Sets in Types, Types in Sets

Benjamin Werner

INRIA-Rocquencourt BP 105
78 153 LE CHESNAY cedex
FRANCE

benjamin.werner@inria.fr

Abstract. We present two mutual encodings, respectively of the Cal-
culus of Inductive Constructions in Zermelo-Freaenkel set theory and the
opposite way. More precisely, we actually construct two families of en-
codings, relating the number of universes in the type theory with the
number of inaccessible cardinals in the set theory. The main result is that
both hierarchies of logical formalisms interleave w.r.t. expressive power
and thus are essentially equivalent. Both encodings are quite elementary:
type theory is interpreted in set theory through a generalization of Co-
quand’s simple proof-irrelevance interpretation. Set theory is encoded in
type theory using a variant of Aczel’s encoding; we have formally checked
this last part using the Coq proof assistant.

1 Introduction

This work is an attempt towards better understanding of the expressiveness of
powerful type theories. We here investigate the Calculus of Inductive Construc-
tions (CIC); this formalism is, with some variants, the one implemented in the
proof systems Coq [6] and Lego. It is essentially a typed A-calculus with the
following features:

— Dependent types, allowing the representation of propositions as types, through
the Curry-Howard isomorphism.

— An impredicative level, i.e. the calculus is an extension of Girard’s system
F', allowing polymorphic types and thus impredicative reasoning.

— A hierarchy of predicative universes, quite similar to Martin-Lofs’ [17].

— Inductive types, generalizing the primitive integers of Godel’s system T'.

From the point of view of normalization and/or consistency proofs, the com-
bination of these different features is still not fully understood. Known normal-
ization proofs, as well as model constructions, make use of inaccessible cardinals,
i.e. go beyond usual set theory. The question we try to address in the present
work is whether inaccessible cardinals are necessary to build a model of CIC,
or equivalently whether CIC is as strong as usual Zermelo-Fraenkel set theory
(ZFC).

In the next section we present CIC in a more formal way. In section 3 we
give an interpretation of CIC in ZFC; these semantics generalize Coquand’s



proof-irrelevance semantics and are extremely straightforward. The number of
inaccessible cardinals needed is exactly the number of universes of the modelized
type theory. In section 4, we do the reverse work by encoding ZFC in CIC,
adapting work of Aczel [1-3]. We however have to assume a type-theoretical
axiom of choice in CIC to be able to encode full ZFC. We then can encode ZFC
with n inaccessible cardinals in CIC equipped with n + 1 universes. This gives
lead to nicely interleaving relative consistency proofs. The situation is summed
up in the conclusion.

The paper paper tries to be as self-contained as possible. For matters of
space, we keep our description of inductive types informal, relying on examples
and referring to the relevant publications. Some basic notions of A-calculus and
set theory are required. The encoding of set theory in CIC is not extensively
described but has been formally checked on the Coq proof-assistant; the brave
reader can check details looking at the proof-files [21].

2 Definition of the Type Theory

We give a presentation of the type theory in the style of Pure Type Systems
(PTS, see [5]). We distinguish two parts: the rules dealing with the formation of
function types, A-abstraction and application on one hand, and inductive types
on the other.

2.1 Function types

The sorts of the calculus are Prop and Type; where i is a strictly positive integer;
we will generally use s to denote them:

s := Prop | Type;

We give ourselves a countable set of variables, generally denoted by z, ¥, z, a, b,c,
X, etc.
The terms of the calculus are described by the following grammar:

t =z |(@t)| ettt | Hx:tt

The first three cases correspond to the usual constructors for A-terms: variable,
application and typed abstraction. The term ITz : A.B is the type of functions
mapping terms of type A to type B. The value x of the argument might occur
in B since the calculus allows dependent types. In the case where z does not
occur free in B, IIx : A.B can be written A — B.

We write [z \ u] for the term ¢ in which the free occurrences of the variable
x are replaced by u. The substitution being defined the usual way. We write >g
for the -reduction which is defined as the contextual closure of:

Az : At u) -tz \ u]

The reflexive, transitive and symmetric closure of >4 is called B-conversion,
written =g.
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Fig. 1. Rules for the functional fragment of CIC

The typing rules of the system are given for figure 1. They correspond to
Luo’s Extended Calculus of Constructions' described in [16].

