Families of Hyperelliptic Curves with Real Multiplication

Familles de courbes hyperelliptiques à multiplications réelles

 Arithmetic algebraic geometry (Texel, 1989), Progr. Math. 89 (Birkhäuser Boston, 1991)

J.-F. Mestre

Translated from the French by Benjamin Smith

This version was compiled on February 9, 2012

For all integers \(n \), we let \(G_n \) denote the polynomial

\[
G_n(T) = \prod_{k=1}^{\lfloor n/2 \rfloor} \left(T - 2 \cos \left(\frac{2k\pi}{n} \right) \right),
\]

where \(\lfloor x \rfloor \) denotes the integer part of \(x \). We say that a curve \(C \) of genus \(\lfloor n/2 \rfloor \), defined over a field \(k \), has real multiplication by \(G_n \) if there exists a correspondence \(\mathcal{C} \) on \(C \) such that \(G_n \) is the characteristic polynomial of the endomorphism induced by \(\mathcal{C} \) on the regular differentials on \(C \).

The endomorphism ring of the Jacobian \(J_C \) of such a curve \(C \) contains a subring isomorphic to \(\mathbb{Z}[X]/(G_n(X)) \) whose elements are invariant under the Rosati involution. In particular, if \(n \) is an odd prime, then \(J_C \) has real multiplication by \(\mathbb{Z}[2\cos \frac{2\pi}{n}] \) in the usual terminology (see [9], for example).

In this article we construct, for all integers \(n \geq 4 \), a 2-dimensional family of hyperelliptic curves of genus \(\lfloor n/2 \rfloor \) defined over \(\mathbb{C} \) with real multiplication by \(G_n \). More precisely, for every elliptic curve \(E \) defined over a field \(k \) of characteristic zero together with a 2-rational cyclic subgroup \(G \) of order \(n \) we define a one-parameter family of hyperelliptic curves of genus \(\lfloor n/2 \rfloor \) defined over \(k \) with real multiplication by \(G_n \). If \(G \) is generated by a 2-rational point, then the associated correspondence is \(2 \)-rational.

In the case \(n = 5 \) we recover a known construction, due to Humbert (cf. for example [5, p. 374], [10, p. 20], and also [2]), which we recall here: let \(X \) be a curve of genus 2 whose Jacobian has real multiplication by \(G_5 \). More generally, for each isogeny \(f : E_1 \to E_2 \) of elliptic curves defined over a field \(k \) we define a hyperelliptic curve \(C_f \) over \(k(T) \), where \(T \) is a free parameter; for each element \(R \) of the kernel of \(f \) there is an associated correspondence \(\mathcal{C}_R \) on \(C_f \), such that the characteristic polynomial of the endomorphism induced by \(\mathcal{C}_R \) on the regular differentials on \(C_f \) is a product of polynomials \(G_m \).

We construct the family of hyperelliptic curves mentioned above in §1. More generally, for each isogeny \(f : E_1 \to E_2 \) of elliptic curves defined over a field \(k \) we define a hyperelliptic curve \(C_f \) over \(k(T) \), where \(T \) is a free parameter; for each element \(R \) of the kernel of \(f \) there is an associated correspondence \(\mathcal{C}_R \) on \(C_f \), such that the characteristic polynomial of the endomorphism induced by \(\mathcal{C}_R \) on the regular differentials on \(C_f \) is a product of polynomials \(G_m \).

We give some examples based on some isogenies with cyclic kernels in §2. For \(n = 5, 7, 9 \), the curve \(X_1(n) \) classifying elliptic curves equipped with a point of order \(n \) is \(\mathbb{Q} \)-isomorphic to the projective line.
In these cases, we obtain a two-parameter family, defined over \(\mathbb{Q} \), of curves of genus 2 (resp. 3, resp. 4) with real multiplication by \(G_5 \) (resp. \(G_7 \), resp. \(G_6 \)). We give these families an explicit description, and examine also the case where \(n = 13 \): we derive a 2-parameter family, defined over \(\mathbb{Q} \), of hyperelliptic curves of genus 6 whose Jacobians have real multiplication by \(G_{13} \), but where the corresponding endomorphisms are not in general defined over \(\mathbb{Q} \). We examine the curves \(C_f \) associated with isogenies \(f \) of even degree in \2.2. The fact that \(X_1(8) \) (resp. \(X_1(12) \)) is \(\mathbb{Q} \)-isomorphic to \(\mathbb{P}^1 \) implies the existence of a 2-parameter family, defined over \(\mathbb{Q} \), of abelian surfaces with real multiplication by \(\mathbb{Z}[\sqrt{2}] \) (resp. \(\mathbb{Z}[\sqrt{3}] \)).

In §3, we show that the preceding constructions permit us to obtain, for all primes \(p \equiv \pm 2 \mod 5 \), a regular extension of \(\mathbb{Q}(T) \) with Galois group \(\text{PSL}_2(\mathbb{F}_p^2) \).

