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General context

The main application target for this talk is

© the computation of discrete logarithms
© ...in large or medium characteristic finite fields

© ...using using the Number Field Sieve or its variants.

More specifically, we present a practical improvement to the linear
algebra step of NFS-DL.

Throughout the talk, we consider the DLP problem in a subgroup
of prime order ¢ within FJ,.
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Relations in NFS

Z|x]

w(l):X'—)f/ \/)(2):)(._)@

Z[m| Z[o]

pg it t modk\ %f:ou—)m mod p
Fp
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Relations in NFS

a— bx € Z[x]
1/1(1):Xl—>r/ \/)(2):)(._)@
a— bm € Z[m] Zla] 3 a — ba

pg it t modN\ %,c:ou—)m mod p
Fp

same element

NFS collects many “good pairs” (a, b) such that:

@ the integer a — bm is smooth: product of small primes;
@ the ideal a — ba is a product of small prime ideals.
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Combining relations

NFS-DL can combine together (multiply) many (a — bx).

© See what happens multiplicatively on both sides;
© Gain knowledge about logarithms in our subgroup of order .
First task:

© Which kind of objects are we looking at on both sides ?
© Which knowledge do we get 7

Prelude: introduce virtual logs and Schirokauer maps.
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Multiplying things

Fact 1: being smooth is a multiplicative property

If ag — bom and a; — bym are smooth, so is (ag — bom) - (a1 — bim).
Same on the other side.

[1;(ai — bix)“

e

[1;(ai — bi)

~

subgroup of F,

JX > X(p—l)/ﬂ

our subgroup of order ¢ within FJ,

Hi(ai — b

/A
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Multiplying things

Fact 1: being smooth is a multiplicative property

If ag — bom and a; — bym are smooth, so is (ag — bom) - (a1 — bim).
Same on the other side.

subgroup of Q(x)*

N

subgroup of Q* subgroup of Q(«)*

~ 7

subgroup of F,

JX > X(p—l)/ﬂ

our subgroup of order ¢ within F},
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Taking out powers

Our two subgroups of smooth things are important.
Fact 2: /-th powers map to 1 eventually
What are exactly the subgroups of interest on both sides ?

{smooth things}/{smooth things}é-

© vector spaces (fact 1);

© defined over Fy (fact 2);
© finite dimensional:

© smooth rationals (mod ¢-th powers) determined by ...
© smooth algebraic numbers (mod ¢-th powers) determined by
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Describing smooth elements

Smooth rationals (mod ¢-th powers): ¥,

They are simply determined by valuations at small primes mod /.

© A bound on “small primes” is set beforehand.

© Units in Z are just £1: trivial modulo ¢-th powers.

Smooth algebraic numbers (mod ¢-th powers): X,

© Need valuations at small prime ideals mod /.

© Torsion units are harmless;

© But non-torsion units lead to (finite-dimensional) ambiguity.
© The map ¥, — {v,(-) mod £} is not injective.
© Fix: use ¥, — {vp(-) mod £} + {Schirokauer maps}.
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The log map

NFS-DL lifts the log to a linear form coming from smooth things.

Zr x Za C FZ/:]:,Jr#]:aJrunit rank

l

subgroup of F, (mod ¢-th powers)
x — x(P=1)/¢
our subgroup of order ¢
Jx — log x
Iy
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The log map

NFS-DL lifts the log to a linear form coming from smooth things.

Zr x Za C FZ/:]:,Jr#]:aJrunit rank

Linear form ¢

Block Wiedemann likes Schirokauer maps 8/29



The log map

NFS-DL lifts the log to a linear form coming from smooth things.

Fr+#Fa+unit k
zr % za c in # unit ran

© Relations help to nail down ©.
(kernel elements!)

Linear form & @ Seek coordinates of ®;

a.k.a. virtual logarithms.

© This reduces to a linear algebra
F, problem Mw = 0.

Our concern: the presence of Schirokauer maps in the relations.
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The linear system

We have many relations = rows of a matrix M. We want to solve

Mw = 0.

The solution vector is the set of virtual logarithms.

© By construction, a non-zero solution exists.
@ If we have sufficiently many relations, it is unique.

© In practice, it may happen the set of solutions of Mw = 0 has
dimension slightly more than 1, generated by:

© The good ¢;
© plus some small hamming weight vectors, quite harmless.

Bottom line: any non-zero solution to Mw = 0 is good to go.
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Relations with SM

Why are Schirokauer maps here ?
© Because they are a key part of a coordinate system for ¥,
Why are Schirokauer maps annoying ?

@ extra coordinates in each row of M (number = unit rank

© full-size integers mod ¢, much larger than valuations.

