Imperfect Forward Secrecy:

How Diffie-Hellman Fails in Practice

http://weakdh.org
http://mitls.org

y 4

Karthikeyan Bhargavan 7
+ many, many others. h%—
(CNRS, INRIA, Microsoft Research, IMDEA, R

Univ of Pennsylvania, Univ of Michigan, Johns Hopkins)

Authenticated Diffie-Hellman

<

k = kdf(g®¥) k = kdf(g™¥)

sign(ska,g” | g¥), mac(k, A)

>

Sign(SkBa g:c gy), mac(k, B)

If deployed correctly, k enjoys many properties:
« authenticity, confidentiality, forward secrecy
« + resistance to UKS, KCI? future secrecy?

DH in real-world protocols

Who chooses the group (p,g)?

o client? server? standard writers?

What other protocols are running?
 do they use the same long-term keys (sk,,skg)?

Can the DH key shares be reused?
- do we need to validate public values (g*,g¥)?

How does the application use k?
« does kneed to be unique for each session?

This Talk

DH key exchange is well-understood, but

real-world protocols based on DH often broken
« buggy ADH implementations (SKIP)

« weak DH groups (Logjam)

« unexpected security requirements (3Shake)

Understanding protocol details can make
DLP-based attacks more practical

Case study: Transport Layer Security (TLS)
« Only modp groups, not elliptic curves

Transport Layer Security (1994—)

The default secure channel protocol?
HTTPS, 802.1x, VPNSs, files, mail, VolIP, ...

20 years of attacks, and fixes @ nhitps://tools.ietf.org/html/ O ~ @ B &

1994 Netscape’s Secure Sockets Layer \
1996 SSL3 — ——
1 99 9 TL S 1 . O RF C 2 2 4 6) GQL@ hitps://toolsietf.org/htrnl/ O - @ B © || @ RFC526 - The Transport L. | |l (1 249 €53

[Docs] [txt|pdf] [draft-ietf-tls-rf...] [Diffl] [Diff2] [IPR] [Errata] A

2006 TLS1] 1 (RFC4346) Updated by: 5746, 5878, 6176 PROPOSED STANDARD
Errata Exist

2008 TLS1 2 (RFC5246) Network Working Group T. Dierks
- Reguest for Comments: 5246 Independent

Obsoletes: 3268, 4346, 4366 E. Rescorla
201 5 TLS1 3’? Updates: 4492 RTFM, Inc.
- H Category: Standards Track August 2008

The Transport Layer Security (TLS) Protocol

Many implementations | —
OpenSSL, SecureTranSpor—t’ NSS, Status of This Memo

This document specifies an Internet standards track protocol for the

Internet community, and reqguests discussion and suggestions for
hannel nu I | J I F Olar I improvements. Please refer to the current edition of the "Internet
b})) 3 ==

Official Protocol Standards" (STD 1) for the standardization state
b tt k t h and status of this protocol. Distribution of this memo is unlimited.
many bugs, attacks, patches every year e

This document specifies Version 1.2 of the Transport Layer Security

M any secu nty theorems (T29) protosol. The 155 protecol provides commemiestions secarity

over the Internet. The protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdropping,

mostly for small simplified models of TLS sampering, or message forgery. v

TLS protocol overview

Client

Hello

KEM

Server

 >

Protocol negotiation

« Agree on version

« Agree on ciphersuite
Determines all crypto algos

Authenticated Key Exchange
» Verify server/client identity
« (Generate master secret

» Derive connection keys

Finished

——

Key, transcript confirmation

« Completes authentication
« Matches transcripts

« Authenticated encryption

AppData

Application data streams
* Full duplex channel
« Authenticated encryption

(EC)DHE Handshake in TLS

Client

Hello | — ———

f/sr/.

