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Abstract. We formalize the definition and the metatheory of the Calculus of Con-
structions (CC) using the proof assistant Coq. In particular, we prove strong nor-
malization and decidability of type inference. From the latter proof, we extract a
certified Objective Caml program which performs type inference in CC and use this
code to build a small-scale certified proof-checker.
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1. Introduction
1.1. MoOTIVATIONS

This work can be described as the formal certification in Coq of a
proof-checker for the Calculus of Constructions (CC). We view it as
a first experimental step towards a certified kernel for the whole Coq
system, of which CC is a significative fragment. In decidable type theo-
ries, a proof-checker is a program which verifies whether a given judge-
ment (input) is valid or not (output). Valid meaning that there exists a
derivation for that judgement following the inference rules of the theo-
ry. When formulating the specification of that problem in the program
extraction paradigm of Coq, it reduces to the (constructive) proof of
the decidability for type-checking, which itself is the final consequence
of the main metatheoretic results: confluence, subject-reduction and
strong normalization.

Because of Godel’s incompleteness theorem, we cannot hope for a
strong normalization proof of the whole type theory underlying Coq.
Since our primary goal was to explore the feasibility of the software
certification process, we chose to leave the normalization result as an
axiom for a first try. Once this work had been suitably fulfilled, we
decided to go for a formal proof of strong normalization for the Calculus
of Constructions, which, to our knowledge, was a premiere. There are
therefore two aspects to the present work:

— A fully certified type-checker for CC.

— A complete formalization of the syntactic metatheory of CC; rough-
ly a formal checking of the results of Coquand’s Thesis [5].
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1.2. SOME PRELIMINARY COMMENTS

This paper intends to be a kind of informal abstract of a formalized and
mechanically checked piece of mathematics; here we try to point out
interesting points and difficulties. We might divide the formal objects
and results in three families:

— The objects and lemmas appearing in the extracted program, i.e.
mainly the data types for terms and judgements, some lifting oper-
ations on De Bruijn indices and the decidability of type inference.

— The basic metatheoretical results with no computational content
(confluence, subject reduction, etc).

— The strong normalization proof.

We believed, and turned out to be right, that Coq was extremely
well-suited for, at least, the two first points, since even their infor-
mal versions are essentially based on mathematical processes Coq is
well-equipped for: inductive definitions and proofs by structural recur-
sion. The strong normalization proof was more of a challenge, since it
is generally presented in a more set-theoretical setting, and no thought
had yet been given as how to go beyond Altenkirch’s formalized nor-
malization proof for system F' [1]. Actually, it was indeed necessary to
use extensively advanced features of Coq’s type theory in order to push
our normalization proof through.

In the whole paper, verbatim typesetting will be used for Coq-
formalized objects. All the definitions, lemmas and theorems are stated
together with their respective names in the formal development.

2. Terms of the Calculus of Constructions

In this section we define the syntax, f-reduction and some combinato-
rial properties on the raw terms. These definitions are straightforward
enough to be confident in the fact that they actually implement the
intended formalism.

2.1. SYNTAX OF EXPRESSIONS

We consider a A-calculus with dependent types. As it is now usual, we
use the same syntax for terms and types. The correspondence between
informal, mathematical and formal notations is described in figure 1.

Before defining the terms, we have to introduce the set of sorts. The
sorts are special predefined constants: they are the type of types. For
details see [2].

cogencoq.tex; 28/03/1997; 14:47; no v.; p.2
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informal ‘named variables‘ de Bruijn ‘ formal
Context r r e:env
List item [(n) = (z,1) I'(n)=1t (item t e n)
Item with lift [(n) = (z,1) 1T (n) = ¢ (item1lift t e n)
Sorts Prop, Kind Prop, Kind prop, kind
Variables T nif I'(n) = (z,T) (Ref n)
Abstraction Az:T.M NT.M (Abs T M)
Application (v v) (v v) (App u v)
Dependent product Mz:T.U nr.u (Prod T U)
Non-dependent product A— B A—B (Prod A (1lift (S 0) B))
Lift T T (liftrec n T k)
Substitution M[z\N] i F](\igki]\(fa]g,T) (substrec N M k)

Figure 1. Correspondence between various notations
DEFINITION 1 (type sort). The set of sorts of the Calculus of Con-
structions has two elements: Kind and Prop.

SoRT := Kind | Prop

DEFINITION 2 (type term). The syntactic class TERM is defined by
the following grammar:

TERM := s | n | ATI.TQ | (T1 TQ) | HTl.T2
where T7,T5 € TERM, s € SORT and n € N.

Let us simply recall that II7;.75 denotes the dependent function
type from T to T5.

Since we use de Bruijn notation for bindings, no variable names are
needed in the context. The latter are simply term lists.

DEFINITION 3 (type env). Contexts are term lists.

We note |I'| the length of the context I'. To denote the n-th element
of a context I' (the rightmost element has rank 0), we use the notation
I'(n), which implicitly assumes that n < |I'|.

2.2. REDUCTION RULES

In this calculus, we only consider the S-reduction. To define this reduc-
tion rule, we have to define substitution first. de Bruijn notation requires

cogencoq.tex; 28/03/1997; 14:47; no v.; p.3
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Lift Substitution
10s = s s[K\N] = s
t—1 ife>k
. t+n ifi>k .
Tht = { o i[E\N] = "N ifi=k
7 if i <p .
7 if ¢ <k
TRATt = AT 17,0 (AT )[E\N] = AT[E\N].t[k+ 1\N]
P(uv) = (IPu 170) (u 0)[F\N] = (u[R\N] o[F\N])
RaTU = npToap,, U (IIT.U)[E\N] = NT[E\N].U[k+ 1\N]

Figure 2. Definition of lift and substitution

defining another function on terms: the relocation of de Bruijn indices,
also called “lifting”.

