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t. We present two mutual en
odings, respe
tively of the Cal-
ulus of Indu
tive Constru
tions in Zermelo-Fr�nkel set theory and theopposite way. More pre
isely, we a
tually 
onstru
t two families of en-
odings, relating the number of universes in the type theory with thenumber of ina

essible 
ardinals in the set theory. The main result is thatboth hierar
hies of logi
al formalisms interleave w.r.t. expressive powerand thus are essentially equivalent. Both en
odings are quite elementary:type theory is interpreted in set theory through a generalization of Co-quand's simple proof-irrelevan
e interpretation. Set theory is en
oded intype theory using a variant of A
zel's en
oding; we have formally 
he
kedthis last part using the Coq proof assistant.1 Introdu
tionThis work is an attempt towards better understanding of the expressiveness ofpowerful type theories. We here investigate the Cal
ulus of Indu
tive Constru
-tions (CIC); this formalism is, with some variants, the one implemented in theproof systems Coq [6℄ and Lego. It is essentially a typed �-
al
ulus with thefollowing features:{ Dependent types, allowing the representation of propositions as types, throughthe Curry-Howard isomorphism.{ An impredi
ative level, i.e. the 
al
ulus is an extension of Girard's systemF , allowing polymorphi
 types and thus impredi
ative reasoning.{ A hierar
hy of predi
ative universes, quite similar to Martin-L�ofs' [17℄.{ Indu
tive types, generalizing the primitive integers of G�odel's system T .From the point of view of normalization and/or 
onsisten
y proofs, the 
om-bination of these di�erent features is still not fully understood. Known normal-ization proofs, as well as model 
onstru
tions, make use of ina

essible 
ardinals,i.e. go beyond usual set theory. The question we try to address in the presentwork is whether ina

essible 
ardinals are ne
essary to build a model of CIC,or equivalently whether CIC is as strong as usual Zermelo-Fr�nkel set theory(ZFC).In the next se
tion we present CIC in a more formal way. In se
tion 3 wegive an interpretation of CIC in ZFC; these semanti
s generalize Coquand's



proof-irrelevan
e semanti
s and are extremely straightforward. The number ofina

essible 
ardinals needed is exa
tly the number of universes of the modelizedtype theory. In se
tion 4, we do the reverse work by en
oding ZFC in CIC,adapting work of A
zel [1{3℄. We however have to assume a type-theoreti
alaxiom of 
hoi
e in CIC to be able to en
ode full ZFC. We then 
an en
ode ZFCwith n ina

essible 
ardinals in CIC equipped with n + 1 universes. This giveslead to ni
ely interleaving relative 
onsisten
y proofs. The situation is summedup in the 
on
lusion.The paper paper tries to be as self-
ontained as possible. For matters ofspa
e, we keep our des
ription of indu
tive types informal, relying on examplesand referring to the relevant publi
ations. Some basi
 notions of �-
al
ulus andset theory are required. The en
oding of set theory in CIC is not extensivelydes
ribed but has been formally 
he
ked on the Coq proof-assistant; the bravereader 
an 
he
k details looking at the proof-�les [21℄.2 De�nition of the Type TheoryWe give a presentation of the type theory in the style of Pure Type Systems(PTS, see [5℄). We distinguish two parts: the rules dealing with the formation offun
tion types, �-abstra
tion and appli
ation on one hand, and indu
tive typeson the other.2.1 Fun
tion typesThe sorts of the 
al
ulus are Prop and Typei where i is a stri
tly positive integer;we will generally use s to denote them:s := Prop j TypeiWe give ourselves a 
ountable set of variables, generally denoted by x; y; z; a; b,
,X , et
.The terms of the 
al
ulus are des
ribed by the following grammar:t := x j (t t) j �x : t:t j �x : t:tThe �rst three 
ases 
orrespond to the usual 
onstru
tors for �-terms: variable,appli
ation and typed abstra
tion. The term �x : A:B is the type of fun
tionsmapping terms of type A to type B. The value x of the argument might o

urin B sin
e the 
al
ulus allows dependent types. In the 
ase where x does noto

ur free in B, �x : A:B 
an be written A! B.We write t[x n u℄ for the term t in whi
h the free o

urren
es of the variablex are repla
ed by u. The substitution being de�ned the usual way. We write B�for the �-redu
tion whi
h is de�ned as the 
ontextual 
losure of:(�x : A:t u)!� t[x n u℄The re
exive, transitive and symmetri
 
losure of B� is 
alled �-
onversion,written =�.