A well-formed type is a term of type some sort in a given context. The sorts
Type, are called the universes; they are hierarchally embedded in each other
through the cumulativity rules CuM;. Universal quantification is represented by
the IT-types. An important point is that in Prop, we can quantify over all uni-
verses (impredicativity). In Type; however, quantification is restricted to types
living below universe i, i.e. over terms of type Type; with j <.

2.2 Inductive types

Inductive types are a very important extension to a type system meant to for-
malize actual mathematics. Among others, they are used to define data types
and logical connectives and they play an essential role in the present work.
Coquand and Paulin-Mohring [10] motivate this extension and give a formal
description of generic inductive types. The Coq reference manual [6] contains a
description of the currently implemented version of inductive definitions due to
Paulin-Mohring.

! Luo’s ECC also includes X-types which are a particular case of the inductive types described
below.



Notations An inductive type is the smallest type closed by a list of constructors.
The most well-known example is maybe the definition of unary integers:

Inductive Nat : Type, := O : Nat
| S:Nat— Nat.

Which defines three objects Nat, O and S of the given types. To each induc-
tive type are associated elimination schemes corresponding to case analysis and
structural recursion and induction. In this case the type of these schemes is:

ITP : Nat = s.(P O) = (IIn : Nat.(P n) —» (P (S n))) — IIn: Nat.(P n)

with s ranging over the sorts Prop and Type;.

The reduction rules associated to these schemes are defined as usual, and in
this case correspond to the recursor R of system 7. In what follows however,
we will generally not mention the elimination scheme explicitly and rather use
a more explicit ML-like notation which, we believe is not ambiguous in the
constructions treated below. For instance:

Definition add : Nat — Nat — Nat :=
On = n
| Sp)n — (S (add pn)).

Of course, the corresponding new reduction rules are taken into account by
the conversion rule CoNv; for instance (add (S O) (S 0)) and (S (S 0)) are
identified.

Restrictions Two main restrictions assure that inductive definitions do not
endanger the consistency of the system. The first one is well-known and of syn-
tactical nature: recursive arguments must occur in strictly positive position in
the type of constructors; see [10] for details. Typicaly the following definition is
prohibited since the first occurrence of foo in the type of C' is negative:

Inductive foo : Type; :=
C : (foo — foo) — foo.

Semantically, the positivity condition ensures that the inductive definition
corresponds to the least fix-point of a monotone operator.

The second restriction is more interesting and essential to what follows. If
the inductive type is of type Type;, then all arguments of its constructors must
live in the same universe or lower, i.e. using the cumulativity rule, the arguments
of the constructors must be themselves of type Type;. Releasing this restriction
would allow the construction of paradoxes and break the consistency of the
system; see [8] for instance. The necessity for this restriction will also appear
quite clearly in the proof-irrelevance interpretation and some of its consequences
are shown in the next paragraph.



Two definitions of the existential An important point is that, in this paper,
we do not use inductive definitions of type Prop. Some propositions certainly are
defined inductively, but they can be constructed using an impredicative encoding.
The key example is the existential quantification. Given A : Type,and P : A — s
we define the proposition 3a : A.(P a) as:

Inductive Ja : A.(P a) : Prop := 3Ji:(a:A)(P a) = Ja: A(P a).
But this inductive definition is exactly equivalent to:
Definition Ja : A.(P a) := IIX : Prop.(Illa : A.(P a) - X) —» X.

The important point is that there are no elimination rules of inductive propo-
sitions towards Type;.

There is however an alternative definition for the existential quantifier, name-
ly the XY-type living in Type;:

Inductive Ya : A.(P a) : Type; := o:(a:A)(Pa)—3Ja: A(P a).

Each of these two definitions has it advantages and drawbacks. In the first
case, the existential lives at the bottom of the universe hierarchy, and thus we
can always quantify over it, wherever we are. On the other hand, we cannot
extract the witness of an existential proof: proving Ja : A.(P a) does not mean
that we can exhibit a term of type A.

In the case of the Y-type, we are able to define 7 such that (7 (o a p)) > a.
But we cannot consider this Y-type in types living lower in the hierarchy.

We can notice that if one does not use the impredicative level in CIC, the
resulting theory is, in spirit, very close to the one of Martin-Lof [17]. The way we
view the impredicative level in the present work is similar to Church’s Higher-
Order Logic: the objects live in the predicative levels, and Prop is used to express
properties about them; we cannot however build objects out of proofs. This idea
is obvious in the proof-irrelevance semantics.