2.2.1. Lift, substitution and (-reduction
DEFINITION 4 (1ift_rec, 1ift, subst_rec, subst). Given a term M
and integers n and k, we define |7 M (1ift_rec n M k) as the term
M where all the indexes greater that k are lifted by n. We write 1" M
for the lift of all variables (a shortcut for 1§ M).

MIE\N] (written (subst_rec N M k) in Coq) stands for the substi-
tution of the variable k& by the term N in M. The precise definitions
are given in figure 2.

So far, we defined the objects the program we want to verify will
deal with. From here on up to section 7, we will introduce notions and
results without any computational content, which means that they will
not appear in the extracted program.

DEFINITION 5 (predicate red1l). The one-step [-reduction, written
>3, is the smallest binary relation on terms closed by the inference
rules on figure 3.

DEFINITION 6 (predicates red, conv). f-reduction of arbitrary many
steps will be written >3- The notation for the 3-conversion will be ~g.

In a general way, for any relation R, we write R* its reflexive tran-
sitive closure and RT its transitive closure.

2.2.2. Algebraic properties of 1ift and subst

The following are basic properties of the lifting and substitution oper-
ations. They have already been proved by Huet [13] for the pure A-
calculus and the proofs translate easily to annotated terms.

cogencoq.tex; 28/03/1997; 14:47; no v.; p.4
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BETA
( ) (AT.M N) > M[O\N]
M [>g M’ M>g M’
(ABs-L) ———————— (ABS-R) ————
AM.N >3 AM'.N AN.M [>5 AN.M’
My D>g N My > g N;
(APP-L) el (APP-R) 2o
(My M) D> (N1 M2) (My Mz) B> (M1 N2)
My > N1 My g N3
(Prop-L) (ProD-R)
T1IMy .My > g 1INy .M T1IMy .My > 5 TIM7.No
Figure 8. The f-reduction relation
LEMMA 7.
lift_recO: T?CM =M
simpl lift rec : M) =12 "Mifk<i<k+n
permute 1ift_rec : Tf(TZM) = n+k (TfM) ifi <k
simpl_subst._rec: (TZ+1 M)PAN]=12Mifk<p<n+k

commut 1ift subst rec: 17 (M[p\N])= (17 M)[n + p\N]if k <p
distrliftsubstrec: 17, (M[p\N]) = (Tg+k+1 M)[p\ 17 N]
distr_subst.rec: (M[pP\N]D)[p+ n\P] = (M[p+ n + 1\P]))[p\N[r\P])]

Remark 8. The last lemma seems easier to read with named vari-
ables notations:

MI[z\N]y\P] = My\P][z\N[y\P]]if « #y A z not free in P

But this apparent simplicity is misleading; the side condition on vari-
able names make it much more difficult to use than expected.

2.3. STRONGLY NORMALIZING TERMS

A term is strongly normalizing if and only if there is no infinite reduction
path starting from it. The following definition is well-known since [14]
and expresses that, for a relation R, there is no infinite decreasing
sequence starting from ¢:

DEFINITION 9 (predicate Acc) . The set Accp is the smallest set ver-

ifying:
Vi. (Vu. u Rt = u € Accr) = t € Accp.

cogencoq.tex; 28/03/1997; 14:47; no v.; p.5
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X
N R2
N

Figure 4. Predicate commut R1 R2 = (R2; R1 C R1; R2)

DEFINITION 10 (predicate sn). The set SA of strongly normalizing
terms is defined as Acc 1.
5

Note that this is actually equivalent to Altenkirch’s inductive formula-
tion [1].

The following definition of normal terms seems to be the simplest
and emphasizes that they are a particular case of strongly normalizing
terms.

DEFINITION 11 (predicate normal). A term ¢ is said to be normal if
and only if it admits no reduct:

Vu. t>pgu= L.
The property for two relations to commute will mainly be used in
the confluence proof, but is already useful here:
V(z,y,2). 2 Roy AN yRia=3y. (z Riy Ny Ry )
The direct subterm relation Cg; is defined straightforwardly. It can
be postponed with respect to -reduction:

LEMMA 12 (commut_redl_subterm). The relations Cs and the sym-
metric of @-reduction commute.

Which allows to prove:

LEMMA 13 (subterm_sn). The subterm B of a strongly normalizing
term A s strongly normalizing:

AcSN AN BCy A= BeSN

cogencoq.tex; 28/03/1997; 14:47; no v.; p.6
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Ml>//M' Nl>//N'

B ?
BETY) 57N >y M/[0\N']
(SrT) T s (REF) n By
M >y M’ Ty T M >y M’ N[y N’
(ABs) / / (AFP) / /

AT.M >y AT .M’ (M N) D>y (M’ N")
M Dy M’ N By N/

(ProD)
IIM.N >y TIM’.N'

Figure 5. The parallel -reduction relation

2.4. CHURCH-ROSSER AND CONFLUENCE

It is essential that [-reduction verifies the Church-Rosser property,
since it is necessary to several key-results: type uniqueness, subject-
reduction and decidability of typing. We use a very traditional tech-
nique, first proving confluence by the Tait—Martin-L&f method. One
defines parallel 3-reduction which is a strongly confluent relation whose
reflexive transitive closure is equivalent to §-reduction.

The formalization is surprinsingly close to the usual informal proof.

DEFINITION 14 (predicate par_red1). The parallel 5-reduction, writ-
ten py, is defined as the smallest relation on terms closed by the rules
in figure 5.

We define the strong confluence property, expressed in terms of com-
mutation, but it expands to the usual definition.

