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Abstract— In an analysis of flight data, we found a relationship
between the planned number of sector entries and the average
realized number. It suggests that there are systematically more
aircraft than planned arriving for few planned traffic and less for
high numbers of planned traffic. This is counter-intuitive since
one would expect random fluctuation around the planned number
if the planning procedure were accurate. The relationship we
found can be described concisely by logarithmic, square root or
reciprocal functions. Moreover, we show that it can be seen as
the mean values of Poisson distributions.
Taking both together, the uncertainty about the real number of
aircraft arriving at a sector can be characterized.
We validate the findings on a large number of sectors, randomly
chosen from the Central European Upper Airspace.
The results are empirical but they give insight into how con-
trollers deal with their workload.

I. INTRODUCTION

In European airspace, the main strategy to balance demand
with the available capacity is to distribute departure slots
among aircraft. As today, this idea assumes that trajectory
and speed of all aircraft are known in advance. Experience
has shown that another number of aircraft than planned (the
planned traffic) sometimes arrives at sectors (the realized
traffic) (figure 1). This may cause safety problems on the one
hand and non-optimally used sector capacity on the other hand.
A main reason for this phenomenon is uncertainty about the
behavior of users of the airspace: passenger delays, controller
behavior or others. Until now, it is unknown how all these
uncertainties play together [1]. Are there propagations of
delays that lead to congestion? Or do pilots and air traffic
controllers compensate them successfully?
The aim of our study is to find out whether there are, or not,
situations, in which systematically another number of aircraft
than planned arrives at sectors. One would expect that the
realized traffic equals in average the planned traffic, if the
flow planning were accurate.
There are several possible approaches to this problem. One
could build models taking into account the ’stochastic’ behav-
ior of airspace users. An important question would then be on
which assumptions such models are built.
Our approach is to analyze past flight data recordings in
order to describe this behavior. In more detail, we analyze the
relationship between planned and realized traffic. An important
question in this approach is how to interpret and generalize

Fig. 1. Current ATFM Procedure

possible findings.
This paper is organized as follows: after reviewing related

work we present a relationship that we discovered during data
analysis and its main properties. In section IV we validate
our findings. We interpret the results in section V before
concluding with a short summary of the article.

II. RELATED WORK

Major uncertainty factors (e.g. lost slots, reactionary delay,
etc.) are identified in [1]. A statistical analysis of departure
delays can be found in [2]. Simulation studies conclude that
differences between planned and realized traffic can appear
under ’normal’ conditions [3].
What is unknown today is how the interaction of uncertainty
factors affect the real situation at en-route sectors [1].
Formal statistical approaches to analyze data with the above
characteristics can be divided into two parts: count data
analysis (e.g. [4]) and Point process analysis (e.g. [5],
[6], [7]). The former studies relationships between discrete
variables and the latter between series of events.



III. ANALYSIS

Notation
REALS

t : number of real entries in sector S in time interval t.
PLNS

t : number of planned entries in sector S in interval t.
t ∈ {1, ..., tmax}: time intervals over a day (please see below
for the choice of tmax).
When it is clear from the context, we omit the indices.
In general, we consider REALS

t as random variables with
unknown distributions and the data as realizations thereof.

a) Relationship between planned and realized traffic: A
typical daily pattern of sector entries is shown in figure 2: few
traffic in the morning and night; peak hours around noon and
in the late afternoon. We superpose a fourth order polynomial
time trend (bold line). Note that there are many possibilities
to model a time trend, for example with harmonic curves.
We are more interested in how the real number of arrivals in
a time interval t depends on the planned number of arrivals
(REALS

t vs PLNS
t ). In other words, we are looking for a

trend that is not a function of time but a function of planned
traffic.
In order to gain insight into this relationship, please look
at figure 3. It plots the planned number of entries against
the average number of real entries (bold line). The diagonal
corresponds to the cases where exactly the same number than
planned arrives. The averages lie above the diagonal for small
values of PLN and below the diagonal for large values.
This suggests that controllers avoid a high number of aircraft
and accept more than planned, when their workload is low,
which seems quite natural. Our point is that this relation
is not our hypothesis about controllers behavior. It is the
visualization of the real data. We use 95 days of data, leading
to > 9000 sample points to obtain these averages. But, plotting
the sample means like in figure 3 is statistically unreasonable
because the underlying points might not be independent. This
may result in misleading estimates (e.g. [8]). This means that
we cannot draw conclusions from figure 3 alone.
To overcome this, we do the following: the trend looks like
a concave, monotonic increasing function. Examples for such
functions are logarithm-, square root- or reciprocal functions.
They are the dotted functions in figure 3. In the range of
our interest (0 ≤ PLN ≤ 12) they have similar behavior.
We will analyze how regression models like E{REALS

t } =
αlog(PLNS

t ) explain the variation in the real data. This
particular example is displayed as the dotted lines in figure 2.
A good agreement with the data is perceivable. We will verify
the conditions to draw valid conclusions from our analysis in
section IV.

