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Abstract— There are numerous reasons, why the number of
aircrafts entering a sector may differ from the anticipated
number. They may be summed up as ’uncertain events’
such as the non-respect of ground delays, weather conditions,
flight plan incoherency and more. We apply simple statistical
analysis tools in order to characterize these differences; how
they behave and how they interact with each other. Our
findings indicate that they follow simple laws over time and
space and give first insights in how they may interact.

I. INTRODUCTION

European Airspace is divided into a number of geograph-
ical sectors. Sectors have capacities limiting the number of
aircrafts wishing to enter them at a given time. In order
to respect capacities, aircrafts may be delayed or rerouted
before take off. The decision which aircraft to delay and
for how long is currently based on a deterministic model
of the airspace [5] and constitutes a major task for Air
Traffic Flow Management (ATFM). However, in reality, a
number of uncertain events such as non-respect of ground
delays, weather conditions, flight plan incoherency and
more may lead to differences between planned and observed
sector load [5].This has a direct impact on the controllers
workload and thus on safety issues and on the optimal usage
of available capacities. Unlike to analyzing the different
uncertainty factors, such as [6], [5], we claim that these
uncertainties, taken together, reveal interesting and simple
properties. We are interested in finding relations in the
interplay of these events in order to improve the planning
procedure.

The report consists of two parts. In the first part, the
data is described and the main analysis tools, correlation of
random vectors and of stochastic processes are explained. In
the second part, several experiments with data from single
sectors and from neighboring sectors are carried out and
interpreted.

II. DATA

1) Data Structure: The data consists of the difference
between the regulated demand (the number of aircrafts
scheduled to enter a given sector in a given time interval)
and the airborne demand (the number of aircrafts that really
entered the sector in the same interval) of ATC sectors and
is called the error E. For one day d and one sector S i, one
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pwhere Ei,d
k is the difference at

time k in sector i at day d. For example, a sample interval
of 5 minutes leads to 1 ≤ k ≤ 288.

2) Independence and Traffic Seasons: Generally one
is classifying traffic demand into weekday (Monday-
Thursday), Friday and weekend (Saturday-Sunday) groups.
Over the year, summer and winter traffic is distinguished
[7]. Special events such as national holidays or strikes may
form exceptions. In this report, we assume different days
as being independent from one another. We use a total of
79 weekday data sets coming from the second half of the
year 2003 from the four sectors EDBBUR1-4.

III. CORRELATIONS

Correlations are ’(...) relations of (...) variables which
tend to vary, be associated, or occur together in a way not
expected on the basis of chance alone’ [4].More formally,
two random variables X and Y are correlated, when de-
pendence in mean exists: for X = x fixed, the mean Ȳ is
function of x [11].

A. Linear Correlations and Correlation Matrix

Variables are said to be positively linear correlated if high
values of one variable tend to be associated with high values
of the other and negatively if high values of the one tend
to be associated with low values of the other. Depending
on the type of the variables, different definitions of linear
correlations exist [11].In this section we review correlations
between vectors of random variables and between stationary
processes and estimators for them. For real valued random
variables, the linear correlation coefficient r is defined by
r = cov(X, Y )/σxσy where cov(X, Y ) is the covariance
of X and Y and σi are their standard deviations. Given
two vectors of random variables X, Y , the matrix cij =
cov(Xi, Yj) designs the covariance matrix between X and
Y . If each element cij is divided by σiσj ,one obtains the
correlation matrix.

B. Stochastic Processes and Cross-Correlation Function

Here, we consider Si,d as realizations of stationary
stochastic processes, that is, as sequences of random events.
Intuitively, stationarity means that the statistical properties



of such a sequence do not vary over time. Thus, it seems
easier to mathematically characterize a stationary process
than an arbitrary one. We do not go into the details here
(see e.g. [2], [3]), but we explain how a common analysis
tool, the cross-correlation function, is to be interpreted. In
the case of stationarity, the elements cij of the covariance
matrix of two processes Sx, Sy are equivalent under the
relation ∀k, tγSxSy (k) = E{(Sx

t − µSx)(Sy
t+k − µSy )}. In

general only γSxSy (k) = γSySx(−k) holds, since E{(Sx
t −

µSx)(Sy
t+k − µSy )} = E{(Sy

t − µSy )(Sx
t−k − µSy )}. From

this, it is possible to define a function, called the cross-
correlation function, of the time difference k, called lag,
to express the covariance of two processes. Similarly, the
division by the product of the standard deviations leads to
the cross-correlation function [2].

C. Estimation

The quantities are estimated with corresponding functions
in the language for statistical computing ’R’ [10].

D. Non Linear Correlations

Different visualization techniques such as scatter-plots
and 3D-surface plots are applied for the identification of
non linear relationships.

IV. RESULTS

The experiments are carried out for single sectors and for
pairs of two adjacent sectors.