DEFINITION 15 (predicate str_confluent). A relation R is strongly
confluent if and only if R commutes with its symmetric:

R™YRCR;R™ L.

LEMMA 16 (str_confluence par_redl). The parallel 3-reduction is
strongly confluent.

LEMMA 17 (confluence red). The -reduction relation is confluent,
i.e. its reflexive transitive closure is strongly confluent.

As we said in the beginning of this section, we can prove that the
Church-Rosser property holds, by an easy induction.

cogencoq.tex; 28/03/1997; 14:47; no v.; p.7



8 B. Barras and B. Werner

re=T:
WE-() 7 (WF-wam) “2(s € Son)
(ProP) S N (Var) k- ") =T
I' + Prop : Kind I'tn:T

'ET: s sre-M:U T HU: s

(ABs)
'EXTM: TIT.U

(51,52 € SORT)

'Fov:V I'w: IIV.T
't (uwv): T[0\v]

(APP)

I'ET: s T HU: s
L' (IIT.U) : s
r'eM:U 'tV:s UrpgV
'eM:V

(ProD)

(51,52 € SORT)

(Conv)

(s € SORT)

Figure 6. Typing Rules for the Calculus of Constructions

THEOREM 18 (church_rosser). The 3-reduction satisfies the Church-
Rosser property:

Vu,v € TERM. umg v =3t € TERM. (u>jt A vjt).

Remark 19. We proved a non computational version of Church-Rosser.
A computational proof would be much more difficult, because it pre-
cludes reasoning by induction on the hypothesis u =g v, which is not
computational. Such a proof would give an algorithm computing a com-
mon reduct of two convertible terms. This will be made possible in
section 7.1.

COROLLARY 20 (inv_conv_prod_{1, r}). The uniqueness of product
formation property holds, i.e. if two products are convertible, their left
(resp. right) subterms are convertible:

=

A=
HA.C =5 IIB.D = { Cxp D
3. The Rules
3.1. DEFINITION
As usual, derivability is defined as an inductive predicate; each inference

rule being read as a clause. We chose to define two kinds of judgements
by mutual induction:

cogencoq.tex; 28/03/1997; 14:47; no v.; p.8
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— I' - to express that the context I' is well-formed
— I'Ft: T to express that the term ¢ is of type 7" in I'.

DEFINITION 21 (predicates wf, typ). We define the two sets of deriv-
able judgements as the smallest sets respectively closed by the inference
rules of figure 6.

Note that it would not be necessary to require that T is well-typed
in the formation rules of the product and the A-abstraction. This way
we stick to the usual PTS formulation.

Loosening the conversion rule in a similar way (requiring U >5 V
instead of U convertible with a well-formed type V') is more problematic
with respect to subject reduction; see [18].

3.2. INVERSION LEMMAS

The context of any derivable judgement is well-formed. In other words:
LEMMA 22 (typwf). The rule

'EM:T
Ik

1s admissible.

LEMMA 23 (wf_sort). The terms of a well-formed environment are
well-typed:
ITyAF=dseSort. I'ET: s

Both proofs go easily by induction over the structure of the derivation.

The inversion lemmas state that the derivation and the typed term
have the same shape. One consequence is that every subterm of a well-
typed term is well-typed. But the main point is that we can use recur-
sion on a term instead of an induction on a logical hypothesis. That
way, we are able to perform computational proofs.

THEOREM 24 (inv_typ_{kind, prop, ref, abs, app, prod}).

F'FKind: T = L
I'=Prop: T = T =~z Kind
I'kn:T = T="M(n)
T'HA: s
AV M: T
AR T : s
%ﬁ ITA.T

P'FAAM: U = dT € TeErM. ds1, 82 € SORT.

cogencoq.tex; 28/03/1997; 14:47; no v.; p.9
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I'twu: V.U,
I't(uwv): T = 3V,U, € TERM. {F"U:V

T ~g U, [0\v]

T'ET: s
I'FIluw: T = ds1,s82 € SORT. {F;TI—U: S

T%ﬁSQ

COROLLARY 25 (inv_typ_conv_kind). No term convertible with Kind
is well-typed
t~g Kind = VI. ~(I'F¢: 7).

4. Basic Metatheory

This section is devoted to the usual elementary properties of the type
system. All these results are of combinatorial nature and are the de
Bruijn counterparts of what can be found in, say, [9, 2] and others. In
some cases, the order of the lemmas might be changed, due to slight
differences in the formulation of the typing rules.

4.1. THINNING LEMMA

This lemma (often also called “weakening”) simply states that typing
for a term is preserved if new assumptions (i.e. variables) are added to
the environment. The exact formulation is slightly more complex in its
de Bruijn version, since inserting new assumptions induces some lifting
operations.

DEFINITION 26 (predicate ins_in_env). We first extend the defini-
tion of lifting to contexts by the two inductive clauses:

[+ =11
(A7) = ATy T

The predicate stating that (I';7; A1) is obtained by inserting T in
(I'; A) is then defined as a Prolog-style inductive predicate by the
clause:

(ins_in_env T |A| (T; A) (I 75 AT))
LEMMA 27 (thinning) . The following rule is admissible:

'kt T ;AR
AR T

cogencoq.tex; 28/03/1997; 14:47; no v.; p.10
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Proor In two steps; one first shows a stronger version, not assum-
ing anymore that A is the last assumption of the context (induction
loading):
ARt T I A AT
A-AT 1 1
;A A I—T|A|t .T|A|T

This is done by induction over the first hypothesis I' - ¢ : T". The case of
application is treated using the algebraic property distr_1ift _subst.
The result follows by taking A = []. ]

4.2. SUBSTITUTION LEMMA

Typing is preserved by (well-typed) substitution. Again, we first have
to extend the definition of substitution to contexts, taking care of real-
location of de Bruijn indexes.

