
Monitoring Weak Consistency?

Michael Emmi1 and Constantin Enea2

1 SRI International, New York, NY, USA, michael.emmi@sri.com
2 IRIF, Univ. Paris Diderot & CRNS, Paris, France, cenea@irif.fr

Abstract. High-performance implementations of distributed and multi-
core shared objects often guarantee only the weak consistency of their
concurrent operations, foregoing the de-facto yet performance-restrictive
consistency criterion of linearizability. While such weak consistency is of-
ten vital for achieving performance requirements, practical automation for
checking weak-consistency is lacking. In principle, algorithmically check-
ing the consistency of executions according to various weak-consistency
criteria is hard: in addition to the enumeration of linearizations of an
execution’s operations, such criteria generally demand the enumeration
of possible visibility relations among the linearized operations; a priori,
both enumerations are exponential.
In this work we identify an optimization to weak-consistency checking:
rather than enumerating every possible visibility relation, it suffices to
consider only the minimal visibility relations which adhere to the various
constraints of the given criterion, for a significant class of consistency
criteria. We demonstrate the soundness of this optimization, and describe
an associated minimal-visibility consistency checking algorithm. Empiri-
cally, we show that our algorithm significantly outperforms the baseline
weak-consistency checking algorithm, which naïvely enumerates all vis-
ibilities, and adds only modest overhead to the baseline linearizability
checking algorithm, which does not enumerate visibilities.

Keywords: linearizability, consistency, runtime verification

1 Introduction

Programming software applications that can deal with multiple clients at the
same time, and possibly, with clients that connect at different sites in a network,
relies on optimized concurrent or distributed objects which encapsulate lock-
free shared memory access or message passing protocols into high-level abstract
data types. Given the potentially-enormous amount of software that relies on
these objects, it is important to maintain precise specifications and ensure that
implementations adhere to their specifications.

? This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 678177).

One of the standard correctness criteria used in this context is linearizability
(or strong consistency) [22], which ensures that the results of concurrently-
executed invocations match the results of some serial execution of those same
invocations. Ensuring such a criterion in a distributed context (when data is
replicated at different sites in a network) is practically infeasible or even impos-
sible [17, 19]. Therefore, various weak consistency criteria have been proposed
like eventual consistency [23, 36], “session guarantees” like read-my-writes or
monotonic-reads [35], causal consistency [25, 28], etc.

An axiomatic framework for formalizing such criteria has been proposed
by Burckhardt et al. [11, 9]. Essentially, this extends the linearizability-based
specification methodology with a dynamic visibility relation among operations,
in addition to the standard dynamic happens-before and linearization relations.
Permitting weaker visibility relations models outcomes in which an operation
may not observe the effects of concurrent operations that are linearized before it.

In this work, we propose an online monitoring algorithm that checks whether
an execution of a concurrent (or distributed) object satisfies a consistency model
defined in this axiomatic framework. This algorithm constructs a linearization and
visibility relation satisfying the axioms of the consistency model gradually as the
execution extends with more operations. It is possible that the linearization and
visibility constructed until some point in time are invalidated as more operations
get executed, which requires the algorithm to backtrack and search for different
candidates. This exponential blow-up is unavoidable since even the problem of
checking linearizability is NP-hard in general [18].

The main difficulty in devising such an algorithm is coming up with efficient
strategies for enumerating linearizations and visibility relations which minimize
the number of candidates needed to be explored and the number of times the
algorithm has to backtrack. We build on previous works that propose such
strategies for enumerating linearizations [38, 29] in the context of linearizability
checking. Roughly, the linearizations are extended iteratively by appending
operations which are minimal in the happens-before order (among non-linearized
operations). The choice of the minimal operations to append varies from one
approach to the other. Our work focuses on combining such strategies with an
efficient enumeration of visibility relations which are compatible with a given
linearization.

Rather than specializing our results to one single consistency model, we
consider a general class of consistency models from Burckhardt et al.’s axiomatic
framework [11, 9] in which the visibility relation among operations is constrained
to be contained in the linearization relation. That class includes, for instance,
time-stamp based models employed in distributed object implementations, in
which time stamps serve to resolve conflicts by effectively linearizing concurrent
operations. We show that within this class of consistency models, it is not
necessary to enumerate the set of all possible visibility relations (included in the
linearization) in order to check consistency of an execution. More precisely, we
develop an algorithm for enumerating visibility relations that traverses operations
in linearization order and chooses for each operation o, a minimal set of operations

visible to o that conforms to the consistency axioms (up to the linearization
prefix that includes o). In general there may exist multiple such minimal sets of
operations, and each of them must be explored. When the visibility relation cannot
be extended, the algorithm needs to backtrack and choose different minimal
visibility sets for previous operations. However, when all the minimal candidates
have been explored, the algorithm can soundly report that the execution is not
consistent, without resorting to the exploration of non-minimal visibility relations.

Besides demonstrating the soundness of minimal-visibility consistency check-
ing, we also demonstrate its empirical impact by applying our algorithm to
concurrent traces of Java concurrent data structures. We find that our algorithm
consistently outperforms the baseline naïve approach to enumerating visibilities,
which considers also non-minimal visibility relations. Furthermore, we demon-
strate that minimal-visibility checking adds only modest overhead (roughly 2×)
to the baseline linearizability checking algorithm, which does not enumerate
visibilities. This suggests that small sets of minimal visibilities typically suffice
in practice, and that the additional exponential enumeration of visibilities, atop
the exponential enumeration of linearizations, may be avoidable in practice. Our
implementation and experiments are open source, and publicly available on
GitHub.3

In summary, this work makes the following contributions:

– we develop a new minimal-visibility consistency-checking algorithm for Bur-
ckhardt et al.’s axiomatic consistency framework [11, 9];

– we demonstrate the soundness of minimal-visibility consistency checking; and
– we demonstrate an empirical evaluation comparing minimal-visibility consis-

tency checking with the state-of-the-art consistency-checking algorithms.

To the best of our knowledge, our algorithm is the first completely automatic
algorithm for checking weak-consistency of arbitrary abstract data type imple-
mentations which avoids the naïve enumeration of all possible visibility relations.

The rest of this paper is organized as follows. Section 2 elaborates a formaliza-
tion of Burckhardt et al.’s axiomatic consistency framework [11, 9], and Section 3
develops a formal argument to the soundness of considering only minimal visi-
bility relations. Section 4 describes our overall consistency checking algorithms,
and Section 5 describes our implementation and empirical evaluation. Section 6
describes related work, and finally Section 7 concludes.