I would like to thank J.-P. Serre for the invaluable help that he kindly gave me throughout this work.

1 The curves \(C_f \)

Let \(E_1 \) and \(E_2 \) be two elliptic curves defined over a field \(k \) of characteristic zero, let \(x_1 \) (resp. \(x_2 \)) be a function on \(E_1 \) (resp. \(E_2 \)) with a double pole at \(0_{E_1} \) (resp. \(0_{E_2} \)), and let \(f : E_1 \to E_2 \) be an isogeny of degree \(n \), defined over \(k \), with kernel \(G \).

Let \(u \) be the function of degree \(n \) such that the following diagram commutes:

\[
\begin{array}{ccc}
E_1 & \xrightarrow{f} & E_2 \\
x_1 \downarrow & & \downarrow x_2 \\
p^1 & \xrightarrow{u} & p^1
\end{array}
\]

We say that \(u \) is the “abscissa function”\(^1\) of \(f \). We let \(C_f \) denote the hyperelliptic curve over \(K = k(T) \), where \(T \) is a free parameter, defined by the affine equation

\[C_f : y^2 = u(x) - T. \]

If \(P_T \) is a point of \(E_1(\overline{K}) \) such that \(x_2(f(P_T)) = T \), then \(C_f \) is a double covering of \(\mathbb{P}^1 \) ramified at the points \(x_1(P_T + R) \) for each \(R \) in \(G \), and at the points \(x_1(S) \) for each point \(S \) in \(G \) satisfying \(|2|S = 0 \). As a result, we have the following proposition.

Proposition 1. The genus of the hyperelliptic curve \(C_f \) is equal to \((n + m - 1)/2\), where \(n \) is the cardinality of \(G \), and \(m \) is the number of points of order 2 of \(G \).

1.1 The covering associated with the composition of two isogenies

Let \(E_1, E_2 \) and \(E_3 \) be three elliptic curves, and for each \(i = 1, 2, 3 \) let \(x_i \) be a function of order 2 on \(E_i \) with a double pole at \(0_{E_i} \). If \(f_1 : E_1 \to E_2 \) is an isogeny of degree \(n_1 \) and \(f_2 : E_2 \to E_3 \) an isogeny of degree \(n_2 \), then we let \(f \) denote the isogeny \(f_2 \circ f_1 : E_1 \to E_3 \), and we let \(u \) (resp. \(u_1 \), resp. \(u_2 \)) denote the abscissa function of \(f \) (resp. \(f_1 \), resp. \(f_2 \)). We have \(u = u_2 \circ u_1 \).

The mapping

\[(x, y) \mapsto (u_1(x), y) \]

defines a degree-\(n_1 \) covering from the curve \(C_f : y^2 = u(x) - T \) to the curve \(C_{f_2} : y^2 = u_2(x) - T \). This allows us to partially reduce the study of the curves \(C_f \) to the study of the various curves \(C_g \), where \(g \) is an isogeny factoring \(f \).

Example 1. Let \(E \) be an elliptic curve, and \(f : E \to E \) the multiplication by 6 map on \(E \). The genus of \(C_f \) is 19, and there exist 19 isogenies \(g : F \to E \) with cyclic kernel such that there exists an isogeny \(h : E \to F \) with \(g \circ h = [6] \):

- Three of degree 2: the associated curves \(C_g \) have genus 1; we denote them \(E_1, E_2, E_3 \).

\(^1\)“équation aux abscisses” in the original
• Four of degree 3: the associated curves \(C_g \) also have genus 1; we denote them \(F_1, F_2, F_3, F_4 \).

• Finally, the other twelve are of degree 6: the associated curves \(C_g \) have genus 3, and each covers a curve corresponding to a 2-isogeny and a curve corresponding to a 3-isogeny. The Jacobian of \(C_g \) is therefore isogenous to a product of three elliptic curves: one of type \(E_i \), one of type \(F_i \), and one new curve, which we denote \(G_i \) (for \(i = 1, \ldots, 12 \)).

In this way we obtain a homomorphism

\[
J_{C_f} \rightarrow \prod E_i \times \prod F_i \times \prod G_i,
\]

defined over \(k'(T) \), where \(k' \) is the extension of \(k \) obtained by adjoining the points of order 6. This homomorphism is an isogeny; we may prove this using the correspondences on \(f \) function of \(E \).

Let \(E \) be an elliptic curve defined over a field \(k \) of characteristic zero, and \(x \) a function of \(E \).