DEFINITION 28 (sub_in_env) . Informally, substitution in an envi-
ronment is described by the two following rules:

[ = 1]
(AT = Al TTAN]

The formal definition is given by the following clause:

(sub_in_env M T |A| (I; T A) (I'; A[M]))
THEOREM 29 (substitution). The rule:

iTkFu: U P'Fd: T
I' F w[0\d] : U[0\d]

1s admissible.

Proor Similar to the proof of the thinning lemma. The first thing to
do is show that:

T AkFu: U 'kd: T I'; (Ald]) F
I3 (Ald]) B u[|ANd] = U[JA[\d]

Here again, we apply this result with A = []. [

4.3. TYPE UNIQUENESS RESULTS

An easy consequence of the inversion lemmas is that a term has at most
one type, up to #B-conversion:

cogencoq.tex; 28/03/1997; 14:47; no v.; p.11
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THEOREM 30 (typ-unique).

'kt T

FH:U};‘TWU

THEOREM 31 (type_case). Every inhabited type is either Kind or a
well-formed term itself:

I'Ft:T=(3dseSort. ' FT: s) V(T = Kind)

Proor

By induction on the derivation of I' - ¢ : T". The only non-trivial case
is that of application in which case one applies the induction hypothesis
to the left subterm: either its type is of type a sort and the substitution
lemma allows to conclude, or its type is Kind, which is absurd since it
is not convertible to a product. [ |

4.4, SUBJECT REDUCTION

For induction loading it is necessary to also state subject reduction for
the context.

DEFINITION 32 (redi_in_env). We define f-reduction as the small-
est relation over context verifying:

t>pu I'>pIY
Fitopgsu Iitep It

THEOREM 33 (subject_reduction). The rule

T'rFe: T tDEu
I'tu:T

1s admissible.

Proor
'ket: T I'ppgIY I+
We first prove: T . [ |

COROLLARY 34 (typ-conv_conv). Two well-typed 3-convertible terms
have the same types:

u%g?}
F'ru:U ;=U~rgV
T'Fo: V

cogencoq.tex; 28/03/1997; 14:47; no v.; p.12
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5. Type approximations

This section prove results needed in the normalization proof. We intro-
duce a classification of terms which is an approximation of its type.
After defining a function that computes this approximation, we prove
stability results, and then soundness with respect to typing.

5.1. DEFINITION OF CLASSES

The type_case lemma states that any inhabited type is either typed
by a sort, or Kind itself. A well-known consequence is that one can
distinguish 3 levels of terms:

— those of type Kind: they make up the level of kinds,
— those whose type has type Kind: they form the level of predicates,
— those whose type has type Prop: they constitute the level of terms.

This corresponds to the alternative way of defining the terms of the
Calculus of Constructions, introducing 3 syntactic classes:

K := Prop | IT.K | 1LK;.K,
T =i € N|UTW.Ty | ILK.T | ATLTy | (T 1) | AK.T | (Ty T3)
ti= i €N N (1 ta) | AK.L| (¢ T)

We can see that kinds are functions types, and if we forget dependent
types (i.e. erase the leaf 7" in nodes of the form II7.K'), kinds are simply
binary trees, called kind skeleton. This kind skeleton is a representation
of the arity of this kind, which is the significative part of kinds and
predicates.

DEFINITION 35 (type skel). Kind skeletons are isomorphic to binary
trees:

SKEL := % | (51 — S2)

DEFINITION 36 (types class, cls). The set of classes has 3 levels:
kind, predicate and term; the first two being annotated by a skeleton:

Crass := (Knd ) | (Typ ) | Trm
where 5 is a skeleton.

We also consider lists of classes, the counterpart of contexts. They
will generally be noted Y.

cogencoq.tex; 28/03/1997; 14:47; no v.; p.13
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The kind skeleton annotating the predicate classes is intended to be
the skeleton of the type of this predicate (which is a kind).

DEFINITION 37 (cv_skel, typ_skel). We define projections from class-
es to skeletons:

1, _ [ Sife=(Knd S5)
Knd™(e) = { % otherwise
(o) = { Sife=(Typ 5)

Typ "~ | % otherwise

DEFINITION 38 (cl_term, class_env). Given the classes of free vari-
ables (X)), the class of a term is computed according to the following
rules:

Cle(s) = (Knd %)

IR

Clg(AA.M) = match (Clg(A), Clg,cn, 4y (M)) with
| (- , (Knd _)) — (Knd %)
| ((Knd 51), (Typ 52)) — (Typ (51— 52))
C e e

Cle((u v)) = match (Clg(u), Clg(v)) with
| ((Knd ) ) -) — (Knd %)
| ((Typ (51 — 52)) (Typ -)) = (Typ 52)
| (c ) -) — C

Clg(IIT.U) = match (Clg(T), Clg;cy, () (U)) with
| ((Knd Sl), (Knd 52)) d (Knd ( 1 — 52))

| (- , €) =
This definition extends straightforwardly to contexts:

ci(l =1
CUT;T) = (CLT); Clp(T))

We note Clp(T) for Cleyry(T).

5.2. LOOSE STABILITY RESULTS

We prove stability of class by lifting, substitution, reduction, and sound-
ness w.r.t. typing. In this section, these results are stated for level and

cogencoq.tex; 28/03/1997; 14:47; no v.; p.14
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kind skeleton; they are necessary to prove similar lemmas for the pred-
icate skeleton in section 5.3.