2 Weak Consistency

We describe a formal model for concurrent (distributed) object implementations.
Clients interact with an object by making invocations from a set I and receiving
returns from a set R (parameters of invocations, if any, are part of the invocation
name). An operation is an invocation i ∈ I paired with a return r ∈ R; we
denote such an operation by i⇒ r. We denote individual operations by o. The
invocation, resp., the return, in an operation o is denoted by inv(o), resp., ret(o).
3 The URL to our implementation and experiments has been suppressed for anonymity.

put(1, 0)) null

contains(0)) false

put(0, 0)) null

put(1, 1)) 0

get(1)) 0

po, hb po, hb

contains(0)) true

hb po, hb
hb

hb

(a)

put(1, 0)) null

contains(0)) false

put(0, 0)) null

put(1, 1)) 0

get(1)) 0

vis

vis

vis

vis

po, hb
po, hb

contains(0)) true

po, hb vis

hb

hb

hb

(b)

Fig. 1. A history h and an abstract execution containing h.

The interaction between a client and an object is represented by a history
〈po, hb〉 over a set of operations O which consists of

– a program (order) po which is a partial order on O, and
– a happens-before (order) hb which is a partial order on O.

The program order is enforced by the client, e.g., by invoking a set of operations
within the same thread or process, while the happens-before order represents
the order in which the operations finished, i.e., (o1, o2) ∈ hb iff operation o1
finished before o2 started. We assume that the program order is included in the
happens-before order.

Example 1. Let us consider a key-value map ADT containing operations of the
form put(key, value)⇒ old, which insert key-value pairs and return previously-
mapped values for the given keys, remove(key)⇒ value, which remove key map-
pings and return previously-mapped values, contains(value) ⇒ true/false,
which test whether values are currently mapped, and get(key)⇒ value, which
return currently-mapped values for the given keys. Figure 1(a) pictures a history
h where edges denote the program order po and happens-before hb. Such a history
can be obtained by a client with three threads each making two invocations (the
invocations within the same thread are aligned vertically).

The axiomatic specifications of concurrent objects we consider are based on
the following abstract representation of executions: an abstract execution over
operations O is a tuple 〈po, hb, lin, vis〉 that consists of a history 〈po, hb〉 over O,

– a linearization (order) lin4 which is a total order on O, and
– a visibility (relation) vis which is an acyclic relation on O.

Intuitively, the visibility relation represents the inter-thread communication, how
effects of operations are visible to other threads, while the linearization order
models the “conflict resolution policy”, how the effects of concurrent operations
are ordered when they become visible to other threads.
4 The linearization is also called arbitration in previous works, e.g., [9].

We say that an operation o1 such that 〈o1, o2〉 ∈ vis is visible to o2, and that
o2 sees o1. Also, the set of operations visible to o2 is called the visibility set of o2.
The extensions of inv and ret to partial orders on O are defined component-wise
as usual.

Example 2. Figure 1(b) pictures an abstract execution containing the history in
Figure 1(a). The visibility relation is defined by the edges labeled vis together
with their transitive closure. The linearization order is defined by the order in
which operations are written (from top to bottom).

A consistency criterion for concurrent objects is defined by a set of axioms over
the relations in an abstract execution. These axioms relate abstract executions
to a sequential semantics of the operations, which is defined by a function
Spec : I∗ × I → R that determines the return value of an invocation given the
sequence of invocations previously executed on the object5.

Example 3. The sequential semantics of the key-value map ADT considered in Ex-
ample 1 is defined as expected. For instance, the return value of put(key, value)
after a sequence of invocations σ is the value null if σ contains no invoca-
tion put(key, . . .), or old if put(key, old) is the last invocation of the form
put(key, . . .) in σ.

The domain dom(R) of a relation R is the set of elements x such that
〈x, y〉 ∈ R for some y; the codomain codom(R) is the set of elements y such that
〈x, y〉 ∈ R for some x. By an abuse of notation, if x is an individual element,
x ∈ R denotes the fact that x ∈ dom(R) ∪ codom(R). The (left) composition
R1 ◦ R2 of two binary relations R1 and R2 is the set of pairs 〈x, z〉 such that
〈x, y〉 ∈ R1 and 〈y, z〉 ∈ R2 for some y. We denote the identity binary relation
{〈x, x〉 : x ∈ X} on a set X by [X], and we write [x] to denote [{x}].

Return-value consistency [9], a variant of eventual consistency without liveness
guarantees, states that the return r of every operation i ⇒ r can be obtained
from a sequential execution of i that follows the invocations visible to o (in the
linearization order). This constraint will be formalized as an axiom called Ret.
The visibility relation can be chosen arbitrarily. Standard “session guarantees”
can be described in the same framework by adding constraints on the visibility
relation: for instance, read my writes, i.e., operations previously executed in the
same thread remain visible, can be stated as vis ⊇ po and monotonic reads, i.e.,
the set of visible operations to some thread grows monotonically over time, can
be stated as vis ⊇ vis ◦ po. Then, a version of causal consistency [9, 7], called
causal convergence, is defined by the following set of axioms:

vis ⊇ vis ◦ vis vis ⊇ po lin ⊇ vis Ret

5 Previous works have considered more general, concurrent semantics for operations.
We restrict ourselves to sequential semantics in order to simplify the exposition. Our
results extend easily to the general case.

φ ::= Ret | ord
ord ::= qrel ⊇ rel

qrel ::= lin | vis
rel ::= qrel | po | hb | rel ◦ rel

Fig. 2. The grammar of
consistency axioms.

〈po, hb, lin, vis〉 |= Ret iff
∀o.ret(o) = Spec(inv(ctxt(lin, vis, o)), inv(o))

〈po, hb, lin, vis〉 |= ord iff
ord [po/po][hb/hb][lin/lin][vis/vis] is valid

Fig. 3. Consistency axiom satisfaction for abstract
executions. The satisfaction relation |= is implicitly
parameterized by a sequential semantics Spec which
we consider fixed.

which state that the visibility relation is transitive, it includes program order,
and it is included in the linearization order. Finally, linearizability is defined by
the set of axioms lin ⊇ hb, vis = lin, and Ret.