3 Proof-Irrelevance Semantics for CIC

3.1 General Idea

In this section, we will write 0 for the empty set, and 1 for the canonical singleton
{0}.

Since Reynolds [19], it is well-known that “polymorphism is not set-theoretic”,
i.e. it is not possible to interpret impredicative types (here of type Prop) by set-
s. This will however be possible for the predicative fragment of our theory, in
which the objects live. The proof-irrelevance semantics are an interpretation of
the type theory in classical set theory following two simple ideas:

— Propositions are interpreted either by the empty set or by a canonical s-
ingleton, depending upon their validity in the model. As a consequence all
proof-terms are identified. In the same way, the interpretation of Prop is

{0,1}.



— On the predicative level, types are simply interpreted as sets. In particular
the function type Iz : A.B is interpreted by the full set of set-theoretic
function between the interpretations of A and B.

The ideas of these interpretation are very common. They can be found, for
instance, in [9,11,13].

We will call 2((¢) the interpretation of Type;. From the second assertion above
and the typing rule P1; ; we need the following closure condition:

VA, B € A(i).BA € A(i).

In particular this implies that 24 € (i), since |Prop| = {0,1} € A(i). It is
actually not too difficult to check that the existence of a set (i) verifying the
(first) closure condition above implies the existence of an inaccessible cardinal.

3.2 Inaccessible cardinals

In what follows, we will assume the existence of an inaccessible cardinal to build
the interpretation of each universe. The notions of set theory used are quite
common (see [14,15] for instance).

Definition 1 (Inaccessible cardinal). An infinite cardinal A is said to be i-
naccessible if and only if:

— For any cardinal a < A, 2% < A.
— Let (B;)icr be a family of cardinals < X indexed by a cardinal I < \; then
sup;e;(Bi) < A

The main idea behind the notion of inaccessible cardinal is that its existence
allows the construction of a set which is a itself a model of ZFC. It therefore
enhances the expressive power of the theory. The following constructions are
usual in the literature.

We write P for the powerset.

Definition 2. For every ordinal a, we define a set V,, by induction over «:

- V=0
-V EU,B<(1P(VB) if a > 0.

The following result is a consequence of the foundation axiom and the proofs
are well-known.

Definition 3 (Rank of a set). For every set X, there exists a smallest ordinal
a such that X € V,. «a is called the rank of X, written rk(X).

Lemma 4. If A is an inaccessible cardinal, then V) verifies the axioms of ZFC.
In particular if A € V) and for every a € A, B, € Vy, then I[I,c By € V).



3.3 The Interpretation

From here on, we assume the existence of an increasing sequence of inaccessible
cardinals (\;);en. For every ¢ we define 2((i) = V.

We can now define the interpretation. The interpretation |I'| of a context
I' of length n is a set of n-tuples. The interpretation |I" F ¢| of a judgement
I'+t: T does not depend upon T and is a function of domain |I'|.

As often for similar constructions, [4,18] among others, we first define the
interpretation as a partial function. The definition is a structural induction over
the syntax; here, P exclusively denotes propositions (clauses 3 and 4):

=1 (1)

15 (z: A)| ={(y,a),y e [[IAa e |l Al(y)} (2)

II'Fp|(y) =0 if p is a proof in I (3)

|I'F Iz : AP|(y) =1 iftVa e |I'+ A|(y).|T;(x : A) F P|(y,0) =1 (4)
'+ Iz : A.P|(v)=0 it Ja e |I'+ Al().|T;(z: A) F P|(y,a) =0 (5)
TF Mo ATI() = Maeireai T (0 A) F T(7,0) (6)
T+ Prop|(y) = {0,1} (7)
I+ Type;|(7) = 2(i) (8)
[I'F Xz : AB|(y) =a € |A|lz = |Blz.oea 9)
T+ (1w 0)](3) = Jul(7) (o] () (10)

I Fz|(y) = v (11)

Interpretation of inductive types The interpretation of each inductive type
is defined inductively, in the set-theoretical sense. Again, we avoid detailing a
tedious generic definitions and concentrate on an example; consider the definition
of lists:

Inductive list : Type, := nil : list

| cons: A — list — list.

where A : Type;. We encode the constructor using set-theoretical natural num-
bers 0,1,2.... The set [list| is (if it exists) the smallest subset of (i) verifying:

— 0 € |list|
— if a € |A| and [ € |list], then (1,a,l) € |list|.

