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In a data analysis, we discovered systematic gaps between the number of planned and

the number of realized entries of aircraft into flight sectors. We also found that random

disturbances of an arrival process into flight sectors cause systematic gaps. We conclude

that even if all controllable uncertainties in flow planning were eliminated, systematic gaps

between the number of planned and realized traffic would remain. The results give insight

into the macroscopic relationship between planned- and realized traffic flows and are a step

towards a realistic model of air-traffic flow.

I. Introduction

The aim of air traffic management (ATM) is to achieve safe, economical and efficient flows of traffic1.
Major problems with traffic flow are congestion and delays, mainly as a result of an imbalance between
capacity and demand2,3. ATM consists of the two components flow planning and flow control. The mission
of flow planning is to balance airspace demand with available capacity. It is a long-term process, ranging
from research on new sector- and route designs (strategic phase) over the analysis of flow patterns (pre-
tactical phase) until the daily schedule of departure slots to avoid capacity violations (tactical phase). Flow
planning has to anticipate the future evolution of the network. For this reason, we call it the predictive

component in ATM. Once an aircraft is in the air, traffic controllers guide it from origin to destination. Each
sector is directly supervised by two controllers, one in charge of conflict detection, and the other in charge
of conflict resolution. Minimum distances between aircraft have to be kept. This is achieved by re-routing
and speed adjustments. The difference to flow planning is that flow control adapts its behavior to the real
traffic situation. For this reason we call it the adaptive component in ATM.

Intuitively, a flow is a number of aircraft per time that move into the same direction. The left part
of Figure 1 shows the traffic flows in Central European Airspace, covering the region between London in
the north, Zurich in the south and Berlin in the east. The two colors yellow and brown mark the different
directions north-south and vice verse. One can see two major traffic flows in north-south direction and a
network of remaining flows. The situation in Japan is similar (right part): main flows exist towards the two
Tokyo airports Narita and Haneda (yellow, blue), complemented by a large number of additional flows.

Today’s flow planning is based on the assumption that aircraft respect their flight plans. But in reality,
many factors of uncertainty (e.g. weather conditions, delay from connecting flights, etc.) lead to deviations
of aircraft from their flight plans. Ball et al.4 classify uncertainty into three categories, shown in Table 1.
These categories are ‘demand uncertainty’, ‘capacity uncertainty’ and ‘flow control uncertainty’. The above
examples of uncertainty would fall into the category ‘demand uncertainty’.

On a sector level, uncertainties that have not been taken into account during flow planning translate into
traffic gaps between the planned number and the realized number of aircraft arriving at sectors. This leads
to safety problems (too many aircraft arrive at a sector) and non-optimally used capacity (fewer aircraft
than planned arrive at the sector).

In this paper, we show that traffic gaps occur systematically, both, in European and in Japanese Airspace.
This is insight into the macroscopic relationship between planned- and realized traffic flows. It is useful
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Figure 1. Traffic Flows. Left: European Central Airspace. Right: Japanese Airspace.

Uncertainty Factors

Demand uncertainty flights fail to meet planned departure, ar-
rival or en-route travel times. Contributing
factors are mechanical problems, boarding
passengers or weather conditions.

Capacity uncertainty airport and airspace throughput levels vary.
Contributing factors are weather conditions
and changes in flight sequences that disturb
scheduled departure or arrival spacing.

Flow control uncer-
tainty

actions are taken by the traffic controllers
in response to demand and capacity un-
certainty. Examples are re-routing, re-
sectorization and temporary capacity lim-
itations.

Table 1. Classification of Uncertainty (source: Ball et al.4)

information for flow planning, which can be improved by taking into account the reasons that lead to the
gaps. The results in this paper are a summary of our previous research published in5–7.

Related work can be found in the analysis of traffic flows. Menon et al.8 model en-route air traffic
flow inspired by highway traffic. A sector is a one-dimensional volume with in-and out flow. Controllers
have the possibility to delay aircraft inside their sectors. Based on this, they analyze for example the
impact of control decisions in one sector onto flow patterns in other sectors. Hansen9 models arrival flows
as deterministic queues, where arrival times are disturbed randomly to take into account network delays
and other uncertainty factors. This allows him to quantify delays caused by individual aircraft onto the
remaining flow. Wanke et al.10,11 analyze the effect of uncertainties in sector demand. They identify
binomial- and Poisson distributed counts of aircraft entering flight sectors. They also identify major factors
with an influence on these distributions.