To state our results in a general context that concerns multiple consistency
criteria defined in the literature (including the ones mentioned above) and
variations there of, we consider a language of consistency axioms φ defined by the
grammar in Figure 2. A consistency model Φ is a set {φ1, φ2, . . .} of consistency
axioms.

In the following, we assume that every consistency model is stronger than
return-value consistency, and also, that the linearization order is consistent with
the visibility and happens-before relations. The assumptions concerning the
linearization order correspond to the fact that for instance, concurrent operations
are ordered using timestamps that correspond to real-time. Formally, we assume
that every consistency model contains the axioms

Φ0 = {Ret, lin ⊇ vis, lin ⊇ hb}.

Figure 3 defines the precise semantics of consistency axioms on abstract
executions: the context of an operation o according to a linearization lin and
visibility vis, denoted ctxt(lin, vis, o) is the restriction ([Oo] ◦ lin ◦ [Oo]) of lin
to the operations Oo = dom(vis ◦ [o]) visible to o. For instance, for the abstract
execution in Figure 1(b), ctxt(lin, vis, contains(0)⇒ false) is the sequence of
operations put(1, 0)⇒ null; get(1)⇒ 0; put(1, 1)⇒ 0.

We extend this semantics to consistency models as e |= Φ iff e |= φ for all
φ ∈ Φ and to histories as:

〈po, hb〉 |= Φ iff ∃lin, vis. 〈po, hb, lin, vis〉 |= Φ

Example 4. The abstract execution in Figure 1(b) satisfies causal convergence:
the visibility relation is transitive, it includes program order, and it is consis-
tent with the linearization order. Moreover, the axiom Ret is also satisfied. For
instance, the invocation contains(0) returns exactly false when executed af-
ter put(1, 0); get(1); put(1, 1). Similarly, it returns true when executed after
put(1, 0); get(1); put(0, 0).

3 Minimal Visibility Extensions

Checking whether a given history satisfies a consistency model is intractable
in general. This essentially follows from the fact that checking linearizability
is NP-hard in general [18]. While the main issue in checking linearizability is
enumerating the exponentially many linearizations, checking weaker criteria
like causal convergence requires also an enumeration of the exponentially many
visibility relations (included in a given linearization). We prove in this section that
it is enough to enumerate only minimal visibility relations (w.r.t. set inclusion),
included in a given linearization, in order to conclude whether a given history
and linearization satisfy a consistency model.

A linearized history σ = 〈po, hb, lin〉 consists of a history and a linearization
lin such that lin ⊇ hb. The extension of |= to linearized histories is defined as:

〈po, hb, lin〉 |= Φ iff ∃vis. 〈po, hb, lin, vis〉 |= Φ

The i-th element of a sequence s is denoted by s[i] and the prefix of s of
length i is denoted by si. The projection of a linearized history σ = 〈po, hb, lin〉
to a prefix lini of lin is denoted by σi. Formally, Oi = dom(lini) ∪ codom(lini)
and σi = 〈po ∩ (Oi ×Oi), hb ∩ (Oi ×Oi), lini〉.

For a linearized history 〈po, hb, lin〉 and a consistency model Φ, a visibility
relation visi on operations from a prefix lini of lin is called Φ-extensible when
there exists a visibility relation vis ⊇ visi such that 〈po, hb, lin, vis〉 |= Φ. The
relation vis is called a Φ-extension of visi up to lin. By extrapolation, a Φ-
extension of visi up to linj is a visibility relation visj such that 〈σj , visj〉 |= Φ, for
any i < j. Such an extension is called minimal when for every other Φ-extension
vis ′j of visi up to linj , we have that vis ′j 6⊆ visj .

Example 5. Consider again the abstract execution in Figure 1(b). Ignoring the
edges labeled by vis , it becomes a linearized history σ. The prefix σ2 contains just
the two operations put(1, 0) ⇒ null and get(1) ⇒ 0. For causal convergence,
the visibility relation vis2 = {〈put(1, 0)⇒ null, get(1)⇒ 0〉} on operations of
σ2 is extensible, as witnessed by the visibility relation defined for the rest of the
operations in this execution. The visibility relation

vis3 ={〈put(1, 0)⇒ null, get(1)⇒ 0〉, 〈put(1, 0)⇒ null, put(0, 0)⇒ null〉,
〈get(1)⇒ 0, put(0, 0)⇒ null〉}

is an extension of vis2 up to lin3, and contains the operations in σ2 together with
put(0, 0)⇒ null. Note that this extension is not minimal. A minimal extension
would be exactly equal to vis2 since, intuitively, put(0, 0)⇒ null is not required
to observe operations on keys other than 0.

The next lemma shows that minimizing the visibility sets of operations in
a linearization prefix, while preserving the truth of the axioms on that prefix,
doesn’t exclude visibility choices for future operations (occurring beyond that
prefix). In more precise terms, the Φ-extensibility status is not affected by choosing

smaller visibility sets for operations in a linearization prefix. For instance, since
the visibility vis3 in Example 5 is extensible (for causal convergence), the smaller
visibility relation in which put(0, 0) ⇒ null doesn’t see any operation, is also
extensible. This result relies on the specific form of the axioms, which ensure
that smaller visibility sets impose fewer constraints on the visibility sets of future
operations. For instance, the axiom vis ⊇ vis ◦ vis enforces that vis contains
{〈o, o2〉 : 〈o, o1〉 ∈ vis} whenever a pair 〈o1, o2〉 is added to vis. Minimizing the
visibility set of o1 will minimize the set of operations that must be seen by o2,
thus making the choice of the operations visible to o2 more liberal.

Lemma 1. For every linearized history σ and consistency model Φ, if

〈σi, visi〉 |= Φ, visi is Φ-extensible, 〈σi, vis ′i〉 |= Φ, and vis ′i ⊆ visi,

then vis ′i is Φ-extensible.

Proof (Sketch). We show that the Φ-extension vis of visi up to lin can be
transformed to a Φ-extension of vis ′i up to lin by simply removing the pairs of
operations in visi \ vis ′i. Let vis ′ be this visibility relation and Φ a consistency
model. We prove that 〈po, hb, lin, vis ′〉 |= Φ by considering the different types of
axioms defined in Figure 2.