115 7:2 1:-6 0:-9 -2 4:3 3:6 6:2 10:-2 9:-2 13:-3 14:2 21:-2 17:2 ~16 20 26:-2 22 24:2 25 30 28 -35 34 -33 39 45 43 ~50 62 -68 80 67 ~77 79 82 105 88 -107 -92 110 147 129 162
158 ~223 179 ~209 189 ~169 ~208 220 172 ~259 248 257 -339 287 -322 317 494 413 447 465 464 460 -574 ~722 1389 -1546 616 757 911 859 -1597 -3002 -1203 3005 1499 ~1563 2383 ~2283
1164 3534 -4599 4855 1307 1504 3130 3779 3336 ~2688 3337 ~1910 4767 4038 4636 4149 -2240 5300 3156 5421 5426 3478 -4799 5451 2890 -2307 2633 1915 ~3732 2197 1314 2066 1517 4709

167 =7 1:3 0:-2 2:2 8:-2 4 5:-6 6:2 11 10:-3 9:2 =13 12 14:2 21:-2 17:2 19:~4 18 20:3 15:5 26 22:-2 24:2 ~25 ~29 28 32 -35 ~31 36:-2 ~52 -44 ~46 47 -51 55 -57 ~56 -63 66 58 72
To 16 01 17 a5 s 43 b0 o5 <91 147 116 -13) 1261 137 1ae 166 ~1o0 196 205 106.3 208 20 244 2T 21 245 46s 435 —ich 493 S87 $28 04 78 1056 804 568 480 760 486
559 ~527 440 701 ~941 807 608 741 ~703 789 2072 921 ~493 ~734 -2651 1117 357 1050 ~1052 -840 ~1195 -1041 -1371 2654 -2031 1559 ~2089 2330 1940 2211 ~1206 1383 1735 -1770 1328
1774 ~1814 ~5506 ~2096 ~2045 ~2946 ~1443 ~2769 3032 -1537 6196 -3337 -4146 -4382 -3806 6220 3702 4938 ~3598 ~3818 ~5318 ~3374 ~5453 5939 2110 2653 3491 2062 -2807 1625 2570
1705 -3735 861 2726 1214 -3130 1629 -2912

12 -7 1 0:2 2 8 -4 3:-2 5:-4 6:4 11:-2 ~10 13 14:2 21 17 16:2 ~18 ~15 27:3 24:-2 ~28 32:-2 -35 34 -31 -37 36 40 41:3 46:-2 ~57 66 ~69 ~80 78 76 71 ~73 86 -B7 96 91 ~110 98
150 ~125 181 -157 -156 ~155 ~165 -158 -178 213 ~191 ~170 ~215 188 -241 263 272 -308 356 219 -357 -270 362 449 -409 -525 -552 ~697 ~655 -549 1115 ~733 -932 676 -1671 1393 618
2080 ~2030 -926 ~4223 4329 ~1601 1094 -1074 -4856 -2939 4110 2943 ~2402 5013 357 2048 -5379 4369 5161 5173 -3149 2000 4528 ~4657 6393 2109 4545 4965 6050 -3165 5211 2656 ~3611
3264 ~5220 ~2118 2119 ~1046 2724 -2574 2575 -2992 -4092

6771052 2:-2 -8 4:3 6:4 9:-2 ~14 2152 17:-2 ~16 26:2 23 30 -35 ~40 43 -42 ~46 48 60 56 80 78 73 87 93 -89 122 123 131 142 ~157 166 168 ~200 202 ~197 265 243 364 -317 -486 1117

-876 767 1274 860 ~4224 3655 2285 1740 2850 -1505 4115 -4640 2963 ~4646 4802 ~4412 6055 2245 -2362 3749 -4093 2730

1617 1:-6 0:-8 B 4:2 3:6 5:-2 6 ~11 10:-6 9:4 ~12 14:2 ~21 17:2 16 19 18:-2 20:-2 26 23:-2 22 30:-2 32 36:2 31 37 36:2 47:-2 49 -65 -65 60 62 -68 61 -69 ~70 8 79 105 -103 -95
102 96 -106 110 112 113 117 120 ~126 139 141:2 ~126 135 148:2 144 ~140 13 142 164 161 154 166 159 -155 175 167 183 ~191 -209 206 ~247 -276 405 342 366 -305 285 ~373 -528 -362 599
581 689 760 634 ~654 762 -608 562 ~498 845 777 609 1418 -543 1421 737 1550 980 2272 940 ~1763 -5364 ~1110 ~1257 1464 3211 -1991 5850 2040 -2676 -4T33 4611 ~4742 ~2606 -4620
2102 6204 ~3153 ~4792 ~3478 4817 4818 -3718 3064 -2251 -2399 1830 ~2560 3959 1963 1964 -5956 5480 ~2645 2261 ~1709 ~2452

497 1002 011 3 8 474 362 6 11 101-2 8 13 1712 10 36 23 31 47 54 55 5 75 84 91 140 -210 221 253 360 639 805 518 438 ~521 258 013 1197 1772 3117 3665 1309 3750 752 AT
5694 3062 ~4567 2645 2823
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What does the matrix look like ?

