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Abstract

We review recent microscopic and macroscopic models of air traffic flow. The purpose of these
models is to discover relationships between system variables, such as the impact of trajectory uncer-
tainties on ATM performance or the impact of controller’s strategies onto the flow patterns in far lying
sectors. We also review the current status of Japanese flow management. As it is known, the major
source of congestion is Tokyo International Airport and the main stream to reduce congestion includes
an enhanced data flow, traffic synchronisation and internationalisation. Our main conclusion is that
pioneering work is necessary in model based flow analysis. But combined with the analysis of flight
data, it can provide new insight into the mechanisms of air traffic congestion. Such insight is needed

to support strategic decision making in ATM.

1 Introduction

Currently, the world’s major air traffic manage-
ment (ATM) systems are in a process of transfor-
mation [1, 2]. One of the reasons is congestion:
many airports and their surrounding airspaces are
already congested today, but will cause increasing
delays in the future if no actions are taken. While
the fundamental problems of congestion are not
new, there will be new procedures and tools to re-
duce congestion.

It is known since long time that competition
between users of a limited resource creates con-
gestion [3, 4]. This is true not only for air traf-
fic, but also for telephone (or Internet) networks,
road traffic, production processes and many more
[5]. Congestion typically occurs during peak hours
and in bottleneck situations, when the demand of
the resource is higher than its limit (for example
during bad weather), or when some irregularity in
the flows of users exists [4, 5]. Congestion implies
delays. In air transportation, delays materialise ei-
ther on the ground, where aircraft have to wait be-
fore accessing a runway or during the flight, where
they are deviated from their intended trajectory
(vectoring, metering, holdings). Such delays lead
to an increase in fuel consumption. During strate-
gic flow planning, delays are a metric to assess the
performance of the ATM system.

The common idea in future strategic flow man-
agement is to collaborate stronger with airlines
[1, 2, 6]. Airline and flow managers will try to dis-
tribute the demand of the network several months
in advance to avoid delays where possible. As a

main decision support, the evolution of the net-
work will be monitored continuously and adverse
network effects will be predicted. Such effects in-
clude unanticipated demand/capacity imbalances
due to local capacity shortcuts or due to chain re-
actions in changes of airline strategies. To this end,
Europe proposes the ‘ATM Network Management
function’ and the ‘User driven prioritisation pro-
cess’ [1]. A similar collaborative planning process
will be established in the U.S., complemented by
a tactical ‘Flow Contingency Management’, where
unsolved demand/capacity imbalances will be ad-
dressed by dynamic airspace redesigns or the allo-
cation of departure slots to runways or time-of-
arrival slots in en-route airspace [2]. In Japan,
the major source of congestion is the saturated
airspace around the metropolitan airports, and the
future efforts include an enhanced data flow and
traffic synchronisation [6].

The purpose of this article is to review some re-
cent models that allow to quantify and analyse con-
gestion. These models are candidates to support
decision making in strategic flow management. We
will discuss the ideas of three model types and their
underlying methodology. We do not discuss tech-
nical details, but we give references to literature
where needed. This discussion serves as a basis to
recommend flow models for the Japanese Airspace.

The remaining article consists of two parts. In
the first part we analyse flow models we found in
recent European and the U.S. literature. In the
second part we analyse current flow problems in
Japanese Airspace.



Figure 1: Schema of a single queue for an en-route
sector

2 Recent Models

In this section we discuss models that were recently
proposed for the analysis of air traffic flow. We fo-
cus on the methodology and the principles of the
models rather than on technical details. This al-
lows us to see the type of results and the limitations
we may expect from a corresponding analysis.

2.1 Queueing Networks

As mentioned in the introduction, congestion usu-
ally appears by the combination of

(i) a flow of customers needing service,
(ii) some restrictions on the availability of ser-
vice, and
(iil) irregularity in the flow of customers, the ser-
vicing operation or both.

Moreover, during peak hours or bad weather con-
ditions, where demand is higher than the available
capacity, predictable congestion occurs. Systems
with the above characteristics are often modelled
as queueing systems [5].