The two clauses correspond to the two constructors; the interpretation of the
latter is natural:

— nill=0
— |(cons a 1)| = (1,]al, |I]) or, to be precise, the (curryfied) function which to
a € |A] and [ € |list| associates (1, a,l).



Note that we deliberately omit the interpretation of the context in this ex-
ample, since they do not play a relevant role and would complicate notations.
This interpretation generalizes smoothly to definitions with arbitrary many con-
structors of arbitrary arity?.

The strict positivity condition assures that the inductive definition above
corresponds to a monotone operator over sets. Since the arguments of the con-
structor are all of type Type;, the soundness result below will ensure that their
respective interpretations are elements of (i) and thus this monotone operator
will actually admit a least fix-point in 2((4).

The structural ordering of the elements of the inductive type is reflected
by a well-founded ordering of its interpretation. This gives rise to a natural
interpretation of the elimination schemes we do not detail here.

Soundness results We show our interpretation is defined and sound on well-
formed judgements. In order to treat the conversion rule, we first have to check
that the interpretation is stable by reduction. For matters of space we do not
detail the parts of the proof dealing with inductive types and the corresponding
reductions.

Lemma 5 (Substitution). Let I';(z : A);A ¢ :T and I' - a : A be two
derivable judgements. If v € |I'|, a € |I' + A|(y), a = |I" F a|(y), (v,a,0) €
| (z : A); Al and | (z: A); A Ft|(7y, @, 9) is defined, then so is |I'; Alz \ a] -
1z \ all(,8) and

|75 Alz \ a] F tlz \ a]|(v,0) = |I'; (z : A); A t|(7, a,0).
By induction over the proof that |I'; (z : A); A & ¢|(7y, @, d) is defined.

Lemma 6 (Subject reduction). Let I' - u : U be a derivable judgement. If
|I"| is defined and |I' b u|(y) is defined for any v in ||, if u >g u', then

I Fa'|(y) = T F ul(y)
and in particular, the left-hand part of the equation is defined.

By induction over the proof that |I" F u|(y) is defined (which follows the struc-
ture of u). The key case where u is the reduced redex is treated by the previous
lemma.

Corollary 7. Let 'Fu : U and I' - u' : U’ be two derivable judgements such
that |I'Fu : U|(y) and |T'F o' : U|(y) are defined for v € |I'|. Then

[T+ u'|(y) = [ F ul(y).

Immediate, by the previous lemma, subject reduction and confluence of >3.

2 Note however that we take advantage of the fact that every constructor awaits a fixed number
of arguments, which is always trues in CIC.



Theorem 8 (Soundness). Let I' -t : T be a derivable judgement. Then |I'|
is defined, and for any element vy of |I'|:

[T Et(y) € [I'FT|(y)

in particular, both objects are defined.

By induction over the structure of the derivation. The previous corollary takes
care of the conversion rule.

Corollary 9. There is no derivation of [| F I« : Prop.a.

Definition 10. A well-formed context I is said to be consistent if and only if
|I'| is not empty.

Remark 11. If a context I is consistent, there is no derivation of I' F T« :
Prop.a.

Definition 12. We call Type-theoretical Description Aziom on level i (TTDA;)
the following proposition:

ITA,B : Type; lIP: A — B — Prop.(Ila: A.3b: B.(P a b)) =
3f:A— B.(Illa: A(P a (f a)))

Theorem 13. The following context built up from instances of TTDA; and the
excluded middle is consistent:

(e : IIP : Prop.PV —P); (a1 : TTDA,);(as : TTDA,);...;(a, : TTDA,)

It is obvious that | II P : Prop.PV—P| = 1. One easily checks that |[TTDA;| = 11is
equivalent to the usual set-theoretical axiom of choice; it is thus considered true,
since we work in ZFC?. The following alternative type-theoretic formulation of
the choice axiom will also be useful.

Definition 14. We call Type-theoretical Choice Axiom on the level i (TTCA;)
the following proposition:

3

ITA : Type;.JIR: A — A — Prop.(equiv A R) —
Af A Allz,y: A(Rzy)—= (fz)=a(fy)

where (equiv A R) expresses that R is an equivalence relation over A, namely:

equiv := AA: Type;.AR: A —- A — Prop.
((z - A)(R = x))
A((z,y: A)(Rzy) = (Ry x))
Ay, z: A)(Rzy) = (Ryz) = (Rz2)
3 To be precise, the interpretation of TTDA; is equivalent to the axiom of choice restricted to

the elements of 2((4); it is however an easy and usual result that the latter is a consequence
of the general set-theoretical axiom of choice.