Theorem 1. Let \(E \) be an elliptic curve defined over a field \(k \) of characteristic zero, and \(x \) a function of degree 2 on \(E \) with a double pole at \(0_E \). Let \(u \) be the rational function of degree 36 such that \(x(\{6\}P) = u(x(P)) \) for all points \(P \) of \(E \). Then the hyperelliptic curve defined by the affine model

\[
Y^2 = u(X) - T
\]

(where \(T \) is a free parameter) has genus 19, and its Jacobian is isogenous to a product of 19 elliptic curves.

1.2 Involution of \(C_f \) Associated with Points of Order 2 of \(G \)

Suppose that the order \(n \) of \(G \) is even. Let \(R \) in \(G \) be a point of order 2 of the curve \(E_1 \). The involution of \(E_1 \) given by \(P \rightarrow P + R \) commutes with the involution \(P \rightarrow -P \), so \(x_1(P + R) \) is a rational function of \(x_1(P) \), and is an involution: there exist \(a, b, \) and \(c \) such that

\[
x_1(P + R) = \frac{ax_1(P) + b}{cx_1(P) - a}.
\]

Therefore, let \(\mathcal{C}_R : C_f \rightarrow C_f \) be the involution defined by

\[
\mathcal{C}_R : (x, y) \mapsto \left(\frac{ax + b}{cx - a}, y \right).
\]

If we let \(F = E_1 / \langle R \rangle \), with \(h : E_1 \rightarrow F \) the canonical morphism, then \(f = g \circ h \) for some isogeny \(g : F \rightarrow E_2 \).

The quotient \(C_f / \langle \mathcal{C}_R \rangle \) is thus isomorphic to the curve \(C_g \). Let \(x_3 \) be a function on \(F \) of degree 2 with a double pole at \(0_F \), and let \(u \) be the abscissa function of \(g \).

The curve \(C_g \) then has an equation of the form

\[
C_g : y^2 = u(x) - T.
\]

Now, let \(S \) be a point of \(E_1 \) such that \(\{2\}S = R, \) and \(Q \) a point of order 2 on \(E_1 \) distinct from \(R \). The curve \(C_f / \langle w \circ \mathcal{C}_R \rangle \), where \(w \) is the hyperelliptic involution of \(C_f \), has an equation of the form

\[
C_f / \langle w \circ \mathcal{C}_R \rangle : y^2 = ((u(x) - T)(x - x_3(h(S)))(x - x_3(h(S + Q))).
\]

Let \(g \) be the genus of \(C_f \). If \(g \) is even, then the genera of \(C_f / \langle \mathcal{C}_R \rangle \) and \(C_f / \langle w \circ \mathcal{C}_R \rangle \) are equal; otherwise, they are respectively equal to \((g - 1)/2 \) and \((g + 1)/2 \).

1.3 Correspondences on \(C_f \) Associated with Points of Order > 2 of \(G \)

Let \(f : E_1 \rightarrow E_2 \) be an isogeny of degree \(n \) (not necessarily even) with kernel \(G \), and let \(u \) be the abscissa function of \(f \). For all points \(P \) of \(E_1 \) and for all points \(R \) of \(G \), we have

\[
u(x_1(P + R)) = u(x_1(P)).
\]
Moreover, the functions $P \mapsto x_1(P + R) + x_1(P - R)$ and $P \mapsto x_1(P + R)x_1(P - R)$ are invariant under the involution $P \mapsto -P$, and so are rational functions in x_1 defined over $k(x_1(R))$. We denote these functions s and p. If Z is a parameter, then

$$(Z - x_1(P + R))(Z - x_1(P - R)) = Z^2 - s(x_1(P))Z + p(x_1(P)).$$

For the moment, let R be a point of G of order > 2. The equation above allows us to associate with R the symmetric $2 - 2$ correspondence $\mathcal{E}_R \subset C_f \times C_f$, defined over $k(x_1(R))(T)$ by the equations

$$y^2 = u(x) - T, \quad Y^2 = u(X) - T, \quad X^2 - s(x)X + p(x) = 0, \quad Y = y.$$ (1)

Let $P = (x, y)$ be a point on C_f; if Q is a point of E_1 such that $x = x_1(Q)$, then the image of the divisor (P) under the endomorphism of $\text{Pic}(C_f)$ associated with \mathcal{E}_R is $((x_1(Q + R), y)) + ((x_1(Q - R), y))$.

1.4 Action of the correspondence \mathcal{E}_R on $\Omega^1(C_f)$

For all R in G, we let w_R denote the regular differential on C_f defined by

$$w_R = \frac{1}{x - x_1(R)} \frac{dx}{y}.$$ (By convention, we set $w_0 = 0$.) We have $w_S = w_R$ if and only if $R = \pm S$. The set of forms $\{w_R : R \in G \setminus \{0\}\}$ is a basis of $\Omega^1(C_f)$.