We define the loose equality on classes that consists in neglecting the
predicate skeletons:

DEFINITION 39 (predicate loose_eqc). The loose equality is defined
as follows:

(Knd 5) ~ (Knd 5) (Typ S1) ~ (Typ 52) Trm ~ Trm
LEMMA 40 (loose_eqc_stable).
Yo Y = Clg(T) ~ Clg(T)

DEFINITION 41 (predicate adj_cls). The loose order on classes only
considers class level:

(Typ S1) C (Knd S7) Trm  (Typ 5)
LEMMA 42 (cl_term_subst). The class is stable by substitution:
ClZ(N) Cc= ClE;c;E’(M) ~ 01272/(M[|E/|\N])

LEMMA 43 (class_{knd, typ, trm}). For every derivable judgement I' -
M: T,

T = Kind = Clp(M) = (Knd Knd™*(Clp(M)))
I'FT: Kind = Clp(M) = (Typ Typ~!(Clp(M)))
I'=T: Prop = Clp(M) = Trm

Each lemma uses the previous one.

COROLLARY 44 (cl_term_sound) . The loose class order is sound w.r.1.
the typing rules:

I'kt:T A F"T:](iClr(t)EClr(T)

5.3. STRICT STABILITY RESULTS

We now consider a more precise order on classes, taking into account
the following facts:

— the skeletons of a predicate and his type are the same,

cogencoq.tex; 28/03/1997; 14:47; no v.; p.15
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— the types of elements of level Trm are predicates of skeleton ¥,
since their type is Prop.

DEFINITION 45 (predicate typ_cls). The strict class order:
(Typ §): (Knd §)  Trm : (Typ %)
LEMMA 46 (class_subst). Stability of class by substitution.
Clg(N) : ¢ = Clyge (M) = Clge (M[|Z\N])

THEOREM 47 (class_sound) . The strict class order is sound w.r.t.
the typing rules:

IFM:T ATHT: K= Clp(M): Clp(T)

6. Strong normalization proof

The normalization proof certainly is the part of the work which was the
most difficult to adapt to type-theory. Let us recall the three essential
steps of a reducibility proof:

— for any type T', one defines a set of terms [T'] interpreting it.
— one verifies that [T] C SN.

— Normalization then follows from the soundness of the interpreta-
tion: ¢t : T =t € [T].

Altenkirch [1] has shown the normalization property for system F in
Lego. From there, encoding a proof for the Calculus of Constructions
presented two difficulties.

The first is to deal with dependent types, i.e. many redexes may
actually occur inside types. This was not too painful to take care of: it
is well-known that, in Calculus of Constructions, one might forget the
dependency of types w.r.t. terms and obtain well-formed judgements
in F,. A consequence is that [T] might not depend of the terms; from
this point of view, our work is similar to [8].

The second problem is the possibility to define, for instance, func-
tions from types to types. Such objects have to be interpreted by map-
pings associating sets of terms to sets of terms. In other words, the type
of the interpretation of T' depends, in a very strong way, of the class of
T. This is the main reason for the next paragraph.
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In some cases, proofs were also a little more tedious that in set
theory, since the intuitive proof makes intensive use of partial functions.

6.1. CANDIDATES
We introduce the type of the interpretations of predicates.

6.1.1. Reducibility schemes
DEFINITION 48 (type Can). We define a function associating a type
to every skeleton by structural recursion:

def

D

Cx

P(TERM)

o
D

f

C(Sl—>52) CSl - CS2

(P denotes the powerset operator)
We consider an extensional equality on these schemes:

DEFINITION 49 (predicates eq_cand, eq_can). For any skeleton S we

define a binary predicate 2 over Cs by structural recursion:

def

g

R-No
(51;52) o

Vi.te Ci & tely

f VXl,XQ. XléXl/\XQéXz/\XléXz

= Cl(Xl) 22 CQ(XQ)

IIE:

Ch

This “equality” is only a partial equivalence relation and is not
reflexive (next lemma). The schemes belonging to the domain of 2

(i.e. schemes C' such that C 2 C') will be called invariant. In what
follows we will be only interested by invariant schemes.

LEMMA 50 (eq_can_sym, eq_can_trans). Fzrtentional equality is tran-
sitive and symmetric over the sets of invariant schemes.

6.1.2. Higher order reducibility candidates
We can now define the notion of reducibility candidate, generalizing
it to higher-order schemes. On Cy, we use Girard’s original definition
of candidates [11] like in [1]; alternative definitions like saturated sets
would probably also work.

Following Girard, a term is said to be neutralif it is not an abstrac-
tion. We write this set A/.
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18 B. Barras and B. Werner

DEFINITION 51 (predicates is_cand, is_can). For every skeleton S§
we define the set CRg of candidates of order S by structural recur-
sion:

— a scheme X of order % (i.e. a set of terms) is a candidate, if and
only if it verifies the three following closure conditions:

X CcSN
teX Nippu=sueclX
teN AN (Vutppu=ueX)=>teX

— a scheme of order (57 — 53) is a candidate if and only if it maps
invariant candidates (of order S1) to candidates (of order S3).

We write ZC'Rg for the set of invariant elements of C'Rg.
The elements of CR4 are Girard’s reducibility candidates. The fol-
lowing results are usual and easy:

LEMMA 52 (var_in_cand,clos_red_star, cand_sat). ForanyC € CRy,
any variable n and terms t,t',u, v:

n el
teCatppt =t el
t0\u] € C Au,v € SN = (M.t u) el

6.1.3. Canonical candidates
For every skeleton we define a canonical candidate.

DEFINITION 53 (default_can). By recursion:

o
D
ey

SN

Acg, X. Cg,

Cy

o
D
ey

d
C(Sl —>52)

LEMMA 54 (def_inv, def_can_cr). The canonical candidate is actu-
ally an invariant higher order candidate:

Cd e ICRs

6.1.4. Product of candidates

A function type A — B is generally interpreted as the set of terms
mapping elements of the interpretation of A to the interpretation of B.
The following generalizes this to higher-order schemes.
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DEFINITION 55 (Pi). Let C' be a scheme of order % and F a scheme
of order (S — % ). Their product is a scheme of order % defined by:

Hs(C,F) = {t € TERM | Yu € C. VICRSX- (t u) S F(X)}
LEMMA 56 (eq_can_Pi, is_can Pi). The product formation preserves
extentional equality and the notion of higher-order candidate.