(Prop) [℄ ` Prop : Type1 (Type i) [℄ ` Typei : Typei+1(Cum-Prop) � ` A : Prop� ` A : Typei (Cum i) � ` A : Typei� ` A : Typei+1(Pi-Prop j) � ` A : Prop � ; (x : A) ` B : Typej� ` �x : A:B : Typej(Pi i;j) � ` A : Typei � ; (x : A) ` B : Typej� ` �x : A:B : Typemax(i;j)(Impr) � ` A : Typei � ` P : Prop� ` �x : a:P : Prop(Lam) � ; (x : A) ` t : B � ` �x : A:B : s� ` �x : A:t : �x : A:B(App) � ` u : �x : A:B � ` v : A� ` (u v) : B[x n v℄(Conv) � ` u : A � ` B : s A =� B� ` u : BFig. 1. Rules for the fun
tional fragment of CICThe typing rules of the system are given for �gure 1. They 
orrespond toLuo's Extended Cal
ulus of Constru
tions1 des
ribed in [16℄.A well-formed type is a term of type some sort in a given 
ontext. The sortsTypei are 
alled the universes; they are hierar
hally embedded in ea
h otherthrough the 
umulativity rules Cumi. Universal quanti�
ation is represented bythe �-types. An important point is that in Prop, we 
an quantify over all uni-verses (impredi
ativity). In Typei however, quanti�
ation is restri
ted to typesliving below universe i, i.e. over terms of type Typej with j � i.2.2 Indu
tive typesIndu
tive types are a very important extension to a type system meant to for-malize a
tual mathemati
s. Among others, they are used to de�ne data typesand logi
al 
onne
tives and they play an essential role in the present work.Coquand and Paulin-Mohring [10℄ motivate this extension and give a formaldes
ription of generi
 indu
tive types. The Coq referen
e manual [6℄ 
ontains ades
ription of the 
urrently implemented version of indu
tive de�nitions due toPaulin-Mohring.1 Luo's ECC also in
ludes �-types whi
h are a parti
ular 
ase of the indu
tive types des
ribedbelow.



Notations An indu
tive type is the smallest type 
losed by a list of 
onstru
tors.The most well-known example is maybe the de�nition of unary integers:Indu
tive Nat : Type1 := O : Natj S : Nat! Nat:Whi
h de�nes three obje
ts Nat, O and S of the given types. To ea
h indu
-tive type are asso
iated elimination s
hemes 
orresponding to 
ase analysis andstru
tural re
ursion and indu
tion. In this 
ase the type of these s
hemes is:�P : Nat! s:(P O)! (�n : Nat:(P n)! (P (S n)))! �n : Nat:(P n)with s ranging over the sorts Prop and Typei.The redu
tion rules asso
iated to these s
hemes are de�ned as usual, and inthis 
ase 
orrespond to the re
ursor R of system T . In what follows however,we will generally not mention the elimination s
heme expli
itly and rather usea more expli
it ML-like notation whi
h, we believe is not ambiguous in the
onstru
tions treated below. For instan
e:De�nition add : Nat! Nat! Nat :=O n 7! nj (S p) n 7! (S (add p n)):Of 
ourse, the 
orresponding new redu
tion rules are taken into a

ount bythe 
onversion rule Conv; for instan
e (add (S O) (S O)) and (S (S O)) areidenti�ed.Restri
tions Two main restri
tions assure that indu
tive de�nitions do notendanger the 
onsisten
y of the system. The �rst one is well-known and of syn-ta
ti
al nature: re
ursive arguments must o

ur in stri
tly positive position inthe type of 
onstru
tors; see [10℄ for details. Typi
aly the following de�nition isprohibited sin
e the �rst o

urren
e of foo in the type of C is negative:Indu
tive foo : Typei :=C : (foo! foo)! foo:Semanti
ally, the positivity 
ondition ensures that the indu
tive de�nition
orresponds to the least �x-point of a monotone operator.The se
ond restri
tion is more interesting and essential to what follows. Ifthe indu
tive type is of type Typei, then all arguments of its 
onstru
tors mustlive in the same universe or lower, i.e. using the 
umulativity rule, the argumentsof the 
onstru
tors must be themselves of type Typei. Releasing this restri
tionwould allow the 
onstru
tion of paradoxes and break the 
onsisten
y of thesystem; see [8℄ for instan
e. The ne
essity for this restri
tion will also appearquite 
learly in the proof-irrelevan
e interpretation and some of its 
onsequen
esare shown in the next paragraph.