To examine the action of the correspondences \mathcal{E}_R on $\Omega^1(C_f)$, we will need the following lemma:

Lemma 1. The function F which maps the three points P, Q, R of E to

$$F(P, Q, R) = (x_1(P) - x_1(Q - R))(x_1(P) - x_1(Q + R))(x_1(Q) - x_1(R))^2$$

is symmetric in P and Q.

Proof. It is clear that the permutation $Q \leftrightarrow R$ does not change the expression above. It is the same when we permute P and Q. Indeed, Q and R being fixed, the functions f and g defined respectively by

$$f(P) = (x_1(P) - x_1(Q - R))(x_1(P) - x_1(Q + R))(x_1(Q) - x_1(R))^2$$

and

$$g(P) = (x_1(Q) - x_1(P - R))(x_1(Q) - x_1(P + R))(x_1(P) - x_1(R))^2$$

have the same divisor $(Q - R) + (Q + R) + (-Q - R) + (-Q + R)$, so f and g are proportional. Letting P tend towards 0, we deduce that $f = g$. \qed

When E_1 is defined over C, Lemma 1 is a consequence of the formula

$$\varphi(u) - \varphi(v) = \sigma(u + v)\sigma(u - v)\sigma^{-2}(u)\sigma^{-2}(v),$$

and of the fact that the function σ is odd. Indeed,

$$\begin{align*}
(\varphi(u) - \varphi(v - w))&\varphi(u) - \varphi(v + w))\varphi(v) - \varphi(w))^2 \\
&= \sigma(u + v + w)\sigma(u + v - w)\sigma(u - v + w)\sigma(u - v - w)\sigma^{-4}(u)\sigma^{-4}(v)\sigma^{-4}(w) \\
&= -\sigma(u + v + w)\sigma(u + v - w)\sigma(u - v + w)\sigma(u - v - w)\sigma^{-4}(u)\sigma^{-4}(v)\sigma^{-4}(w)
\end{align*}$$

is an expression symmetric in u, v and w. By the principle of extension of algebraic identities, we may deduce the same result for arbitrary fields k.

Recall that the endomorphism T_R of $\Omega^1(C_f)$ associated with the correspondence \mathcal{E}_R is $\text{Tr} p^*_1$, where $p_1 : \mathcal{E}_R \to C_f$ is the first projection and $\text{Tr} : \Omega^1(\mathcal{E}_R) \to \Omega^1(C_f)$ is the trace associated with the second projection.

We set $z = x_1(P), z_1 = x_1(P - R)$ and $z_2 = x_1(P + R)$. For all pairs of points (P, Q) on E_1, we have

$$(z - x_1(Q - R))(z - x_1(Q + R))(x_1(Q) - x_1(R))^2 = (z_1 - x_1(Q))(z_2 - x_1(Q))(z - x_1(R))^2.$$
Taking the logarithmic derivative of this expression, we obtain
\[
\frac{dz_1}{z_1 - x_1(Q)} + \frac{dz_2}{z_2 - x_1(Q)} = \frac{dz}{z - x_1(Q - R)} + \frac{dz}{z - x_1(Q + R)} - 2 \frac{dz}{z - x_1(R)}.
\]
Since
\[T_R(\omega_Q) = T_R\left(\frac{dz}{z - x_1(Q)}\right) = \frac{dz}{z - x_1(Q)} + \frac{dz}{z_1(Q)} y + \frac{dz}{z_2 - x_1(Q)} y,
\]
maintaining the convention \(\omega_0 = 0\) we have
\[T_R(\omega_Q) = \omega_{Q-R} + \omega_{Q+R} - 2\omega_R.
\]

Proposition 2. With the notation above, the correspondence \(\mathcal{E}_R\) acts on \(\Omega^1(C_f)\) by
\[\omega_Q \mapsto \omega_{Q-R} + \omega_{Q+R} - 2\omega_R.
\]

1.5 The case where \(G\) is cyclic of order \(n\)

Suppose for the moment that \(G\) is a cyclic group of order \(n\), and let \(R\) be a generator of \(G\).

For all \(W\) in \(G\), we set \(v_S = \omega_{S-R} - \omega_{S+R}\). Note that \(v_{S-R} = -v_S\), so \(v_S = 0\) if and only if \(|2|S = 0\). The subspace \(\Omega' := \langle v_S : S \in G \rangle\) of \(\Omega^1(C_f)\) is stabilized by \(T_R\). More precisely,
\[T_R(v_S) = v_{S+R} + v_{S-R}.
\]