Suppose that Φ contains an axiom of the form vis ⊇ rel (according to the
notations in Figure 2). We have that vis ′i ⊇ (rel [po/po][hb/hb][lin/lin][vis ′/vis]) ◦
[Oi] by the hypothesis (from (σi, vis

′
i) |= Φ). Then, vis ′i ⊆ visi implies that

(rel [po/po][hb/hb][lin/lin][vis/vis]) ◦ [O \Oi]

⊇ (rel [po/po][hb/hb][lin/lin][vis ′/vis]) ◦ [O \Oi]

which together with vis ′ ◦ [O \Oi] = vis ◦ [O \Oi] (the visibility relations vis and
vis ′ are the same for operations which are not included in the prefix lini) implies
that

vis ′ ◦ [O \Oi] ⊇ (rel [po/po][hb/hb][lin/lin][vis ′/vis]) ◦ [O \Oi].

Therefore, 〈po, hb, lin, vis ′〉 |= vis ⊇ rel .
The axiom Ret relates the return value of each operation o in σ to the set of

operations visible to o. This relation is insensitive to the set of operations seen by
an operation before o in the linearization order. Therefore, 〈po, hb, lin, vis ′〉 |= Ret
is an immediate consequence of (σi, vis ′i) |= Ret and the fact that vis and vis ′

are the same for operations which are not included in the prefix lini.
The axioms of the form lin ⊇ rel (according to the notations in Figure 2) are

straightforward implications of lin ⊇ hb and lin ⊇ vis, which are assumed to be
included in any consistency model. They hold for any linearized history. ut

The main result of this section shows that a visibility enumeration strategy
that considers operations in the linearization order and computes minimal exten-
sions iteratively, possibly backtracking to another choice of minimal extension
if necessary, is complete in general (it finds a visibility relation satisfying the

consistency axioms Φ iff the input linearized history satisfies Φ). Backtracking
is necessary since in general, there may exist multiple minimal extensions and
all of them should be explored. For a given linearized history σ and visibility
relation vis on operations of σ, visi = vis ◦ [Oi] denotes the restriction of vis to
operations from the prefix lini.

Theorem 1. For every linearized history σ and consistency model Φ, σ |= Φ iff
there exists a visibility relation vis such that

for every i, visi+1 is a minimal Φ-extension of visi up to lini+1.

Proof. (Sketch) Let σ be a linearized history such that σ |= Φ. Therefore, there
exists a visibility relation vis such that 〈σ, vis〉 |= Φ. We prove by induction
that there exists a visibility relation vis ′ satisfying the claim of the theorem.
Assume that there exists a Φ-extensible visibility relation visj on operations in
linj which satisfies the claim of the theorem for every i < j (we take vis0 = vis).
Let visj+1 be a minimal visibility relation on operations in linj+1 such that
visj+1 ◦ [Oj] = visj ◦ [Oj] and (σj+1, vis

j+1) |= Φ (such a set exists because visj

is Φ-extensible). By Lemma 1, visj+1 is Φ-extensible. Also, visj+1 satisfies the
claim of the theorem for every i < j + 1. The reverse direction is trivial. �

Example 6. In the context of the abstract execution in Figure 1(b), the visibility
relation defined by removing the vis edge ending in put(0, 0)⇒ null, and adding
the transitive closure, satisfies the requirements in Theorem 1.

4 Efficient Monitoring of Consistency Models

We describe an algorithm for checking whether a given history satisfies a con-
sistency model, which combines linearization enumeration strategies proposed
in [38, 29] with the visibility enumeration strategy proposed in Section 3.

The algorithm is defined by the procedure checkConsistency listed in Fig-
ure 4. This recursive procedure searches for extensions of the input linearization
and visibility (initially, checkConsistency will be called with lin = vis = ∅)
which witness that the input history h satisfies Φ. It assumes that the inputs lin
and vis satisfy the axioms of the consistency model Φ when the input history
is projected on the linearized operations (the operations in lin). This projec-
tion is denoted by hlin . Formally, the precondition of this procedure is that
〈hlin , lin, vis〉 |= Φ.

The extensions of lin and vis are built in successive steps. At each step, the
linearization is extended according to the procedure linExtensions and the
visibility according to the procedure visExtensions.

The abstract implementation of linExtensions, presented in Figure 4,
chooses a set of non-linearized operations O which are minimal among non-
linearized operations w.r.t. happens-before, i.e., returned by minimals(h, lin),
and appends any linearization of the operations in O to the input linearization
lin. Formally, O ⊆ {o : o 6∈ lin and ∀o′. o′ 6∈ lin ⇒ ¬o′ ≺ o}, where ≺ denotes the

proc checkCons i s tency (h, Φ, lin, vis) {
i f (isComplete (h, lin)) then

return t rue ;
f o ra l l lin ′ o f l i nEx t en s i on s (h, lin) do

fora l l vis ′ o f v i sExtens i on s (h, lin ′, vis) do
i f checkCons i stency (h, Φ, lin ′, vis ′) then

return t rue ;
return f a l s e ;

}

proc l i nEx t en s i on s (h, lin) {
let O = minimals (h, lin) ;
f o ra l l O′ o f subse t s (O)
f o ra l l seq o f l i n e a r i z a t i o n s (O′)

let lin ′ = append (lin, seq) ;
yield lin ′ ;

}

proc v i sExtens i on s (h, lin, vis){
f o ra l l vis ′ a minimal Φ-extension

of vis up to lin
yield vis ′ ;

}

Fig. 4. Checking consistency of a history. The procedures linExtensions, resp.,
visExtensions return the set of linearizations, resp., visibilities, produced by the
instruction yield.

happens-before relation. The fact that the operations in O are minimal among
non-linearized operations ensures that the returned linearizations are consistent
with the happens-before order.

Two linearization enumeration strategies proposed in the literature can be
seen as instances of linExtensions. The strategy in [38] corresponds to the case
where O contains exactly one minimal operation. For instance, for the history
in Figure 1(a), this strategy will start by picking a minimal element in the
happens-before relation, say put(1, 0)⇒ null, then, a minimal operation among
the rest, say get(1)⇒ 0, and so on.

