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Abstract. We present a formal treatment of normalization by evalua-
tion in type theory. The involved semantics of simply-typed A-calculus
is exactly the simply typed fragment of the type theory. This means we
have constructed and proved correct a decompilation function which re-
covers the syntax of a program, provided it belongs to the simply typed
fragment. The development runs and is checked in Coq. Possible appli-
cations include the formal treatment of languages with binders.

1 General setting

1.1 Deep vs. shallow

The denomination "normalization by evaluation" is now well-established and
designates a class of techniques dealing with functional programs. However, de-
pending upon the framework these techniques are used in, the aim can vary
greatly. In all cases, the idea is to translate functional programs (A-terms) from
one level of language to another. This is precisely what we do here. In type
theory, a A-term can exist under very different forms. Let us consider the term
Az Ay.x. Given any type X of the type theory, we can build the correspond-
ing program; in Coq syntax it will be fun (x:X) (y:X) => x. This is what is
generally called the shallow embedding.

We can however also go for the deep embedding. This involves defining a
data-type describing A-terms. Again in Coq we can take:

Inductive term : Type :=
Var : id -> term | Lam : id -> term -> term
| App : term -> term -> term.
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where id is a well-chosen datatype. The same term is then represented as the
object Lam x (Lam y (Var x)) of type term.

Given a A-term, each of the representations has its advantages and short-
comings. Advantages of the deep embedding representation include:

— We "know" the code of the term, for instance we can print it, compute its
length, etc.

— Correspondingly, we can reason by induction over the structure of the A-
term.

— We can define properties of A-terms (typing, reduction...) by induction or
by recursion over the term’s structure.

All these things are, at first, impossible with the shallow encoding. On the other
hand, there are tasks where the latter has its advantages:

— With the shallow representation, we do not "know" the code, but we can run
it. Furthermore, the A-terms are logically identified modulo -conversion.

— With the deep encoding, one has to make the dreaded choice between de
Bruijn indexes and named variables; both coming with their own, well-
known, difficulties (explicit lifting functions with de Bruijn, treatment of
a-conversion with named variables). With the shallow encoding, this is ba-
sically subcontracted to the proof-system’s implementation.

It is therefore an interesting question to what extent one can switch between
the two representations and recover one from the other. It is this question we
try to address in this work.

Terminology Since the shallow encoding corresponds to an executable, but
not readable, representation, we will speak of the compiled representation. On
the other hand, the deep encoding’s representation we will call the decompiled
or source level representation.

1.2 Normalization by evaluation

The more difficult translation is going from the compiled to the source code.
On the compiled level, the inner code of functions cannot be accessed: given a
function, the only possible operation is to apply an argument to it, evaluate and
examine the result. We can think of fuctions as being represented as closures
in an abstract machine. Opening these closures and reconstructing the original
code is precisely what Normalization by Evaluation (NbE) is about.

The result of this decompilation process is always in normal form. This is,
of course, the reason for the terminology "normalization by evaluation" which
was coined by Ulrich Berger. To be precise, the result of the decompilation is
in strong normal form, which means that code under binders is also in normal
form. A consequence is that NbE is used in practice for partial evaluation of
functional programs.



The content of this work can thus roughly be summed up as being a formal
treatment of a particular kind of NbE in Coq. Dependent type theories, like Coq,
are a very interesting framework for using NbE for several reasons:

— The decompilation function takes an argument whose type will vary. When
working in a conventional language like ML, one needs, for instance, to insert
an additional layer (like HOAS in [10]) in order to accommodate this. Using
dependent types, the decompilation is naturally typed.

— Functional programs are, by essence, objects of type theory (compiled form).
But in many cases, for instance when doing metatheory, they are also objects
of study inside the type theory. One will then want to reason about the syntax
of programs, thus using the decompiled form. NbE is precisely the way to
switch from the first encoding to the second.

— Finally, since type-theories are a framework where one can, at the same time,
do computations and proofs, we can not only write the NbE routines, but
also specify and certify their behavior.

1.3 The general idea

We outline the framework by recalling the basic ideas in the case of a functional
programming language with side-effects. We therefore use Caml syntax in this
section.

We write programs performing NbE over simply typed A-terms. The routines
use type information in an essential way. We thus first need a data-type for
representing simple types as well as one representing the terms:

type st = Iota | Arr of stx*st ;;

type term = Var of string | Lam of string*term
| App of term * term ;;

It is well-known that an important point is being able to produce fresh variables.
In this first rough description, we "cheat" by relying on side-effects: we use a
gensym function returning a new string each time it is called.

