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Abstract

We analyze a queueing system in which customers are scheduled to

arrive in certain time slots, and re-scheduled in case of late arrivals. More-

over, the queueing delays are distributed between two waiting rooms. We

quantify the propagated delay that is triggered by a late customer. This

propagation depends on the ratio of the usage of the waiting rooms. We

then identify conditions under which waiting cost functions are convex.

This knowledge is useful to derive fuel-efficient aircraft sequencing strate-

gies.

1 Introduction

There are many systems in which customers are scheduled to arrive at certain
times and re-scheduled in case of disturbing events, such as delayed arrivals
or capacity changes. Railway and aircraft sequencing are just two examples.
Today, such schedules are often created by human experts who would like to
better understand the impact of the disturbances on the system level: how far
do delays propagate? How long does it take until the system is recovered from
the disruptions?

For example in aircraft sequencing, it often happens that the schedules
are violated due to weather conditions or competition for punctual arrivals
[Nolan(1998)]. Aircraft have to be re-scheduled, which creates additional de-
lays. These delays propagate through the airspace and increase the workload of
the controllers who are in charge of safe and efficient operations.

While this phenomenon is not new, only few papers analyze it. In the air-
traffic literature, [Erzberger(1995)] runs simulations and gives rules of thumb
for fuel-efficient scheduling policies in the presence of trajectory uncertainties.
[Bayen et al(2005)Bayen, Grieder, Meyer, and Tomlin] analyze the dynamics of
speed-control but only based on a deterministic model. Others
[Bayen and Tomlin(2004)], [Balakrishnan and Chandran(2010)],
[D’Ariano and D’Urgolo(2010)] focus mainly on the computational complexity
of the underlying sequencing problem but do not increase the intuitive under-
standing. This is also the case for the appointment scheduling literature, which
begins with the works of [Winsten(1959), Mercer(1960), Mercer(1973)], but loses
its traces then. Today, the field is widely occupied with algorithmic questions
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Figure 1: Delay absorption under uncertainty.

[L. V. Green(2008)] (and the references therein). A recent analytical approach
is [Guadagni and Ndreca(2010)], but results are not mature yet.

The contribution of this paper is an analysis of delays that propagate through
a flow of pre-scheduled customers in a highly congested queueing system. We
build an elementary stochastic model and identify the conditions under which
the average delays can be minimized. The remainder of the paper is organized
as follows: in the next section we introduce the basic model and an analysis of
the delay propagation. Then we introduce waiting costs and identify conditions
under which delay minimization can be achieved analytically. We conclude with
a summary and outlook on the next steps in research.

2 Stochastic Model

A typical instance of the problem occurs during aircraft sequencing. Given the
estimated time of arrival (eta) of all aircraft, the task is to generate scheduled
times of arrival (sta), such that a minimum separation m is guaranteed between
successive aircraft. This is a well known scheduling problem, generating queue-
ing delays d for every aircraft [Bayen and Tomlin(2004)],
[Balakrishnan and Chandran(2010)], [D’Ariano and D’Urgolo(2010)].

Our analysis extends the sequencing problem: when queueing delays are ab-
sorbed in high altitudes, fuel burn is minimized for individual flights
[Erzberger(1995)]. But due to trajectory prediction errors, there is a risk that
lost landing slots propagate back to the remaining aircraft. This increases the
total delay, and as a consequence the total fuel burnt. This means that queueing
delays have to be distributed between the high altitudes (fuel efficient) and low
altitudes (fuel inefficient), even when the objective is to minimize fuel consump-
tion.
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2.1 Basic model

As basic model we consider a single arrival trajectory of aircraft i, as depicted
in Figure 1. There are two points of interest: the top of descent and the runway
threshold (blue circles). One part of the queueing delay di is absorbed prior to
the top of descent

stai = etai + (1 − α)di, (1)

and the other part αdi is included in the sta at the runway threshold. Here,
α ∈ [0, 1] is the percentage of delay to be absorbed on low altitude.