If \(n\) is odd, then we easily verify that \(\Omega'\) is equal to the whole of \(\Omega^1(C_f)\). It is then clear that the endomorphism \(T_R\) of \(\Omega^1(C_f)\) has characteristic polynomial
\[G_n(X) = \prod_{k=1}^{(n-1)/2} \left(X - 2 \cos \frac{2k\pi}{n}\right).
\]
If \(n\) is even, then the space \(\Omega'\) has dimension \((n-2)/2\). We then set
\[w = \omega_{\frac{2}{2}\pi R} + 2(-1)^{n/2} \sum_{i=1}^{(n-2)/2} (-1)^i \omega_{i\pi R}.
\]
We immediately verify that \(T_R(w) = -2w\), and that \(\Omega^1(C_f)\) is the direct sum of \(\Omega'\) and the line generated by \(w\). The characteristic polynomial of \(T_R\) acting on \(\Omega'\) is equal to
\[\prod_{k=1}^{(n-2)/2} \left(X - 2 \cos \frac{2k\pi}{n}\right),\]
so the characteristic polynomial of \(T_R\) acting on \(\Omega^1(C_f)\) is equal to
\[\prod_{k=1}^{n/2} \left(X - 2 \cos \frac{2k\pi}{n}\right).
\]

Proposition 3. Let \(f : E_1 \to E_2\) be an \(n\)-isogeny with cyclic kernel \(G\). The characteristic polynomial of the correspondence \(\mathcal{E}_R\) acting on \(\Omega^1(C_f)\) is equal to
\[G_n(X) = \prod_{k=1}^{n/2} \left(X - 2 \cos \frac{2k\pi}{n}\right).
\]

Remark. Let \(Z\) be the normalization of the fibre product of \(E_1\) and \(C_f\) with respect to the coverings \(x_1 : E_1 \to \mathbb{P}^1\) and \(x : C_f \to \mathbb{P}^1\). If \(E_1\) is defined by the equation \(z^2 = h(x)\), where \(h\) has degree 3, then a system of affine equations for \(Z\) is for example given in \(\mathbb{P}^3\) by
\[z^2 = h(x), \quad y^2 = u(x).
\]
For each point R in G, we may define an automorphism ϕ_R of Z of order equal to the order of R, setting $\phi(x, y, z) = (x(P + R), y(z(P + R))$, where P is the image of (x, y, z) under the projection of Z onto E_1.

Moreover, let ν be the involution of Z given by $(x, y, z) \mapsto (x, y, -z)$, and let G' be the group of automorphisms of Z generated by G and ν. The curve C_f is the quotient $Z/(\nu)$, and $\nu \circ \phi_R \circ \nu = \phi_{-R}$.

The correspondences $C' \cap R$ are none other than the images under $Z \rightarrow C_f$ of the graph correspondence of ϕ_R in $Z \times Z$. If G is cyclic of order n, then G' is the dihedral group D_n, and we find again that the characteristic polynomial of C_ν acting on $\Omega^1(C_f)$ is G_n.

This point of view has already been developed by A. Brumer [3].

2 Examples

We find in Kubert [6, p. 217] a description of the modular curves $X_1(n)$ of genus 0, classifying the pairs (E, R) formed by an elliptic curve E together with a point R of order n, and an explicit parametrisation of these pairs. Following the preceding section, every such pair has an associated one-parameter family of hyperelliptic curves with real multiplication by G_n. Further, if E_1 is an elliptic curve defined over a field k and G is a finite subgroup of $E_1(k)$, then the formulæ allowing us to explicitly obtain the quotient curve $E_2 = E_1/G$ and an isogeny $f : E_1 \rightarrow E_2$ with kernel G have been established by Vélu [11].

2.1 Examples with n odd

The case $n = 5$

The modular curve $X_1(5)$ is \mathbb{Q}-isomorphic to \mathbb{P}^1. If E_1 is defined by $y^2 + (1 - U)xy - Uy = x^3 - Ux^2$, then the point $R = (0, 0)$ of E_1 has order 5. The formulæ giving the isogeny f and the quotient curve $E_2 = E_1/\ker f$ appear in [7] (for example). We find then the family of hyperelliptic curves

$$C_5(U, T) : Y^2 = (1 - Z)^3 + UZ((1 - Z)^3 + UZ^2 - Z^3(1 - Z)) - TZ^2(Z - 1)^2.$$

The case $n = 7$

In the case of $X_1(7)$, the analogous calculations give a family of curves $C_7(U, T)$ with real multiplication by G_7, defined by

$$C_7(U, T) : Y^2 = U(U - 1)Z^7 - 2U(U^2 - 1)Z^6 + (1 - 7U + 5U^2 - 3U^3 + 2U^4 + U^5)Z^5 - U(6U^4 - 9U^3 + 12U^2 - 13U - 1)Z^4 + U(U^5 + U^4 + 4U^3 - 8U^2 - 7U - 1)Z^3 - U^2(3U^2 - 2U - 3)Z^2 + U^3(U^2 - 3U - 3)Z + U^4 - TZ^2(Z - U)^2(Z - 1)^2,$$

where U is the parameter of $X_1(7)$ adopted in [7].