GEO A R EZY R o (0L ) E (O, )

CelCRe N F € CR(S_>*) = lg(C,F)€CRy

To show the soundness of the interpretation w.r.t. the A-abstraction
we will later need the following result:

LEMMA 57 (Abs_sound) .

TeSN

O €CRy

FECR(S_M,)

YN e C. VICRSX- M[O\N] € F(X)

= AT.M € TI5(C, F)

6.2. INTERPRETATION OF TERMS AND TYPES

This is the key of the proof. We build an interpretation where terms
(occurring left in judgements) are interpreted by terms, via a parallel
substitution, and types (occurring right in judgements) by an invariant
candidate.

As usual, we have to give ourselves the interpretation of free vari-
ables. Since there are two levels of variables, our interpretation has two
components: a term part, and a type part.

DEFINITION 58 (type intt). The term part of an interpretation is a
function from positive integers to terms. The common notation is ®.

DEFINITION 59 (int_term). The interpretation of a term ¢ in @, not-
ed t[®], is the parallel substitution of any free de Bruijn indice 7 by ®(¢).

For the predicate level, a smooth way is to use a X-type.

DEFINITION 60 (types Int_K, IntP, a.0.). The interpretation of a vari-
able is either a dependent pair (5,C) where C' € Cg, or O. We also
consider lists of variable interpretations. Given such a list Z, we define
CI(Z) by applying the following mapping to Z:

(5,C) — (Knd 9)

0~ (Typ %)

We write Clz(T') for Clgy)(T). The notions of invariance and exten-
tional equality straightforwardly extend to interpretations.
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20 B. Barras and B. Werner

The interpretation (5, C') is intended for predicate variables of skele-
ton S, and O is intended to interpret term variables.

The idea is that to interpret a term variable, we only need a term
(®(n)), whereas a predicate variable has to be interpreted both by a
scheme and a term (the latter to take care of type-redexes).

DEFINITION 61 (int_typ). Let 7" a term. Given Z and a skeleton 5,
one defines the type interpretation [1]3 by:

[s]7 = C§
[2]7 = Cif Z(n) = (5,C)
[MA.M]Z = match (Clz(A), S) with
| ((Knd 2), (81— $2)) = AC. [M], o
| ((Typ -), -) — [M]3g
[(u©)]7 = match Clz(v) with
| (Typ Su) = Tl (1015
| Trm = [u]?
[MT.U]¥ = match Clz(T) with
| (Knd S7) w— s, ([T]F.AC. [UTF 5, o)
| - — e ([T17, A~ [UIF0)
[T]7 = C2 otherwise

A few remarks: first, this definition is relevant only when T is a
well-formed predicate or kind in a context I' and S = Typ~*(Clp(T)).
It is also interesting to note how the different levels interact. Suppose

that ' 7T : K and I' F K : Kind. Then, assuming 7 and ¢ verify some
well-chosen conditions to be defined below, we will have:

— The type interpretation of T is a candidate of order K.

— The term interpretation of T is in the type interpretation of K
(which is a set of terms).

— Furthermore, if K = Prop, then for any t of type T we also have
@] € [T];-

As usual, this definition calls for some stability results.

LEMMA 62 (int_equiv_int_typ). The interpretations of a given type
in two equivalent interpretations are extentionaly equal:

127 =1l 2171,

As a consequence, [T is invariant.
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LEMMA 63 (int_typ_cr). If all variables are interpreted by an invari-
ant candidate, then the interpretation of any type is an invariant can-

didate.
(Vn. Z(n) = (9,C) = C € ICRs) = [1I']r € CRs
LEMMA 64 (1ift_int_typ). Interpretation is stable by lifting:

. o s
(Z; 1) = (L; 1) = [Tz = Uipy Tlzir

The next lemma is usually essential in reducibility proofs. It is inter-
esting to remark that the two results below where, by far, the most
tedious of the whole development!.

LEMMA 65 (subst_int_typ). Type interpretation is stable (extention-
aly) by substitution, provided the substituted variable is correctly inter-
preted.

We define the correct possible interpretations inductively:

Clz(M) = (Typ 9) Clz(M) = Trm
<57 [[M]]§> € AVIno 0 € AV
The following holds:

r-7:K
Clp(T) # Trm 1
. . . T Clp (T
(LD 2 (6T 1 = T Er Oz \ollze
= ;43
1 € AVI(UJ)

The next lemma is of course needed for soundness w.r.t. the conver-
sion rule.

LEMMA 66 (conv_int_typ) . Type interpretation is (extentionaly) sta-
ble by B-conversion.

=3 V

Clr(U) # Trm
r-v: K Typ~ (Clp (U

R e Gl S

=7

CI(T) = CI(T)

! This is mainly due to the fact that the interpretation is thought of as a partial
function and formally defined as a total function. In lots of cases one has to check
many conditions in order to determine whether one actually is inside the “interesting
domain” or not. In general, it appears that it is very important to chose carefully
the values of such functions outside this intended domain (phony values) in order
to keep the properties to prove as uniform as possible; this choice can make huge
differences in the size of the formal statements and proofs.
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6.3. ADAPTED INTERPRETATIONS

To state the soundness result, we have to restrict quantification to
interpretations adapted to the context.