We then can program the decomp decompilation function; as usual it is de-
fined simultaneously with a function "compiling" values. We here call this func-
tion long since it builds a n-long form of variables. Both functions are known
under various names in the literature (resp. reify, reflect. .. ).

let rec decomp t = function
| Iota >t
| Arr(ul,u2) -> let x = gensym() in
Lam(x, (decomp (t (long (Var(x)) ul)) u2))

and long t = function
| Tota >t
| Arr(ul,u2) -> fun x->(long (App(t,(decomp x ul))) u2);;



The type of the argument t of decomp, as well as the type of the result of long,
depend on their second argument and the programs are therefore not typable
in this form. However, if we locally switch off the type-checker, we can see,
for instance, that the evaluation of (decomp (Arr Iota Iota) (fun x->x))
indeed returns something of the form Lam(s,Var(s)) where s corresponds to
the current state of gensym.

1.4 Syntax vs. semantics point of view

Looking at what is going on through the lens of the Curry-Howard isomorphism,
one obtains another interesting explanation: typed A-terms standing for proofs,
the deep encoding corresponds to the syntactical notion of provability. The com-
piled/shallow encoding, on the other hand, is semantical: it is a translation of
the logic of simple types into the type theoretical framework. Having understood
this, it appears that NbE corresponds to a completeness result, since it lifts re-
sults from the semantics back into the syntax. This remark is enlightening even
if it is less central in the present work than in the ones of Catarina Coquand
and Jean-Louis Krivine.

1.5 Related work

We are not aware of too many actually implemented formal treatments of NbE.
The main one is indeed Catarina Coquand’s pioneering work [8] which we saw
first presented at the 1992 European Types meeting; a later version can today be
found in [9]. The motivation however is not exactly the same, and in consequence
we can list some technical differences:

— As mentioned above, Catarina Coquand’s point of view is more on the logical
side and the result is understood as a completeness result. The compiled level
is understood as a semantics. Thus, semantics are always defined with respect
to a context; which we will try to avoid. Also, she uses dependent types in a
much more intensive way than what we do.

— The main technical difference however is the type of the semantics. She
uses a Kripke-style typing of the compiled terms, which is useful for stating
and proving completeness. On the other hand, it makes the actual com-
piled /semantical code more complex, which is what we try to avoid.

The Kripke-style typing of the semantics can also be found, among others, in
the work by Altenkirch et al. [1], which extends NbE the sum types.

Even closer to us is the line of work initiated by Ulrich Berger and Helmut
Schwichtenberg [2,4, 6, 5]. However, and even if their constructions are precisely
described, the only actual implementation is not exactly NbE, but a formal-
ization of Tait’s strong normalization proof [3]. Ulrich Berger also showed that
Tait’s proof is actually what underlies NbE algorithms; but this analogy is not
explicit in the formalization. Technically, if we leave the issue of formalization
aside, the main difference with Berger’s NbE is due to the fact that again we use



a (slightly) simpler typing of the compiled terms. We have to sacrifice the effi-
ciency of the normalization algorithm for that, whereas efficiency was precisely
his main motivation.

A lot of very detailed work has, of course, been devoted to NbE by Olivier
Danvy. He does not set his work in type theory, but his ideas are obviously
influential in this and the related works. Since his original motivation was par-
tial evaluation, the same technique is called type directed partial evaluation in
his work. Finally, as mentioned above, Jean-Louis Krivine’s work [14] on the
completeness theorem, although very different bears also some relations with
ours.

1.6 About the formal Coq development

In what follows, we indicate the Coq name of the definitions and lemmas, so one
can relate the article with the formal proof®.

2 The syntax of simply typed A-calculus

The first data-type we need is a representation of simple types. In the present
case, we only use one atomic type we will call Tota in reference to Church. It
seems obvious however that the whole development could accommodate several
atomic types without too much effort. We thus have an inductive type with two
constructors; in Coq syntax:

Inductive ST : Set := Iota : ST | Arr : ST -> ST -> ST.

From now on, except for short Coq verbatim, we write = for Arr and . for Iota.
Thus ¢+ = ¢ = ¢ stands for (Arr Iota (Arr Iota Iota)). When studying
simply-typed A-calculus, it is often convenient to have the type of the variable
be part of its name (or identifier), because it precludes the use of context for
defining typing. We thus take:

Record id : Type := mkid {idx : mat ; idT : ST}.