The case $n = 9$

We find in [6, p.217] a parametrisation of elliptic curves equipped with a point of order 9: the point $(0, 0)$ has order 9 on the elliptic curve defined by

$$y^2 - (U^3 - U^2 - 1)xy - U^2(U - 1)(U^2 - U + 1)y = x^3 - U^2(U - 1)(U^2 - U + 2)x^2,$$

where U is the parameter of $X_1(9)$.

Vélu's formulæ give an equation for the associated family of hyperelliptic curves $C_9(U, T)$ of genus 4:

$$Y^2 = U^4(U - 1)(U^2 - U + 1)^3Z^8 - 2U^3(U^2 - U + 1)^2(U^2 - U + 1)^2(U^3 + U + 1)Z^8 + U(U^2 - U + 1)(U^3 + U + 1)(U^3 + U + 1)^2(U^2 - U + 1)^2 - (6U^6 + U^5 - 2U^4 + 7U^3 - 15U^2 + 25U - 10)(U^3 + U + 1)^2Z^7 - (6U^9 + U^8 + 5U^7 - 83U^6 + 279U^5 - 369U^4 + 243U^3 + 107U^2 - 32U + 1)^2Z^6 + (U^{11} - 2U^{10} + 25U^9 - 91U^8 + 209U^7 - 312U^6 + 232U^5 - 237U^4 + 101U^3 - 32U^2 - 5U - 1)^2Z^5 - (6U^9 - 19U^8 + 51U^7 - 83U^6 + 279U^5 - 369U^4 + 243U^3 + 107U^2 - 32U + 1)^2Z^4 + (U^8 + U^7 - 3U^2 - 12U^2 - 8U - 10)Z^3 - (3U^2 - 5U^2 + 4U^3 + 11U^2 - 2U + 10)^2Z^2 + (U^3 - 3U^2 - 5)Z + 1 - T(Z(Z - 1)((U^2 - U + 1)(Z - 1))(U(Z - 1))^2,$$
We have \(G_0(X) = (X+1)(X^3 - 3X + 1) \), so the Jacobian of each curve in the family \(C_0(U, T) \) contains a 3-dimensional abelian variety with real multiplication by \(\mathbb{Z}[2 \cos \pi p] \).

The case \(n = 13 \)

The curve \(X_0(13) \) classifying elliptic curves equipped with a cyclic subgroup of order 13 is \(\mathbb{Q} \)-isomorphic to \(\mathbb{P}^1 \). Each point of \(\mathbb{P}^1(\mathbb{Q}) \cong X_0(13)(\mathbb{Q}) \) that is not a cusp is associated with an elliptic curve \(E_1 \) having a \(\mathbb{Q} \)-rational cyclic subgroup \(G \) of order 13, and hence an isogeny \(f : E_1 \to E_2 = E_1/G \) defined over \(\mathbb{Q} \). If the abscissa function of \(f \) is \(p(x)/q^2(x) \) and \(T \) is a parameter, then we deduce as before that the hyperelliptic curve of genus 6 defined by \(z^2 = p(x) - T q^2(x) \) has real multiplication by \(G_{13} \). If a point \(R \) in \(G \) is defined over an extension \(k \) of \(\mathbb{Q} \), then the correspondence \(\mathcal{E}_R \) and its induced endomorphism on the Jacobian are defined over \(k \). But \(X_1(13) \) has no rational points over \(\mathbb{Q} \) that are not cusps, so the correspondence \(\mathcal{E}_R \) is never defined over \(\mathbb{Q} \).

2.2 Examples with \(n \) even

Let \(f : E_1 \to E_2 \) be an isogeny of degree \(n \) with cyclic kernel, and let \(R \) be a generator of \(\ker f \). Let \(R_2 = [n/2]R \), set \(E_3 = E_1/(R_2) \), and let \(g : E_3 \to E_2 \) be the isogeny of degree \(n/2 \) derived from \(f \) as in §1.2. We have seen that if \(s = \mathcal{E}_R \) is constructed as in §1.2, then the curve \(C_f/s \) is none other than \(C_g \). More precisely, let \(x_3 \) be a function of degree 2 on \(E_3 \) with a double pole at 0, and \(u \) the abscissa function of \(g \). The curve \(C_g \) has a defining equation

\[
C_g : y^2 = u(x) - T.
\]

Similarly, the curve \(C' = C_f/(w \circ s) \), where \(w \) is the hyperelliptic involution of \(C_f \), is defined by

\[
C' : y^2 = (u(x) - T)(x-a)(x-b),
\]

where \(a \) and \(b \) are the abscissae of the appropriate points of order 2 of \(E_3 \) (cf. §1.2).

The case \(n = 8 \)

In this case \(C_f \) has genus 4, and \(C_g \) and \(C' \) have genus 2. The characteristic polynomial of \(\mathcal{E}_R \) is the polynomial \(X(X+2)(X^2-2) \). The isogeny \(g \) factors into a product of two isogenies of degree 2, so the Jacobian of \(C_g \) is isogenous to a product of 2 elliptic curves, while the Jacobian of \(C' \) has real multiplication by \(\mathbb{Z}[\sqrt{2}] \).