The matrix M is large and sparse.

® N rows and columns;

© Want to solve Mw = 0 over Fy, with roughly 200-bit ¢;

© d dense columns (Schirokauer maps; same size as ¢);

© Other coefficients (typically ¢ ~ 100 per row) are all < 10.
We use sparse linear algebra techniques.

@ Touching the matrix is forbidden (want to avoid densification);

© Rely only on the matrix times vector operation.
: Wy
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SM overhead for doing v — M X v

Coefficients of v are integers mod /.

Cost for each coefficient of M x v

@ about 100 multiplications (tiny coeff of M x coeff of v)
(more than 90% of the time, tiny means +1);

© about d multiplications (SM coeff x coeff of v);
© about 100 + d additions;

@ one reduction modulo 7.

© The multiplications by SM coeffs are not negligible in practice.

© Because of them, some alternative representation formats are
hampered or ineffective (RNS), or we have to take into
account conversion costs.
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Related linear algebra problems

© Factoring : solve w X ' =0 over K = TFy;

© FFS of old : solve ' x w =0 over K = [, (obsolete);

e NFS-DL . solve r

The SM columns would be harmless if we were to solve wM = 0.
For NFS-DL, not.

x w = 0 over K = TFy.

© no such thing as a “partial solution” which we can complete.

© for the p180 record, significant cost from SM columns.
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Homogeneous vs inhomogeneous

We can as well write:

MXW:( Mo )XWZO.

My sparse of size N x (N — d). Dense SM block b of size N x d.

@ We look for one solution vector w: size N x 1.
= a priori knowledge that a solution space exists.

e NOTE: if d = 1, this amounts to solving Mowy = b.
= knowledge that b € Im(Mp). Can pad My to square.

How does sparse LA do this ? How to expand to d > 17
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Several sparse algorithms

Solving sparse linear systems over finite fields (hence exact) often
done with the following black-box algorithms:

® Lanczos algorithm (1950);

© Wiedemann algorithm (1986);

@ their block variants: Block Lanczos (Montgomery, 1995),
Block Wiedemann (Coppersmith, 1994).

Desired properties: complexity, parallelization, distribution.
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Wiedemann algorithm

Let x and y be an arbitrary vectors in KV,
The Wiedemann algorithm computes (a;);, with a; = x" My € K.

Rational reconstruction on A(X)

Find F(X) and G(X) such that:

AX)F(X) = 6(X) + O(X?"),
degF <N degG < N.

The N zero coefficients in the middle of the RHS rewrite as:
Vk e [0,N—1], x"MKF(M)y =o.
Unless disaster occurs, this means F(M)y = 0.
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Wiedemann algorithm

Wiedemann for inhomogeneous system:

To solve Mw = b, Wiedemann sets y = b, and x random.
We hope that F has non-zero constant coefficient: F =1 — XQ.
This implies M - (Q(M)b) = b. Found solution w = Q(M)b.

Wiedemann for homogeneous system:

Simple strategy: set y = Mz. Then M - (I?(M)z) =0.
Found solution w = F(M)z.
(alternatively, compute F from A(X) mod X)

Bottom line: non-block Wiedemann adapts to both.
Correctness 7 In order to defend against degeneracy mishaps,
preconditioning might be required.
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Block Wiedemann

Invented by Coppersmith (1994), for the factoring context.

Replace black box by matrix times block of vectors.
The black box (BB) becomes a block black box (BBB).

© Replace x and y by vector blocks x,y € KN*".
© Expect that fewer black box calls are required.

© Very well adapted to the K = FF; case.
Good distribution opportunities;
Can also be used for DLP with K = Fy.
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Block Wiedemann

Let x and y be an arbitrary vector blocks in KN*".
Compute (a;);, with a; = x" M’y € K",

Hermite-Padé approximation on A(X)

Find F(X) and G(X) such that:
A(X)F(X) = G(X) + O(X>"/"),
degF < N/n degG < N/n.
Algorithms: Beckermann-Labahn (1994), T. (2001).

The N/n zero coefficients in the middle of the RHS rewrite as:
Vk e [0,N/n—1], x"M*THING = 0.

Means THING is orthogonal to n x N/n columns of {(MT)kx}.

Unless disaster occurs, this means THING = 0.
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What is this THING ?

The Hermite-Padé approximation computes F € K[X]"*".