The strategy proposed in [29] is slightly more involved (and according to
experimental results, more efficient), but it relies on a presentation of histories h
as sequences of call and return actions (an operation spanning the time interval
between its call and return action). The happens-before order is extracted as
usual: an operation o1 happens before an operation o2 if its return occurs before
the call of o2. This strategy defines O as the first non-linearized operation o
that returned in h together with a set of non-linearized operations O′ that are
concurrent with o (i.e., are not ordered after o in the happens-before order). The
operation o is linearized last in the returned extensions. For instance, consider the
history h in Figure 5 represented as a sequence of call/return actions (small boxes
at the begin, resp., end, of an interval denote call actions, resp., return actions).
The first linearization extension (when lin = ∅) includes put(1, 0)⇒ null (the
first operation to return) after some sequence of operations concurrent with it, for
instance the empty sequence. Next, the current linearization put(1, 0)⇒ null

put(1, 0)) null

contains(0)) false

get(1)) 0

put(1, 1)) 0

put(0, 0)) null

contains(0)) true

Fig. 5. The history h in Figure 1 presented as a sequence of call/return actions.

can be extended by adding put(0, 0)⇒ null (the first operation to return, if we
exclude put(1, 0)⇒ null which is already linearized) and possibly get(1)⇒ 0
before it. Suppose that we choose put(1, 0) ⇒ null; get(1) ⇒ 0; put(0, 0) ⇒
null. Then, the extension will include put(1, 1)⇒ 0 and possibly contains(0)⇒
true or contains(0) ⇒ false, and so on. Compared to the previous strategy,
an extension step can add multiple operations.

The extensions of the visibility relation (returned by visExtensions) are
minimal Φ-extensions of vis up to the input linearization. They can be constructed
iteratively by considering the newly linearized operations one by one and each
time compute a minimal extension of the visibility. For instance, the linearization
construction explained in the previous paragraph can be expanded with a visibility
enumeration as follows:

– lin = put(1, 0)⇒ null: the minimal visibility is vis1 = ∅,
– lin = put(1, 0)⇒ null; get(1)⇒ 0; put(0, 0)⇒ null: the minimal visibility

is vis2 = {〈put(1, 0)⇒ null, get(1)⇒ 0〉}, and so on.

The procedure checkConsistency backtracks to a different extension when
the current one cannot be completed to include all the operations in the input
history (checked by the recursive call). The correctness of the algorithm is stated
in the following theorem.

Theorem 2. checkConsistency(h, Φ, ∅, ∅) returns true iff h |= Φ.

5 Empirical Results

While our minimal-visibility consistency checking algorithm is applicable to a wide
class of distributed and multicore shared object implementations, here we demon-
strate its efficacy on histories recorded from executions of Java Development Kit
(JDK) Standard Edition concurrent data structures. Recent work demonstrates
that JDK concurrent data structures regularly admit non-atomic behaviors,
often by design [14]; these weakly-consistent behaviors span many methods of

the java.util.concurrent package, including the ConcurrentHashMap, Con-
currentSkipListMap, ConcurrentSkipListSet, ConcurrentLinkedQueue, and the
ConcurrentLinkedDeque, for instance, including the contains method described
in Example 3.

We extracted 4,000 randomly-sampled histories from approximately 8,000
observed over approximately 1,000,000 executions in stress testing 20 randomly-
generated client programs of the ConcurrentSkipListMap with up to 15 invo-
cations across up to 3 threads. In each program, the given number of threads
invokes its share of randomly-generated methods with randomly-generated values.
We consider random generation superior to collecting programs in the wild, since
found client programs can mask inconsistencies by restricting method argument
values, or by being agnostic to inconsistent return values. Furthermore, automated
generation gives us the ability to evaluate our algorithm on unbiased sample sets,
and avoid any technical problems in the collection of programs; it also allows
us to test method combinations which might not appear in publicly-available
examples.

We subject each client program to 1 second of stress testing6 to record his-
tories. The return value of each invocation is stored in a different thread-local
variable which is read at the end of the execution. Recording the happens-before
order between invocations without affecting implementation behavior significantly
(e.g., without influencing the memory orderings between shared-memory accesses)
is challenging. For instance, we found the use of high-precision timers to be
unsuitable, since the response-time of System.nanoTime calls is much higher
than calls to the implementations under test; invoking such timers between each
invocation of implementation methods would prevent implementation methods
from overlapping in time, and thus hide any possible inconsistent behaviors. Simi-
larly, the use of atomic operations and volatile variables would impose additional
synchronization constraints and prevent many weak-memory reorderings.

Essentially, our solution is to introduce a shared variable per thread storing
its program counter — in our context, the program counter stores the number
of call and return events thus far executed. A thread’s program counter is read
by every other thread before and after each invocation. Figure 6 demonstrates a
simplified version7 of our encoding for a program with two threads each invoking
two methods. The program counter variables pc0 and pc1 are not declared
volatile, which, in principle, provides stronger guarantees concerning the derived
happens-before relation; such declarations would interfere with implementation
weak-memory effects. The program counter values read by each thread allows
us to extract a happens-before order between invocations which is sound in the
6 For stress testing we leverage OpenJDK’s JCStress tool: http://openjdk.java.net/
projects/code-tools/jcstress/

7 In our actual implementation, each program-counter access is encapsulated within a
method call in order to avoid compiler reordering between the reads of other threads’
counters and the increment of one’s own. While the Java memory model does not
guarantee that such encapsulation will prevent reordering, we found this solution to
be adequate on Oracle’s Java SE runtime version 9. Our actual implementation also
wraps invocations in try-catch blocks to deal with exceptions.

int pc0 = 0, pc1 = 0;
ConcurrentHashMap obj = new ConcurrentHashMap();

void thread0() {
Object r0, r1;
int pcs[][] = new int[4][1];
int n = 0;

// first invocation
pcs[n][0] = pc1; n++; pc0++;
r0 = obj.elements();
pcs[n][0] = pc1; n++; pc0++;

// second invocation
pcs[n][0] = pc1; n++; pc0++;
r1 = obj.put(1,0);
pcs[n][0] = pc1; n++; pc0++;

// store the values of r0, r1, pcs
...

}

void thread1() {
Object r0, r1;
int pcs[][] = new int[4][1];
int n = 0;

// first invocation
pcs[n][0] = pc0; n++; pc1++;
r0 = obj.remove(1);
pcs[n][0] = pc0; n++; pc1++;

// second invocation
pcs[n][0] = pc0; n++; pc1++;
r1 = obj.put(0,1);
pcs[n][0] = pc0; n++; pc1++;

// store the values of r0, r1, pcs
...