In air traffic management, the flow of customers
corresponds to aircraft requiring to enter a sector
or a runway. The time of traversal through the
sector corresponds to the service, which is limited
by the sector capacities or safety constraints. De-
lays materialise either on the ground, where air-
craft have to wait before accessing a runway or
in-flight, where they are deviated from their in-
tended trajectory. In the past, typical objectives
of queueing analysis in ATM were capacity plan-
ning [7] or to perform delay predictions [8]. More
recently, NASA also showed interest in the impact
of 4D trajectory precision on delay [9].

An example of a single queueing system, rep-
resenting an en-route sector can be seen in Figure
1. Aircraft arrive with rate A (number of aircraft
per hour) requiring entry to the sector. The ca-
pacity of the sector is p (number of aircraft per
hour). The fact that multiple aircraft are allowed
to enter a sector simultaneously through different

Figure 2: Schema of a queueing network for air
traffic flow. Source: [11]

routes is represented by C routes. After crossing
the sector, a flow with rate Q¢ leaves it. When
the capacity of the sector is attained, a queue of
length [ forms in front of the system. It is known
that airlines cancel flights when the expected delay
is too high (represented by more than S aircraft in
the queue) [10]. This rate is represented by the
quantity A — Qqp.

In queueing networks, the output of one queue
builds the input of one or a number of other ones.
Figure 2 shows the schema for a network used to
analyse air traffic flow, taken from Shortle et al.
[11]. Tt consists of 3 airports. Each airport con-
sists of two queues; one for the arrival and one for
the gate. The arrival queue models the sequenc-
ing and merging of aircraft as they approach the
runway. For example, one server corresponds to
one runway. The gate queue may consist of several
gates and models the turnaround times for aircraft.
Once an aircraft leaves an airport, it enters one of
its connecting airports (based on flight plan infor-
mation).

A simplified mathematical analysis of a
stochastic queueing network is as follows: let n =
(n1,...ny) denote the state of the network, mean-
ing that there are n; customers at queue 7. The
state space of the network is . = {n : n; >
0,i=1,...,J}. Now let a(n, m) be the transition
rate from state n to state m, i.e. the number of
transitions between the two states per unit time.
The rule of the game is to restrict transitions to
those that can be reached by the movement of ex-
actly one customer: either by a movement from
one queue to another or an arrival or a departure
from the network. The question then is:

‘What is the probability that the network will
be in state n?’

To obtain an answer, the joint distribution p(n)
has to be known. A main result in queueing net-
works is that, under some assumptions on the tran-
sition rates (for example that the arrival processes
at the individual stations are independent Pois-
son processes), this joint distribution is of product
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Figure 3: Variation of path efficiency with center
capacity. Source: [14]

form: p(n) = pi1(n1) X ... X py(ny). This means
that the number of customers at queue i are in-
dependent random variables. Their distributions
are known from single queueing theory, and these
results can be used for performance analysis. Net-
works of this type are called (open) Jackson Net-
works and the above analysis was an example of
a steady-state analysis based on a continuous-time
Markov chain [5]. Other network types and analy-
sis methods (e.g. non-markovian) can be found in
literature [12].

Using a (deterministic) queueing model,
Hansen [13] analyses how delays propagate in an
arrival flow and concludes that cancelling certain
flights would be beneficial for customers. In an
ongoing project, Menon et al. [14] and Lovell et
al. [15] analyse the effect of trajectory uncertain-
ties on traffic flow efficiency. They model traffic
flow networks as a function of flow densities, aver-
age velocities and sector capacities. Due to trajec-
tory uncertainties, these quantities can vary. The
idea of the paper [14] is to analyse the relation-
ship between these variations and flow efficiency
(see definition below). The authors distinguish be-
tween national, regional and local networks differ-
ing essentially in the number of nodes and level of
detail. They then propose a network of national
dimension, consisting of 20 air traffic control cen-
tres, connected by a number of routes. In order to
analyse this network, they assume an open Jackson
network with Poisson arrivals, exponential service
times and multiple server nodes. The queue pa-
rameters and transition probabilities are estimated
from past flight data.

As performance metric, they define for a center
j the Traffic Flow Efficiency

B E(ij)

BE) = E(W;)

(1)

where W, is the delay inside the center and W; =
S; + Wy, is the traversal time through the cen-
ter, which is the sum of the traversal time under
optimal conditions S; and the delay. E(X) is the
expected value of the random variable X. For a
route from center i to center j, they then define
the path efficiency as the average of the traffic flow
efficiencies along the path.