KEM

Server

certg

rsa-sign((G, g*),sks)

gX

TLS 1.2
(Google’s cipher suite)

Client and server
exchange fresh nonces

Server picks group/curve
signs group, key share

pms = g¥

ms, keys (k) derived from
pms, cr, sr

Ol|t k
Finished ae(0lftag k) :

tag., tagg derived from
ms + SHA-256 hash of
handshake log

AppData

ae(0||tags.k)

ae(i]|d; k)

authenticated encryption

DHE in TLS

Who chooses the group (p,g)?
 server sends: sign(sks,cr|sr|p| gl g”)

What other protocols are running?
- RSA key transport using same (sk,,skg)?

Can the DH key shares be reused?
 yes, and public values are not usually validated

How does the application use k?
« fast session resumption, unique channel ids, ...

ClientHello

T L S St at e M 9 Ch | ne Seweme.kl,(v,kz, »

Tig =0 & T4 =0 Tid = lllrtick =1

(full handshake) (abbreviated handshake)
RSA + D H E + E C D H E . =D;T:C;;erﬁficates SewerNewSession'Ianuck =0
+ SeSSion Resumption nge |kz=RSA ServerCCS
+ Client Authentication

« Covers most features
used on the Web ChomCoritentotope) |con0 AppcationData

 Already quite a complex

Cask =1 &

ServerFinished

Cask =0 ClientCCS

ClientFinished

Coffer = 1

combination of protocols! o anicateVerty e

ClientCCS

fo I refe rence | m p I emen t atl on ServerNewSessionTicket | nick =0

[S&P,1 3, Crypto’ 1 4] T State machine

[see hittp://mitls.org] ServerFinished for common
Web configurations

- Composition proved secure >

ApplicationData*

Full SSL/TLS State Machine?

+ Fixed DH
+ DH_anon
+ PSK
+ SRP
+ Kerberos

+* EXPOR
+

All implemented
iIn OpenSSL

ClientHello

ServerHello(v,kz,Tq)

(abbreviated handshake) (full handshake) (full handshake) (full handshake)
ka = RSA|DHE|ECDHE|RSA_EXPORT|DHE_EXPORT kz = DH|DH_anon|ECDH|ECDH_anon kz = PSK|RSA_PSK|DHE_PSK|SRP|SRP_RSA
Ttick =1 | lkz = RSA_PSK|SRP_RSA

kz= SRP|DHE_PSK
||(kz = PSK &
Chine = 1)

kz =DH_anon| /gerverCertificate
ECDH_anon

ServerCertificate
kz = SRP_RSA
I Chine =1

ServerCertificate

kz = DHE|ECDHE|
RSA_EXPORT|DHE_EXPORT

Nuick = 0 $erverNewSessionTicket

kz = PSK
ke = RSA_PSK | & Chint =0

ServerCCS kz =RSA ServerKeyExchange

ServerFinished (authenticate client?)
Cask = 1"
ClientCCs Cosk =0| CertificateRequest
ClientFinished ServerHelloDone
Cask =1
ApplicationData* Cask =0 ClientCertificate(Cofrer)

ClientKeyExchange

Cost =1 &
Coffer = 1
Cask =0 ||

Coffer = 0 lientCertificateVerify

ClientCCS

ClientFinished

Ttick = 1

Tick = 0| ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData*

ServerKeyExchange

kz = DH|

ECDH
(authenticate client?)
Cak =1& J
kz = DH|ECDH o =0
CertificateRequest |kz = DH_anon|
ECDH_anon
ServerHelloDone
Cask =1
ClientCertificate(coger) Cask = 0

Coger = 1

ClientKeyExchange

Cask =1 &

Coffer =2 Coffer = 1

Cask =0
lientCertificateverify c:;; _ 0"

ClientCCs
ClientFinished
Tuick = 1

Nuck = 0| ServerNewSessionTicket

ServerCCs

ServerFinished

ApplicationData*

ServerKeyExchange & Chint = 0
int =

ServerHelloDone

ClientKeyExchange

ClientCCS

ClientFinished

Tpick = 1

ServerNewSessionTicket |Ttick =0

ServerCCs

ServerFinished

ApplicationData®

Implementation Bugs

Unexpected state transitions
in OpenSSL, NSS, Java,
SecureTransport, ...