Again, one easily checks that |TTCA;| = 1 is a consequence of the axiom of
choice. We might thus conclude:

Theorem 15. The following context built up from instances of TTDA;, TTCA;
and the excluded middle is consistent:

(e : IIP: Prop.PV —P); (a; : TTDAy);(az : TTDA,);...;(a, : TTDA,);
(a1 : TTCAy); (ag : TTCAs);...5(ay, : TTCA,.

Let us write CIC; for the fragment of CIC where we only use universes up to
Type;, and ZFC; for ZFC equipped with 7 inaccessible cardinals. We can remark
that we can build the interpretation for CIC; using only ¢ —1 inaccessibles; which
allows us to state a finer version of the theorem:

Theorem 16. If ZFC;_ is consistent, then so is the following context of CIC;:

(e : IIP: Prop.PN —P); (a1 : TTDA,); (az : TTDA>);...;(an : TTDA,);
(a1 : TTCAy);(ag : TTCAs);...;(a, : TTCA,.

3.4 Comment

The type-theoretical description axiom is valid in the model because the set-
theoretical axiom of choice is valid in ZFC, but also, and mainly, because the
function type ITx : A.B is interpreted by the full space of set-theoretical func-
tions. Actually we might view the hypothesis TTDA as a way to express, in the
type theory, that the model is full. In the next section we develop this point by
showing that TTDA is actually a sufficient constraint to force the model to be
full, since adding TTDA to the type theory allows to encode full ZF.

It is certainly not obvious how to build a model for the Calculus of Inductive
Constructions which would not be full (and not require the existence of inacces-
sibles). Actually, it is, to our knowledge, an open problem whether this is at all
possible.

We should also say a word about the link with normalization proofs. Al-
tenkirch [4] has presented a new technique in which proving normalization for
a type theory essentially boils down to the construction of a certain kind of
model. This idea has been used by Mellies and Werner in a normalization proof
for Pure Type Systems [18]. Since, in the latter work, inductive types where not
considered, it was possible to avoid using inaccessibles at the cost of a notable
complication of the model construction. We mention this because such normal-
ization proofs can be particularly well be built up along the proof-irrelevance
interpretation. For matters of space, and since this is not the primary topic of
the present paper, we do not deal further with normalization here.

4 Encoding ZFC in CIC

In this section, we present an adaptation of Peter Aczel’s encoding of set theory
in type theory. We have formalized and checked our version of the encoding using
the Coq theorem prover[21].



Before describing the technical differences with Aczel’s original work, we
should mention the different motivations that drive us here. Aczel uses Martin-
Lof predicative type theory; he wanted to demonstrate the pertinence this the-
ory as a foundational formalism and was mainly interested in constructivity.
It was therefore much more important to him to obtain a constructive type
theory than to study the links with the usual classical (and impredicative and
non-constructive) Zermelo-Fraenkel set theory. Here, we are more primitively
interested in “brute force” expressive power and impredicativity.

We parametrize our development by a universe index i. The reader might
find more details in the Coq proof-file [21] and Aczel’s original work [1-3].

4.1 The sets

Peter Aczel’s encoding is a beautyful and very refined piece of type theory. The
main idea is that sets can be build up inductively following the foundation axiom:
the elements are structurally smaller than the set which contains them.

Inductive Set : Type;,, :=
sup: ITA : Type;.(A — Set) — Set.

Intuitively (sup A f) is the set whose elements are the objects of the form
(f a) where a ranges over the type A; mixing type and set theory notations
we could write it {f(a),a : A}. Note that (sup A f) contains at most as many
elements as the type A (less if, for instance, f is a constant function).

A good first example is the construction of the pair-set, corresponding to the
set-theoretical axiom of pairing. Since the set {E, E'} has atmost two elements,
the obvious choice is to use the booleans as base type:

Definition Pair : Set — Set — Set :=
fun E; E5 — (sup bool (fun true — E;
| false = E»)).

Another one is the empty set, which uses the empty type*:

Definition Empty := (sup bot fun : bot — Set).