A preliminary result of the analysis can be seen
in Figure 3. The scenario is a flight route from an
airport in the Los Angeles Center to an airport in
the New York Center. It passes through four other
centres on the route. The figure plots the path
efficiency against center capacity for the six corre-
sponding centres, while all other parameters were
held at nominal levels. The typical shape of the
relationship is a sharp increase in efficiency until a
critical value, from which on stable path efficiency
occurs (red points). This shape is not unexpected,
since it captures the known relationship between
delay and flow in a queueing system [5]. What
is new is the context of the analysis: assessment
of the impact of trajectory uncertainties on traffic
flow efficiency. However, the results are prelimi-
nary and the authors do not (yet) validate their
assumptions underlying the Jackson network.

2.2 Traffic Flow Theory

Compared to air traffic, congestion in road traf-
fic is simpler to observe: it is a standstill of traf-
fic flow. This phenomenon is being analysed since
the 1950’s, where a relationship between flow and
density has been discovered. More recently, the
mechanisms of ‘phantom traffic jams’ (jams caused
without bottlenecks) or ‘stop-and-go traffic’ have
also been explained successfully [16], [17]. The ba-
sic models in traffic flow are either microscopic,
where the motion equation of individual cars is
modelled, allowing for example that the acceler-
ation of a car is proportional to the velocity differ-
ence with the leading car. Or they are a macro-
scopic description of the density p(z,t) (vehicles
per kilometre) or flow J(z,t) (vehicles per hour) of
cars along a highway. The focus in theoretical anal-
ysis is to understand the stationary solutions of the
systems of equations. Historically, the first macro-
scopic flow model is a continuity equation, called
the Lighthill-Whitham-Richards (LWR) equation

Op(z,1) Op(z,t)
where C'(p) will be explained below. The solution
to (2) is called a wave, describing the propagation
of an initial traffic pattern p(x,0) with speed C(p)
(e.g. [18]). For example, if C(p) = ¢ were con-
stant (> 0), the initial pattern would just move



p(z,t) (veh./km)
100

10

Figure 4: Transformation of initial traffic pattern
and formation of shockwaves. Source: [16]

to the right such that p(z,t) = p(z — ct,0). In
this case, the traffic pattern would not change its
shape over time. When C(p) depends on p, dif-
ferent densities propagate with different velocity,
implying that the shape of the initial traffic pat-
tern changes over time, but also that discontinu-
ities in the solution p(z,t) (so-called shock waves)
appear. Figure 4 shows a spatio-temporal density
plot illustrating the formation of shock waves on a
circular road. The initial condition is a sinusoidal
pattern (x-axis), which builds steeper and steeper
gradients over time (y-axis). Moreover, in highway
traffic, the vehicle speed usually decreases when
the traffic density increases and it can be shown
that in this case p propagates in opposite direction
to the traffic flow. Note that here C(p) is the speed
of the traffic density and not the speed of the cars.
To summarize, eq. (2) describes the propagation
of an initial traffic pattern over time. This is usu-
ally solved numerically, but its accuracy is impeded
by the existence of shock-waves. Moreover, recent
empirical studies suggest that the relationship be-
tween density and flow is more complex [16].

In air traffic, flow is not a function of density,
too. Although speed control can avoid the delivery
of aircraft into a congested zone, the controllers
need more information than the local density to
decide their action. In this context, several au-
thors proposed fluid dynamical models for en-route
air traffic flow. Their aim is to analyse the im-
pact of controller’s actions in one sector onto the
flow patterns in other sectors. This can lead to
control strategies like ‘Aircraft on airway 148 at
FL 330 fly at 450 kn for the next hour and then
have to accelerate by 10 kn per half hour’. For
example Bayen et al. [19] derive a formulation in
which C'(p(z,t)) corresponds to the average speed
of aircraft at point z and propose an optimisation
where this speed is adjusted such that flow con-
straints along a route are satisfied. Speed control
for only a fraction of aircraft inside a sector has
been proposed by Menon et al. [20]. Figure 5
shows the idea. Their model is discrete in space
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Figure 5: Control of one-dimensional traffic flow.
Source: [20]