Two de�nitions of the existential An important point is that, in this paper,we do not use indu
tive de�nitions of type Prop. Some propositions 
ertainly arede�ned indu
tively, but they 
an be 
onstru
ted using an impredi
ative en
oding.The key example is the existential quanti�
ation. Given A : Typei and P : A! swe de�ne the proposition 9a : A:(P a) as:Indu
tive 9a : A:(P a) : Prop := 9 i : (a : A)(P a)! 9a : A:(P a):But this indu
tive de�nition is exa
tly equivalent to:De�nition 9a : A:(P a) := �X : Prop:(�a : A:(P a)! X)! X:The important point is that there are no elimination rules of indu
tive propo-sitions towards Typei.There is however an alternative de�nition for the existential quanti�er, name-ly the �-type living in Typei:Indu
tive �a : A:(P a) : Typei := � : (a : A)(P a)! 9a : A:(P a):Ea
h of these two de�nitions has it advantages and drawba
ks. In the �rst
ase, the existential lives at the bottom of the universe hierar
hy, and thus we
an always quantify over it, wherever we are. On the other hand, we 
annotextra
t the witness of an existential proof: proving 9a : A:(P a) does not meanthat we 
an exhibit a term of type A.In the 
ase of the �-type, we are able to de�ne � su
h that (� (� a p)) B a.But we 
annot 
onsider this �-type in types living lower in the hierar
hy.We 
an noti
e that if one does not use the impredi
ative level in CIC, theresulting theory is, in spirit, very 
lose to the one of Martin-L�of [17℄. The way weview the impredi
ative level in the present work is similar to Chur
h's Higher-Order Logi
: the obje
ts live in the predi
ative levels, and Prop is used to expressproperties about them; we 
annot however build obje
ts out of proofs. This ideais obvious in the proof-irrelevan
e semanti
s.3 Proof-Irrelevan
e Semanti
s for CIC3.1 General IdeaIn this se
tion, we will write 0 for the empty set, and 1 for the 
anoni
al singletonf0g.Sin
e Reynolds [19℄, it is well-known that \polymorphism is not set-theoreti
",i.e. it is not possible to interpret impredi
ative types (here of type Prop) by set-s. This will however be possible for the predi
ative fragment of our theory, inwhi
h the obje
ts live. The proof-irrelevan
e semanti
s are an interpretation ofthe type theory in 
lassi
al set theory following two simple ideas:{ Propositions are interpreted either by the empty set or by a 
anoni
al s-ingleton, depending upon their validity in the model. As a 
onsequen
e allproof-terms are identi�ed. In the same way, the interpretation of Prop isf0; 1g.



{ On the predi
ative level, types are simply interpreted as sets. In parti
ularthe fun
tion type �x : A:B is interpreted by the full set of set-theoreti
fun
tion between the interpretations of A and B.The ideas of these interpretation are very 
ommon. They 
an be found, forinstan
e, in [9,11,13℄.We will 
all A(i) the interpretation of Typei. From the se
ond assertion aboveand the typing rule Pii;i we need the following 
losure 
ondition:8A;B 2 A(i):BA 2 A(i):In parti
ular this implies that 2A 2 A(i), sin
e jPropj = f0; 1g 2 A(i). It isa
tually not too diÆ
ult to 
he
k that the existen
e of a set A(i) verifying the(�rst) 
losure 
ondition above implies the existen
e of an ina

essible 
ardinal.3.2 Ina

essible 
ardinalsIn what follows, we will assume the existen
e of an ina

essible 
ardinal to buildthe interpretation of ea
h universe. The notions of set theory used are quite
ommon (see [14,15℄ for instan
e).De�nition 1 (Ina

essible 
ardinal). An in�nite 
ardinal � is said to be i-na

essible if and only if:{ For any 
ardinal � < �, 2� < �.{ Let (�i)i2I be a family of 
ardinals < � indexed by a 
ardinal I < �; thensupi2i(�i) < �.The main idea behind the notion of ina

essible 
ardinal is that its existen
eallows the 
onstru
tion of a set whi
h is a itself a model of ZFC. It thereforeenhan
es the expressive power of the theory. The following 
onstru
tions areusual in the literature.We write P for the powerset.De�nition 2. For every ordinal �, we de�ne a set V� by indu
tion over �:{ V0 � 0{ V� � S�<�P(V�) if � > 0.The following result is a 
onsequen
e of the foundation axiom and the proofsare well-known.De�nition 3 (Rank of a set). For every set X , there exists a smallest ordinal� su
h that X 2 V�. � is 
alled the rank of X , written rk(X).Lemma 4. If � is an ina

essible 
ardinal, then V� veri�es the axioms of ZFC.In parti
ular if A 2 V� and for every a 2 A, Ba 2 V�, then �a2ABA 2 V�.