In the present description we write z# for (mkid = A), except in Coq verbatim.

We can now define the syntax of the language:

Inductive term : Type :=
Var : id -> term | Lam : id -> term -> term
| App : term -> term -> term.

We stress that the natural number component of the identifiers should really be
understood as a "name" and not as anything even remotely related to de Bruijn
indexes. This is reflected in the type of the Lam constructor, and in the definition

3 The formal development is available on the web at
http://wuw.lix.polytechnique.fr/Labo/Benjamin.Werner/



of the list of free variables (representing the finite set of their identifiers), as the
recursive function verifying the following equations:

FV(Var z) = {x}
FV(App t ©v) = FV(t) UFV(u)
FV(Lam z) = FV(¢) \ {z}

We also define a function generating a fresh identifier, that is, given a type,
an identifier of this type which does not belong to a given finite set:

fresh : (set id) — ST — id
fresh I T = j7 where j = maz{i,i’ €1} +1

3 Decompilation

We now have to make the most important choice in this development. Namely
the type of the objects on the compiled side. What differentiates our work with
previous ones is that we here take, from the start, the simplest possible transla-
tion described by the following equations :

tr(:) = term
tr(A = B) =tr(A) — tr(B)

This means that we want to define decompilation such that :

decomp : VT : ST, tr(T) — term
long : term — VT : ST,tr(T)

Note that this means that decomp will return a term even when applied to
a "pathological" object (for instance a function f : term — term which discrim-
inates between [-convertible terms). The "well-behaved" objects, for which the
decompilation result is meaningful, are characterized in section 6.

We are now back at the question of fresh variables: when decompiling a
function f :tr(A) — tr(B), we have to "guess" what free variables are "hidden"
inside it. What are the possible options ?

— Berger deals with the problem by having the program to be decompiled
computing not only its own normal form, but also the variables that were
used in order to decompile it. This results in a very efficient normalization
function, but in the definition of tr, term has to be replaced by nat — term.
The main negative consequence is that terms which originally contain free
variables are more delicate to deal with.

— If we want to emulate the behavior of the imperative gensym used in the
introduction, we run into a similar problem. We would need to perform a
state-passing-style transformation over the program. Not only the decomp
program, but also the program f we want to decompile; which means again
changing the definition of tr.



We here explore another possibility, in which we sacrifice efficiency to sal-
vage the simplicity of tr: we compute the set of free variables inside f by first
decompiling f after applying a "dummy" variable to it. We then can find a fresh
variable and decompile it again. Our definition thus reads:

decomp Lt =t
decomp A = B f =let x = fresh (FV(decomp B (f (long Var(dum) A)))) A
in Lam(z,decomp B (f (long z A)))

where dum is a particular identifier chosen for this purpose.

Of course, since it uses two recursive calls instead of one, the algorithm
is exponentially slower than the "reasonable" options above. The advantage is
that it is easy to build terms on the semantical side. For example decompiling
Lam x (Var y*) will return the constant function fun a=>Var y*.

One technicality here is the issue of the freshness of the dummy itself. When
given a term f (long Var(dum) A), there is no obvious way to tell whether
Var(dum) itself is indeed free in (the term corresponding to) f. The idea here
is that the (-conversion relation is such that simply observing the structure of
a (-normal object obtained from the application of a "dummy" to a term will
allow us to infer the free variables of this term.

This is made precise in our development, in which the following lemma comes
up as a requirement:

Lemma 1 (fvc).
Vot u, (App t (Var z) =g, uANy & FV(u)) = v, (t =, v Ay & FV(v))

This lemma is essentially about untyped A-calculus. Its proof is quite intricate
when going into the details of a-conversion. The formalization involves a number
of technical results about (-conversion in a named setting. We provide a formal
proof, admitting two well-known properties of the untyped [-reduction : the
postponability of a-conversion, and the Church-Rosser property.