DEFINITION 67 (int_adapt). An interpretation is adapted to I' if it
verifies the 3 following conditions:

CL(Z) = CL(T)
(7,8) € AZp & ] Vn. Z(n) = (5,C) = C € TCRs
Vo, @(n) € [N(m)]E, |

ey

We can now state and prove the main result:

THEOREM 68 (int_sound) . For every derivable judgement I' F¢: T,
the interpretation of t in an interpretation adapted to I' belongs to the
interpretation of its type T':

TrHi:T A (1,8)€ Alr = 1[®] € [T]*

6.4. THE DEFAULT INTERPRETATION
For every well-formed context we produce an adapted interpretation.

DEFINITION 69 (def_intt, def_intp). The term part of the default
interpretation of any variable is itself, and predicate variables are inter-
preted by the adapted default candidate:

od = \n.n

i = (]

o (7 (5,C4)) i CIn(T) = (Knd )

BT (Zg; O) otherwise

LEMMA 70 (id_int_term). The term part of the default interpreta-

tion is the identity:
f{®d] =t

LEMMA 71 (def_adapt) . The default interpretation is adapted to any
well-formed context.

I'F= (78, 08) € AZp
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6.5. MAIN THEOREM

We put everything together to get the strong normalization theorem:

THEOREM 72 (str.norm, type_sn). All the well-typed terms and inhab-
ited types are strongly normalizing:

F'Ft: T=1teSN AN TeSN

7. Checking the programs

We here deal with computational results, i.e. the correctness proofs
of the extracted and certified routines. The main point is to prove
decidability of type-checking.

We point to [16, 17] for more precise references about program
extraction and certification in Coq. Let us just recall that in Coq one
distinguishes between computational and non-computational types. The
latter play the role of logical assertions and are erased in the process
of program extraction.

For example, the good way to specify a type-checking function is
the following formulation of decidability?:

(e:env) (t,T:term){(typ e t TDI+{"(typ e t T)}

The extracted program will take three arguments corresponding to a
judgement and return the boolean true (corresponding to the left case
of disjunction) if the judgement is derivable and false if not. Since
typ is non-computational, the actual derivation will not be built.

The algorithm of the extracted program depends of the structure of
the proof of the specification. Using the Program tactic [15] it is possible
to use a given program to guide the proof, thus enabling easier control
over the obtained algorithm. This feature appeared to be extremely
comfortable and well-adapted to the present development.

7.1. CONVERSION ALGORITHMS

It is quite clear and well-known that type-checking a calculus with
dependent types requires a conversion check. Of course, this function
will be restricted to normalizing terms.

2 Note that if we were only interested in the correctness, and not completeness, of

the implementation, we could use the weaker specification: (e:env) (t,T: term) { (typ
e t T)}+{True}.
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The idea is to perform normalization and then check whether the
two normal forms are equal. The recursive calls of a normalization
algorithm, fed with a term w, take place either on a strict subterm of
u, or on a reduct of u. In other words, termination of the algorithm
depends of the well-foundedness of the following relation:

DEFINITION 73 (predicates ord norml, ord_norm). We define the rela-
tion < by:

def
r<y =(rCsy)V(yp>pa)
We call its transitive closure the normalization order, written <7.

We formulate the termination result re-using definition 9:

THEOREM 74 (wf_ordnorm). The normalization order <% is well
founded for strongly normalizing terms:

SN C Accsy.

Proor We have already proven Cg and Dgl commute. Since both
are well-founded, this is sufficient for their union to be well-founded
(lemma Acc_union of the Coq theory RELATIONS/WELLFOUNDED). ®

LEMMA 75 (program compute. nf). Every strongly normalizing term
has a normal form.

Proor We used a simple call-by-value strategy. The previous lemma
ensures termination (ncetherian recursion over the term to normalize).
The only, non-computational results which then have to be proven are
quite straightforward:

— The recursive calls follow the normalization order.

— The result of the function is a reduct of the argument and is normal.
For instance ITA.B is normal if A and B are.

COROLLARY 76 (program is_conv). The conversion relation ~g is
decidable on strongly normalizing terms.

7.2. AUXILIARY FUNCTIONS

The following function is used when one has to check that a term is a
well-formed type (i.e. is of type a sort).
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LEMMA 77 (program red_to_sort). Given any strongly normalizing
term T, we can decide whether it is convertible to a sort. If it is, the
function returns the sort.

ProoFr We check whether the normal form of T is a sort. [ ]

To treat the application rule, one has to check whether a type can
be converted to a function type.

LEMMA 78 (program red_to_prod). Given a strongly normalizing term
T, we can decide whether there exist two terms A and B such that
T >3 LA.B. If they exist, the function also returns A and B.

Proor We check whether the normal form of T is a product. [ |

Note that these two programs could be improved a lot; for instance,
reducing 7T to its weak head normal form would have been sufficient.

7.3. DECIDABILITY OF TYPE INFERENCE AND TYPE CHECKING

The main theorem we prove here is the decidability of type-checking.
But type-inference is necessary to type-checking, because of the case of
application.

We first prove these properties assuming that the context is valid,
for efficiency reasons: if we naively follow the inference rules, we will
check the validity of the whole context at every leaf of the term. If
we assume that the context is valid, we only check validity when the
context grows. The gain in complexity is exponential.

THEOREM 79 (program infer). Type inference in a valid context is
decidable.

Proor The algorithm is based on a recursion over the term to check,
which ensures efficiency, except when the conversion rule is often used.

As an example, we only detail the case of the product: to infer
the type of IIA.B, one first infers the type of A and check it to be
convertible to a sort. The same is applied to B, but we remember
which sort s was convertible with the type of B (red_to_sort yields
the sort). The type of IlA.B is therefore s. Returning the type of B
would be wrong, for it is the type of B in the context (I'; A), and it
may be ill-typed in T'. [ |

LEMMA 80 (program check_typ). Type-checking in a valid context is
decidable.

