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Abstract

We analyze the impact of random disturbances (delays, cancella-
tions, etc) on flight schedules. We first show that disturbances that
occur completely at random cause systematic gaps between the num-
ber of planned and of observed flights. These gaps can be expressed
by a linear function when the arrival process is Poisson. They follow a
non-linear function for the empirical arrival process. We then analyze
past flight data and show that dependencies between the disturbances
of successive flights exist in reality. We identify similarities with two
linear time-series models. The result is empirical and we give two ideas
for further analysis before interpretation. We validate our results on
randomly chosen sectors from the European Airspace. We conclude
that even if all controllable uncertainties are eliminated, systematic
gaps between the number of planned and observed flights have to be
expected. This analysis is a step to understand the impact of uncer-
tainties on air-traffic flow planning. Based on this one can identify
flight schedules that lead to a minimum of gaps.

1 Introduction

The European airspace is a network of sectors and routes. Sectors are ge-
ographical regions and routes connect sectors. Currently more than 600
sectors and more than 4000 routes build the transportation network, serv-
ing more than 22.000 daily flights to take place. Every aircraft has An initial

schedule. This is a sequence (S1, t1), ..., (Sn, tn) of sectors Si and entry times
ti in the sector. Prior to departure, a flow planning procedure assigns depar-
ture slots to aircraft to avoid congestion. This results in a planned schedule

(S1, t
′

1), ..., (Sn, t′n), t′1 ≥ t1 with possibly delayed departure times. Each sec-
tor is supervised by two controllers, one in charge of conflict detection, and
the other in charge of conflict resolution. This is achieved by re-routing
and speed adjustments to keep minimum distances between aircraft. Slot
allocation takes place at least two hours before the intended take-off time.
Air-traffic controllers can thus anticipate the amount of traffic in their sec-

1



Figure 1: Events at a sector entry.

tors.

Figure 1 shows three events that disturb the flow planning.

(a) Cancellation and rerouting: some of the scheduled flights are canceled
or rerouted to other sectors.

(b) Delay: the arrival times of aircraft can be delayed. Delay occurs either
at the departure airport or during flight.

(c) Pop-up: aircraft that are rerouted from other sectors or that have not
submitted their schedules arrive.

Disturbances transform a regulated schedule into an observed schedule

(S′

1, t
′′

1), ..., (S
′

m, t′′m). Thus, aircraft may arrive at different sectors and at
different time-points than planned. For example in the year 2004, 17.7 %
of the flights departed- and 18.5 % arrived more than 15 min behind their
schedule [Commission, 2006].

It is natural to think that random events deviate flights from their sched-
ules. For example, weather conditions or unpredictable events (e.g. passen-
ger delay or technical failure) constantly affect the system. One likes to
assume that such events do not disturb the flow planning systematically. In
average, their effects should be canceled out.
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On the other hand there are mechanisms that systematically disturb the
flow planning. For example, airlines use the cancellation of flights as a strat-
egy to avoid high departure delays [Mukherjee et al., 2005]. Next, departure
delays are often caused by delayed connecting flights, which can propagate
over the whole network [Eurocontrol, 2002]. Moreover, pilots have different
departure strategies; five minutes before or ten minutes after the scheduled
departure slot [Eurocontrol, 2002].

Deviations from schedules lead to gaps between the number of planned
and observed aircraft entering sectors. This causes safety problems and
sub-optimally used capacity. In this paper we analyze conditions for the
systematical occurrence of such gaps. To do so, we analyze the following
hypothesis:

‘Gaps between planned and observed traffic are exclusively due to
random fluctuations in the sector entry times.’

If this is the case, they are a natural, and unavoidable characteristic of the
flow system. If not, non-random forces apply to the system and the occur-
rence of gaps might be controllable.