Due to trajectory prediction errors, the actual time of arrival at the top of
descent (red point) will be

atai = stai + ǫi, (2)

where ǫi is a random variable describing the error in achieving the scheduled
time of arrival. One can guess from the Figure that there is a need to re-schedule
the flow when the prediction error ǫi is larger than αdi.

2.2 Delay Propagation

Consider now a flow of aircraft with scheduled times of arrival sta1 < sta2 < . . .
as depicted in Figure 2. Since the flow is already scheduled, we know that the
spacing between two successive aircraft is mi + ai, where mi is the minimum
separation and ai ≥ 0 is the remaining spacing in the case they were initially
far enough behind each other (first line).

A trajectory prediction error ǫi will propagate backwards, if it exceeds the
amount of delay absorbed on low altitude αdi (green boxes)

ǫi > αdi.

Then, the separation with aircraft i + 1 reduces to mi + ai − ǫi. Thus, aircraft
i+1 has to be re-scheduled by ǫi−ai, in order to keep the separation mi (second
line in Figure 2). Aircraft i + 1 itself absorbs αdi+1 on low altitude. Thus, the
propagation will continue, if

(ǫi − ai) > αdi+1.

Following this mechanism recursively leads to the condition that the error ǫi

triggers a propagation of the (k + 1)st follower of aircraft i if

(ǫi −
k−1∑

j=0

ai+j) > αdi+k. (3)

With a first-come-first-served policy, the ai’s can be easily expressed in terms
of the inter-arrival times in the original flow and the queueing delays, leading
to ai = max(si −mi − di, 0), where si = etai − etai−1 (see Appendix A). Thus,
the ingredients of (3) are known. More interesting is k, which is the largest
number, such that expression (3) is valid. It has the form of a first-visit time or
stopping trial (e.g. [Feller(1970), Wolff(1989)]) which depends on the random
variable (ǫi − αdi+k). Its distribution will be discussed in section 3.2.
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Figure 2: Scheduling process and delay propagation.

Summing all terms up, the amount of propagated delay, triggered by aircraft
i is thus

Di = (ǫi − αdi) + (ǫi − ai − αdi+1) + . . . + (ǫi −
k−1∑

j=0

ai+j) − αdi+k (4)

= (k + 1)ǫi − [(kai − . . . − ai+k−1] − α
k∑

j=0

di+j (5)

= (k + 1)ǫi −
k−1∑

j=0

(k − j)ai+j

︸ ︷︷ ︸

≈0

−α

k∑

j=0

di+j

︸ ︷︷ ︸

≈(k+1)αdi

, (6)

D is a random variable, because it depends on the queueing delays d, the tra-
jectory prediction error ǫ, the natural spacing a and the number of aircraft
affected by the propagation k. This is a complicated expression, but in periods
of high traffic density, the pre-scheduled traffic is quite tight. This means that
the terms ai in equation (6) are likely to be very small. A simple idea is thus
to approximate the propagated delay of aircraft i by

Di ≈
{

(k + 1)(ǫi − αdi) if ǫi ≥ αdi

0 else,
(7)

In reality, natural spacing ai between aircraft will absorb the propagated delay
and making it smaller and smaller. Moreover, we approximated α

∑k
j=0 di+j

with (k +1)αdi which will be justified in the next section. This is why equation
(7) is only an approximation.

The trajectory prediction errors ǫ can be assumed to occur independently
of the queueing delays d. This is not the case for k, the number of aircraft
affected by the propagation: the larger the expression (ǫi −αdi), the longer the
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propagation will be. The average propagated delay of aircraft i is then

E(Di) =

∞∑

k=0

∞∫

u=0

u/α∫

v=0

(k + 1)(u − αv)P (k, u, v)dvdu (8)

=

∞∑

k=0

(k + 1)






∞∫

u=0

u/α∫

v=0

(u − αv)P (k | u, v)P (u, v)dvdu




 (9)

=

∞∑

k=0

(k + 1)






∞∫

u=0

u/α∫

v=0

(u − αv)P (k | u, v)f(u)g(v)dvdu




 (10)

where P (.) and P (k | .) are the corresponding joint and conditional distributions
and f, g the densities of ǫ and d. Note that with ’ordinary’ integration limits,
the shape of E(D) would be straightforward.