LEMMA 81 (program add_typ). For all well-formed context ' and for
all term T, the validity of I'; T s decidable.
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THEOREM 82 (programs decide wf,decide_typ). The context valid-
ity and type-checking judgements are decidable in the Calculus of Con-
structions.

Proor We prove the decidability of context validity by induction
on the context to check. The inductive case is solved by the pro-
gram add_typ. The second result is a combination of check_typ and
decide wf. ]

8. Program extraction

Once the essential algorithms were certified, the obvious next step was
to use and test them. We therefore implemented a small proof-checker,
christened Coc, built around the extracted code. The following might be
considered as a small-scale model of a user manual for this small-scale
proof-checker, annotated with technical details on the implementation.

8.1. BUILDING A STAND-ALONE PROOF-CHECKER

The idea of the proof-checker is to consider a machine whose state is a
set of assumptions, initially empty. This list of assumptions is stored in
the global variable glob_axioms, and we keep the corresponding print
names in glob names. The invariant of the state is the following:

— glob_axioms is a well-formed context,
— glob_axioms and glob_names have the same length,

— all the elements of glob_names are different.

One can enter commands to add an axiom, infer the type of a term,
or check a typing judgement in this context. The syntax and description
of these commands is the following (terms grammar described figure 7):

Axiom ident:term. adds an axiom in the current context. term is
checked to be a well-formed type and the print name (ident) to
be fresh.

Infer term. infers and displays the type of term or answers “mal
type” if the term is ill-typed.

Check termy:termso. checks whether terms is a type of termq, and
prints “Correct”, or “Echec” if the judgement doesn’t hold.
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term := sort S
| ident x
| [ ident-list : term 1 term ATty .ty
| C term-list ) (t1...t)
| let ident : term := term in term  (Az:ti.ds t)
| C ident-list : term ) term 7t .2
| term -> term t — 1y
sort := Kind Kind
| Prop Prop
Priorities :

e -> is right associative
e -> has a higher priority than [ 1 and ( )

Figure 7. Coc terms grammar

Note that the programs add typ, infer, and check_typ of the pre-
vious section fit exactly this description. We didn’t use the general
decidability results, since in our implementation, we build the context
incrementally, and we check its validity step by step.

The user interface consists mainly of a parser and a pretty-printer.
The commands have several representations, from the most concrete to
the most abstract:

1. concrete syntax (string),
2. abstract syntax tree (named variable term),
3. term in de Bruijn notation.

The user interacts with the former, but we formally checked results
only on the latter. The translation between 1 and 2 is probably very
difficult to formalize and certainly outside the scope of this work. The
second translation between 2 and 3 certainly seems feasible and inter-
esting to formalize.

8.2. A COMPLETE EXAMPLE IN Coc
We can consider Coc as a proof-checker with a very low level mathe-
matical language which precludes using it as a proof assistant.

In [3], Boyer and Dowek explain how a complex proof assistant may
be reliable when only a small part of it is certified. One layer is in
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charge of providing proof-terms, incorporating user-friendly facilities
such as subgoal-directed proof search, powerful decision procedures,
etc. A second layer (the kernel), reads the proof-term produced by the
first layer and answers whether the proof is correct or not. Certifying
the kernel ensures the consistency of the whole system.

In order to test Coc, we applied this procedure to an example: New-
man’s lemma.

Statement of Newman’s lemma: if R is a locally confluent and a
neetherian relation, then R is confluent.

We used the formalization of this lemma in the Calculus of Con-
structions by Huet [12]. In the Coq contributions, the proof appears
in the form of tactics. We compiled it in Coq and pretty-printed the
resulting A-terms.

In practice, we had to perform some proof encodings, for Coc doesn’t
provide constant definition, or the possibility of proving intermediary
lemmas. Fully expanding all the constants would obviously lead to a
gigantic term. We preferred using two axioms instead; the following
Coq definition:

Definition x: T := t.
would be written in Coc:

Axiom x: T.
Axiom unfold_x: (P:T->Prop) (P t)->(P x).

Intermediary lemmas can easily be encoded by a (-redex, thanks to
the let in syntax.

The resulting proof was then given to Coc, which validated it. It
is interesting to notice that the extracted code showed up to be sur-
prisingly efficient, faster than the “real” Coq by a factor of 4 (without
taking into account Coq’s notoriously slow parsing).

This could be improved still further by integrating more carefully
this kernel inside a real system, without using the concrete syntax to
transfer proof-terms.

9. Conclusion

We view this work as a positive experience. As expected, the way to
formalize the definitions was quite straightforward which gives a good
confidence about what was actually implemented. Most of the mathe-
matical developments were quite natural and the degree of detail was
good: almost all formal results are worth to be informally stated. Note
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this last claim has to be a little refrained concerning the very first
results, but this is probably a subjective impression, since the basic
results have, with time, become extremely familiar.

The methodology extracting functional programs from proofs is obvi-
ously quite well-suited for the present purpose.

FUTURE WORK

It seems reasonable to continue the effort, especially by extending the
encoded formalism and closing the gap with formalism of Coq itself.
We consider the following extensions:

— Definitions: this would require the formalization of é-reduction,
which should be easy.

— A universe mechanism: this would simply require to generalize the
proofs to PTSs [2] and should not be difficult (except for normal-
ization).

— Inductive types, which certainly is the crucial and most difficult
point, since it induces many complications of the syntax.

— program extraction, which is necessary to fully certify the extracted
code.

Achieving this would allow a bootstrap of Coq. It does not seem
impossible, that such an objective could be within reach in the future.
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