Related Work [Wanke et al., 2004] decompose sector demand uncer-
tainties into the same three categories ‘cancellation, delay and pop-up’ as
above. They further subdivide the ‘delay’ component into ‘routing/altitude,
departure time and flight progress’. They analyze the distributions of all
components, conditionally to external, discrete variables. For example the
probability of a pop-up depends on the time-of-day, the day-of-week and of
the prediction horizon. More complex distribution models, for example for
re-routing, are developed, too. They identify that pop-ups can be described
by geometric distribution functions. The other components do not allow for
substantial conclusions.

[Mukherjee et al., 2005] propose an analytic model for the probability of
cancellation at congested airports. Their assumption is that airlines cancel
flights when the expected delays exceed a threshold. This is modeled as a
maximum flow problem, where the flows are constrained by the initial de-
mand and the threshold. The probability of cancellation is then the ratio
between the maximum flow and the initial demand.

In the same paper, [Mukherjee et al., 2005] describe an analytic model
for the en-route delay that is caused by capacity limitations at the arrival
airport. Such delay is materialized by air-holdings. They assume a non-
homogeneous Poisson process as arrival process and an Erlang distributed
runway usage time. Given the hourly demand and capacity schedules, they
derive the probability distribution Pt(n) of having n aircraft in the system
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Figure 2: Relationship between randomly disturbed Point processes. Left:
Point process. Right: Counting process.

at time t. They validate their models in a simulation game with decision
makers from the airline industry and conclude that it can be used as a de-
cision tool in the strategic slot allocation procedure.

None of them, however, conclude that gaps between planned and ob-
served traffic occur systematically.

Outline The paper consists of two parts: In the first part, we analyze the
effect of random disturbances on flight schedules. We build a probabilistic
model of traffic flow and on disturbances of it. We derive analytically and
experimentally the relationship between classes of flight schedules and their
disturbed versions. From this we conclude that gaps between the number
of planned and observed traffic are to be expected even when disturbances
occur completely at random. In the second part we analyze past flight data
to see how these disturbances look like in reality. We discover patterns in
the sample autocorrelation function that are similar to those of classical and
long-memory time-series models. We conclude that dependencies between
the disturbances of successive flights exist. We then interpret and discuss
the results. Ideas for future work finish the article.

2 Formalization

We analyze the effect of random disturbances on the arrival times of aircraft
in a flight sector.

More formally, we analyze the model:

τ ′

i = τi + ǫi , i ∈ N (1)

with

τ ′

i : observed arrival time of aircraft i (∈ R) (2)

τi : planned arrival time of aircraft i (∈ R) (3)

ǫi : disturbance of aircraft i (a continuous random variable) (4)
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to answer two questions: (i) what is the relationship between the processes
{τ ′

i} and {τi} when the disturbances (4) occur completely at random ? And
(ii) how do these disturbances look like in reality?

We consider {τ ′

i} and {τi} as sequences of events, also called Point pro-
cesses [Cox and Isham, 1980]. Point processes can be characterized by the
arrival times τi or by the number of arrivals N(0, b) in the interval (0, b],
called counting process. Figure 2 shows the main ideas. A planned arrival
at time τi is disturbed randomly and occurs at τi + ǫi (left panel). The ob-
served counting process N ′(0, b) is the number of aircraft S(0, b) that remain
in the interval (0, b] plus the number of arrivals that enter the interval from
the right R(b, T ) (right panel).

Operations on point processes in equation 1 are called ‘random trans-
lation’ [Cox and Isham, 1980] or more generally ‘Point Process systems’
[Brillinger et al., 2002]. Random translation is a classical operation on
Point processes in time [Cox and Isham, 1980, Snyder and Miller, 1991].
For example, it is known that the rate of a stationary Point process does
not change by random translation. Under certain conditions, the resulting
process is asymptotically Poisson [Cox and Isham, 1980].

3 Results

We have two results. The first one is about the impact of pure random
disturbances on flight schedules. It shows that the relationship between the
planned and observed counting process is linear when the planned process
is Poisson. When no hypothesis about the planned process is made, this
relationship becomes non-linear. The second result shows that dependencies
between successive disturbances exist in reality. Taken both results together
one can say that systematic gaps between planned and observed traffic have
to be expected even when all controllable disturbances are eliminated. This
raises the question whether there are schedules that lead to a minimum of
gaps.