« Required messages
can be skipped

- Unexpected messages
may be received

« CVEs for many libraries

How come all these bugs”?

 |n independent code bases,
sitting in there for years

 Are they exploitable?

ServerCCS

Java TLS
State Machine

erverFinished

ApplicationData”

SKIP Inconvenient Messages

Network attacker impersonates Clienttellos 1 s,
api.paypal.com to a JSSE client Sarverballo(s, i)
1. Send PayPal’s cert - —
2. SKIP ServerKeyExchange QK“"”
bypass server signature:
rsa-sign(sks,cr|sriplgl g’ servYfgoon
3. SKIP ServerCCS Clientked) Change(--)
bypass encryption wou
4. Send ServerFinished _
using uninitialized MAC key R
bypass handshake integrity sef) (s
5. Send ApplicationData ServerFinished(mac(og, -)

unencrypted as S.com

ApplicationData*

SKIP Impact

A network attacker can impersonate
any server (Paypal, Amazon, Google)
to any Java TLS client (built with JSSE)

Affects all versions of Java until Jan 2015
(CVE-2014-6593)

Similar bugs also found in:
OpenSSL, wolfSSL, mono TLS, GNU classpath

Reality check: our efforts in securing ADH can be
made irrelevant by ridiculous implementation bugs

Choosing Good
DH Groups

TLS-DHE in practice

Internet-wide scan of HTTPS servers (Zmap)
14.3M hosts, 24% support DHE
70,000 distinct groups (p,9)

Composite-order groups with short exponents
4,800 groups where (p-1)/2 was not prime
Applied ECM to opportunistically factor (p-1)/2
Got prime factors for 750 groups (40K connections)
Some servers used short exponents: 128/160 bits

Used Pohlig-Hellman to compute:
full secret exponent for 159 servers
(partial exponent for 460 servers)

TLS-DHE in practice

Internet-wide scan of HTTPS servers (using Zmap)
14.3M hosts, 24% support DHE
70,000 distinct groups (p,9)

Small-sized safe primes
84% (2.9M) servers use 1024-bit primes
2.6% (90K) servers use 768-bit primes
0.0008% (2.6K) servers use 512-bit primes

But 512-bit DLP is solved since 2014,
so can we break these connections?

Who uses 512-bit DHE?

@ — Tips X Karthikeyan
& C' () https://tips.fbi.gov e

REPORT THREATS » A-Z INDEX « SITE MAP

Q SEARCH

CONTACT US ABOUT US MOST WANTED NEWS . A STATS & SERVICES SCAMS & SAFETY JOBS FUN & GAMES
n .

Forms Select Language k3 X4 GetFBI Updates

Home

. Please use this website to report suspected terrorism or criminal activity. Your information will be reviewed promptly by an FBI special agent
. or a professional staff member. Due to the high volume of information that we receive, we are unable to reply to every submission; however,
we appreciate the information that you have provided.

FBI Tips and Public Leads

The information I've provided on this form is correct to the best of my knowledge. | understand that providing false information could subject me to fine, imprisonment, or both. (Title 18, U.S.
Code, Section 1001).

Your First Name

Your Last Name

Your Middle Name

Your Phone

Your Email

Your Street 1

Your Street 2

Your Suite/Apt/Mail Stop

Export-grade DHE in TLS

TLS 1.0 supported weakened ciphers to comply
with export regulations in 1990s

DHE EXPORT: groups limited to 512 bits

DHE EXPORT deprecated in 2000
8.4% (489K) HTTPS servers still support it
« ... but only when client asks for it

« Web browsers never negotiate DHE EXPORT,
we should be safe, yes?

DHE EXPORT handshake looks just like DHE
Server uses same long-term signing key for both
Difference is prime-size, which clients don’t check
Opens the way to a downgrade attack!