}

Fig. 6. Our encoding for recording ConcurrentHashMap histories. Each thread’s program
counter is read before and after other threads’ invocations, and incremented subsequent
to each such read. The two-dimensional pcs[n][m] array stores n program counter
values for m neighboring threads.

sense that the actual happens-before may order more operations, but not fewer —
assuming that shared-memory accesses satisfy at least the total-store order (TSO)
semantics in which writes are guaranteed to be performed according to program
order. For instance, when pcs[0][0] > 2 in the second thread (thread1), the first
invocation in the other thread (thread0) happens-before the first invocation in
this thread. Otherwise, if pcs[0][0] < 2, then the two invocations are overlapping
in time. The latter may not be true in the real happens-before due to the delay in
incrementing and reading the program counter variables. Although some loss of
precision is possible, we are unaware of other methods for tracking happens-before
which avoid significant interference with the implementation under test.

Based on the encoding described above, we generate histories as sequences of
call and return actions which serve as input to our consistency checking algorithms.
For simplicity, we have considered just two consistency models, linearizability
and a weak consistency model defined by {Ret, lin ⊇ vis, lin ⊇ hb, vis ⊇ hb} —
see Section 2. We consider linearizability in order to measure the overhead of
checking weak consistency due to visibility enumeration; the second model is
simply the easiest weak-consistency model to support with our implementation;
the choice among possible weak-consistency models appears fairly arbitrary, since
the enumeration of visibility relations is common to all.

We consider several measurements, the results of which are listed in Fig-
ures 7–8; all times are measured in milliseconds on logarithmic scale on a 2.7 GHz
Intel Core i5 MacBook Pro with Oracle’s Java SE runtime version 9; and timeouts
are set to 1000ms. We note that while accurate and recording of operation timings
within an execution without interference is challenging, timing the validation of

2e+0 1e+1 2e+1 1e+2

Just-in-Time Linearizability

2e+0

1e+1

2e+1

1e+2

Li
ne

ar
iz

ab
ilit

y

Linearizable
Non-Linearizable

1e+1 1e+2 1e+3

Linearizability

1e+1

1e+2

1e+3

W
ea

k
C

on
si

st
en

cy

Linearizable
Inconsistent

Unknown

1e+0 1e+1 1e+2 1e+3

Min-Visibility Weak Consistency1e+0

1e+1

1e+2

1e+3

W
ea

k
C

on
si

st
en

cy

Consistent
Inconsistent

2e+0 1e+1 2e+1 1e+2

Just-in-Time Linearizability

2e+0

1e+1

2e+1

1e+2

Li
ne

ar
iz

ab
ilit

y

Linearizable
Non-Linearizable

1e+1 1e+2 1e+3

Linearizability

1e+1

1e+2

1e+3

W
ea

k
C

on
si

st
en

cy

Linearizable
Inconsistent

Unknown

1e+0 1e+1 1e+2 1e+3

Min-Visibility Weak Consistency1e+0

1e+1

1e+2

1e+3

W
ea

k
C

on
si

st
en

cy

Consistent
Inconsistent

Fig. 7. Empirical comparison of (left) standard linearizability checking versus just-in-
time linearizability checking on concurrent traces of Java data structures; and (right)
weak-consistency checking versus standard linearizability checking. Each point reflects
the time in milliseconds for checking a given trace.

each recorded history, which we report here, is accomplished accurately, without
interference, by computing the clock difference just before and after validation.

Our first measurements establish the baseline linearizability and weak-consistency
checking algorithms. On the left side of Figure 7 we consider the time required
to check linearizability for each history by our own implementations of Wing
and Gong’s standard enumerative approach [38], along with Lowe’s “just-in-time
linearizability” algorithm [29] — see Section 4. We resolve the nondeterminism in
these algorithms (e.g., in choosing which pending operation to attempt lineariz-
ing first) arbitrarily (e.g., first called), finding no clear winner: each algorithm
performs better on some histories. Since these subtleties are outside the scope of
our work, we avoid further investigation and choose Wing and Gong’s algorithm
as our baseline linearizability-checking algorithm.

Our second measurement exposes the overhead of enumerating visibility
relations for checking weak consistency. On the right side of Figure 7 we consider
the time required to check weak consistency of a given history versus the time
required to check its linearizability.8 We observe an overhead of approximately
10× due to visibility enumeration and validation. Our naïve implementation
enumerates candidate visibilities in size-decreasing order since we expect visibility-
loss to be the exception rather than the rule; for instance, atomic operations
observe all linearized-before operations. We omit the analogous comparison
between weak-consistency checking and just-in-time linearizability checking to
avoid redundancy, since the just-in-time optimization is a seemingly-insignificant
factor in our experiments: the results are nearly identical.

Our third measurement demonstrates the impact of our minimal-visibility
consistency checking optimization. On the left side of Figure 8 we consider the
time required to check weak consistency without and with our optimization. The

8 Due to a benign error in the decoding of results of stress testing, we observe one
single point on which the two algorithms conflict — labeled by “Unknown.”

2e+0 1e+1 2e+1 1e+2

Just-in-Time Linearizability

2e+0

1e+1

2e+1

1e+2

Li
ne

ar
iz

ab
ilit

y

Linearizable
Non-Linearizable

1e+1 1e+2 1e+3

Linearizability

1e+1

1e+2

1e+3

W
ea

k
C

on
si

st
en

cy

Linearizable
Inconsistent

Unknown

1e+0 1e+1 1e+2 1e+3

Min-Visibility Weak Consistency1e+0

1e+1

1e+2

1e+3

W
ea

k
C

on
si

st
en

cy

Consistent
Inconsistent

1e+0 2e+0 1e+1 2e+1 1e+2

Linearizability1e+0

2e+0

1e+1

2e+1

1e+2

M
in

-V
is

ib
ilit

y
W

ea
k

C
on

si
st

en
cy

Linearizable
Inconsistent

Fig. 8. Empirical comparison of (left) standard weak-consistency checking versus
minimal-visibility weak-consistency checking on concurrent traces of Java data struc-
tures; and (right) the latter versus standard linearizability checking. Each point reflects
the time in milliseconds for checking a given trace.

difference is dramatic, with our optimized algorithm consistently outperforming,
sometimes up to multiple orders of magnitude: the leftmost 1000ms timeout of
the naïve algorithm is matched by a roughly 18ms positive identification. Finally,
our fourth measurement, on the right side of Figure 8, demonstrates that the
overhead of our minimal-visibility checking algorithm over linearizability checking
is quite modest: we observe roughly a 2× overhead, compared with the observed
10× overhead without optimization.