The curve \(X_1(8) \) is \(\mathbb{Q} \)-isomorphic to \(\mathbb{P}^1 \). It follows that there exists a two-parameter family, defined over \(\mathbb{Q} \), of abelian surfaces with real multiplication by \(\mathbb{Z}[\sqrt{2}] \).

To make this explicit, a family \(C_f(U, T) \) in two parameters \(U \) and \(T \) of curves of genus 2 whose Jacobians have real multiplication by \(\mathbb{Z}[\sqrt{2}] \) is given by

\[
C_f(U, T) : Y^2 = \left(\frac{U^2 + 1}{(U+1)^2(U+1+X+1)} \right) \left(\frac{(U^2+1)^2(U+1)(X+1)}{(U^2+1)^2(U^2+1)X-U+1} \right).
\]

Remark. In the same way, we find another result of Humbert [5, p. 379]: let \(X \) be a curve of genus 2, \(\nu \) its hyperelliptic involution, \(C \) a nondegenerate conic, and \(\phi : X/\nu \to C \) an isomorphism. Let \(P_1, \ldots, P_6 \) be the images under \(\phi \) of the W"{e}rsterstrass points of \(X \). The Jacobian of \(X \) has real multiplication by \(\mathbb{Z}[\sqrt{2}] \) if and only if there exists a conic passing through \(P_1 \) and \(P_2 \) and inscribed in one of the quadrilaterals formed by \(P_3, P_4, P_5, \) and \(P_6 \). Through the elliptic curve-theoretic interpretation of Poncelet's theorem, such a configuration is equivalent to the data of an elliptic curve together with a point \(R \) of order 4 and a point of order 2 distinct from \(2R \), and therefore to giving a curve of the same type as \(C' \).

The case \(n = 12 \)

Let \(f : E_1 \to E_2 \) be an isogeny of degree 12 with cyclic kernel, and let \(R \) be a generator of \(\ker f \). The curve \(C_f \) has genus 6, and the characteristic polynomial of \(\mathcal{E}_R \) acting on the regular differentials on \(C_f \)
is equal to $X(X + 2)(X - 1)(X + 1)(X^2 - 3)$. If ϕ is the endomorphism of J_{C_3} induced by \mathbf{q}_R, then the abelian variety $A_T := \phi(\phi + 2)(\phi^2 - 1)(J_{C_3})$ has real multiplication by $\mathbb{Z}[\sqrt{3}]$.

The curve $X_1(12)$ is \mathbb{Q}-isomorphic to \mathbb{P}^1. It follows that there exists a two-parameter family, defined over \mathbb{Q}, of abelian surfaces with real multiplication by $\mathbb{Z}[\sqrt{3}]$.

Here again we may make the two-parameter family explicit, by using Kubert’s parametrization of $X_1(12)$ together with Vélu’s formulæ. We satisfy ourselves here with an example, since we find the general formula a little tedious to write:

Let E be the elliptic curve labelled $90G$ in the tables of [1, p. 92], for which a defining equation is

$$E : y^2 + xy + x = x^3 - x^2 - 122x + 1721.$$ Its Mordell–Weil group is cyclic of order 12, generated by the point $(-9,49)$. Using Vélu’s formulæ, we find that the equation of the corresponding hyperelliptic curve $C_3(T)$ is

$$C_3(T) : Y^2 = (X + 2)(432X^{12} - 2988X^{11} + 11326X^{10} - 308497X^{9} - 448605X^8 - 779631X^7 + 2899412X^6 + 5715072X^5 + 2532888X^4 - 304560X^3 + 134784X^2 + 279936X + 93312) - T(X(X + 2)(X - 6)(3X + 2)(2X + 3)(X - 1))^2,$$

where T is a parameter.

We let $A_3(T)$ denote the abelian subvariety of $J_{C_3(T)}$ with real multiplication by $\mathbb{Z}[\sqrt{3}]$.

Remark. Let $f : E_1 \rightarrow E_2$ be an isogeny of degree 12 with cyclic kernel. The curves C_g and C' constructed by the method given at the start of this section are of genus 3. Here the isogeny g has degree 6, so the Jacobian of C_g is isogenous to the product of two elliptic curves. The Jacobian of C' is isogenous to the product of an elliptic curve and an abelian surface with real multiplication by $\mathbb{Z}[\sqrt{3}]$. Conversely, all abelian surfaces that have real multiplication by $\mathbb{Z}[\sqrt{3}]$ may be obtained by the construction above, starting from an elliptic curve with a point R of order 6 and a point of order 2 distinct from $3R$.