The remaining article consists of three parts. In the next part, we analyze past flight data, where we
discover the gaps and where we build a descriptive model to quantify them and a probabilistic flow model
to explain their main causes. Then, we compare the analysis between European and Japanese data and
validate our results. Finally we interpret the results and look out for future research.
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Figure 2. Time plots on different time-scales. Top: 5 min, middle: 15 min, bottom: 30 min time scale.

II. Analysis of Gaps

Gaps are differences between the number of planned and realized entries into a flight sector. They can
be represented by three possible definitions

GAPt =











REALt − PLNt absolute

REALt/PLNt relative

f(REALt, PLNt,X) functional

where REALt, t ∈ N is the number of aircraft that entered a sector in time interval t and PLNt is the number
of aircraft that were supposed to enter it. Since the number of real entries into a flight sector is unknown,
we consider GAPt as a random process. All three definitions give insight in the phenomenon. For example
absolute and relative gaps describe directly how the phenomenon appears to an observer. The functional
definition models the joint distribution of REAL and PLN . X is a vector describing the environment in
which the variables are observed, for example the time of the day. It gives insight into how gaps are generated
by the flow planning component.

II.A. Data Analysis

We use two data sources: flight plan data (before take-off) and radar data. These are trajectory based
formats which have to be aggregated on a sector level. All data is numerical. As far as the European
data is concerned, we use the aggregation function of the COSAAC12 tool (Common Simulator to Assess
ATFM Concepts). For the Japanese data, a preprocessing step had to be done in order to interpolate the
intersection of the trajectories with the 3-dimensional sector boundaries. Due to these calculations, and
general flight-plan inconsistencies (e.g. missing segments), we expect 15% of inaccurate sector entry times
(please see Ref. 7 for more details). Flight plan and radar data are available for 31 en-route sectors on
75 week days (Mon-Thu) in the year 2004 summer period May 13 - Sept. 29 for the European Airspace
and for 21 sectors on 6 weekdays in the year 2006 (August and November) for the Japanese Airspace. We
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Figure 3. Relationship between number of planned arrivals PLN (x-axis) and average number of real arrivals REAL (y
axis). Distribution and sample means (bold line).
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Figure 4. Number of real entries (REALt) conditioned on number of planned entries (PLNt = 2).

assume similar traffic conditions (number of flights, network topology, controllers) for each of these days
(more details can be found in References6,7).

Figure 2 shows the process GAPt = PLNt − REALt for a typical Japanese sector on three different
time-scales. The timescales grow from 5 min (upper panel), over 15 min (middle) to 30 min (bottom). On
the x-axes, the slot numbers are drawn. The upper panel has 288 slots (12 per hour), the middle one 96 (4
per hour) and the lower panel has 48 slots (2 per hour of the day). In each panel, 6 grey lines are superposed,
one from each of the available days. The black line is the average over these 6 days. The idea of this plot is
to identify daily repeating patterns. For example, at t = 9:00 (slot 36 and 18), a negative peak of value -10
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Figure 5. Candidate trend functions. x-axis: number of planned arrivals, y axis: average number of real arrivals.

can be seen. In the remaining time, the process fluctuates around an average value of 0. Indeed, a one-sided
t-test agrees that this mean value is lower than a randomly selected one from the remaining process. But
such strong patterns are the exception and not the rule. We could find them in only a few sectors, and
in most of the cases, it could not be excluded that they resulted simply from data inaccuracies7. We also
analyzed the distributions of the processes. Mean and variance of the fluctuation look constant during the
day hours (7:00-19:00). For example, the distributions for the data in Figure 2 during the day hours are
symmetric, around 0, with standard deviations suggesting that in the majority of the cases, ±25% of the
planned traffic arrives at the sector. Here again, no unexpected patterns could be found on a system level6,7.