While our experiments clearly demonstrate the efficacy of our minimal-
visibility consistency checking algorithm, we will continue to evaluate this opti-
mization across a wide range of concurrent objects, consistency models, and client
programs, e.g., including many more concurrent threads. While we do expect
the performance of linearizability- and weak-consistency checking to vary with
thread count, we expect the performance gains of minimal-visibility consistency
checking to continue to hold.

6 Related Work

Herlihy and Wing [22] described linearizability, which is the standard consistency
criterion for shared-memory concurrent objects. Motivated by replication-based
distributed systems, Burckhardt et al. [11, 9] describe a more general axiomatic
framework for specifying weaker consistencies like eventual consistency [36]
and causal consistency [2]. Our weak consistency checking algorithm applies to
consistency models described in this framework.

While several static techniques have been developed to prove linearizability [22,
4, 27, 37, 30, 39, 34, 31, 13, 26, 1, 21, 12, 6, 33, 32, 24], few have addressed dynamic
techniques such as testing and runtime verification. The works in [38, 29] describe
monitors for checking linearizability that construct linearizations of a given
history incrementally, in an online fashion. Line-Up [10] performs systematic
concurrency testing via schedule enumeration, and offline linearizability checking

via linearization enumeration. Our weak consistency checking algorithm combines
these approaches with an efficient enumeration of visibility relations. The works
in [16, 15] propose a symbolic enumeration of linearizations based on a SAT
solver. Although more efficient in practice, this approach applies only to certain
ADTs. In this work, we propose a generic approach that assumes no constraints
on the sequential semantics of the concurrent objects.

Bouajjani et al. [7] consider the problem of verifying causal consistency. They
propose an algorithm for checking whether a given execution satisfies causal
consistency, but only for the key-value map ADT with simple put and get

operations. Our work proposes a generic algorithm that can deal with various
weak consistency criteria and ADTs.

From the complexity standpoint, Gibbons and Korach[18] showed that moni-
toring even the single-value register type for linearizability is np-hard. Alur et
al. [3] showed that checking linearizability of all executions of a given implemen-
tation is in expspace when the number of concurrent operations is bounded, and
then Hamza [20] established expspace-completeness. Bouajjani et al. [5] showed
that the problem becomes undecidable once the number of concurrent operations
is unbounded. Also, Bouajjani et al. [8, 7] investigate various ADTs for which
the problems of checking eventual and causal consistency are decidable.

7 Conclusion

We have developed the first completely-automatic algorithm for checking weak
consistency of arbitrary concurrent object implementations which avoids the
naïve enumeration of all possible visibility relations. While methodologies for
constructing reliable yet weakly-consistent implementations are relatively imma-
ture, we believe that such implementations will continue to be important for
the development of distributed and multicore software systems. Likewise, au-
tomation for testing and verifying such implementations is, and will increasingly
be, important. Besides improving state-of-the-art verification algorithms, our
results represent an important step for future research which may find other ways
to exploit the soundness of considering only minimal visibilities, on which our
optimized algorithm relies.

References

[1] Abdulla, P.A., Haziza, F., Holík, L., Jonsson, B., Rezine, A.: An integrated
specification and verification technique for highly concurrent data structures.
In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems - 19th International Conference, TACAS 2013,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7795, pp. 324–338. Springer (2013),
https://doi.org/10.1007/978-3-642-36742-7_23

[2] Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
Definitions, implementation, and programming. Distributed Computing 9(1),
37–49 (1995), https://doi.org/10.1007/BF01784241

[3] Alur, R., McMillan, K.L., Peled, D.A.: Model-checking of correctness con-
ditions for concurrent objects. Inf. Comput. 160(1-2), 167–188 (2000),
https://doi.org/10.1006/inco.1999.2847

[4] Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under
abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.)
Computer Aided Verification, 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4590, pp. 477–490. Springer (2007), https://doi.org/10.
1007/978-3-540-73368-3_49

[5] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent pro-
grams against sequential specifications. In: Felleisen, M., Gardner, P. (eds.)
Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 290–
309. Springer (2013), https://doi.org/10.1007/978-3-642-37036-6_17

[6] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking
for concurrent objects. In: Rajamani, S.K., Walker, D. (eds.) Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015. pp. 651–662. ACM (2015), http://doi.acm.org/10.1145/2676726.
2677002

[7] Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal
consistency. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. pp. 626–638. ACM (2017),
http://dl.acm.org/citation.cfm?id=3009888

[8] Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of opti-
mistic replication systems. In: Jagannathan, S., Sewell, P. (eds.) The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. pp.
285–296. ACM (2014), http://doi.acm.org/10.1145/2535838.2535877

[9] Burckhardt, S.: Principles of eventual consistency. Foundations and Trends in
Programming Languages 1(1-2), 1–150 (2014), https://doi.org/10.1561/
2500000011

[10] Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and
automatic linearizability checker. In: Zorn, B.G., Aiken, A. (eds.) Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10,
2010. pp. 330–340. ACM (2010), http://doi.acm.org/10.1145/1806596.
1806634

[11] Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types:
specification, verification, optimality. In: Jagannathan, S., Sewell, P. (eds.)

The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014. pp. 271–284. ACM (2014), http://doi.acm.org/10.1145/2535838.
2535848

[12] Dodds, M., Haas, A., Kirsch, C.M.: A scalable, correct time-stamped stack.
In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015. pp. 233–246. ACM (2015),
http://doi.acm.org/10.1145/2676726.2676963

[13] Dragoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs
of concurrent objects with cooperating updates. In: Sharygina, N., Veith,
H. (eds.) Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 8044, pp. 174–190. Springer (2013), https:
//doi.org/10.1007/978-3-642-39799-8_11

[14] Emmi, M., Enea, C.: Exposing non-atomic methods of concurrent objects.
CoRR abs/1706.09305 (2017), http://arxiv.org/abs/1706.09305

[15] Emmi, M., Enea, C.: Sound, complete, and tractable linearizability mon-
itoring for concurrent collections. PACMPL 2(POPL), 25:1–25:27 (2018),
http://doi.acm.org/10.1145/3158113

[16] Emmi, M., Enea, C., Hamza, J.: Monitoring refinement via symbolic rea-
soning. In: Grove, D., Blackburn, S. (eds.) Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, Portland, OR, USA, June 15-17, 2015. pp. 260–269. ACM (2015),
http://doi.acm.org/10.1145/2737924.2737983