Logjam: Downgrade to DHE EXPORT

A man-in-the-middle attacker can:

impersonate ANY server that supports DHE EXPORT,
at ANY client that accept 512-bit DHE groups

Client C MitM Server S
cr,|...,DHE,..] R cr, [DHE_EXPORT]|
B sr, DHE B sr,DHE_EXPORT
loge 3 certs,sign(sks, [cr|| s7 | psi2 | 9| 9°)

~ a

~ g

.
>

(ms, k1, k2) = kdf (g, cr | sr) b = dlog(g® mod ps12)
(ms, k1, ky) = kdf (g, cr | sr)

finished(ms, log) o
loge -~ authenc(ky, Data’®) 512-bit discrete log needs to be

finished(ms, logl) computed in real-time!
authenc(k;,Data)

, authenc(ky,Data’) ‘
]]

Y VY

A

Y

/

512-bit Discrete Logs with CADO-NFS

polynomial sieving linear

selection algebra | Y, 9 descent
0 0 < >»—»| log db ! ‘ <§>~ x
precomputation individual log
Sieving Linear Algebra Descent

I logB core-years rows core-years core-time

RSA-512 14 29 0.5 4.3M 0.33
DH-512 15 27 25 2.1M (7.7 10 mins

Times for cluster computation:

polysel sieving linalg descent
2000-3000 cores 288 cores 36 cores
DH-512 3 hours 15 hours 120 hours 70 seconds

Logjam: Exploiting pre-computation

Most DHE EXPORT servers use the same groups
« 92% of these use one of two 512-bit primes

Source Popularity Prime

Apache 82 % 9fdb8b8a004544£0045£1737d0ba2e0b
274cdf1a9f588218fb435316a16e3741
71£d19d8d8£37c39bf863£d60e3e3006
80a3030c6e4c3757d08£70e6aa871033

mod_ssl 10% d4bcd52406£69b35994b88de5db89682
c8157£62d8£33633ee5772f£11£05ab22
d6b5145b9f241eb5acc31££090adbc711
48976£76795094e71e7903529f5a824b

(other) 8% (463 distinct primes)

« We performed pre-computation for these primes
« About 1 week each one 2000-3000 cores
« Per-connection descent computation: 30-150 seconds

Logjam: Exploiting False Start

Some web browsers start sending data too early
- Reason: optimize TLS performance for PFS ciphersuites
« But now no need to wait 150 seconds for DLP

« We can capture this early application data and
compute DLP at leisure to read password/cookies

Client Attacker Server

Browser MitM www.netw. . ..com

ClientHello(cr, [DHE,...])

N
>

ClientHello(cr, [DHE_.EXPORT])
ServerHello(sr, sid, [DHE_EXPORT],. . .)

ServerHello(sr, sid, [DHE],...)

ServerCertificate(certg, pks)

ServerKeyExchange(psi2, 9, g¥)

A4 A A

ServerHelloDone
ClientKeyExchange(g”)
ClientCCS
ClientFinished(verifydata(log;, ms))
HTTP_Request(POST ... username, password. . .) g
CloseNotifyAlert > CloseNotifyAlert

A
Y

Cost estimates for bigger groups

For DHE EXPORT connections

For regular DHE, we need to break bigger groups

Connections between Chrome/Firefox/IE and 8.4% of

websites can be broken offline (no forward secrecy)

For academics, probably needs algorithmic improvements
For governments, 768 bits is definitely reachable.

Sieving Linear Algebra Descent
I logB core-years rows core-years core-time
RSA-512 14 29 0.5 4.3M 0.33
DH-512 15 27 25 2.1IM 7.7 10 mins
RSA-768 16 37 800 250M 100
DH-768 17 35 8,000 150M 28,500 2 days
RSA-1024 18 42 1,000,000 8.7B 120,000
DH-1024 19 40 10,000,000 5.2B 35,000,000 30days

Impact of breaking bigger groups

IKEv1, IKEV2, SSH all use 768-bit/1024-bit groups

« 6% of IKEv2 servers use Oakley 1 (768-bits)

« 64% of IKEv2 servers use Oakley 2 (1024-bits)

« 26% of SSH servers use Oakley 2 (1024-bits)

« 13% of HTTPS servers use 1024-bit Apache group

If the attacker can precompute for ...