3 Results

Equation (10) contains three elements: the number of aircraft affected by propa-
gation k, the queueing delay d and the trajectory prediction error ǫ. We obtained
results about k (will be published elsewhere) and about the typical shape of D.

3.1 Independence

In order to increase our understanding of equation (10), we first assumed inde-
pendence between k, the number of aircraft affected by propagation and ǫi−αdi,
the size of the initial trajectory prediction error. Then, P (k|ǫ, d) = P (k) and
thus

E(Di) = E(k)E(ǫi − αdi). (11)

In this section, we analyze the shape of model (11) under various distributions.
In the next section we come back to the more complicated case of dependent
random variables.

Pre-scheduled random arrivals (PSRA/D/1) A regular pre-scheduled
and randomly disturbed arrival is given by

atai =
i

λ
+ ǫi (12)

where λ ∈ R is the average arrival rate (min−1).
In periods of over-demand (λ > µ), the initial queueing delay of aircraft i is

simply di = i( 1
µ − 1

λ ). Here, µ is the average service rate which is determined
by the minimum separations mi. In a rush of n aircraft, the probability that
an aircraft has delay d is thus uniformly distributed d ∼ U [0, n( 1

µ − 1
λ )]. With
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Figure 3: Behavior of E(ǫi − αdi).

ǫ ∼ U [−σ, σ] this leads to

E(ǫi − αdi) =
1

2σn( 1
µ − 1

λ )

σ∫

u=0

u/α∫

v=0

(u − αv)dvdu (13)

=
σ2

12αn( 1
µ − 1

λ )
∝

1

α
. (14)

This is a sharply decreasing function of α.

General queue in heavy traffic (G/G/1) In congested times, the queuing
delay is distributed exponentially with parameter ξ = 2a

σ2 , where a is the differ-
ence between average arrival and service rate and σ2 the sum of the variances of
the processes and provided that α/σ is small [Wolff(1989)]. Although this is not
the most precise approximation (which we saw by simple simulation examples),
it gives us insight into the shape of the propagated delay again. If the trajectory
prediction error is also exponentially distributed ǫ ∼ Exp(σ), we have

E(ǫi − αdi) =
ξ

σ(ασ + ξ)
(15)

=

(
ασ2

ξ
+ σ

)−1

. (16)

Again, this is a sharply decreasing function of α.

Exponential power distribution Although analytical solutions still exist
for a few other distributions, we computed the shape of equation (11), when ǫ
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Figure 4: Average propagated delay.

is member of a family of distributions called the the exponential power distri-
bution. Its density is proportional to

f(x, µ, α, β) ∝ e−(
|x−µ|

α
)β

, (17)

where µ is a location, α a scale and β a shape parameter. The family includes
the Laplace (β = 1) and Normal distributions (β = 2) and converges to the
uniform distribution for β → ∞. For β < 2 its tails are heavier than a Normal
and for β > 2 lighter.

Anyhow, it turned out that is was the distribution of the queueing delays
that had the largest impact on the shape of (11). Figure 3 shows a typical result,
where we varied ξ over 0.01, 0.05 and 0.2. The larger ξ grows, the less bended
the curve. Note that very small ξ correspond to very high traffic densities. The
second parameter with impact on the shape of equation (11) was the variance of
the trajectory prediction error. For large variances, the curvature became less
involved, as well. For an idea of the interaction of these parameters please look
in the Appendix, where we solved two other special cases analytically.