4 Basic syntactic definitions

4.1 Typing

As we have seen, decompilation can be defined independently of typing, reduc-
tion and the usual basic notions about A-terms. These definitions are however
obviously necessary for going on. We describe a practical definition of typing.
Typing is a binary relation between a term and a type. We can, of course use
the inductive predicate corresponding to the usual rules:

t:T t:U=T u:U
nT T LamnYt: U =T Apptu:T




It is then possible to show that it is decidable whether a term bears a type or
not. In practice, it appears convenient to proceed the other way around starting
with the inference function and then using it to define well-typedness.

infer(Var(z?)) = Some(A)
infer(Lam(z#,t)) = None if infer(t) =
infer(Lam(z?,t)) = Some(A = B) if infer(t) = ( )
infer(App(t,u)) = Some(B) if infer(t) = Some(A = B)
and infer(u) = Some(A)
infer(App(¢,u)) = None in the other cases

It is then easy to define well-typedness :

— A term ¢ is well-typed iff infer(t) # None
— the term ¢ is of type T iff infer(t) = Some(T)

A technical point which is useful for the actual feasibility of the development
is that since equality is (obviously) decidable over ST, the equalities above are
booleans (which can when necessary be coerced to propositions). Together with
Georges Gonthier’s SSR proof tactic package [13], this makes many proofs shorter
and easier. We come back to this in section 5.

Proving equivalence between the two formulations of typing is easy (10 lines).

4.2 Substitution

Because of the necessary renaming operations, the primitive substitution oper-
ation needs to be defined over several variables. A substitution is a list of pairs
(z,t) meaning that the variables of identifier z are to be substituted by the term
t. The recursive substitution function is defined by the following equations:

(App t u)o] = App t[o] u[o]

(Var z)[o] = Var z  if no (z,u) occurs in o

(Var z)[o] = u if (x,u) is the first occurrence of z in o
(Lam z t)[o] = Lam 2’ t[(x, Var ') :: 0]

where 2’ = fresh (UZEFV(t)\{w} FV (Var z[a}))

Subsitution is primitively defined as handling several variables simultane-
ously. This allows us to define substitution through structural recursion over the
substituted term rather than over its size and considerably simplifies proofs.

Moreover, when applying a substitution, we systematically rename all bound
variables in a uniform manner, using fresh, a deterministic choice function defined
up to the set of variables it takes as an argument. This set is chosen such that
is exactly characterizes the free variables of the substituted term, i.e.:

Lemma 2 (eFVS_FV). UzeFV(t)\{a:} FV (Var z[o]) = FV(t[o])



Following the method described by A. Stoughton [17], this provides us with a
way to normalize terms w.r.t. alpha-conversion when applying substitution. We
indeed prove the following lemma:

Lemma 3 (alpha_norm). Ift =, u, then Vo,t[c] = u|o]

We can then simply treat alpha-conversion as the equality on terms w.r.t. a
substitution in the rest of the formalization, a simplification that was pivotal in
making the treatment of alpha-convertibility manageable in this named setting.

Since the identifiers carry their type, it is straightforward to define what
it means for a substitution to be well-typed. One then easily shows that such
well-typed substitutions preserve typing.

4.3 Conversion and normal forms

Since we do not deal with strong normalization here, we can avoid the pain to
define the oriented reduction relation. We just define conversion as an inductive
equivalence relation.

Definition 1 (conv, normal, atomic). Conwversion, written =g, is defined
as the closure by reflexivity, symmetry, transitivity and congruence of the fol-
lowing clauses:

(B) Vt u x, (App (Lam z t) u) =g, t[z, u
(n) Yt z,x ¢ (FVt) —t =g, Lam = (App t x)
(@)Y y t,y ¢ (FVt)— Lam x t =g, Lam y t[z, ]

The predicates NF (being normal) and AT (being atomic) are mutually in-
ductively defined by the clouses:

(ATV)  Vaz, (AT Var )

(ATAPP) Vt u, (AT t) — (NF u) — (AT (App t u))
(NFAT) Vi, (AT t) — (NF ¢t)

(NFLAM) Vz t, (NF t) — (NF (Lam z t))

One can then define the sufficient conditions for the decompilation to return
a normal (resp. well-typed) term:

Definition 2 (sem norm, sem_ WT). Given T : ST, we define the predi-
cates SNF T (semantic normal form) and SWT (semantically well-typed) both
ranging over tr(T) by recursion over T':

SNF . t=NFt
SNF A= B f=Vg:tr(4),(NF A g) — (SNF B (f 9))

SWT 1t=WT¢tT
SWT A= B f=Vg:tr(A),(SWT A g) — (SWT B (f g))



Lemma 4 (decomp_norm). If SNF T f (resp. SWT T f), then we have also
NF (decomp T f) (resp. WT (decomp T f) T).

PrOOF. Separately, by induction over T'. In each case, one has to prove simul-
taneously the dual condition:

V¢ T,AT t — SNF T (long T' t)

Ve T,WT t T — SWT T (long T t).

5 Compilation (semantics)

We now deal with going from an object t such that WT ¢ T holds to the corre-
sponding object of type tr(T).

