1 q2

EvStack(3) EvStack(3) EvStack(3)

call Push(1) call Push(2) +
ret Pop(1) +
ret Push(a) ⋅ call Pop(b)

ret Push(1) call Pop(2)

ret Pop(2)

Figure 5: An automaton recognizing RPushPop violations. Values a and b range over {1,2}.

The rules RPush and RPopEmpty can also be proven co-regular using the
same techniques.

Lemma 18. The rule RPush is co-regular.

Proof. We can make a characterization of the violations similar to Lemma 16.
This rule is in a way simpler, because the Push in this rule plays the role of the
Pop in RPushPop.

Lemma 19. The rule RPopEmpty is co-regular.

Proof. Identical to Lemma 15 (replace Enq by Push,Deq by Pop, andDeqEmpty
by PopEmpty).

6.4. Co-Regularity of Register and Mutex rules

The co-regularity for the rules of the Register and Mutex can be obtained by
following the same schema as for the REnqDeq rule. Here again, we can obtain
a small-model property by showing that the minimal cycles in the ��W relation
are at most of size 2.

7. Decidability and Complexity of Linearizability

Theorem 1 implies that the linearizability problem with respect to any
step-by-step linearizable and co-regular speci�cation is decidable for any data-
independent implementation for which checking the emptiness of the intersec-
tion with �nite-state automata is decidable. Here, we give a class C of data-
independent implementations for which the latter problem, and thus lineariz-
ability, is decidable.

Each method of an implementation in C manipulates a �nite number of
local variables which store Boolean values, or data values from D. Methods
communicate through a �nite number of shared variables that also store Boolean
values, or data values from D. Computations on data values are forbidden, i.e.,
the assignments to data variables are only of the form x := y where x and
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y are data variables, and data variables cannot be used in boolean conditions
(of �if� or �while� statements). This class captures typical implementations, or
�nite-state abstractions thereof, e.g., obtained via predicate abstraction.

Let I be an implementation from class C. All the automata A constructed
to prove co-regularity use only data values 1, 2, and 3. Checking emptiness of
I ∩A is thus equivalent to checking emptiness of I3 ∩A with the three-valued
implementation I3 = {e ∈ I ∣ e = e∣{1,2,3}}.

We model the set I3 as the runs of a Vector Addition System with States
(VASS) similarly to Bouajjani et al. [3]. A VASS has a (�nite) set of states, and
manipulates a (�nite) set of counters holding non-negative values, which can be
incremented and decremented (but never tested to 0). The fact that the data
values provided as arguments of a method are only copied ensures that we only
need to represent the values {1,2,3} inside the implementation.

The idea is that the states of the VASS represent the global variables of I.
This set is �nite as we have bounded the data values. Each counter of the VASS
then represents the number of threads which are at a particular control location
within a method, with a certain valuation of the local variables. Here again, as
the data values are bounded, there is a �nite number of valuations. When a
thread moves from a control location to another, or updates its local variables,
we decrement, resp., increment, the counter corresponding the old, resp., the
new, control location or valuation.

Emptiness of the intersection with �nite automata reduces to the EXPSPACE-
complete problem of checking reachability in a VASS. Limiting veri�cation to a
bounded number of threads lowers the complexity of coverability to PSPACE [6],
as this bounds the counters of the VASS. The hardness part of Theorem 2 comes
from the hardness of state reachability in �nite-state concurrent programs.

Theorem 2. Verifying linearizability of an implementation in C with respect to
a step-by-step linearizable and co-regular speci�cation is PSPACE-complete for
a �xed number of threads, and EXPSPACE-complete otherwise4.

8. Related Work

Several works investigate the theoretical limits of linearizability veri�ca-
tion. Verifying a single execution against an arbitrary ADT speci�cation is NP-
complete [8]. Verifying all executions of a �nite-state implementation against
an arbitrary ADT speci�cation (given as a regular language) is EXPSPACE-
complete when program threads are bounded [2, 9], and undecidable other-
wise [3].

Existing automated methods for proving linearizability of an atomic object
implementation are also based on reductions to safety veri�cation [1, 10, 12].
Vafeiadis [12] considers implementations where operations' linearization points

4The size of the implementation is de�ned as: number of valuations to the shared variables
+ number of valuations to the local variables + number of control locations (+ number of
threads when it is bounded).
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are manually speci�ed. Essentially, this approach instruments the implemen-
tation with ghost variables simulating the ADT speci�cation at linearization
points. This approach is incomplete since not all implementations have �xed
linearization points. Aspect-oriented proofs [10] reduce linearizability to the ver-
i�cation of four simpler safety properties. However, this approach has only been
applied to queues, and has not produced a fully automated and complete proof
technique. Dodds et al. [5] prove linearizability of stack implementations with
an automated proof assistant. Their approach does not lead to full automation
however, e.g., by reduction to safety veri�cation.

9. Conclusion

We have demonstrated a linear-time reduction from linearizability for �xed
ADT speci�cations to control-state reachability, and the application of this re-
duction to atomic queues, stacks, registers, and mutexes. Besides yielding novel
decidability results, our reduction enables the use of existing safety-veri�cation
tools for linearizability. While this work only applies the reduction to these four
objects, our methodology also applies to other typical atomic objects including
semaphores and sets. Although this methodology currently does not capture
priority queues, which are not data independent, we believe our approach can
be extended to include them. We leave this for future work.
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