b) Uncertainty: Counting the number of arrivals
REALS

t results in right skewed distributions for every time
interval t (except early morning and late night). Also, in
all cases in which r aircraft are planned to enter the sector
(PLNt = r), the distribution of the real number of arrivals is
right skewed (figure 4). The trend curve in figure 3 corresponds
to the mean values of these distributions. More formally,
we are dealing with the (unknown) conditional distributions
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Fig. 2. Arrivals in fifteen minutes intervals with t4 time-trend (bold) and
logarithmic PLN trend (dotted)
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Fig. 3. Relationship between number of planned arrivals PLN (x-axis) and
average number of real arrivals REAL (y axis) in 15 minutes time intervals.
The bold line corresponds to the sample means. The dotted functions are
candidates for modeling this trend: logarithmic, square-root and 1-1/PLN.

Pr(REALS
t |PLNS

t ) and their expected values.
The hypotheses that these distributions correspond to Poisson
distributions where the parameter is the sample mean could not
be rejected in nearly all the cases. No interesting departures
from a Poisson distribution could be found neither. This gives
an idea of the variation of the number of arrivals in a sector
because mean and variance are the same for a Poisson distribu-
tion. However, it is not enough information to unambiguously
draw conclusions about the underlying mechanism of the
phenomenon. For further information please consult [9], [7],
[10] or [11].

IV. VALIDATION

In this part we collect evidence that our findings are
a reasonable basis for interpretation and that they can be
generalized to other sectors and other days. We analyze 31
sectors, covering the the Upper Airspace between London,
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Fig. 4. Examples for distributions of number of real arrivals (REALt)
dependent on time of day (left) and on number of planned entries (PLNt)
(right). Superposed are Poisson distributions. Their parameter is the sample
mean.

Fig. 5. Central European Upper Airspace. 31 sectors covering the area above
London, Zurich and Berlin

Zurich and Berlin (figure 5). Data is available for 95 week
days (Mon-Thu) in the period 13.5.-29.9.2004.
The validation procedure consists of two parts. First, we show
graphically that the same type of trend appears in all sectors
under study. Then, we randomly select sectors and days and
analyze regression models of this trend.

c) Data and Time intervals: We experimented with 5
minutes and 15 minutes time intervals. Interesting results
were obtained for the 15 minutes intervals. For the graphical
validation we use the whole data set, leading to > 9000 points
for each sector to estimate the mean values.
For each of the regressions we select randomly one sector S
and one day of week data d (Mon-Thu), denoted by
DS

d = {(REALS
t1 , PLNS

t1), ..., (REALS
t96 , (PLNS

t96)}.
d) Graphical Validation: Figure 6 shows the relationship

between PLN and REAL for 12 sectors from Central Upper
Airspace. They all show the same logarithm-like shape. The
fluctuations at the end of the intervals can be explained
by few underlying data. For all the 31 sectors, 68 % of
the asymptotes lie in the interval (8, 10]. Since we are
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Fig. 6. Same shape of trend for all sectors: plots of the sample means

working with 15 minutes intervals, this corresponds to hourly
workloads between 36 and 40 aircraft. This is roughly the
declared capacity of many sectors. 26 % lie below and 6 %
above this interval
In 63 % of the cases, the points, where PLN = REAL lie
between 6 ≤ PLN < 8. In 35 % of the cases, these points
are below 6. Only in one case, point where PLN equals
REAL lies above 8.
This suggests that controllers accept this ’traffic pattern’;
no rerouting is necessary. For other plannings, controllers
re-organize the flows to improve their working conditions.

As we said above, plotting the sample means like in
figures 3 or 6 is statistically unreasonable because points
(PLNS

ti
, REALS

ti
), (PLNS

tj
, REALS

tj
), i �= j might not be

independent. Estimators for the mean value under the false
assumption of independence have high variance [8]. This
means that we cannot draw conclusions from figures 3 and
6 alone.

e) Regression Analysis: Beside the logarithm-like re-
lationship that we investigate, are there other factors that
influence the variables REALS

t ? Please remind that we are
not modeling the traffic flows themselves, but the relationship
between planned and real traffic.

