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The basic model: 
Systems = Information-Theoretic channels
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Probabilistic systems are noisy channels:   
an output can correspond to different inputs, and  
an input can generate different outputs, according to a prob. distribution 

p(oj|si):   the conditional probability to observe oj given the secret si
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A channel is characterized by its matrix: the array of conditional probabilities 

In a information-theoretic channel these conditional probabilities are 
independent from the input distribution; they depend only in the way the 
channel operates on the inputs.   

In our case, the conditional probabilities depend only on the way the system 
works. We assume that this is known to the adversary. 
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p(o|s) = p(o and s)

p(s)



Password-checker 1

          
Let us construct the channel matrix

Note:  The string x1x2x3 typed by the user is a parameter, and  K1K2K3 is the 
channel input 

The standard view is that the input represents the secret. Hence we should take 
K1K2K3 as the channel input 



Password-checker 1

          

Let us construct the channel matrix
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Input: K1K2K3 2 {000, 001, . . . , 111}

Output: out 2 {OK,FAIL}

Assume the user string is x1x2x3 = 110

Different values of x1x2x3 

give different channel 
matrices, but they all 
have this kind of shape 
(seven inputs map to Fail, 
one maps to OK)



Password-checker 2
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Let us construct the channel matrix{ }
Output: out 2 {OK, (FAIL, 1), (FAIL, 2), (FAIL, 3)}

Assume the adversary can measure
the execution time
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Input: K1K2K3 2 {000, 001, . . . , 111}

Assume the user string is x1x2x3 = 110



Example:  DC nets.  Ring of 2 nodes, and assume b = 1 

n0

n1
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Let us construct the channel matrix 

Input:  n0 , n1

Output:  the declarations of n1 and n0:  d1d0 ∈ {01,10}

n0

n1

01

10

Secret Observable

coin = 0

coin = 1



Example:  DC nets.  Ring of 2 nodes, and assume b = 1 

n0

n1
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Let us construct the channel matrix 

Input:  n0 , n1

Output:  the declarations of n1 and n0:  d1d0 ∈ {01,10}

Fair coin: p(0) = p(1) = ½ Biased coin:  p(0) = ⅔  p(1) = ⅓ 

01 10

n0 ½ ½

n1 ½ ½

01 10

n0 ⅔ ⅓
n1 ⅓ ⅔



Example: DC nets (ring of 3 nodes, b=1)
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Example: DC nets (ring of 3 nodes, b=1)

fair coins: Pr(0) = Pr(1) = ½
strong anonymity

biased coins:  Pr(0) = ⅔ , Pr(1) = ⅓
The source is more likely to declare 1 than 0
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Quantitative Information Flow

• Intuitively, the leakage is the (probabilistic) 
information that the adversary gains about the 
secret through the observables

• Each observable changes the prior probability 
distribution on the secret values into a posterior 
probability distribution according to the Bayes 
theorem

• In the average, the posterior probability distribution 
gives a better hint about the actual secret value



Observables:  prior ⇒ posterior
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Observables:  prior ⇒ posterior
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Observables:  prior ⇒ posterior
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Observables:  prior ⇒ posterior
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Bayes theorem
p(n|o) = p(n, o)
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Exercise 1

• Assuming that the possible passwords have 
uniform prior distribution, compute the 
matrix of the joint probabilities, and the 
posterior probabilities, for the two password-
checker programs
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Exercise 2

• DC net with 2 nodes:  Assuming that n0 and 
n1 have uniform prior distribution, compute 
the matrix of the joint probabilities, and the 
posterior probabilities, in the two cases of 
fair coins, and of biased coins

• Same exercise, but now assume that the prior 
distribution is 2/3 for n0 and 1/3 for n1
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A general principle:

Leakage    =      difference between
the a priori vulnerability
and        
the a posteriori vulnerability

• vulnerability = vulnerability of the secret, 

• a priori / a posteriori = before / after the observation

Intuitively the vulnerability depends on the distribution:  the more uncertainty 
there is about the exact value of the secret, the less vulnerable the secret is.
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Towards a quantitative notion of leakage

p(s|o) = p(s)
p(o|s)
p(o)

Bayes theorem

Note that the observation updates the input probability:



Information theory: useful concepts

• Entropy H(X) of a random variable X  
• A measure of the degree of uncertainty of the events

• It can be used to measure the vulnerability of the secret, i.e. how 
“easily” the adversary can discover the secret

• Mutual information    I(S;O)
• Degree of correlation between the input S and the output O

• formally defined as difference between:

• H(S), the entropy of S before knowing, and 

• H(S|O), the entropy of S after knowing O

• It can be used to measure the leakage:

• H(S) depends only on the prior;  H(S|O) can be computed using the 
prior and the channel matrix
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Leakage  =  I(S;O)  =  H(S)  −  H(S|O)



Notions of Entropy

• In Information Theory, there are several 
notions of entropy: 

• Shannon’s entropy (which is the most 
famous), 

• the Rényi’s entropies, 

• guessing entropy

• …

• Which one should we choose ? 
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