An environment 7 is a function which to any identifier x
semantics (an object of type tr(X)); formally the type of 7 is:

X associates its

Definition sem_env := forall (x : id) , tr x.(idT).

From there, given 7 we want to define the semantics of a term ¢ such that
WT ¢ T holds as an object of type tr(T) through the following, quite straight-
forward equations:

[Var z]7z = Z(x)
[App t ul; = [t]z([ulz)
[Lam 27 tl;r = Aatr(X). [t 700 <a, x>

Formally however, this definition is not as easy to handle as it seems. The
typing is delicate in the case of the application node because it requires (App ¢ u)
to be well-typed. The idea is that if WT (App ¢t u) T, we know there exists
U : ST such that WT » U and WT ¢ (U = T). This in turn implies that
[t]z : tr(T) — tr(U) and [u]z : tr(U) which allows the construction [¢]z([u]z).

If we go into detail however, the hypotheses are : there exists T,U and U’,
such that: [t]z : tr(U) — tr(T), [u]z : tr(U’) and we have a proof that U = U’.
One then has to use this last proof to transform? [u]7 into an object of type tr(U).
But programs constructed that way are very difficult to reason about: because
the inner types depend upon values (here the values U and U’), equational
reasoning about these values can easily make the goal not well-typed anymore.
Also, a naive way to define the compilation would be to have it depend upon the
typing judgement. At least in the setting of Coq, this is not a good idea, again
for the same reason.

* For Coq fans: using the eq_rec principle.



Treatment of type equality

Georges Gonthier suggested us a convenient way to treat type equality tests.
When U and U’ turn out to be equal, the result of the equality test will be used
to map an object of some type A(U) to A(U’). So we can build this coercion
into the equality test’s result. This is done by defining:

Inductive cast_result (al a2 : ST) : Type :=
| Cast (k : forall P, P al -> P a2)
| NoCast.

One then defines the function cast : ST -> ST -> cast_result which returns
NoCast if its arguments are different and Cast applied to the identity if they are
equal:

Fixpoint cast (al a2 : ST) {struct a2} : cast_result al a2 :=
match al as dl, a2 as d2 return cast_result dl1 d2 with
| Iota, Iota => idcast
| Arr bl cl1, Arr b2 c2 =>
match cast bl b2, cast cl c2 with
| Cast kb, Cast kc =>
let ka P :=
let Pb d := P (d ==> c1) in let Pc d := P (b2 ==> 4) in
fun x => ke Pc (kb Pb x)

in Cast _ _ ka
| _, _ => NoCast
end
| _, _ => NoCast

end.

On one hand one then shows that cast actually implements the equality test.
On the other hand however, one does not need to invoke this property in order
to define a function like compilation. Indeed, we want to make the compilation
function as robust as possible; instead of asking for the argument to verify WT,
the function is defined for any term but can return a default value when the
argument has no semantics. This means the function returns a result of the
following type:

Inductive comp_res : Type :=
| Comp : forall T:ST, (sem_env -> tr T) -> comp_res
| NoComp.

and the comp function is then best described by its actual code:

Fixpoint comp (t:term): comp_res :=
let F T := sem_env -> tr T in
match t with
| Var i => Comp i.(idT) (fun I => (I i))



| Lam i t =>
match comp t with
| NoComp => NoComp _
| Comp U f => Comp (Arr i.(idT) U)
(fun T x => (f (esc I i x)))
end

| App u v =>
match comp u , comp v with
| Comp (U1l ==> U2) su , Comp V sv =>
match cast V Ul with
| Cast f => Comp U2 (fun I => (su I (f tr (sv I))))
| NoCast => NoComp _
end
| _,_ => NoComp _
end
end.

The two main remarks are:

— One easily proves that comp correctly re-implements type-checking. That is
(comp t) is of the form (Cast T v) if and only if (infer ¢) reduces to (Some T').

— The big advantage of using cast appears, as expected, in the clause for App
t u: we use the cast £ in order to construct the result, without having to
know that cast actually implements equality. This may look like a technical
detail but is crucial for keeping the proofs reasonably small and tractable.

One can prove a first result about compilation, namely that its result verifies
the SNF property.

Lemma 5 (comp_norm). LetZ be such that for all 2, we have SNF A (T z4).
If (comp t) is of the form (Comp T st) (which is always the case if (WT ¢t T')
holds), then we have (SNF T (st 7)).

Definition 3 (id_env). The standard interpretation Zy is defined by
Zo(z") = long T (Var 27)
for all 2T.