Last but not least, a validation of the model can be seen in Figure 4. The
dotted lines are from a Monte-Carlo simulation of the sequencing problem. For
small variances of the trajectory prediction errors σ, the model (11) describes
the propagated delays well. In case the trajectory prediction errors get large, we
obtain less accurate results. But we see that the theoretical model captures the
essential nature of the delay propagation. This lets us conjecture that during
high congestion, E(ǫi − αdi) always sharply decreases with α. This property is
important for the optimization of fuel-burn.
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3.2 Dependent propagation

The independence assumption between k and ǫ − αd helped to understand the
typical behavior of equation (10) but it performed badly in cases of large trajec-
tory errors. With k ∝ ǫ − αd, there is just a scale to above. Thus, a non-linear
relationship must exist. We have some empirical results on this relationship,
that will be reported in another paper.

4 Conditions for Fuel Optimization

In this section we introduce costs for the two waiting rooms and ask the question:
what are the conditions, such that a trade-off between delay absorption on high
and low altitude exists?

In equilibrium, provided it exists, the average queueing delay is a constant.
Minimizing average cost then simplifies to a solution of

minα c(α) = [α + (1 − α)λ]d(α) (18)

d(α) = do + E{D(α)}, (19)

where d0 is the average queueing delay, E(D) is the propagated delay, and λ < 1
is the relative fuel consumption index [kg/minute] in high altitude.

The second derivative of c is

c′′(α) = 2(1 − λ)d′ + (α + (1 − α)λ)d′′. (20)

For c being convex, we need thus

d′

d′′
> −α

2
− λ

2(1 − λ)
. (21)

In the previous section we have seen that the propagated delay decreases sharply
with α, the fraction of delay absorbed in low altitude. A one-parameter family
with a similar behavior is

dθ(α) = dp(1 − α)θ + d0, θ ≥ 1, (22)

where dp, d0 ∈ R are scaling constants [Mesterton-Gibbons(2007)]. For θ = 1 it
is a diagonal, and for θ → ∞, it is parallel to the vertical axis. In this family,
the left side of equation (21) becomes

d′

d′′
=

−dpθ(1 − α)θ−1

dpθ(θ − 1)(1 − α)θ−2
(23)

=
1

θ − 1
α − 1

θ − 1
, (24)

which is linear in α. Thus, the condition (21) for c being convex depends on
the intersection of two lines yi = aiα + bi, i = 1, 2 with a1 = 1/(θ − 1), b1 =
−1/(θ−1), a2 = −1/2, b2 = λ/2(1−λ). Since for θ > 1, −1/2 6= 1/(θ−1), they
have a unique intersection α∗. Thus, c is convex for all α ≥ α∗, which brings us
to a second condition

α∗ =
b2 − b1

a1 − a2
< 0. (25)
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Figure 5: Condition for existence of unique minimum.

The numerator is negative if b2 < b1, which leads to θ > 2
λ − 1. For the

denominator, the solution is θ < −1, which is infeasible, since we have θ ≥ 1.
To summarize, the cost function c is a function of α, the ratio of queueing

delay between high and low altitude. The queueing delay is a decreasing function
of this ratio. We embed this decreasing function in a one-parameter family and
obtain a condition such that c is convex. Figure 5 illustrates the equations. The
horizontal axis is α. The vertical axis is dimensionless (all units in the plot are
normalized). We visualize two cases. The bold lines represent the case, where
the cost function is convex over the whole domain 0 ≤ α ≤ 1. Here, the green
function is the propagated delay d− d0, and the red one the fuel cost (equation
18). The dashed lines represent the case, where the cost function is not convex.
Our second condition for convexity (25) implied that θ > 2

λ − 1. For the plot
we selected λ = 0.5 and θ = 1.4 < 2

0.5 − 1. The dot on the horizontal axis
represents α∗, where the two lines given in (21) intersect. We can see that the
cost function is non-convex before that point, but convex afterwards. Finally,
the dotted linear line is the fuel consumption in the case that no trajectory
prediction errors occur (E(D) = 0). In this case, the most fuel-efficient strategy
is to absorb all queueing delays in high altitude (α = 0).