EnRoute
Air Traffic

EnRoute
Air Traff

Source

Airport 2 Metering

Control 4

Metering
Control 2

ATC
Center 1

Source
Airport 1

Destination
Airport 5
Metering
Control 3

Figure 6: Flow model with merge and diverge
nodes. Source: [20]

and in time. A sector x is a one-dimensional vol-
ume, with aircraft entering from the previous sec-
tor  — 1 with rate J(x — 1,¢) and leaving at its
output with rate J(x,¢) per unit time. Air traf-
fic controllers modulate the outflow by varying the
speeds or by stretching the paths of some aircraft
inside the sector. This mechanism will remove a
number u,. of aircraft from the outflow. It is mod-
elled as a loop and is called ‘recirculated aircraft’.
Mathematically their model can be written as

plz,t+1)=p(z,t) + J(x —1,t) — J(z,t) (3)

where p(z,t) is the number of aircraft in sector z
and time interval ¢ and J,.(x,t) = J(x, t) — u.(x, 1)
represents the outflow adjusted by the number of
recirculated aircraft. Note that this model also ad-
justs the average speed of aircraft inside a sector,
but the interpretation is that w, aircraft reduce
their speed while the remaining p — u, keep their
nominal speed.

On a network level, the authors assemble pairs
of sectors with so-called merge and diverge nodes,
similar to the logic of the queueing network in Fig-
ure 2. To illustrate their concept, they build a
network consisting of three input flows (two de-
parture airports, one en-route arrival flow), three
metering controls, and three output flows (two ar-
rival airports and one en-route departure stream)
(see Figure 6).



Table 1: Transfer function analysis of traffic flow.
Source: [20]

Input Destination En-route
airport 5 outflow

Metering | —0.7(z 3 —27%) | —0.2(z72—279)

control 2

Metering | —(272 — 273) Gain = 0

control 3

Metering | Gain = 0 —0.8(z71—272)

control 4

Departure | z~* Gain = 0

rate 1

Departure | 0.7z74 0.2273

rate 2

Technically, their flow model takes the form of
a linear, time-invariant dynamical system. This
opens the way to analytical investigation, using
methods from classical control theory to the sys-
tem (e.g. [21]).

One example of their analysis concerns trans-
fer functions. A transfer function describes how
changes in one of the system inputs (for example
the flow control in one sector) affect the changes
in system output (the flow rate in another sector)
given that all other inputs are at their nominal
levels (e.g. [21]). Table 1 shows results for some
selected sectors: here, z~! represents a unit time
delay (15 min in their application). For example,
the transfer function between departure airport 1
and destination airport 5 indicates that any action
taken at airport 1 will appear at airport 5 four time
units later (z7%). The entries ‘Gain = 0’ mean that
the corresponding input has no impact on the out-
put. Unfortunately, the relationship between the
other flow control centres and system outputs are
more complicated and not yet interpretable.

2.3 Cellular Automata

The basic idea of Cellular Automata (CA) in flow
modelling is simple: divide the airspace into cells
of equal size and let each cell i either be occupied
by an aircraft with speed v; or be empty. Air-
craft follow their flight plan, and in each time-step
they move forward v; cells if the destination cell is
free, or they adjust their speed or route by some
(stochastic) rule if the cell is occupied. More gen-
erally, CA are highly idealised physical systems,
in which space and time are discretized and each
of the interacting units can have a finite number
of discrete states. The concept was introduced in
the 50’s by von Neumann and popularised in the
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Figure 7: Transition between high and low ATM
performance. Top: high performance at low den-
sity (30.000 flights). Bottom. low performance at
high density (50.000 flights). Source: [22]

80’s by Wolfram [23]. Despite their simplicity, they
can produce a complex behaviour, for example the
standard model in vehicular traffic flow with only
4 rules (acceleration, deceleration, randomisation,
position update) can reproduce the generation of
‘stop-and-go’ waves and spontaneous traffic jams
[16, 23].