3.3 The InterpretationFrom here on, we assume the existen
e of an in
reasing sequen
e of ina

essible
ardinals (�i)i2N. For every i we de�ne A(i) � Vi.We 
an now de�ne the interpretation. The interpretation j� j of a 
ontext� of length n is a set of n-tuples. The interpretation j� ` tj of a judgement� ` t : T does not depend upon T and is a fun
tion of domain j� j.As often for similar 
onstru
tions, [4,18℄ among others, we �rst de�ne theinterpretation as a partial fun
tion. The de�nition is a stru
tural indu
tion overthe syntax; here, P ex
lusively denotes propositions (
lauses 3 and 4):j[℄j � 1 (1)j� ; (x : A)j � f(
; �); 
 2 j� j ^ � 2 j� ` Aj(
)g (2)j� ` pj(
) � 0 if p is a proof in � (3)j� ` �x : A:P j(
) � 1 if 8� 2 j� ` Aj(
):j� ; (x : A) ` P j(
; �) = 1 (4)j� ` �x : A:P j(
) � 0 if 9� 2 j� ` Aj(
):j� ; (x : A) ` P j(
; �) = 0 (5)j� ` �x : A:T j(
) � ��2j�`Aj(
)j� ; (x : A) ` T j(
; �) (6)j� ` Propj(
) � f0; 1g (7)j� ` Typeij(
) � A(i) (8)j� ` �x : A:Bj(
) � a 2 jAjI 7! jBjI;x a (9)j� ` (u v)j(
) � juj(
)(jvj(
)) (10)j� ` xj(
) � 
i (11)Interpretation of indu
tive types The interpretation of ea
h indu
tive typeis de�ned indu
tively, in the set-theoreti
al sense. Again, we avoid detailing atedious generi
 de�nitions and 
on
entrate on an example; 
onsider the de�nitionof lists: Indu
tive list : Typei := nil : listj 
ons : A! list! list:where A : Typei. We en
ode the 
onstru
tor using set-theoreti
al natural num-bers 0,1,2. . . . The set jlistj is (if it exists) the smallest subset of A(i) verifying:{ 0 2 jlistj{ if a 2 jAj and l 2 jlistj, then (1; a; l) 2 jlistj.The two 
lauses 
orrespond to the two 
onstru
tors; the interpretation of thelatter is natural:{ jnilj � 0{ j(
ons a l)j � (1; jaj; jlj) or, to be pre
ise, the (
urry�ed) fun
tion whi
h toa 2 jAj and l 2 jlistj asso
iates (1; a; l).



Note that we deliberately omit the interpretation of the 
ontext in this ex-ample, sin
e they do not play a relevant role and would 
ompli
ate notations.This interpretation generalizes smoothly to de�nitions with arbitrary many 
on-stru
tors of arbitrary arity2.The stri
t positivity 
ondition assures that the indu
tive de�nition above
orresponds to a monotone operator over sets. Sin
e the arguments of the 
on-stru
tor are all of type Typei, the soundness result below will ensure that theirrespe
tive interpretations are elements of A(i) and thus this monotone operatorwill a
tually admit a least �x-point in A(i).The stru
tural ordering of the elements of the indu
tive type is re
e
tedby a well-founded ordering of its interpretation. This gives rise to a naturalinterpretation of the elimination s
hemes we do not detail here.Soundness results We show our interpretation is de�ned and sound on well-formed judgements. In order to treat the 
onversion rule, we �rst have to 
he
kthat the interpretation is stable by redu
tion. For matters of spa
e we do notdetail the parts of the proof dealing with indu
tive types and the 
orrespondingredu
tions.Lemma 5 (Substitution). Let � ; (x : A);� ` t : T and � ` a : A be twoderivable judgements. If 
 2 j� j, � 2 j� ` Aj(
), � = j� ` aj(
), (
; �; Æ) 2j� ; (x : A);�j and j� ; (x : A);� ` tj(
; �; Æ) is de�ned, then so is j� ;�[x n a℄ `t[x n a℄j(
; Æ) andj� ;�[x n a℄ ` t[x n a℄j(
; Æ) = j� ; (x : A);� ` tj(
; �; Æ):By indu
tion over the proof that j� ; (x : A);� ` tj(
; �; Æ) is de�ned.Lemma 6 (Subje
t redu
tion). Let � ` u : U be a derivable judgement. Ifj� j is de�ned and j� ` uj(
) is de�ned for any 
 in j� j, if u B� u0, thenj� ` u0j(
) = j� ` uj(
)and in parti
ular, the left-hand part of the equation is de�ned.By indu
tion over the proof that j� ` uj(
) is de�ned (whi
h follows the stru
-ture of u). The key 
ase where u is the redu
ed redex is treated by the previouslemma.Corollary 7. Let � ` u : U and � ` u0 : U 0 be two derivable judgements su
hthat j� ` u : U j(
) and j� ` u0 : U j(
) are de�ned for 
 2 j� j. Thenj� ` u0j(
) = j� ` uj(
):Immediate, by the previous lemma, subje
t redu
tion and 
on
uen
e of B� .2 Note however that we take advantage of the fa
t that every 
onstru
tor awaits a �xed numberof arguments, whi
h is always trues in CIC.