We analyze three models for this aim:

1) A simple model is to assume

E{REALS
t } = αf(PLNS

t )

It models the mean value of REALS
t as a simple

function of PLNS
t , but one that has similar shape than

the sample means in figure 3 (e.g. sqrt, 1−1/x or log).
It assumes that the real traffic is only dependent on the
planned traffic of the same sector and in the same time
interval.



Model µ(R2) σ(R2)
log(PLN) 0.94 0.02
sqrt(PLN) 0.94 0.02
1 − 1/PLN 0.93 0.03

P4
i=0 ti 0.94 0.02

TABLE I

COMPARISON OF DIFFERENT TREND MODELS

2) A more realistic model takes into account the neighbor-
hood of a sector. Let SNi , i = 1, ..,mS be the neighbors
of sector S. Let PLN

N(S)
t =

∑mS

i=1 PLNSNi

t be the
sum of planned traffic in the neighborhood of S.

E{REALS
t } =α1f(PLNS

t ) + α2PLN
N(S)
t

This model expresses that the arrivals at a sector S
depend additionally on the traffic density in the neigh-
borhood.

3) Finally, one may think that the impact of the two
independent variables in model 2 is not independent (the
additivity assumption is not satisfied). To overcome this,
we allow for interaction:

E{REALS
t } =α1f(PLNS

t ) + α2PLN
N(S)
t +

α3(f(PLNS
t ) · PLN

N(S)
t )

Please see below for details on the interaction term.

All models are ’static’: they explain the number of real
arrivals in fifteen minutes windows independently of the past.
Behind this is the assumption that, from a controllers point
of view, it is of no importance what happened 15 minutes
ago. More complex models would take into account spatio-
temporal dependencies.
The main assumption of the models is that the variables PLN
contain all of the information to explain the variable REAL. A
covariate that explains all structure of a time varying variable
is not unusual in time-series contexts [7]. This is a difference
to ARMA type models, which would assume dependencies
between the variables REALt themselves.
For validation we proceed as follows: we select randomly
sectors and days and analyze the resulting regression models.
We will perform residual analysis to check our assumptions.

Estimation All models are linear. The variables REALS
t

count the number of arrivals in a time interval t. Their
distributions are right skewed (figure 4). A natural regression
technique for such variables is Poisson regression (e.g. [4]).
Another possibility to treat skewed variables is to transform
them logarithmically and to use ordinary least squares for
estimation. This is what we do for this paper because formal
inference is not our priority and because the technique is
known in a wide audience.

Results
We fit every candidate model to 30 randomly selected sec-

tors and days. Figure 7 shows a typical instance. In Residual vs
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Fig. 7. Typical instance for validation of residuals

fitted and Normal QQ plot (first and second plots) the points
should be homogeneously distributed around 0 and build a
straight line respectively. These are graphical methods to test
for homogeneity of variance and normality, two assumptions
of a linear model. The third plot is explained below. In the
fourth plot, the sample auto-correlation function is shown.
Since we are analyzing a phenomenon in time, the absence of
correlation in the residuals is crucial to verify before making
inferences.

It turns out that negative auto-correlation of -0.2 to -0.3 at
lag 1 appears in about 10 % of the residuals of the simple
type models (first and second). Thus, it is likely that other
factors influence the variable REAL and inference about the
validity of the logarithm-like trend cannot be made.
For the third model, auto-correlation appears in less than 3
% of the cases. The other residual checks are valid, as well.
This is evidence that the model assumptions are correct.
The coefficients for this model are almost always significant
on a 1 % level. For this model, we explain the third plot
in figure 7. It shows the predicted number of real arrivals
against planned arrivals for three different levels (’low’,
’average’, and ’high’) of the ’neighborhood’ variable. The
levels correspond to the mean value plus minus one standard
deviation respectively. To analyze this in more detail, the
predictions can be grouped into three classes: either they
follow the the same line (90 %), they intersect in the second
half (6 %) or their starting values diverge (figure 8). Here,
we multiplied the variables in the interaction term, because
they are both numeric. When the neighborhood variable
is transformed to a factor with three levels, the resulting
model exhibits sometimes neighborhood levels for which
the predicted values are always above or always below
the diagonal. On the same hand, in such a model, not all
parameters are systematically significant. The reasons for
this have to be found in another study. For our purpose,
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Fig. 8. Three types of predictions. Same (left), with changing effects (middle)
and diverging starting values (right)