Since the state of a cellular automaton depends
only on its previous state, the mathematical anal-
ysis of stochastic cellular automata is based on
Markov Chains, similar to the queueing networks
discussed above: a cell is in state n in time interval
t + At either when it has been in state n in inter-
val ¢t and no transition out of the state occurred,
or if a transition from another state into state n
occurred in time interval t. Considerations of this
type lead to the ‘Master equation’, which can be
solved exactly for very simple automata. Then,
average flow rates and conditions for the creation
of various jam patterns can be obtained. But the
solutions get complicated as boundary conditions
and details on the update rules are specified (e.g.
[16).

One feature of dynamical systems are changes
in their qualitative behaviour.  For example,
Japanese researchers conducted an experiment in
which car drivers were asked to move with con-



stant speed on a circular road. Naturally, the speed
varies from time to time. The researchers found
that when the average traffic density is low, such
speed variations have no impact on the traffic flow.
In high densities, chain reactions of velocity adap-
tations occur, resulting in a jam wave. This wave
propagates against the velocity direction, as de-
scribed in the section on traffic flow theory above.
They call the density distinguishing between ‘free
flow” and ‘congestion’ the critical density [17].

In the quest for a transition between high and
low performance in ATM, Ben Amor et al. [22]
analysed congestion in European en-route traffic
flow. Their assumption is that controllers compen-
sate congestion by speed and route adjustments.
The purpose of their analysis is to identify a crit-
ical density, from which on compensation of con-
gestion is no more possible. Their flow model is an
agent based system, which is an extension of cel-
lular automata: a sector corresponds to a cell and
an aircraft corresponds to an agent, moving from
sector to sector. The rules for an aircraft at sector
s; are:

1. Availability: a sector is available if it’s capac-
ity is not exceeded
2. Traversal time of a sector s:
As if next sector is available
As + 1 else
where As is a uniform random variable on
[min, mazx].
3. Re-routing: the next sector is
si+1 (according to flight plan) if available
s.  with probability p, else
where s. is a neighbouring sector of s; and s;41.
4. Randomisation: the traversal time As in-
creases by +1 time unit with probabilities p1, p2

One can see that the model contains a num-
ber of random elements, capturing the uncertain-
ties in ATM. For their simulations, they generate
random traffic patterns (different city pairs) vary-
ing in traffic density from 10.000 to 60.000 aircraft
per day. Their results are shown in Figure 7. Each
panel shows the state of the sectors (white: uncon-
gested, red: congested) and a graph of the number
of congested sectors over time. For low densities
< 50.000, spontaneous congestion appears but is
compensated by ATC — the number of congested
sectors is constant over time (upper panel). For
high densities, the number of congested sectors
jumps after a short while, leading to a complete
saturation of the system (lower panel). The au-
thor’s conclusion is that a transition from high to
low performance at ~ 50.000 aircraft per day has
been found. Note that the average traffic density
in Europe is currently below 30.000. As before,
the results are initial, and one can criticise that

-
>4 4

v Vs
s

A
//\\/
£

Figure 8:
Source: [6]

Major flows in Japanese Airspace.

their definition of ATM performance is unrealistic.
Furthermore, when re-routing is not possible, the
model can produce an unlimited number of capac-
ity violations.

3 Traffic Flow
Airspace

in Japanese

The aim of air traffic flow management (ATFM)
is to balance airspace demand with available ca-
pacity. This requires strategic decisions from ex-
perienced traffic managers, taking into account the
safety constraints of the airspace but also the in-
terests of the airlines. In Japan, flow manage-
ment is a centralised service that takes place in
the ATM Center in Fukuoka. The ATFM sys-
tem monitors capacity and demand of the net-
work and predicts these up to the next 6 hours.
Based on this, ground delays are calculated and
transmitted to the control centres and to the air-
lines. When necessary, pre-tactical re-routings are
negotiated with the Airlines. Finally, tactical re-
routings and adjustments of flow rates to the neigh-
bouring sectors (miles-in-trail restrictions) are co-
ordinated with the ATC centres.