Theorem 8 (Soundness). Let � ` t : T be a derivable judgement. Then j� jis de�ned, and for any element 
 of j� j:j� ` tj(
) 2 j� ` T j(
)in parti
ular, both obje
ts are de�ned.By indu
tion over the stru
ture of the derivation. The previous 
orollary takes
are of the 
onversion rule.Corollary 9. There is no derivation of [℄ ` �� : Prop:�.De�nition 10. A well-formed 
ontext � is said to be 
onsistent if and only ifj� j is not empty.Remark 11. If a 
ontext � is 
onsistent, there is no derivation of � ` �� :Prop:�.De�nition 12. We 
all Type-theoreti
al Des
ription Axiom on level i (TTDAi),the following proposition:�A;B : Typei:�P : A! B ! Prop:(�a : A:9b : B:(P a b))!9f : A! B:(�a : A:(P a (f a)))Theorem 13. The following 
ontext built up from instan
es of TTDAi and theex
luded middle is 
onsistent:(e : �P : Prop:P _ :P ); (a1 : TTDA1); (a2 : TTDA2); : : : ; (an : TTDAn)It is obvious that j�P : Prop:P_:P j = 1. One easily 
he
ks that jTTDAij = 1 isequivalent to the usual set-theoreti
al axiom of 
hoi
e; it is thus 
onsidered true,sin
e we work in ZFC3. The following alternative type-theoreti
 formulation ofthe 
hoi
e axiom will also be useful.De�nition 14. We 
all Type-theoreti
al Choi
e Axiom on the level i (TTCAi),the following proposition:�A : Typei:�R : A! A! Prop:(equiv A R)!9f : A! A:�x; y : A:(R x y)! (f x) =A (f y)where (equiv A R) expresses that R is an equivalen
e relation over A, namely:equiv := �A : Typei:�R : A! A! Prop:((x : A)(R x x))^ ((x; y : A)(R x y)! (R y x))^ ((x; y; z : A)(R x y)! (R y z)! (R x z))3 To be pre
ise, the interpretation of TTDAi is equivalent to the axiom of 
hoi
e restri
ted tothe elements of A(i); it is however an easy and usual result that the latter is a 
onsequen
eof the general set-theoreti
al axiom of 
hoi
e.



Again, one easily 
he
ks that jTTCAij = 1 is a 
onsequen
e of the axiom of
hoi
e. We might thus 
on
lude:Theorem 15. The following 
ontext built up from instan
es of TTDAi, TTCAiand the ex
luded middle is 
onsistent:(e : �P : Prop:P _ :P ); (a1 : TTDA1); (a2 : TTDA2); : : : ; (an : TTDAn);(a1 : TTCA1); (a2 : TTCA2); : : : ; (an : TTCAn:Let us write CICi for the fragment of CIC where we only use universes up toTypei, and ZFCi for ZFC equipped with i ina

essible 
ardinals. We 
an remarkthat we 
an build the interpretation for CICi using only i�1 ina