What was unexpected can be seen in Figure 3. It plots the number of planned entries (PLNt) on the
x-axis against the number of real entries (REALt) on the y-axis. The range of both variables is around
[0,8] on a 5 min timescale. Since there are N = 870 points in the sample, but only 81 positions they
can take, we visualize the distribution of the cloud by the background color (light: few values, dim: many
values). One can see a single peak around (1,2) and that the cloud is distributed symmetrically around this
peak. Negative values seem to be ‘cut-off’. Figure 4 shows a typical distribution of a column in this plot
P (REALt | PLNt = k). On the x-axis, we see the number of aircraft that enters a sector, on the y-axis
the frequency of such events. In the example PLNt = 2, which is the average in-flow for this sector. The
distribution is right skewed. The variable is positive (including 0) and discrete. Superposed are a Poisson
(red) and a binomial distribution (green, dotted). Both distributions are accepted by a χ2 goodness-of-fit
test (on a 5 % level). A system-wide comparison showed that 70 % of such column distributions can be seen
as Poisson and 26 % as binomial6,7.

Going back to Figure 3, the diagonal (dotted line) corresponds to the case of perfect planning: exactly
the same number of aircraft than planned arrive in reality. Due to uncertainties, one expects a fluctuation
around this line. But this is not the case. The sample average is the black line. It corresponds to the points:

µ̂(REALt|PLNt = k) =
1

nk

∑

PLNi=k

reali

where nk is the number of observations with PLNt = k. As a function of k, it has a logarithm-like shape
(bold line). In particular at PLNt = 0, the mean is > 0. Figure 5 shows this mean line in more detail. We
model it as a function of the planned number of aircraft: REALt = f(PLNt). Three candidate functions
are a logarithmic (blue), a square-root (red) and a reciprocal one (green). They all describe accurately the
sample data (black).
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Figure 6. Events at a sector entry.

To summarize, we have seen the uncertainty of traffic gaps (Figures 3 and 4) and their average behavior
(Figure 5). Combining this, we are able to pose the following descriptive model of the traffic gaps:

P (REAL = n | PLN = k) =
e−µkµn

k

n!
log(µk) = αf(k) + β

with α, β ∈ R and f(k) ∈ {log(k),
√

k, 1 − 1/k}. We fit the above models by maximum likelihood, using a
Newton-Raphson based iterative method13. These are linear counting models, which have always a unique
solution and positive values for the mean parameter14. Note that the model using the logarithmic trend can
also be written as the power of α. Our Goodness-of-fit analysis showed that (i) the models explain a large
part of the variation in the data and (ii) the different candidate trend functions f explain equally well the
data6.

II.B. Probabilistic Analysis

While the previous analysis allows to describe the traffic gaps, it cannot explain why they occur. It is
natural to think that random events deviate flights from their flight plans. For example, weather conditions
or unpredictable events (e.g. passenger delay or technical failure) constantly affect the system. One likes
to assume that such events do not disturb the flow planning systematically. In average, their effects should
be canceled out. On the other hand there are mechanisms that systematically disturb the flight plans. For
example, airlines use the cancellation of flights as a strategy to avoid high departure delays15.

As in Wanke et al.16 or Ball et al.4 we distinguish three types of events that disturb a flight planning
(Figure 6):

• Cancellation and rerouting: some of the scheduled flights are canceled or rerouted to other sectors.

• Delay: aircraft arrive too early or too late at the sector. Delay occurs either at the departure airport
or during the flight.

• Pop-up: rerouted aircraft from other sectors or aircraft without submitted flight plans arrive.
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Figure 7. Conditional expectations of randomly translated Poisson process.

We formalized this situation by thinking of an arrival process at a sector as a randomly translated Point
process17. In this paper we only summarize our results. Please consult Ref. 6 for a mathematical discussion.
For a given sector, we analyzed

{τi} → {τi + ǫi}
where τi ∈ R is the planned arrival time of aircraft i and ǫi is a random error for the arrival.

