Concurrency problems class

Catuscia Palamidessi, Jean-Jacques Lévy, James J. Leifer
Catuscia@lix.polytechnique.fr, Jean-Jacques.Levy@inria.fr, James.Leifer@inria.fr

11 December 2003

1 Definition: CCS processes

\[P ::= 0 \quad \text{empty} \]
\[\alpha.P \quad \text{prefixing} \]
\[P|P \quad \text{parallel composition} \]
\[(\nu L)P \quad \text{hiding} \]
\[P + P \quad \text{summation} \]

\[\begin{array}{ll}
K & \text{constant (for expressing recursion)} \\
!P & \pi\text{-calculus-style replication (for expressing recursion)} \\
\mu X.P & \text{fixed-point (for expressing recursion)}
\end{array} \]

2 Definition: CCS alphabetic conventions

\[a \quad \text{name} \]
\[\overline{a} \quad \text{co-name} \]
\[\ell \quad \text{label (ranges over names and co-names)} \]
\[L \quad \text{label set} \]
\[f \quad \text{label map} \]
\[\alpha \quad \text{action (ranges over labels and } \tau) \]

3 Definition: CCS labelled transitions rules

- input: \[a.P \overset{a}{\rightarrow} P \]
- output: \[\overline{a}.P \overset{\overline{a}}{\rightarrow} P \]
- synchronization: \[P \overset{\ell}{\rightarrow} P' \quad Q \overset{\tau}{\rightarrow} Q' \quad \frac{P|Q \overset{\alpha}{\rightarrow} P'|Q'}{P|Q \overset{\alpha}{\rightarrow} P'|Q'} \]
- choice: \[P \overset{\alpha}{\rightarrow} P' \quad Q \overset{\alpha}{\rightarrow} Q' \quad \frac{P + Q \overset{\alpha}{\rightarrow} P'|Q'}{P + Q \overset{\alpha}{\rightarrow} P'|Q'} \]
- parallel composition: \[P \overset{\alpha}{\rightarrow} P' \quad Q \overset{\alpha}{\rightarrow} Q' \quad \frac{P|Q \overset{\alpha}{\rightarrow} P'|Q'}{P|Q \overset{\alpha}{\rightarrow} P'|Q'} \]
- hiding: \[(\nu L)P \overset{\alpha}{\rightarrow} (\nu L)P' \quad \text{if } \alpha, \overline{\alpha} \notin L \]
- and others, for example...
- constant: \[K \overset{\alpha}{\rightarrow} P' \quad \text{if } K = P \]
- replication (many possible): \[P\|P \overset{\alpha}{\rightarrow} P' \]

\[1P \overset{\alpha}{\rightarrow} P' \]
• fixed-point (many possible): \(\frac{P\{μX.P/X\}}{μX.P} \xrightarrow{α} P' \)

4 Definition: CCS operational equivalences

• strong simulation: a relation \(R \) is a strong simulation if for all \((P, Q) \in R \) and \(P \xrightarrow{α} P' \), there exists \(Q' \) such that \(Q \xrightarrow{α} Q' \) and \((P', Q') \in R \).

• strong bisimulation: a relation \(R \) is a strong bisimulation if it and its inverse are strong simulations.

• strong bisimilarity: \(\sim \) is the largest strong bisimulation.

• weak simulation: a relation \(R \) is a weak simulation if for all \((P, Q) \in R \) we have:

1. if \(P \xrightarrow{τ} P' \) then there exists \(Q' \) such that \(Q \xrightarrow{τ} Q' \) and \((P', Q') \in R \).
2. if \(P \xrightarrow{τ} P' \) then there exists \(Q' \) such that \(Q \xrightarrow{τ} Q' \) and \((P', Q') \in R \).

• weak bisimulation: a relation \(R \) is a weak bisimulation if it and its inverse are weak simulations.

• weak bisimilarity (also known as bisimilarity, also known as observational equivalence): \(\approx \) is the largest weak bisimulation.

• observational congruence: \(\cong \) is the largest symmetric relation satisfying the following property: if \(P \cong Q \) and \(P \xrightarrow{α} P' \) then there exists \(Q' \) such that \(Q \xrightarrow{α} Q' \) and \(P' \cong Q' \).