3.1 Consequences of Independence Assumption

In this part we analyze the impact of pure random disturbances on planned
flight schedules. For this we consider {ǫ1, ǫ2, ..., ǫn} as independently and
identically distributed random variables with mean µi = µ and variance
Vi = σ2. We have a theoretical and an experimental result about the corre-
sponding counting processes.

Definition A point process is a random process whose realizations con-
sist of times P = {τi}, τi ∈ R, i ∈ Z
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Definition Let P be a Point process. A random translation {τ1, ..., τn} →
{τ1 + ǫ1, ..., τn + ǫn}
where ǫi are random variables, results in a Point process P’ in which points
in P are shifted to new locations.

Definition Let Nab = card{τi : a < τi ≤ b} be the number of arrivals in
(a, b] in a Point process P. Let P and P’ be two Point processes.

E(N ′

ab | Nab = k) =
∞

∑

l=0

l · Pr(N ′

ab = l | Nab = k)

is called the conditional expectation of process P’ given P.

Theoretical Result Let P = {τi} be a Poisson process with rate λ. Let
P ′ = {τi + ǫi} be a random translation of P with disturbances ǫi that are (i)
independently and (ii) identically distributed with mean µ and variance σ2.

Then the conditional expectation of P’ given P is linear.

Proof: (sketch) We derive the conditional distribution of the number of
arrivals in the disturbed process given the number of arrivals in the planned
process and take its expectation:

E(N(·)′|N(·) = k) = kpS + λpR

where pS is the probability of points remaining in the interval (a, b] and pR

is the probability of points entering the interval (see Figure 2 for the idea
and the appendix for the whole proof).

Bounds We give bounds for the probabilities pS and pR. Let Uab ∼
Unif(a, b) and ǫ with E(ǫ) = 0, V (ǫ) = σ2 be two independent random
variables.

1. From Tchebycheff’s inequality follows:

pS = Pr(Uab + ǫ ∈ [a, b]) ≥
2

3
−

4σ2

(b − a)2

For example Pr(Ua,a+5+ǫ ∈ [a, a+5]) ≥ 0.1 for σ2 > 3 and Pr(Ua,a+10+
ǫ ∈ [a, a + 10]) ≥ 0.1 for σ2 > 15.

2. From Cramer’s inequality follows:

pR = Pr(UbT + ǫ ≤ b) ≤
1

4

(T − b)2 + 12σ2

(T − b)2 + 3σ2

For example Pr(Ub,b+60 + ǫ ≤ b) ≤ 0.26 for σ2 ∈ {0, .., 20}
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Figure 3: Conditional expectations of randomly translated Point processes.
Left: Poisson process. Right: empirical arrival process.

�

The theoretical result states that systematic gaps between the planned
and the observed counting process exist when the only force on the flight
schedules is that the arrival times are randomly disturbed. When the arrival
process is Poisson, such gaps are linear in the planned counting process. This
is illustrated in the left part of Figure 3. It shows the conditional expecta-
tion of the disturbed process given the planned process for different values
of σ2, the standard deviation of the disturbance of an aircraft (dotted lines).
The sample means are plotted in bold. Clearly, such linear functions do not
correspond to the sample data. Either the Poisson assumption is wrong, the
disturbances ǫi are not identically and independently distributed in reality
or other forces than random translation apply to the system.

Experimental Result When the disturbances ǫi are independently and
identically Gaussian distributed and no hypothesis about the arrival process
{τi} is made, the conditional expectation of the disturbed process given the
planned process is non-linear.