Figure 7 plots PLNt against REALt as before. The diagonal corresponds to perfect planning, where
exactly the same number of aircraft arrives than has been planned. The sample averages (bold curve) are
obtained from the data (for a European sector in this case, with L=15 min time-slots). What is new in
this plot are the dotted lines. They are the average traffic gaps based on our model. This model assumes
that {τi} is a Poisson process with arrival rate λ and that ǫ is a random variable with mean µ and variance
σ2, where ǫi, ǫj are uncorrelated for i 6= j. From this we calculated the distribution of the number of
aircraft entering a sector given that a number k had been planned to enter it. After scaling the variance
appropriately, it turned out that the mean value of this distribution is a linear function of the traffic flow:
µk ∼ (1 − σ̇2)k + σ̇2λ. The slope of this function decreases with the scaled variance σ̇2 of the disturbances:
the higher this variance, the larger the gaps between planned and realized sector entries. The intercept is
proportional to the arrival rate λ and the scaled variance σ̇2 of the disturbances. This means that systematic
traffic gaps occur, even if the only force on the system is a random disturbance of the arrival times. And this
independently of the distribution type of the disturbances (it is only dependence on its mean and variance).
Finally, since homogeneous Poisson arrivals are unrealistic, we simulated the effect of random disturbances
on the (deterministic) arrival processes, obtained from the flight plan data. In this case the mean values
showed a logarithmic shape, similar to the sample data. But they did not fit with the sample data. This
means that in reality, the disturbances are not additive or independent and identical from each other.

In summary, we found (i) that random disturbances of flight plans lead to systematic gaps between the
number of planned and the number of realized sector entries. And (ii), the data shows that pure randomness
is not the only disturbance factor.

III. Comparison between Japanese and European Flow Data and Validation

Comparing two ATM systems, as done for example between U.S. and Europe18 is beyond the scope of
this section. We only address some similarities about the performance of flow planning in the European and
the Japanese ATM that we detected in our data. The two systems share some characteristics, for example
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Technique Attribute Comparison

Time plot Mean similar

Variance similar

Distribution Core similar

(abs, rel) Mean similar

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance differ

Tail differ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(cond) Poisson similar

Trend Log-like similar

Propagation Time similar

Space similar

Table 2. Comparison Japanese- and European Airspace Data.

similar procedures, mechanisms and equipment. Difference between them are for example the major flow
patterns, or the cultural context. For example, it could be interesting to know if European and Japanese
controllers treat stressful situations differently.

In our data analysis, we compared 10 different characteristics, as shown in Table 2. For example, the
core-parts of the distributions (3rd row) turned out to be similar in European and Japanese sector data.
Or, the logarithm-like traffic gaps (row 8) also occurred in both data sets. The only differences we found
were small ones in the variance and the tail behavior of the distributions (rows 5 and 6). For example traffic
gap distributions in European Airspace show higher tails than those in Japanese Airspace, suggesting that
very large gaps occur more frequently in European Airspace than in Japanese7. We concluded that all main
characteristics were similar in both European and Japanese data. But a comparative analysis with mature
methodology is needed to confirm these findings.

Besides this, we validated all our findings on all analyzed sectors (31 sectors in European, 21 sectors in
Japanese Airspace) and on three different time-scales (5 min, 15 min and 60 min). Please see5–7 for the
details.

IV. Conclusions

We analyzed gaps between the planned and the realized number of aircraft entering flight sectors. We
called these gaps ‘traffic gaps’ between the predictive and the adaptive component in ATM. Our hypothesis
was that due to operational uncertainties (e.g. delays, technical failures, etc.), there are systematic gaps
between these two numbers. We proposed a descriptive model of traffic gaps to quantify them and a
probabilistic model to show that randomly disturbed flight schedules already lead to systematic traffic gaps.

From our analysis we conclude that in both, European and Japanese Airspace, (i) gaps between the
number of planned and realized traffic occur systematically, and this (ii) even if the only force on the system
are random disturbances of arrival times. This is counter-intuitive since one expects that different uncertainty
factors cancel out in average. Such information is useful to improve flow planning because they give insight
into the macroscopic relationship between planned- and realized traffic flows.

As future work we propose to analyze statistical models that explain the dynamics of traffic flows and
their congestion patterns.
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