A. One Sector

In these experiments the behavior of the data inside a
single sector is investigated.

1) Nature of the Data: The histograms in figure 2 sug-
gest a normal distribution as a possible source for the data.
The variables, however, take discrete values. Accordingly,
a normality test has to be rejected on the 1 % level. From
this, we draw several conclusions:

If the data is interpreted as having been arisen from a
continuous distribution, it should be interpreted as being
’binned’. Moment estimation and other statistics of the data
should then take into account the binnings. The data can
be interpreted as qualitative, too: it is possible to define
meaningful ordinal scales such as negative difference, no
difference, positive difference or others. Nominal scales
such as weekday or airac cycle can be interesting in
reasoning over groups of similar data.

2) Stationarity: The mean values and standard deviations
fluctuate around constant values between time slots 50
and 240 (figure 1). Moreover, the empirical autocorrelation
function cuts off very quickly (around lag 4). From this, we
have arguments that the data can be considered as stationary
in time[1]. However, in the remainder we will keep on
comparing results with and without stationarity hypothesis.

3) Daily Stationarity: The overall distributions have a
similar shape in the four different sectors: their x-extension
seems to be correlated with the traffic volume. The fre-
quency of ’no error’ is very high.
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Fig. 1. Error Mean and Standard Deviation in UR2 (5 minutes) On the
x-axis, you see the time in 5 minutes intervals. On the y-axis the value is
displayed.

0 − 1 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

9
96

748

92
3

UR2.Week Error

I/R= 137 / 153
M= −0.017

sd= 0.5
S= −0.34

K= 3.4

1 − 2 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

7
53

789

91
8

UR2.Week Error

I/R= 121 / 81
M= 0.042
sd= 0.46
S= 0.22
K= 5.7

2 − 3 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

3
34

137

517

214

40
3

UR2.Week Error

I/R= 444 / 355
M= 0.094
sd= 0.86
S= −0.12
K= 0.97

3 − 4 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

1 7
42

203

465

188

36
6

UR2.Week Error

I/R= 466 / 500
M= −0.036
sd= 0.94

S= −0.082
K= 0.98

4 − 5 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−4 −2 0 2 4 6
0.

0
0.

1
0.

2
0.

3
0.

4

2 2
35

72

199

379

156

68
25 6 3 1

UR2.Week Error

I/R= 758 / 812
M= −0.057

sd= 1.4
S= 0.23
K= 1.4

5 − 6 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−4 −2 0 2 4 6

0.
00

0.
10

0.
20

3 9
33

99

197

266

192

107

30
9 2 1

UR2.Week Error

I/R= 1383 / 1380
M= 0.0032

sd= 1.5
S= 0.014
K= 0.39

6 − 7 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
00

0.
10

0.
20

3
17 25

70

124

175

216

171

91

45

8 3

UR2.Week Error

I/R= 2022 / 2323
M= −0.32
sd= 1.9

S= −0.21
K= 0.016

7 − 8 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
00

0.
10

0.
20

2 7 13
43

105

191
221

194

99

55

11 6 1

UR2.Week Error

I/R= 1879 / 1871
M= 0.0084

sd= 1.7
S= −0.052

K= 0.35

8 − 9 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
00

0.
10

0.
20

1 7 20

57 64

155

235

192

121

60

24 11 1

UR2.Week Error

I/R= 2019 / 1823
M= 0.21
sd= 1.9

S= −0.12
K= 0.22

9 − 10 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−6 −4 −2 0 2 4 6
0.

00
0.

10
0.

20

3 4
20

58

109

153

214
190

106

60

22
6 3

UR2.Week Error

I/R= 2130 / 2075
M= 0.058
sd= 1.9

S= −0.023
K= 0.12

10 − 11 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−4 −2 0 2 4 6

0.
00

0.
10

0.
20

4
16

55

114

197
213

183

105

48

9 3 1

UR2.Week Error

I/R= 1660 / 1740
M= −0.084

sd= 1.7
S= 0.016

K= −0.053

11 − 12 h,  5 −minutes

REAL.DIFF.ENTRY

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
00

0.
10

0.
20

1 4
20

40

114

216
229

172

97

46

7 2

UR2.Week Error

I/R= 1657 / 1785
M= −0.14
sd= 1.7

S= −0.06
K= 0.1

Fig. 2. Distribution of the error in the morning and corresponding normal
distribution

4) Hourly Stationarity: The error histograms for each
full hour over the day are evaluated. 79 days * (60 minutes/5
minutes) = 948 observation underly every histogram (figure
2). In the morning and night hours there is low traffic
volume. Between 5 h and 20h, the shape of the distributions
are symmetric, normal-like distributions with extensions
proportional to the traffic volume. The hypothesis, that the
different samples could have been arisen from the same
distribution has to be rejected at the 1 % level.