The lemmas 4 and 5 then ensure:

Theorem 1 (norm_norm). If (comp t) is of the form (Comp T st), then
(NF (decomp (st Zy))). This is always the case when WT ¢ T holds.
6 The central logical relation

It then remains to show that compilation and decompilation preserve conversion.
That is if WT ¢ T and if n and Z are well-chosen, then

t =gy decomp(T', n, [t]1).



Exactly like in all the related work, one here has to introduce a logical relation
between the syntactic and semantic levels. The definition could not be simpler:

Definition 4 (sem_conv). Ift :term,T : ST and f : tr(T) then t ~p f is a
proposition defined recursively by:

t~, st =1t =g, st

t ~pp st =Vu su,u~4 su— (App t u) ~p (st su)

The logical relation allows us to define an extentional equality on the semantical
level:

Definition 5 (ext_eq). If T : ST, then =1 is a binary relation over tr(T)
defined by:

t=, u=t=g,u
f=a=pg=V(t:term)(f ¢ tr(A)),t=a f' = f=ag = (f f)=B(99)

Notice, in the second clause, that we require one of the arguments to be related
to some term t. This can be understood as a way to prevent considering "patho-
logical" functions, which, for instance, could depend upon the size of terms, the
name of bound variables, etc. .. Although the formulation is not symmetrical, the
definition actually is; since one then shows that the logical relation is extentional.

Lemma 6 (sem_comp_extl, sem_comp_ext2). Suppose t ~p st. Then:

1. ift =g, t', then t' ~p st,
2. if st' =p st, then t ~p st'.

7 Putting it all together

We can then finish the normalization proof by proving the main lemma of the
development.

Lemma 7 (sem_comp). Lett be such that (comp t) is of the form (Comp T st),
which is always the case when WT t T holds. Let o a substitution and Z an
interpretation be such that for any v which is free in t we have o(x) ~4 T(z?).
Then we have:

t[O’] >~ [t]j

ProOOF. By induction over the structure of t. It is the longest normalization-
related proof of the development. It uses some technical results about free vari-
ables and a-conversion, that we have not detailed in this account.

The next lemma 8 states that the "well-behaved" functions, which can be de-
compiled, are exactly the ones related to some term by ~. Notice that this
means that the lemma 7 can be understood as the real completeness result of
the development: it states that the co-domain of the semantics are precisely the
"well-behaved" functions.



Lemma 8 (sem_decomp). Ift ~qp st, then t =g, (decomp T' (st Zp)).

Proor. The proof of this lemma proceeds over a simple induction on the types,
initially conducted simultaneously with the equivalent property on long. It is
the only result relying on lemma 1, but presents no other difficulty.

It is then easy to conclude the weak normalization result:

Theorem 2. If WT ¢ T, then (comp t) is of the form (Comp T st) and:

1. t =g, (decomp T (st Ip))
2. NF (decomp T (st Zy)).

PrOOF. 1t is a corollary of theorem 1, lemma 8 and the fact that well-typed
terms are compilable. For lemma &, one simply uses the fact that ¢ =, t[Id].

8 Conclusion and future work

We have shown that formal treatment of NbE in provers based on type theory is
tractable even when using a formalization style which is very different from the
one followed by Catarina Coquand. We have also shown that NbE is possible
when using the simple types for the compiled terms, even if, in our case, this
comes at the expense of efficiency. Whether one can get rid of this overhead
without changing the typing seems however doubtful to us.

A first possible direction of work is to apply similar techniques, and possibly
reuse part of this development in order to formalize and implement the related
versions of NbE of Berger and his collaborators. This seems at the same time
feasible and useful, especially in a framework like Coq, which implements "real"
compilation and would thus allow really fast normalization.

A second more prospective but, we hope, promising direction of research
is using the present development for making reasoning about structures with
binders easier. Indeed, a language with binders can be described by a context
of simply typed A-calculus. For instance, untyped A-terms can be described as
simply typed A-terms whose free variables are either of the atomic type ¢, or
equal to one of the two variables:

APP:t— 11—y, LAM: (1t — 1) — o

This is the idea of higher-order abstract syntax (HOAS [15]) whose possible
use inside type theory has already been investigated [11,16]. We hope that by
allowing to characterize precisely what are the terms of the type theory which
belong to the simply typed fragment and accessing their syntax, our work can be
a first step for implementing techniques inspired by HOAS inside existing type
theories; possibly in a way similar to [7].
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