4.2 The propositions

Before we can prove the definitions above actually verify the corresponding set-
theoretic axioms, we have to decide how to translate the propositions of set
theory. Set theory is a first order theory with two (binary) predicates: member-
ship and equality. One first defines equality, by structural recursion, in a way
which captures the extentionality axiom:

Definition Eq : Set — Set — Prop :=
fun (sup A f) (sup B g) — ((IIa: A.3b: B.(Eq (f a) (g b)))
A (ITb: B3a: A.(Eq (f a) (g b))

4 The empty type bot is the inductive type with no constructor.



On top of this, one easily defines membership:

Definition In : Set — Set — Prop :=
fun E (sup A f) — Ja: A.(Eq E (f a)).

It is in these two last definitions that we made a choice different from Aczel’s:
we chose to represent the propositions of set theory by objects of type Prop as
opposed to Aczel who translates propositions to objects either of type Type; or
of type Type; ;.

In any case, given the two definitions above, we can check the construction of
the unordered pair actually is a witness of the corresponding axiom of Zermelo
set theory by proving the three following lemmas:

(A, B : Set)(In A (Pair A B)
(A, B : Set)(In B (Pair A B)
(A,B,C : Set)(In C (Pair A B) —» (Eq A C)V (Eq B O)

Note that equality over sets is not represented by the usual Leibniz equality.
Thus, we have to prove that all our encodings are extentional. For example:

ITA A" B :Set.(In AB)— (EqA A") — (In A" B).

4.3 Comparing the two approaches

From a constructive point of view, the main drawback of our encoding is that,
since we cannot extract the existential witness of existential proofs, it is to prove
3X : Set.(P X) and to actually exhibit a term E of type Set together with a
proof of (P E). A side effect is the difficulty we have proving the replacement
schemata as described in section 4.5.

The advantage is that, as opposed to Aczel, we gain unbounded quantifica-
tion (over all sets) thanks to impredicativity and avoid cumbersome distinctions
between restricted and unrestricted formulas, leading to various formulations of
the comprehension scheme.

We should however remark that in many cases, we can avoid relying on the
usual replacement scheme, using the higher-order features of CIC instead.

4.4 The other computational constructions

The other constructions underlying the set theory Z, namely union, comprehen-
sion scheme and the powerset can then be defined without difficulty. Possible



definitions are:

Definition Power : Set — Set — Set :=
fun E — (sup (Set — Prop)
AP : Set — Prop.(Compr P E)).

Definition Union : Set — Set :=
fun (sup A f) — (sup Xa: A.(m (f a))
fun(o a b) — (w2 (f a) b)).

Definition Comp : Set — (Set — Prop) — Set :=
fun (sup A f) = (sup Xa: A.(P (f a))
fun(o a p) — (f a)).

From there we can, for instance, define the intersection set in the usual way:

Definition Inter : Set — Set :=
fun E — (Comp (Union E) Xe : Set.ITa : Set.(In a E) — (In e a)).

Of course, one then has to check the usual properties for all these constructions.
A very nice construction is the set of natural numbers, corresponding to the
axiom of infinity, obtained using the type of natural numbers:

Definition enc : Nat — Set :=
O +— Empty
(S n) = (Union (Pair (enc n) (Power (enc n)))).

Definition NAT := (sup Nat enc).

All these definitions are basically Aczel’s ones, except the powerset which
obviously strongly relies on impredicativity. A first consequence is:

Theorem 17. The set theory Z can be encoded in CCL+EM.

4.5 Non-computational constructions: replacement and choice

The situation is more complicated regarding the replacement schemata and the
(set theoretical) axiom of choice. Both axioms rely on assumptions of the form
VA.3B..... Since we work with a non-computational existential quantifier, we
have no chance to actually build a set out of this assumption. We can however
prove, using TTDA, the set theoretical axiom. The proofs are quite straightfor-
ward but too long to be detailed here; we refer to the proof-file [21] for details.

Formulations of the replacement schemata The encoding of the following
collection scheme can be proven in CIC, assuming TTDA. It is parametrized by
a binary predicate P:

(VX .3V .P(X,Y))=VE.3A.(Va € E.3y € A. P(2,y)).

Furthermore, suppose P is a functional predicate, namely



Vo,y,y' . P(r,y) ANP(z,y') =y =1y

Then, assuming TTDA and the excluded middle, we can prove the usual replace-
ment, schemata:

VX .3Y . Vy.(y €Y < FJz e X.P(z,y)).
We can then state:

Theorem 18. The set theory ZF can be encoded in CCL+EM+TTDAs.