essibles; whi
hallows us to state a �ner version of the theorem:Theorem 16. If ZFCi�1 is 
onsistent, then so is the following 
ontext of CICi:(e : �P : Prop:P _ :P ); (a1 : TTDA1); (a2 : TTDA2); : : : ; (an : TTDAn);(a1 : TTCA1); (a2 : TTCA2); : : : ; (an : TTCAn:3.4 CommentThe type-theoreti
al des
ription axiom is valid in the model be
ause the set-theoreti
al axiom of 
hoi
e is valid in ZFC, but also, and mainly, be
ause thefun
tion type �x : A:B is interpreted by the full spa
e of set-theoreti
al fun
-tions. A
tually we might view the hypothesis TTDA as a way to express, in thetype theory, that the model is full. In the next se
tion we develop this point byshowing that TTDA is a
tually a suÆ
ient 
onstraint to for
e the model to befull, sin
e adding TTDA to the type theory allows to en
ode full ZF.It is 
ertainly not obvious how to build a model for the Cal
ulus of Indu
tiveConstru
tions whi
h would not be full (and not require the existen
e of ina

es-sibles). A
tually, it is, to our knowledge, an open problem whether this is at allpossible.We should also say a word about the link with normalization proofs. Al-tenkir
h [4℄ has presented a new te
hnique in whi
h proving normalization fora type theory essentially boils down to the 
onstru
tion of a 
ertain kind ofmodel. This idea has been used by Melli�es and Werner in a normalization prooffor Pure Type Systems [18℄. Sin
e, in the latter work, indu
tive types where not
onsidered, it was possible to avoid using ina

essibles at the 
ost of a notable
ompli
ation of the model 
onstru
tion. We mention this be
ause su
h normal-ization proofs 
an be parti
ularly well be built up along the proof-irrelevan
einterpretation. For matters of spa
e, and sin
e this is not the primary topi
 ofthe present paper, we do not deal further with normalization here.4 En
oding ZFC in CICIn this se
tion, we present an adaptation of Peter A
zel's en
oding of set theoryin type theory. We have formalized and 
he
ked our version of the en
oding usingthe Coq theorem prover[21℄.



Before des
ribing the te
hni
al di�eren
es with A
zel's original work, weshould mention the di�erent motivations that drive us here. A
zel uses Martin-L�of predi
ative type theory; he wanted to demonstrate the pertinen
e this the-ory as a foundational formalism and was mainly interested in 
onstru
tivity.It was therefore mu
h more important to him to obtain a 
onstru
tive typetheory than to study the links with the usual 
lassi
al (and impredi
ative andnon-
onstru
tive) Zermelo-Fr�nkel set theory. Here, we are more primitivelyinterested in \brute for
e" expressive power and impredi
ativity.We parametrize our development by a universe index i. The reader might�nd more details in the Coq proof-�le [21℄ and A
zel's original work [1{3℄.4.1 The setsPeter A
zel's en
oding is a beautyful and very re�ned pie
e of type theory. Themain idea is that sets 
an be build up indu
tively following the foundation axiom:the elements are stru
turally smaller than the set whi
h 
ontains them.Indu
tive Set : Typei+1 :=sup : �A : Typei:(A! Set)! Set:Intuitively (sup A f) is the set whose elements are the obje
ts of the form(f a) where a ranges over the type A; mixing type and set theory notationswe 
ould write it ff(a); a : Ag. Note that (sup A f) 
ontains at most as manyelements as the type A (less if, for instan
e, f is a 
onstant fun
tion).A good �rst example is the 
onstru
tion of the pair-set, 
orresponding to theset-theoreti
al axiom of pairing. Sin
e the set fE;E0g has atmost two elements,the obvious 
hoi
e is to use the booleans as base type:De�nition Pair : Set! Set! Set :=fun E1 E2 7! (sup bool (fun true 7! E1j false 7! E2)):Another one is the empty set, whi
h uses the empty type4:De�nition Empty := (sup bot fun : bot! Set):4.2 The propositionsBefore we 
an prove the de�nitions above a
tually verify the 
orresponding set-theoreti
 axioms, we have to de
ide how to translate the propositions of settheory. Set theory is a �rst order theory with two (binary) predi
ates: member-ship and equality. One �rst de�nes equality, by stru
tural re
ursion, in a waywhi
h 
aptures the extentionality axiom:De�nition Eq : Set! Set! Prop :=fun (sup A f) (sup B g) 7! ((�a : A:9b : B:(Eq (f a) (g b)))^ (�b : B:9a : A:(Eq (f a) (g b))))4 The empty type bot is the indu
tive type with no 
onstru
tor.