3 Application: constructing regular extensions of $\mathbb{Q}(T)$ with Galois group $\text{PSL}_2(\mathbb{F}_{p^2})$

Let A be an abelian surface defined over $\mathbb{Q}(T)$, non-constant (i.e. with non-constant moduli), and whose ring of $\mathbb{Q}(T)$-endomorphisms contains a subring isomorphic to the ring of integers of a quadratic real field M. Let $A[p]$ denote the p-torsion subgroup of A, and G the Galois group of the extension $L/\mathbb{Q}(T)$, where $L = \mathbb{Q}(T)(A[p])$. If p is inert in M, then $A[p]$ is a 2-dimensional \mathbb{F}_{p^2}-vector space, and G is isomorphic to a subgroup of the the subgroup $\text{GL}_2(\mathbb{F}_{p^2})$ of $\text{GL}_2(\mathbb{F}_{p^2})$ formed by the matrices whose determinant is in $\mathbb{F}_{p^2}^*$. We easily see that the image of $\text{GL}_2(\mathbb{F}_{p^2})$ in $\text{PGL}_2(\mathbb{F}_{p^2})$ is equal to $\text{PSL}_2(\mathbb{F}_{p^2})$.

It follows, if $G = \text{GL}_2(\mathbb{F}_{p^2})$, that the subfield M of L fixed by the scalar matrices of G is a non-constant (and hence regular) extension of $\mathbb{Q}(T)$. However, for this to be true it is enough that for one specialisation t in \mathbb{Q} of T the p-torsion points of the specialisation corresponding to A generate an extension of \mathbb{Q} with Galois group $\text{GL}_2(\mathbb{F}_{p^2})$.

Some of the families of hyperelliptic curves with real multiplication described in the preceding sections allow us to construct such extensions. Consider, for example, the family $C_5(-17/4, 1)$ above. We have shown in [8] that for all odd $p \equiv \pm 2 \pmod{5}$, the Galois group of the p-torsion points of the Jacobian of $C_5(-17/4, 1)$ is equal to $\text{GL}_2(\mathbb{F}_{p^2})$, whence the following theorem:

Theorem 2. For all primes $p \equiv \pm 2 \pmod{5}$, there exists a regular extension of $\mathbb{Q}(T)$ with Galois group $\text{PSL}_2(\mathbb{F}_{p^2})$.

Remark (1). W. Feit [4] has already given a proof of this theorem, except that it remained to prove that a certain curve of genus 0 has a rational point; J.-P. Serre has recently proven this. Feit’s method is different to the one presented here.

Remark (2). By an analogous method, we can prove that, for all sufficiently large primes $p \not\equiv \pm 1 \pmod{24}$, there exists a regular extension of $\mathbb{Q}(T)$ with Galois group $\text{PSL}_2(\mathbb{F}_{p^2})$. By a theorem of Ribet [9, p. 801, Theorem 5.5.2], it suffices to give one curve in each of the two families $C_4(U, T)$ and $C_3(T)$ of the previous
section that does not have everywhere potentially good reduction. For example, take the curve $C_4(2, 12)$ from the family $C_4(U, T)$ above, defined by

$$C_4(2, 12): Y^2 = 12X^5 + 20X^4 + 75X^3 + 215X^2 + 177X + 45.$$

The discriminant of its hyperelliptic polynomial is $2^{12} \cdot 3^4 \cdot 1201^3$, and its reduction mod 1201 is the curve defined by

Thus the curve $C_4(2, 12)$ does not have potentially good reduction at 1201, and we may apply Ribet’s theorem (cited above): for all p sufficiently large, $p \equiv \pm 3$ mod 8, the Galois group of the extension of \mathbb{Q} obtained by adjoining the p-torsion points of the Jacobian of $C_4(2, 12)$ is equal to $\text{GL}_2^r(\mathbb{F}_p)$.

We proceed in the same way with $C_3(T)$: for all rational numbers t, and all primes $l > 5$ strictly dividing the denominator of t, the reduction of the curve $C_3(t)$ is stable at l and also completely toric. Take, for example, $C_3(1/7)$. Applying Ribet’s theorem, we see that for all sufficiently large $p \equiv \pm 5$ mod 12 the Galois group of the extension of \mathbb{Q} obtained by adjoining the p-torsion points of the abelian variety $A_3(1/7)$ is equal to $\text{GL}_2^r(\mathbb{F}_p)$.

In fact, it is probable that, for all $p \equiv \pm 3$ mod 8 (resp. $p \equiv \pm 5$ mod 12), the Galois group of the points of order p of $J_{C_4(2, 12)}$ (resp. of $A_3(1/7)$) is equal to $\text{GL}_2^r(\mathbb{F}_p)$. To show this would require a detailed study of the curves $C_4(2, 12)$ and $C_3(1/7)$, analogous to those of [8, Section 2].

References

