BISS 2015

Course on "Protection of Sensitive Information"

Theory Exam

March 21, 2015

The exam consists of three exercises. The candidate should solve in a satisfactory way (that is, show that s/he has understood the principles of the course) at least two of them. For this purpose, please comment your solution (in case the numerical answer is not correct, I will check that at at least the reasoning is sound). In order to solve the exercises, the slides of the course should be sufficient.

Exercise 1

Consider the following program, which checks whether the binary string $x_1x_2...x_5$ corresponds to a certain password $k_1k_2...k_5$.

```
input(x_1x_2\dots x_5); i=1; while (i\le n \text{ and } x_i==k_i) \text{ do } i=i+1; if i>n then output(success) else output(fail)
```

The input of the program (secrets) are the binary strings $x_1x_2...x_5$. We assume a uniform distribution on them.

- 1. What is the Shannon leakage of this program, assuming that the attacker can only observe the outputs are success and fail?
- 2. Same question, but now we assume that the attacker can also observe the execution time, namely that he can deduce how many times the operation i = i + 1 has been executed.
- 3. In the second scenario (in which the attacker can count how many times the operation i=i+1 has been executed), rewrite the program so to reduce the leakage to half or less, while keeping the program as efficient as possible. In other words, write a program that is semantically equivalent to the one above, leaks at most half of the one above, and has an average execution time as small as possible.

Exercise 2

Consider the following channel matrix:

	o_1	o_2	o_3	o_4
s_1	1/2	1/2	0	0
s_2	0	1/2	1/2	0
s_3	0	0	1/2	1/2

Assume that $p(s_1) = p(s_3) = \frac{1}{2}x$, and $p(s_2) = 1 - x$, with $0 \le x \le 1$. Let S and O be the random variables that represent the input and the output, respectively, of the channel.

- 1. Please express the prior min-entropy $H_{\infty}(S)$, the posterior min-entropy $H_{\infty}(S|O)$, and the leakage $I_{\infty}(S;O)$ as functions of x.
- 2. Please compute the min-capacity C_{∞} of the channel.

Exercise 3

Consider the geometric method for differential privacy defined in the slides of Lecture 4. Assuming a query that returns a integer answer, prove that the composition of the query with the geometric noise results into a mechanism that is ε -differentially private.