all 512-bit groups all 768-bit groups one 1024-bit group ten 1024-bit groups

HTTPS Top 1M w/ active downgrade 45,100 (8.4%) 45,100 (8.4%) 205,000 (37.1%) 309,000 (56.1%)
HTTPS Top 1M 118 (0.0%) 407 (0.1%) 98,500 (17.9%) 132,000 (24.0%)
HTTPS Trusted w/ active downgrade 489,000 (3.4%) 556,000 (3.9%) 1,840,000 (12.8%) 3,410,000 (23.8%)
HTTPS Trusted 1,000 (0.0%) 46,700 (0.3%) 939,000 (6.56%) 1,430,000 (10.0%)
IKEv1 IPv4 - 64,700 (2.6%) 1,690,000 (66.1%) 1,690,000 (66.1%)
IKEv2 IPv4 - 66,000 (5.8%) 726,000 (63.9%) 726,000 (63.9%)

SSH IPv4 - ~ 3,600,000 (25.7%) 3,600,000 (25.7%)

Solutions?

Short-term fixes

Security updates to major TLS libraries,
web browsers, websites, mail servers, ...

Disabling 512-bit, then 768-bit, then 1024 bit
« We recommend 2048-bit safe primes

Fixes are surprisingly hard to deploy
Many libraries hard-code DH parameters
Hardware devices difficult to update
May be easier to move to ECDHE

A new protocol: TLS 1.3

Stronger key exchanges, fewer options

-« ECDHE and DHE by default, no RSA key transport

« Fixed DH groups (> 2047 bits) and EC curves (> 255 bits)
Only AEAD ciphers (AES-GCM), no CBC, no RC4

Signatures, session keys bound to handshake params
Server signature covers ciphersuite (preventing Logjam)

Faster: lower latency with 1 round-trip
O-round trip mode also available
« Many security analyses ongoing (!)

Implementing TLS correctly

Use formal methods!

« Use a type-safe programming language

 F#, OCaml, Java, CH#,...

« (No buffer overruns, no Heartbleed)
 Verify the logical correctness of your code

- Use a software verifier: F7/F*, Why3, Boogie, Frama-C,...
 Link software invariants to cryptographic guarantees

« Use a crypto verifier: EasyCrypt, CryptoVerif, ProVerif
« Hire a cryptographer!

MITLS: a verified implementation

6 @l @ http://www.mitls.org/wsgi/home D~C | & miTLS - Home . N ?ﬁ? {g}

File Edit View Favorites Tools Help

>» — >»

55 b Bing 2 Tiemersma's Simple Rules... & Cryptology ePrint Arc.. v 7. TLS [EJ Google - v [] = v Pagev Safety~v

Home Publications Download Browse TLS Attacks People

miTLS

TT-L < A verified reference TLS implementation

miTLS News

miTLS is a verified reference implementation of the TLS protocol. Our code fully supports its wire 3 October 2014

formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts and MITLS 0.8.1 released. See the download
errors, and data fragmentation, as prescribed in the RFCs; it interoperates with mainstream web page.

browsers and servers. At the same time, our code is carefully structured to enable its modular, 20 August 2014

automated verification, from its main APl down to computational assumptions on its cryptographic e A
algorithms. page.

» A strong security theorem links software |
iInvariants to standard cryptographic assumptions

Conclusions

Protocols use and compose Diffie-Hellman key
exchanges in various (weird) ways

- Complex compositions lead to
implementation bugs, downgrade attacks, ...

Don’'t assume that servers know how to generate
good DH groups or keys

Most don't validate groups or keys
Off-curve and small-subgroup attacks are feasible

Beware of cryptographic front-doors (EXPORT)
Obsolete crypto can bite you decades later

Questions?

weakdh.org
mitls.org
smackitls.com

Papers:

Imperfect Forward Secrecy: How Diffie-Hellman Fails in
Practice. ACM CCS, 2015

A Messy State of the Union: Taming the Composite State
Machines of TLS. IEEE S&P, 2015