To obtain the experimental result, we simulate the model τ ′

i = τi + ǫi,
where {τi} is the planned arrival process and ǫi are independently and iden-
tically distributed Gaussian random variables. The right part of Figure 3
shows a typical result. It displays the conditional expectation of the simu-
lated process (y-axis) given the planned process (x-axis). The red curve is
the simulation result, where the ǫi are drawn from a Gaussian distribution
with mean=5 and variance=10, which are realistic values. The black curve
shows the sample means. The simulation result has a similar shape than the
sample means. It lies throughout below the sample means. The disagree-
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ment is larger for high traffic densities (PLN ≥ 4) Agreement between the
two schedules is tested with the null-hypothesis H0 : µsi

= µi, ∀i, where µsi

is the simulated mean value of the number of arrivals under the condition
that i have been planned. µi is the corresponding sample mean. In the case
of Figure 3, the hypothesis is rejected in 9 of the 10 cases (t-test, 5 % level,
two-sided).

Simulations of Gaussian random translations are run on twelve randomly
selected sectors. The results are summarized in the table below:

Noise ≥ 90% ≤ 30% no hd

Gauss 17 % 25 % 74 %

The results of the t-tests are classified by two criteria: agreement ≥ 90%
and agreement ≤ 30%. 17 % of the sectors have good agreement and 25 %
have strong disagreement with the sample data (first and second column).
Moreover, the disagreement occurs mainly (74%) in situations with high
traffic densities (third column).

We conclude firstly that gaps between planned and observed counting
processes have to be expected, even when disturbances occur completely at
random. And secondly, either the disturbances are not independently and
identically distributed in reality or other forces than random translation
apply to the system.

3.2 Data Analysis of disturbances

In this section we analyze the possibility that dependencies exist in the se-
quence {ǫ1, ǫ2, ..., ǫn}.

Dependencies between successive terms Figure 4 shows the time
plot of the disturbances ǫi. The mean seems to increase and decrease in
periods of 30 units. No global time trend is visible. The variance is constant
over time.

The left part of Figure 5 shows sample autocorrelation and partial au-
tocorrelation of the disturbances ǫi. Autocorrelations start at ≈ 0.1 and
decay slowly until lag 40. The partial autocorrelations decay until lag 15.
Interpretation is difficult, non-stationarity in the mean may cause spurious
coefficients.

The right part of Figure 5 shows sample autocorrelation and partial au-
tocorrelation of the first difference of the disturbances ∇ǫi = ǫi − ǫi−1. A
single peak of -0.49 at lag 1 of the acf and an exponentially decaying pattern
in the pacf can be seen. This is the characteristics of an IMA(1,1) process:
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Figure 4: Time plot of the disturbances ǫi.

ǫi = ai + (ǫi−1 − θai−1) with ai i.i.d. random variables. An interpretation
is that random events (e.g. weather conditions at departure airport) cause
a delay ai of aircraft i and (very weakly) of its successor i − 1.

But there is no justification to difference the data because no linear
trend and no random walk can be assumed a priori. A possible explanation
is an autoregressive dependency close to 1. To analyze this we pose the
ARMA(1,1) model:

ǫi = φǫi−1 + θai−1 + ai (5)

with ai i.i.d. random variables. For φ = 1, the special case IMA(1,1)

∇ǫi = θai−1 + ai (6)

arises.

The autocovariance function of the ARMA(1,1) is

γ(k) = φγ(k − 1), k ≥ 2

It behaves like that of an AR(1) scheme after the first lag. The IMA(1,1) is
non-stationary; the autocovariance is not a function of the lag k. ARMA(1,1)
and IMA(1,1) models are applied in industrial control, where the impact of
random disturbances on the production scheme is studied [Box and F.Jenkins,
1976]. Our analysis is exploratory; we do not have a priori arguments for
neither of the models. However, a direct interpretation for model 5 is that a
delayed aircraft is followed by a delayed aircraft. Moreover, external events
disturb i and its successor. On the other hand, due to duality results, an
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Name Model φ θ σ2 AIC

ARMA ǫi = φǫi−1 + θai−1 + ai 0.96 (0.005) -0.88 (0.007) 18.11 291884.4
IMA ǫi = ǫi−1 + θai−1 + ai 1 -0.94 (0.004) 18.24 292110.1

Table 1: Comparison ARMA(1,1) and IMA(1,1).