On top of this, one easily de�nes membership:De�nition In : Set! Set! Prop :=fun E (sup A f) 7! 9a : A:(Eq E (f a)):It is in these two last de�nitions that we made a 
hoi
e di�erent from A
zel's:we 
hose to represent the propositions of set theory by obje
ts of type Prop asopposed to A
zel who translates propositions to obje
ts either of type Typei orof type Typei+1.In any 
ase, given the two de�nitions above, we 
an 
he
k the 
onstru
tion ofthe unordered pair a
tually is a witness of the 
orresponding axiom of Zermeloset theory by proving the three following lemmas:(A;B : Set)(In A (Pair A B)(A;B : Set)(In B (Pair A B)(A;B;C : Set)(In C (Pair A B)! (Eq A C) _ (Eq B C)Note that equality over sets is not represented by the usual Leibniz equality.Thus, we have to prove that all our en
odings are extentional. For example:�A;A0; B : Set:(In A B)! (Eq A A0)! (In A0 B):4.3 Comparing the two approa
hesFrom a 
onstru
tive point of view, the main drawba
k of our en
oding is that,sin
e we 
annot extra
t the existential witness of existential proofs, it is to prove9X : Set:(P X) and to a
tually exhibit a term E of type Set together with aproof of (P E). A side e�e
t is the diÆ
ulty we have proving the repla
ements
hemata as des
ribed in se
tion 4.5.The advantage is that, as opposed to A
zel, we gain unbounded quanti�
a-tion (over all sets) thanks to impredi
ativity and avoid 
umbersome distin
tionsbetween restri
ted and unrestri
ted formulas, leading to various formulations ofthe 
omprehension s
heme.We should however remark that in many 
ases, we 
an avoid relying on theusual repla
ement s
heme, using the higher-order features of CIC instead.4.4 The other 
omputational 
onstru
tionsThe other 
onstru
tions underlying the set theory Z, namely union, 
omprehen-sion s
heme and the powerset 
an then be de�ned without diÆ
ulty. Possible



de�nitions are:De�nition Power : Set! Set! Set :=fun E 7! (sup (Set! Prop)�P : Set! Prop:(Compr P E)):De�nition Union : Set! Set :=fun (sup A f) 7! (sup �a : A:(�1 (f a))fun(� a b) 7! (�2 (f a) b)):De�nition Comp : Set! (Set! Prop)! Set :=fun (sup A f) 7! (sup �a : A:(P (f a))fun(� a p) 7! (f a)):From there we 
an, for instan
e, de�ne the interse
tion set in the usual way:De�nition Inter : Set! Set :=fun E 7! (Comp (Union E) �e : Set:�a : Set:(In a E)! (In e a)):Of 
ourse, one then has to 
he
k the usual properties for all these 
onstru
tions.A very ni
e 
onstru
tion is the set of natural numbers, 
orresponding to theaxiom of in�nity, obtained using the type of natural numbers:De�nition en
 : Nat! Set :=O 7! Empty(S n) 7! (Union (Pair (en
 n) (Power (en
 n)))):De�nition NAT := (sup Nat en
):All these de�nitions are basi
ally A
zel's ones, ex
ept the powerset whi
hobviously strongly relies on impredi
ativity. A �rst 
onsequen
e is:Theorem 17. The set theory Z 
an be en
oded in CCI2+EM.4.5 Non-
omputational 
onstru
tions: repla
ement and 
hoi
eThe situation is more 
ompli
ated regarding the repla
ement s
hemata and the(set theoreti
al) axiom of 
hoi
e. Both axioms rely on assumptions of the form8A:9B: : : :. Sin
e we work with a non-
omputational existential quanti�er, wehave no 
han
e to a
tually build a set out of this assumption. We 
an howeverprove, using TTDA, the set theoreti
al axiom. The proofs are quite straightfor-ward but too long to be detailed here; we refer to the proof-�le [21℄ for details.Formulations of the repla
ement s
hemata The en
oding of the following
olle
tion s
heme 
an be proven in CIC, assuming TTDA. It is parametrized bya binary predi
ate P :(8X : 9Y : P (X;Y ))) 8E : 9A : (8x 2 E : 9y 2 A : P (x; y)):Furthermore, suppose P is a fun
tional predi
ate, namely