we can say that there is still systematically another number
of arrivals than planned. A finer analysis will determine
whether there are some exceptions from this. Table I shows
mean values and standard deviations of R2 for each of the
30 regressions. The first three models are the logarithmic,
square root and reciprocal functions of PLNt. They all have
µ(R2) ≈ 94% with small standard deviation. This means that
independently of sector and day, the explained variation is
roughly the same. The fourth order polynomial time trend is
shown in the last line (µ(R2) = 93%). This is similar to the
others. The advantage of the logarithmic like trend models
is that they lead to insight in how controllers deal with their
workload, whereas the polynomial time trend can be less
easily interpreted. For a discussion on model formulation and
selection we refer the reader to chapter 1.9. in [12] and the
references therein.

As a conclusion we can say that there is evidence for
our initial observation: that systematically another number of
aircraft than planned enters flight sectors. Moreover, the traffic
density in the neighborhood seems to be a useful exlanatory
variable.

V. INTERPRETATION

We remind that our study is ’observational’. Interpreting
regression models in such contexts can be misleading, for
example due to unobserved variables or correlation between
regressors (e.g. [12]).
However, our results show some evidence that there are
systematically more aircraft than planned arriving for few
planned traffic and less for high numbers of planned traffic.
One would expect rather a fluctuation around the planned
number, if the flow planning were accurate. This is not the
case. We found thus a relationship between the planned traffic

and the average realized traffic that asks to be interpreted. It
gives insight into how controllers treat their workload: they
reroute aircraft (in time or in space) for high numbers of
planned traffic and accept rerouted vehicles in periods with low
traffic density. This seem quite natural. The point is that we
”learned” from our data analysis the nature of this relation: its
shape can accurately be described by a logarithmic, square root
or reciprocal function (with different regression coefficients
for different sectors). We found dependency with the traffic
density in the neighboring sectors. We have seen that there is
exactly one point, where correspondence between planned and
realized traffic exists in average. This suggests that controllers
accept this ’traffic pattern’; no rerouting is necessary. For other
plannings, controllers re-organize the flows to improve their
working conditions.
We have also seen the existence of asymptotes for realized
traffic. No matter how many aircraft are planned to enter
a sector, controllers will take actions to maximally let this
amount of aircraft enter. These asymptotic values are in
agreement with the declared capacities.
Concerning uncertainties we showed that these average values
of realized traffic can be seen as the mean values of Poisson
distributions. This gives us an idea about the variation of
realized traffic around the mean values because mean and
variance are the same for a Poisson distribution.
Last but not least, our models are ’static’. They explain the
number of real traffic in fifteen minutes windows indepen-
dently of the past. This suggests that from a controllers point
of view, it is of no importance what happened 15 minutes ago.
All these findings are empirical. We found ways to accurately
describe the data and its variation. But the question is not
whether one description ’performs better’ than another. We
should confirm why the data shows exactly this behavior before
drawing further conclusions.

VI. CONCLUSION AND FUTURE WORK

We found a relationship between the planned number of
sector entries and the realized number. It suggests that in
average, more aircraft than planned arrive when few were
planned and that less than planned arrive when many were
planned. This relationship can be described accurately by
logarithmic, square root or reciprocal functions. Moreover, we
showed that these averages can be seen as the mean values of
Poisson distributions.
Taking both together, the uncertainty about the real number of
aircraft arriving at a sector can be described.
We validated the findings on a large number of sectors,
randomly chosen from the Central European Upper Airspace.
Our results are empirical but they lead to insight in how
controllers deal with their workload. However, we should con-
firm why the data shows exactly these characteristics before
drawing any further conclusions. Elements of answering this
question could be:

• Time invariance: we did not look into the question
whether the trend is the same over the whole day. A
positive answer to this question would simplify any future



model. A more detailed statistical analysis should answer
this question.

• Micro-dependencies: our approach is macroscopic; we
aggregate variables of sector entries. This leads to a loss
of information about dependencies between successive
aircraft in a flow. A finer analysis, based on stochastic
Point processes for example, can lead to insight into such
dependencies.

• Interaction with neighboring sectors: based on our find-
ings more concrete hypotheses of how controllers share
workload with neighboring sectors can be formulated.

This work is a contribution in the characterization of uncer-
tainties in current traffic flow planning.
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