ARMA(1,1) model represents a large class of processes. Interpretation can
become ambiguous [Kendall, 1989].

Table 1 compares the fit of an IMA(1,1) model with an ARMA(1,1)
model to our data. The parameters are obtained by exact maximum likeli-
hood estimation. In the ARMA model, the AR parameter φ is close to 1 but
significantly different from it. The MA-parameter θ is -0.88. There is also a
mean value µ estimated (not shown). The variance of the unexplained part
ai is 18.12 min. For the IMA model, the MA parameter is -0.94. No mean is
included in the model. The estimated variance of the unexplained series ai is
18.242 min. The AIC of the ARMA model is lower than for the IMA model,
despite the larger number of parameters. But the main argument against
the IMA model is that differencing does not make sense physically. Figures 8
and 7 show diagnostic plots for the ARMA model. The residuals contain no
trend and no autocorrelation. The normality assumption, however, cannot
be justified. Table 2 contains the parameter estimations for eight randomly
selected sectors of the European airspace. The autoregressive parameter is
always close to 1 and the moving-average parameter is always negative.

To better understand this result we look at sequences of correlated de-
viations. A simple pattern would be that long sequences of correlated dis-
turbances exist. This could be interpreted by events at departure airports
that affect several aircraft (e.g. runway congestion). Figure 6 shows the
distribution of the lengths of correlated sequences. There are rarely more
than two successively correlated arrivals and never more than 6. Thus the
arrival patterns are heterogeneous. This is the same for sectors with only
one arrival route and for more complex sectors. This has to be analyzed in
more detail.

We conclude that the disturbances ǫi are not independent in reality.
Their dependencies show similar characteristics than IMA(1,1) and ARMA(1,1)
models. However, these findings are empirical and both models cannot be
justified a priori.
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Figure 6: Distribution of the lengths of sequences with correlated successive
arrivals.

4 Interpretation

The analysis of consequences of independence assumptions (section 3.1)
shows that systematic gaps between planned and observed counting pro-
cesses are to be expected, when disturbances occur completely at random.
When the planned process is Poisson, these gaps can be described by a linear
function of the counting process, no matter how the distributions of the ran-
dom disturbances look like. This is intuitive since the two processes become
independent for large σ2, and the gaps between them are then described by
a horizontal line through pRλ. The linearity in this model can be explained
by the fact that all terms enter the distribution in additive and constant
ways. When the planned process is the empirical flight schedule, the gap
function becomes non-linear. Thus the non-linearity of the observed gaps is
partly due to the structure of the arrival process.

The data analysis (section 3.2) shows that dependencies between the
disturbances of successive flights exist in reality. We identified two linear
time-series models with similar dependency patterns. However, an arrival
flow consists of aircraft from different origins and of different types. More-
over, the correlation structure shows that the correlation last up to ≈ 2h. A
possible interpretation is that delayed aircraft keep their delay on their way
back. All this suggests that the data consists of superpositions of different
processes. This has to be analyzed in more detail before justifying a data
generating mechanism.
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5 Conclusion and Future Work

We analyzed the impact of random disturbances on flight schedules. We
modeled the planned arrival process into a flight sector as a Point process
and the observed arrival process as a random translation of the planned
process. We analyzed two classes of arrival processes; a Poisson process and
the empirical arrival process obtained from schedule data. Our results are
(i) when the disturbances are purely random, systematic gaps exist between
the number of planned and observed traffic entering flight sectors. And (ii)
that the disturbances are not independently distributed in reality.