A possible encoding of the axiom of choice Let us, for instance, consider
the following formulation of the set-theoretical axiom of choice:

Let E be set such that:

— all elements of E are non-empty (i.e. bear one element)

— the intersection of two elements of E is non-empty

Then there exists a set X such that the intersection of X with any ele-
ment of E bears exactly one element.

Viewing this statement in the encoding, we may consider E is of the form
(sup A f). Using TTDA, we can prove the existence of a function g of type
A — Set, such that for any inhabitant a of type A, we have (In (g a) (f a)).
Suppose however that a and b are two different inhabitants of A, such that
(Eq (f a) (f b)); we cannot conclude that (Eq (g a) (g b)). The set (sup A4 g) is
therefore not an adequate witness for the axiom of choice: its intersection with
the element (f a) of E might possibly bear several elements (here (g a) and
(g b)). We have to further assume TTCA, to deal correctly with this extention-
ality problem and prove the lemma above. The conclusion then is:

Theorem 19. The set theory ZFC can be encoded in CCIl3 using the assump-
tions EM+TTDA3; TTCAs5.

4.6 Inaccessible Cardinals

Up to here, we have only used two universes Type; and Type,,,. As a conse-
quence CIC, (with axioms) is sufficient to encode ZFC. We now show that we
are able to build explicit encodings for inaccessible cardinals.

The idea is remarkably simple and builds on the only typing rule we have
not used so far, namely cumulativity. We duplicate the whole encoding in a new
universe; for simplicity of notations we suppose that i is at least 2 and redefine
sets one level below:

Inductive Set’ : Type; :=
sup’ : ITA : Type; ,.(A — Set') — Set'.

The new type Set’ then corresponds to (1), the set of “small sets” which
is obviously closed for all set-theoretical axioms. Indeed we have an obvious
injection from Set’ to Set:

Definition inj : Set’ — Set :=
fun (sup’ A f) > (sup A Xa: A.(inj (f a))).



And we can actually define the big set of small sets:
Big := (sup Set’ inj).

And, for instance, it is surprisingly simple to prove that Big is closed for the

powerset:
ITE : Set.(In E Big) — (In (Power E) Big).

Of course this duplication of the encoding can be repeated several times using
several universes.

At the current day, we have not explicitly proven in Coq the set Big implies
the existence of an inaccessible cardinal. The main reason is that this would
imply developing the whole theory of ordinals in ZFC encoded in Coq. Precisely,
such a development is under way, along the lines of Paul Taylor’s definition of
constructive ordinals [20]. It seems however reasonable to anticipate the formal
result of proving the existence of inaccessible ordinals in Coq, which is our final
relative consistency result:

Theorem 20. The set theory ZFC with n inaccessible cardinals can be encoded

CIC) 4o+ EM+TTDA, .

5 Conclusion

Building on ideas of Aczel, Coquand and others, we have presented two families
of relative consistency proofs between ZFC and CIC, depending on how many
inaccessible cardinals (resp. universes) we assume. This shows these two families
have interleaving logical strengths; the situation is summed up in the following
figure.

ZFCi+l | —> | CICi+2
Zrci | =2 g L oCICil
ZFC2 ,:, - v > CIC3
zrel | =2 g | CIC2

— / N

L = e L

Both proofs are quite simple in spirit, and even the details are still much less
cumbersome than what metatheoretical reasoning can often be.

Some work remains to be done. The formal proof of the existence of inacces-
sible cardinals of course, but also we believe the axioms used in coq in order to
encode ZF and ZFC might be slightly simplified. To be precise, we conjecture:

1. When encoding ZF in CIC, it should be possible to rely on a weaker (but
possibly more verbose) axiom than TTDA, whose justification unpleasantly
relies on the set-theoretic axiom of choice.



2. Along the lines of the Diaconescu-Goodman-Myhill paradox, it should be
possible to prove the excluded middle in CIC under the assumptions TTDA
and TTCA.

More generally, it remains an open problem, up-to-where choice axioms are nec-
essary for CIC to achieve the expressiveness of ZF or ZFC 5.

This work does not give birth to fundamental new concepts. We hope however
it helps to bring various pieces of mathematics together. Especially we believe it
sheds some new lights on the concept of type universes, which are often difficult
to grasp.
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