8x; y; y0 : P (x; y) ^ P (x; y0)) y = y0:Then, assuming TTDA and the ex
luded middle, we 
an prove the usual repla
e-ment s
hemata:8X : 9Y : 8y : (y 2 Y () 9x 2 X : P (x; y)):We 
an then state:Theorem 18. The set theory ZF 
an be en
oded in CCI2+EM+TTDA3.A possible en
oding of the axiom of 
hoi
e Let us, for instan
e, 
onsiderthe following formulation of the set-theoreti
al axiom of 
hoi
e:Let E be set su
h that:{ all elements of E are non-empty (i.e. bear one element){ the interse
tion of two elements of E is non-emptyThen there exists a set X su
h that the interse
tion of X with any ele-ment of E bears exa
tly one element.Viewing this statement in the en
oding, we may 
onsider E is of the form(sup A f). Using TTDA, we 
an prove the existen
e of a fun
tion g of typeA ! Set, su
h that for any inhabitant a of type A, we have (In (g a) (f a)).Suppose however that a and b are two di�erent inhabitants of A, su
h that(Eq (f a) (f b)); we 
annot 
on
lude that (Eq (g a) (g b)). The set (sup A g) istherefore not an adequate witness for the axiom of 
hoi
e: its interse
tion withthe element (f a) of E might possibly bear several elements (here (g a) and(g b)). We have to further assume TTCA, to deal 
orre
tly with this extention-ality problem and prove the lemma above. The 
on
lusion then is:Theorem 19. The set theory ZFC 
an be en
oded in CCI3 using the assump-tions EM+TTDA3TTCA3.4.6 Ina

essible CardinalsUp to here, we have only used two universes Typei and Typei+1. As a 
onse-quen
e CIC2 (with axioms) is suÆ
ient to en
ode ZFC. We now show that weare able to build expli
it en
odings for ina

essible 
ardinals.The idea is remarkably simple and builds on the only typing rule we havenot used so far, namely 
umulativity. We dupli
ate the whole en
oding in a newuniverse; for simpli
ity of notations we suppose that i is at least 2 and rede�nesets one level below:Indu
tive Set0 : Typei :=sup0 : �A : Typei�1:(A! Set0)! Set0:The new type Set0 then 
orresponds to A(1), the set of \small sets" whi
his obviously 
losed for all set-theoreti
al axioms. Indeed we have an obviousinje
tion from Set0 to Set:De�nition inj : Set0 ! Set :=fun (sup0 A f) 7! (sup A �a : A:(inj (f a))):



And we 
an a
tually de�ne the big set of small sets:Big := (sup Set0 inj):And, for instan
e, it is surprisingly simple to prove that Big is 
losed for thepowerset: �E : Set:(In E Big)! (In (Power E) Big):Of 
ourse this dupli
ation of the en
oding 
an be repeated several times usingseveral universes.At the 
urrent day, we have not expli
itly proven in Coq the set Big impliesthe existen
e of an ina

essible 
ardinal. The main reason is that this wouldimply developing the whole theory of ordinals in ZFC en
oded in Coq. Pre
isely,su
h a development is under way, along the lines of Paul Taylor's de�nition of
onstru
tive ordinals [20℄. It seems however reasonable to anti
ipate the formalresult of proving the existen
e of ina

essible ordinals in Coq, whi
h is our �nalrelative 
onsisten
y result:Theorem 20. The set theory ZFC with n ina

essible 
ardinals 
an be en
odedinCICn+2+EM+TTDAn+2.5 Con
lusionBuilding on ideas of A
zel, Coquand and others, we have presented two familiesof relative 
onsisten
y proofs between ZFC and CIC, depending on how manyina

essible 
ardinals (resp. universes) we assume. This shows these two familieshave interleaving logi
al strengths; the situation is summed up in the following�gure.
ZFC0

ZFC1

ZFC2

ZFCi

ZFCi+1

CIC3

CICi+2

CICi+1

CIC2

CIC1Both proofs are quite simple in spirit, and even the details are still mu
h less
umbersome than what metatheoreti
al reasoning 
an often be.Some work remains to be done. The formal proof of the existen
e of ina

es-sible 
ardinals of 
ourse, but also we believe the axioms used in 
oq in order toen
ode ZF and ZFC might be slightly simpli�ed. To be pre
ise, we 
onje
ture:1. When en
oding ZF in CIC, it should be possible to rely on a weaker (butpossibly more verbose) axiom than TTDA, whose justi�
ation unpleasantlyrelies on the set-theoreti
 axiom of 
hoi
e.



2. Along the lines of the Dia
ones
u-Goodman-Myhill paradox, it should bepossible to prove the ex
luded middle in CIC under the assumptions TTDAand TTCA.More generally, it remains an open problem, up-to-where 
hoi
e axioms are ne
-essary for CIC to a
hieve the expressiveness of ZF or ZFC 5.This work does not give birth to fundamental new 
on
epts. We hope howeverit helps to bring various pie
es of mathemati
s together. Espe
ially we believe itsheds some new lights on the 
on
ept of type universes, whi
h are often diÆ
ultto grasp.A
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