From this we conclude that even if the current dependencies were elim-
inated, systematic gaps in flight planning would remain. For future work
we propose therefore (i) the identification of classes of flight schedules that
are robust to random disturbances. This leads to new constraints in the
flow planning algorithms. And (ii) a better understanding why the current
disturbances are correlated. For this we suggest to disaggregate the data
to identify homogeneous groups of aircraft with similar characteristics. One
important such group is the one that generates long-term autocorrelations,
because aircraft generally fly the same route several times a day. There are
similar phenomena in the analysis of data from telecommunication networks
[Cappé et al., 2002].

This analysis is a step to understand the impact of uncertainties on air-
traffic flow planning. This builds the basis for a reasonable optimization of
available resources.

6 Acknowledgements

The author likes to thank Philippe Baptiste and Pierre Collet for construc-
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A Proof of the theorem

Figure 2 shows the idea. The planned arrival time τi of an aircraft is dis-
turbed by some ǫi, translating the process P into the process P ′ (left). For
the proof, we are interested in the counting process N ′

b of the randomly
translated process P ′, dependent on the initial process P . For this we need
to know the number Sb of aircraft remaining in (0,b] and those Rb that ar-
rive additionally (right).

Let:

1. P = {τi} a Poisson process with rate λ (the planned schedule)
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Figure 7: QQ plot of the residuals of the ARMA model.

2. P ′ = {τi +ǫi} a random translation of P (ǫi are i.i.d. random variables
with mean µ and variance σ2, independent of τi).

3. Nab, N ′

ab: number of arrivals in P, P ′ in (a, b].

4. Sab = card({τi + ǫi ∈ (a, b] | τi ∈ (a, b]}): number of arrivals remaining
in (a, b]

5. Rab = card({τi+ǫi ∈ (a, b] | τi ≥ b}): number of arrivals entering (a, b]
from the right.

6. Uab: a uniformly distributed random variable in (a, b] (the planned
arrival time of an aircraft).

Probability distribution We derive E(N ′

ab|Nab = k) as a function of
k and σ2. Since N ′

ab = N ′

0b − N ′

0a we only need to derive Pr(N ′

b | Nb).

Pr(N ′

b = n|Nb = k) = Pr(Sb + Rb = n|Nb = k)

=
n

∑

l=0

Pr(Sb = l, Rb = n − l|Nb = k)

since Sb and Rb are independent:

=
n

∑

l=0

Pr(Sb = l|Nb = k)Pr(Rb = n − l|Nb = k)
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and Rb is independent of Nb:

=

n
∑

l=0

Pr(Sb = l|Nb = k)Pr(Rb = n − l)

=
n

∑

l=0

Pr(Sb = l|Nb = k)
∞

∑

j=0

Pr(Rb = n − l|NbT = j)Pr(NbT = j)

Let p1 = Pr(Ub + ǫ ∈ [0, b]), p2 = Pr(UbT + ǫ ∈ [0, b]). Then

=

min(n,k)
∑

l=0

(

k

l

)

pl
1(1 − p1)

k−l

∞
∑

j=n−l

(

j

n − l

)

pn−l
2 (1 − p2)

j−n+l λ
je−λ

j!
(7)

=

min(n,k)
∑

l=0

(

k

l

)

pl
1(1 − p1)

k−l (λp2)
n−le−λp2

(n − l)!
(8)

This is the sum of a binomial(p1, k) and a Poisson(λp2) variable. It follows:

E(N ′

b|Nb = k) = kp1 + λp2 (9)

Notes

• There is no dedicated point 0 in the aircraft application. It is possible,
that points ‘leave’ the interval (0, b] to the left or ‘arrive’ from the left
(before midnight). This would lead to 2λp2 in (8), when the intervals
are of equal length (and to λp2 +µp3, when the processes and intervals
are different). In both cases, the linearity in k of the conditional
expectation (9) remains.

• The variance of the distribution (8) is kp1q1 + λp2 (the variables are
independent). Thus, the distribution is not Poisson. For high k and
low p1 it can also be approximated by a Poisson distribution.

• The impact from random rerouting is a simple extension of the results.
It corresponds to thinning (cancellations, rerouting) and superposition
(arrival of rerouted aircraft), which are linear operations.
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