Probabilistic Methods in Concurrency

Lecture 6

Progress statements:
A tool for verification of probabilistic automata

Catuscia Palamidessi
catuscia@lix.polytechnique.fr
www.lix.polytechnique.fr/~catuscia

Page of the course:
www.lix.polytechnique.fr/~catuscia/teaching/Pisa/
Progress statements

• **Progress statements**
 - Proposed by Lynch and Segala
 - A formal method to analyse probabilistic algorithms

• **Definition (progress statements)**
 - Given sets of states S, T, and a class of adversaries A, we write

 $$S \triangleleft A,p\rightarrow T$$

 if, under any adversary in A, from any state in S, we eventually reach a state in T with probability at least p

 - Furthermore, we write

 $$S \triangleleft$$

 if, whenever from a state in S we do not reach a state in T, we remain in S (possibly in a different state of S)
Progress statements

• Some useful properties

- If A is history-insensitive, $S \rightarrow_{A,p} T$, and $T \rightarrow_{A,q} U$, then
 $$S \rightarrow_{A,pq} U$$

- If $S_1 \rightarrow_{A,p_1} T_1$, and $S_2 \rightarrow_{A,p_2} T_2$, then
 $$S_1 \cup S_2 \rightarrow_{A,p} T_1 \cup T_2$$
 where $p = \min\{p_1, p_2\}$

- $S \rightarrow_{A,1} S$

- If A is history-insensitive and $S \rightarrow_{A,p} T$ and S unless T, and $p > 0$, then
 $$S \rightarrow_{A,1} T$$
History insensitivity

• **Definition:** a class of adversaries A is history-insensitive if: for every $\alpha \in A$, and for every fragment of execution e, there exists $\alpha' \in A$ such that, for every fragment of execution e', $\alpha'(e') = \alpha(ee')$

• **Proposition:** The class of fair adversaries is history-insensitive

Proof: Given α and e, define $\alpha'(e') = \alpha(ee')$. Clearly α' is still fair
Example of verification: the dining philosophers

• An example of verification using the progress statements.

• The example we consider is the randomized algorithm of Lehmann and Rabin for the dining philosophers.

• We will show that under a fair adversary scheduler we have deadlock-freedom (and livelock-freedom), i.e. if a philosopher gets hungry, then with probability 1 some philosopher (not necessarily the same) will eventually eat.
The dining philosophers: the algorithm

<table>
<thead>
<tr>
<th>State</th>
<th>action</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• R</td>
<td>think</td>
<td>reminder region</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>get hungry</td>
</tr>
<tr>
<td>• F</td>
<td>flip</td>
<td>ready to toss</td>
</tr>
<tr>
<td>• W</td>
<td>wait</td>
<td>waiting for first fork</td>
</tr>
<tr>
<td>• S</td>
<td>second</td>
<td>checking second resource</td>
</tr>
<tr>
<td>• D</td>
<td>drop</td>
<td>dropping first resource</td>
</tr>
<tr>
<td>• P</td>
<td>eat</td>
<td>pre-critical region</td>
</tr>
<tr>
<td>• C</td>
<td>exit</td>
<td>critical region</td>
</tr>
<tr>
<td>• E_F</td>
<td>dropF</td>
<td>drop first fork</td>
</tr>
<tr>
<td>• E_S</td>
<td>dropS</td>
<td>drop second fork</td>
</tr>
<tr>
<td>• E_R</td>
<td>rem</td>
<td>move to reminder region</td>
</tr>
</tbody>
</table>
Example of verification: The dining philosophers

• Let us introduce the following global (sets of) states

 Try: at least one phil is in $T=${F,W,S,D,P}

 Eat: at least one phil is in C

 RT: at least one phil is in T, all the others are in T, R or E_R

 Flip: at least one phil is in F

 Pre: at least one phil is in P

 Good: at least one process is in a "good state", i.e. in $\{W,S\}$
 while his second fork f is not the first fork for the neighbor (i.e. the neighbor is not committed to f)

• We want to show that $\text{Try} - A, 1 \rightarrow \text{Eat}$ for $A = \text{fair adv}$
Example of verification: The dining philosophers

- We can prove that, for the class of fair adversaries \(A \) (omitted in the following notation):
 - \(\text{Try} \rightarrow RT \cup \text{Eat} \)
 - \(RT \rightarrow \text{Flip} \cup \text{Good} \cup \text{Pre} \)
 - \(\text{Flip} \rightarrow \text{Good} \cup \text{Pre} \)
 - \(\text{Good} \rightarrow \text{Pre} \)
 - \(\text{Pre} \rightarrow \text{Eat} \)

- Using the properties of progress statements we derive
 \(\text{Try} \rightarrow \text{Eat} \)

- Since we also have \(\text{Try unless Eat} \), we can conclude