[17] Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed con-
sensus with one faulty process. J. ACM 32(2), 374–382 (1985), http:
//doi.acm.org/10.1145/3149.214121

[18] Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput.
26(4), 1208–1244 (1997), https://doi.org/10.1137/S0097539794279614

[19] Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002),
http://doi.acm.org/10.1145/564585.564601

[20] Hamza, J.: On the complexity of linearizability. In: Bouajjani, A., Fauconnier,
H. (eds.) Networked Systems - Third International Conference, NETYS
2015, Agadir, Morocco, May 13-15, 2015, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 9466, pp. 308–321. Springer (2015), https:
//doi.org/10.1007/978-3-319-26850-7_21

[21] Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizabil-
ity proofs. In: D’Argenio, P.R., Melgratti, H.C. (eds.) CONCUR 2013
- Concurrency Theory - 24th International Conference, CONCUR 2013,
Buenos Aires, Argentina, August 27-30, 2013. Proceedings. Lecture Notes
in Computer Science, vol. 8052, pp. 242–256. Springer (2013), https:
//doi.org/10.1007/978-3-642-40184-8_18

[22] Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990),
http://doi.acm.org/10.1145/78969.78972

[23] Kawell, Jr., L., Beckhardt, S., Halvorsen, T., Ozzie, R., Greif, I.: Replicated
document management in a group communication system. In: Proceedings
of the 1988 ACM Conference on Computer-supported Cooperative Work.
pp. 395–. CSCW ’88, ACM, New York, NY, USA (1988), http://doi.acm.
org/10.1145/62266.1024798

[24] Khyzha, A., Gotsman, A., Parkinson, M.J.: A generic logic for proving
linearizability. In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi, S., Philippou,
A. (eds.) FM 2016: Formal Methods - 21st International Symposium, Li-
massol, Cyprus, November 9-11, 2016, Proceedings. Lecture Notes in Com-
puter Science, vol. 9995, pp. 426–443 (2016), https://doi.org/10.1007/
978-3-319-48989-6_26

[25] Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21(7), 558–565 (1978), http://doi.acm.org/10.
1145/359545.359563

[26] Liang, H., Feng, X.: Modular verification of linearizability with non-fixed
linearization points. In: Boehm, H., Flanagan, C. (eds.) ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’13, Seattle, WA, USA, June 16-19, 2013. pp. 459–470. ACM (2013), http:
//doi.acm.org/10.1145/2462156.2462189

[27] Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via
refinement. In: Cavalcanti, A., Dams, D. (eds.) FM 2009: Formal Methods,
Second World Congress, Eindhoven, The Netherlands, November 2-6, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5850, pp. 321–337.
Springer (2009), https://doi.org/10.1007/978-3-642-05089-3_21

[28] Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for
eventual: scalable causal consistency for wide-area storage with COPS. In:
Wobber, T., Druschel, P. (eds.) Proceedings of the 23rd ACM Symposium on
Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal, October
23-26, 2011. pp. 401–416. ACM (2011), http://doi.acm.org/10.1145/
2043556.2043593

[29] Lowe, G.: Testing for linearizability. Concurrency and Computation: Practice
and Experience 29(4) (2017), https://doi.org/10.1002/cpe.3928

[30] O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying
linearizability with hindsight. In: Richa, A.W., Guerraoui, R. (eds.) Pro-
ceedings of the 29th Annual ACM Symposium on Principles of Distributed
Computing, PODC 2010, Zurich, Switzerland, July 25-28, 2010. pp. 85–94.
ACM (2010), http://doi.acm.org/10.1145/1835698.1835722

[31] Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearis-
able. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verification -
24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13,
2012 Proceedings. Lecture Notes in Computer Science, vol. 7358, pp. 243–259.
Springer (2012), https://doi.org/10.1007/978-3-642-31424-7_21

[32] Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained
concurrent programs. In: Grove, D., Blackburn, S. (eds.) Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015. pp. 77–87. ACM
(2015), http://doi.acm.org/10.1145/2737924.2737964

[33] Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent
algorithms with histories and subjectivity. In: Vitek, J. (ed.) Programming
Languages and Systems - 24th European Symposium on Programming,
ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. Lecture Notes in Computer Science, vol. 9032, pp. 333–358.
Springer (2015), https://doi.org/10.1007/978-3-662-46669-8_14

[34] Shacham, O., Bronson, N.G., Aiken, A., Sagiv, M., Vechev, M.T., Yahav,
E.: Testing atomicity of composed concurrent operations. In: Lopes, C.V.,
Fisher, K. (eds.) Proceedings of the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 -
27, 2011. pp. 51–64. ACM (2011), http://doi.acm.org/10.1145/2048066.
2048073

[35] Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M.J., Theimer, M.M.,
Welch, B.B.: Session guarantees for weakly consistent replicated data. In: Pro-
ceedings of the Third International Conference on on Parallel and Distributed
Information Systems. pp. 140–150. PDIS ’94, IEEE Computer Society Press,
Los Alamitos, CA, USA (1994), http://dl.acm.org/citation.cfm?id=
381992.383631

[36] Terry, D.B., Theimer, M., Petersen, K., Demers, A.J., Spreitzer, M., Hauser,
C.: Managing update conflicts in bayou, a weakly connected replicated
storage system. In: Jones, M.B. (ed.) Proceedings of the Fifteenth ACM
Symposium on Operating System Principles, SOSP 1995, Copper Mountain
Resort, Colorado, USA, December 3-6, 1995. pp. 172–183. ACM (1995),
http://doi.acm.org/10.1145/224056.224070

[37] Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook,
B., Jackson, P.B. (eds.) Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6174, pp. 450–464. Springer (2010),
https://doi.org/10.1007/978-3-642-14295-6_40

[38] Wing, J.M., Gong, C.: Testing and verifying concurrent objects. J. Paral-
lel Distrib. Comput. 17(1-2), 164–182 (1993), https://doi.org/10.1006/
jpdc.1993.1015

[39] Zhang, S.J.: Scalable automatic linearizability checking. In: Taylor, R.N.,
Gall, H.C., Medvidovic, N. (eds.) Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI,
USA, May 21-28, 2011. pp. 1185–1187. ACM (2011), http://doi.acm.org/
10.1145/1985793.1986037