5 Exercise (CCS): unreliable transmission medium

A transmitter \(T \), an unreliable transmission medium \(M \), and a receiver \(R \) are modelled as follows:

\[
\begin{align*}
T & \overset{\text{def}}{=} \text{in}.i.T' \\
T' & \overset{\text{def}}{=} r.\overline{i}.T' + a.T \\
M & \overset{\text{def}}{=} i.M' \\
M' & \overset{\text{def}}{=} \overline{σ}.M + τ.\overline{σ}.M \\
R & \overset{\text{def}}{=} o.\overline{\text{out}}.\overline{a}.R
\end{align*}
\]

\(M \) is an unreliable medium: having received an input message from \(T \) (action \(i \)) it either outputs the message to \(R \) (action \(σ \)), or loses it (action \(τ \)) and then sends a request for retransmission (action \(\overline{τ} \)). If \(R \) does receive the message, it delivers it (action \(\overline{\text{out}} \)) and sends an acknowledgement directly to \(T \) (action \(\overline{a} \)).

1. Calculate the transition graph of \(\nu i, o, r, a)(T|M|R) \) and hence show that this process is observationally equivalent to a simple reliable buffer \(B \) defined by:

\[
B \overset{\text{def}}{=} \text{in}.\overline{\text{out}}.B
\]

2. Are \(\nu i, o, r, a)(T|M|R) \) and \(B \) observationally congruent?

3. Do the two have the same behavior with respect to divergence, that is can either perform a series of actions ending in an infinite sequence of \(τ \) actions?
6 Exercise (CCS): semaphores

1. A semaphore is a mechanism to prevent more than a certain number \(n \) of clients from simultaneously entering their critical sections to access a precious resource. A client “brackets” its critical section by requesting entry permission (action \(\text{wait} \)) and then signaling when it is finished (action \(\text{signal} \)):

\[
\text{wait} \quad \ldots \text{critical section} \ldots \quad \text{signal}
\]

Note that a mutual exclusion lock (mutex) is a special case (when \(n = 1 \)) of a semaphore.

Define a CCS process to model a semaphore of capacity \(n \). Hint: create a constant \(\text{Sem}_k \), for \(0 < k \leq n \), that represent a semaphore in the state when \(k \) clients are in their critical sections. You will need to treat the cases \(k = 0 \) and \(k = n \) specially.

7 Exercise (CCS): deadlock

We say that a process can deadlock if it can perform a sequence of actions to enter a state that is observationally congruent (\(\equiv \)) to 0.

Let

\[
C \overset{\text{def}}{=} g_0 \cdot g_1 \cdot p_0 \cdot p_1 \cdot C \\
D \overset{\text{def}}{=} g_1 \cdot g_0 \cdot p_1 \cdot p_0 \cdot D \\
S_0 \overset{\text{def}}{=} [g_0 \cdot p_0] \cdot S_0 \\
S_1 \overset{\text{def}}{=} [g_1 \cdot p_1] \cdot S_1
\]

1. For each of the following processes, determine whether or not it can deadlock:

\[
(\nu g_0, p_0, g_1, p_1)(C|C|S_0|S_1) \\
(\nu g_0, p_0, g_1, p_1)(C|D|S_0|S_1)
\]

2. Prove that \(P \equiv 0 \) iff \(P \) can do no action.

3. Prove that \(T \approx 0 \) where \(T \overset{\text{def}}{=} \tau. T \).

4. Hence show that it is possible for a process that can deadlock to be observationally congruent to one that cannot deadlock.

8 Exercise (\(\pi \)-calculus): arithmetic

We can define a process \(N_n \) for representing the natural number \(n \) as follows:

\[
N_0(s, z) \overset{\text{def}}{=} z \\
N_{n+1}(s, z) \overset{\text{def}}{=} s.N_n(s, z)
\]

Thus \(N_n(s, z) \) outputs \(n \) times on \(s \) and then outputs on \(z \).

Our goal is define a process \(A(s_0, z_0, s_1, z_1, s, z) \) for adding numbers which has the property that

\[
(\nu s_0, z_0, s_1, z_1)(N_{n_0}(s_0, z_0) | N_{n_1}(s_1, z_1) | A(s_0, z_0, s_1, z_1, s, z)) \approx N_{n_0+n_1}(s, z)
\]

\((*) \)

- First define a processes \(C(s, z, s', z') \) for copying a number from \((s, z)\) to \((s', z')\) and prove that

\[
(\nu s, z)(N_n(s, z)|C(s, z, s', z')) \approx N_n(s', z')
\]

- Then define addition \(A(s_0, z_0, s_1, z_1, s, z) \) and prove \((*) \) above.