We performed the same calculations with other function families (e.g. d(x) =
e−θx or d(x) = 1 − xθ, θ < 1), and the results were similar. In particular, the
quotient of their first and second derivatives is linear for all of them.

5 Conclusions and Future Work

In this paper we analyzed a system, where customers are initially scheduled to
arrive in certain time slots, and re-scheduled in case of missed appointments.
The focus of our analysis was the delay propagation due to late arrivals. We for-
malized the problem as a queueing process, where waiting times are distributed
between two waiting rooms. Our first result was that the propagated delay de-
creases sharply with the fraction of time spent in the first waiting room. This is
intuitively clear, since the waiting rooms may be seen as a buffers that protect
the server from too long queues. But against intuition was that the rapid de-
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Figure 6: Natural buffers ai’s.

crease of the propagated delay occurs also in a system without any exponential
distributions. We then analyzed the conditions under which decreasing func-
tions lead to a convex delay cost. Here again, a non-intuitive property was that
linearly decreasing delay propagation functions lead to a concave cost functions,
meaning that there is no fuel minimizing trade-off strategy.

The current results are useful to understand the general delay generating
mechanisms of our system. For particular case-studies, we need to give a physical
meaning to the parameter in the last section. For future work, we think that
also more has be known about the number of customers that are affected by
delay propagation. Moreover, the problem can be re-formulated as a chain of
two servers. Then, new mechanisms to control the propagation, for example
with the insertion of variable buffer sizes, may be studied. This knowledge is
elementary to understand the conditions for efficient sequencing strategies under
uncertainties.

A Natural Buffers

In order to see what the ai’s are, please take a look at Figure 6. Initially, aircraft
i and i+1 are separated by a distance si. After the scheduling, we know that
their separation will be mi + ai. Both aircraft were delayed by di, di+1 ≥ 0.
Thus

mi + ai = di+1 + si − di.

From the queueing relationship di+1 = max(di + mi − si, 0), this leads to

ai =

{
0 if di+1 > 0
si − mi − di else

Note that it is intuitively clear that ai = 0 in the case that di+1 > 0.

B Analytical solution

Let’s assume that the system is Markovian with arrival rate λ and service rate
µ. Then the equilibrium delay distribution (including processing time) is expo-
nential with parameter µ − λ [Wolff(1989)].

We solved two cases of equation (11) analytically, depending on the distri-
bution of the trajectory prediction errors ǫ:
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1. Uniform distribution: ǫ ∼ U [−σ, σ].
Then

E(ǫi − αdi) =

σ∫

u=0

u/α∫

v=0

(u − αv)
1

2σ
(µ − λ)e−(µ−λ)vdvdu

=
1

2σ

σ∫

u=0

u +
α

(µ − λ)

(

e−
(µ−λ)u

α − 1
)

du

=
1

2σ

[

ξ2(1 − e−
σ
ξ ) − ξσ +

σ2

2

]

,

where ξ = α
(µ−λ) . The expression is complicated, but has an interesting

property: in very high traffic densities (ρ > 0.9), it decreases sharply with
α, whereas in moderate traffic densities (ρ < 0.8), its decline is more or
less proportional to α (as can be seen in Figure 3).

2. Gaussian distribution: ǫ ∼ N(0, σ)

E(ǫi − αdi) =

∞∫

u=0

u/α∫

v=0

(u − αv)
1√
2πσ

e
−u2

2σ2 (µ − λ)e−(µ−λ)vdvdu

There is a ‘closed-form’ solution, but it contains the error function and
several other terms (obtained with Mathematica). It is more complicated
than the above case, so we do not reproduce it here.
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