5) No Stationarity: Similar shapes of the distribution as
in the stationary case are observed.

6) Same Underlying Distribution Study: With the hourly
stationary data, we tested the hypothesis of a same un-
derlying distribution between6h and 18h with a chi-square
technique 1. The results are that the hypothesis has to be
rejected on the 1 % level when the whole data (from june
to december) is taken into account. Testing in monthly
intervals, however lets maintain the hypothsis in most of
the cases. To answer the question whether the results arise
from the data volume or from meaningful differences in the
data, we may describe the potential region boundaries by
classification methods.

B. Two Sectors

Relations between two adjacent sectors are sought.

1with the categories ”negative”, ”zero” and ”positive”



1) Correlation Matrix: In order to have a base not
using the stationarity hypothesis, we estimate the correlation
matrix of two vectors SUR2 and SUR3. High values near
the diagonal may be seen. They correspond to the average
traveling time between sector one and two. Apart from this,
no systematic patterns may be seen.

2) Cross-Correlation Study: In order to better interpreter
the results of the previous experiment, we estimated the
cross-correlation function for each pair of adjacent sectors
Si,Sj in our data. Only those aircrafts traveling between the
sectors Si and Sj were selected. An illustrative example
is shown in figure 3. In the upper part, the data from
sector UR2 is plotted in black and the data from UR3 in
blue.The curves are quite similar but shifted by some time.
Correspondingly, the maximum of the cross correlation
function is at lag 2. This corresponds to the diagonal in
the correlation matrix above. The correlation is not equal
to 1 as one might expect since the speed of the different
aircrafts varies. All other values are nearly 0.

3) Stationary Lag Plot and Shape Plot Study: From the
above, we know that the absence of a (linear) correlation
does not imply the independence of the variables. In order
to better understand the relationships between the two
processes, we plot the values of the first process against
the time shifted values of the second, independently of time
(figure 4). We choose the first five lags (from 0 to 4) as an
illustrative example. The signs of the correlation coefficients
are visible in all plots, the linear correlation is particularly
visible for lag = 2. However, the correlations are very weak
and no trivial non linear relationship is visible. Note that
the range of the values (between -3and 3) compared to the
number of observations (79 days * 288 values) is very small.
Therefore, we investigate the frequencies of the occurring
values (figures5,6). On the x axis you see the values taken
by the process in UR2 and on the y axis those by the lagged
version of UR3. On the z axis we display the number of
occurrences of the tuples2. For example, the maximum of
this curve, the tuple (0,0) is occurring 7 times, whereas the
combination (-3,-2) (left lower corner) is only occurring
once.

4) Independence Study: A chi-square test of indepen-
dence 3 results in dependency in 20 minutes windows
around time lags of 50 (about 4 hours) and 240 (about 20
hours). For all other time lags, the independence hypothesis
can be rejected at the 1 % level. The meaning of the ’depen-
dency peaks’ still has to be investigated. More knowledge of
the form of dependency has to be aquired, for example with
decision trees or other nonlinear regression or classification
methods.

V. CONCLUSIONS AND FUTURE WORK

This report presents a statistical description of the error in
the current European Air Traffic Flow Management system
and its propagation to neighboring sectors.

2we transform it to its fourth square in order to scale the range
3with the categories ”negative”, ”zero” and ”positive”
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The main result from the one sector analysis is that
there is evidence to accept a stationarity hypothesis on
the data. Based on this we found that the shape of the
distribution of this error is very simple.Operationally this
may be interpreted by the fact that the sources of uncertainty
are independent from each other. Depending on the time
of the the year, the observations may be considered as
arising from a same underlying distribution. A more detailed
analysis of the different regions in observation space may
be helpful here.

As far as the cross-sector analysis is concerned, we found
no linear correlations apart the trivial ones with time lags
corresponding to the sector crossing time. A comparison
between the correlation matrix and the cross correlation
function leads us to the same conclusions. Independence
between the variables can be found only in small time
windows around lags of 4 hours and 20 hours which is
counter intuitive and has to be investigated in more de-
tail.However, structure is found in terms of simple shapes of
joint distributions of two variables.From this we strengthen
the hypothesis, that there are no linear long term effects 4

of the error propagation. Comparing stationarity with non
stationarity hypotheses generally leads us to similar results.
We will keep in mind this hypothesis when investigating
predictability of the ATFM error. As next steps, we will test
the hypothesis of linear long term effects against multiple
linear correlations. Moreover classification of observations
into meaningful groups, such as geographical areas or
seasons days of the week may help to strengthen spatio
and temporal stationarity hypotheses and thus to simplify
the problem. In this context, sampling intervals larger than 5

4e.g. morning - afternoon effects
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minutes and neighborhoods more general than geographical
neighborhood will be studied.
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