Most of Japanese ATFM delays are due to sat-
urated airspace around the metropolitan airports
and on routes to Tokyo International Airport (Fig-
ure 8). In 2005, the average ATFM delay was 6
minutes, at a traffic demand of 1.24 million, out of
which 2% were affected by flow management [6]. In
the future, the demand is expected to grow yearly
by 1-2 % especially from Asian neighbours [26].
These numbers are less alarming than in Europe
and the U.S, but in order to maintain the high re-
liability of Japanese air transportation, Japanese



Table 2: Comparison of flow models

Model

Purpose

Structure

Comment

Queue (det.)
[13]

Propagation of delays in arrival
flow

Deterministic queue with ran-
domly disturbed arrival times

Careful study

Queue (net)
14, 15]

Impact of trajectory uncertain-
ties on flow performance

Jackson Network of 20 Control
Centres.  ‘Path efficiency’ as
performance metric

Initial results, all cri-
tiques to queueing
networks apply

Queue (sim.)
(11]

Large scale simulation of queue-
ing networks

Strategies to reduce network
complexity

Useful approach
when statistical anal-
ysis  of simulation
results is required

Fluid con- | Speed control for strategic air | Continuity equation to allow | Black box approach.
tinuous traffic control controllers decision on time of | No insight into flow
[19] traversal properties.

Fluid Impact of control strategies on | Speed control of fractions of air- | Innovative idea, but
discrete traffic flow craft inside sector. Continuity | linear time invariant
(20, 24, 25] equation to allow controllers de- | (in this article)

cision on time of traversal

Cellular Phase transitions from high to | Aircraft motion in a 2D grid of | Unrealistic =~ model,
Automata low ATM performance. Crite- | sectors. Local re-routing and | but brainstorm for
[22] rion: number of congested sec- | speed control if next sector is | ‘analysing a complex

tors.

busy.

system’.

flow management will be improved.

Future flow management will be based on a new
information flow, ranging from long-term schedul-
ing strategies to exchange of position and intent
information with en-route aircraft. In short term,
new tactical ATFM tools (e.g. traffic synchronisa-
tion) will be developed and the technological basis
to share data among decision makers will be im-
proved. The long term vision is a complete system
integration of aircraft, ATFM, ATC and airports
and a shift towards a dynamic, trajectory based
flow management [6, 27].

4 Conclusions

We reviewed models for the analysis of air traf-
fic flow. Flow models can provide insight into the
mechanisms of congestion. Such insight is needed
to support strategic decision making in ATM. Ta-
ble 2 summarises the results. They are all in an
early stage of development. The fluid dynamical
models are useful for traffic synchronization while
the queueing models give more insight into the per-
formance of the ATM network. But at the current
state-of-the-art, it is fair to judge their value by
their purpose and not by the results. Table 3 sum-
marises the methodologies that were discussed in
this review. We added the category ‘fast time sim-
ulation’ as a baseline comparison. One can con-

clude that each methodology has its own strengths
and weaknesses.

To conclude, traffic patterns propagate in a pre-
dictable way until the trajectories foreseen in the
flight plans change. What makes the analysis chal-
lenging are the reasons for such changes. In the
case of vehicular traffic flow, they are often as-
sumed to be local interactions with other cars; for
example the acceleration of one car is proportional
to the speed difference with its leading car. But in
the case of ATM, interactions between aircraft are
the result of complex decision making, taking into
account the strategies of controllers and airlines,
predictions of weather and traffic, and other oper-
ational uncertainties. Pioneering work is necessary
to understand these interactions.
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Table 3: Comparison of methodologies

Simulation  (fast | Queue Fluid Cellular Au-
time) tomata
Strengths | Realistic. Description of be- |Propagation of traffic |Identification of min-
haviour close to | patterns. imal requirement for
capacity limit. Theoretical tools (e.g. | congestion dynamics.
Long history in ATM. | stability  analysis) |High speed (very large
Mature discipline. available. scale simulations pos-
Extensions exist (e.g. | sible).
for particle interac- | Analytical results.
tions).
Computational  effi-
cient control proce-
dures
Weaknesses | Statistical properties |No good description |Basic models do not |Unrealistic.
difficult to obtain. of dynamic behaviour | provide enough fi-
(only long-term be- | delity to model con-
haviour well known). | flicts and other inter-
In networks, transi- | actions.
tions from one node | Analytical properties
to another are gov- | of extended models
erned by schedules, | unknown.
not random probabil- |Flight plan data has
ities. to be interpolated
Schedules may dy- | to validate continu-
namically change | ous models
due to weather, crew
delays, ...
Application| All over ATM. Delay analysis. ATM | Tactical ATFM. Fun- | Fundamental re-
area performance. damental research. search.
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