@ As in the non-block case, F is related to the min.poly. of M.

© Actually det F is “close to” M-
Let F = (Fi,j)lgi,jgn and columns of y be (y1 .. .yn).
column 1 of THING = Fy1(M)y1 + - - + Fp1(M)yn,

—

column 2 of THING = I-{L\Q(M)yl + -4 Fpo(M)yn,

Conclusion: THING is made of n distinct expressions, all
evaluating to zero.
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Columns of F

—

column 1 of THING = Fy 1 (M)y; + - - + Fp1(M)y,.

Solving Mw = 0:

© take y = Mz for a random z.
© each column of THING gives a solution.
© needs N/n extra BBB calls.

Correctness: same as non-block, but harder.

In practice, we only want a select number of solutions. Use this
many columns of F.

© For RSA-768, maybe fetching 512 solutions was overkill.
(not embarrassing, since computational excess is negligible).

© DLP: one will be good enough. Better not do more.
Because of SM, we have our d annoying dense columns.

Block Wiedemann likes Schirokauer maps 21/29



Plan

Context

The linear system
Wiedemann algorithm
Block Wiedemann algorithm
Ways around

More inhomogeneous systems



Homogeneous vs inhomogeneous

Recall that in the non-block case, for d = 1, we can solve the
inhomogeneous linear system, then the SM column disappears.

Can we do the same in the block case ?
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SMs within y

Assumption from now on n>d .

© First d columns of y are chosen as b.
® Last n— d chosen as Mz for a random z € KN*(n—d),
@ Erase the d dense columns in M. Call that My

From now on, My is N x N, but has d zero columns.

Run Block Wiedemann on this.

© expect smaller cost for each matrix times vector operation;

© exact same cost everywhere else, provided that we are able to
work with any column of F.

Block Wiedemann likes Schirokauer maps 23/29



Writing down solutions

How can we use one of the THING = 0 equations ?
column 1 of THING = Fy1(Mo)y1 + - - - + Fn.1(Mo)yn-
For i < d, let F,-,\lzc,-+XQ,-; for i > d, let F,I: Qi

0=ocby+---+ cgbg + My - (Z Qi(Mo)z;).

Deriving a solution to Mw = 0

Set N — d first columns of w to be those of }_; Qi(Mo)zi;
Set d last columns to be (cy, ... cq).

© Overhead from SM columns is eliminated, provided n > d.
© Implemented in CADO-NFS since nov. 2014.
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Change in cost

Cost impact analyzed by Joux and Pierrot.

© Assume c non-zero coefficients per row in My, and d SMs.

© Take SM X v; to cost 3 times more than mjv;.

With SMs in the matrix: 3(c + Bd)N? + kn®N log® N

© A(X): 3N/n BBB calls: 3(c + 8d)N?, or n-fold distributed.
e F(X): kn®Nlog? N for some k.

3cN? 4 1 min(n, d)?N log? N

© A(X): 3N/n BBB calls: 3cN?, or n-fold distributed.

© F(X): same, but recall we want n > d.
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Is that new ?

Short answer: NO.

“MATHEMATICS OF COMPUTATION
VOLUME 62, NUMBER 205
JANUARY 1994, PAGES 333-350

SOLVING HOMOGENEOUS LINEAR EQUATIONS OVER GF(2)
VIA BLOCK WIEDEMANN ALGORITHM

DON COPPERSMITH

Inhomogeneous equations. We developed this algorithm for homogeneous equa-
tions, because that is the case of interest for integer factorization. For the in-
homogeneous system of equations Bw = b, where b is a block of at most n
vectors, variants that can be tried include the following:

1. Set the first few columns of y equal to b, and calculate the rest of y as
Bz. Then hope that in the equation

x;l:ijd‘ Zﬁ(f;k)Bd‘-ky‘, =0
vk

the coefficients of By, form an invertible matrix, allowing one to solve for y
in terms of vectors in the image of B.

Longer answer: let's see why.
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What Coppersmith is doing

Coppersmith aims at solving Mw = b.

In effect this means d independent one-vector systems.

Claim: this solves a harder problem. Ours is an easy by-product.

How does Coppersmith do this 7 As we do.

© First d columns of y are chosen as b.
® Last n— d chosen as Mz for some z € KN*(n—=d),

To solve Mw = b, we need to be able to force:

@ one solution with (ci,...,¢cq) = (1,0,...,0),
@ one solution with (ci,...,¢cq) = (0,1,0,...,0), etc.
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Can we force (cy,...,¢q) ?

Our proposed approach uses one single column of F.
This won't do for Mw = b. Have only one (cy,. .., cg) choice.

BUT we may combine the columns linearly.

e If [XO]F{l...d}x{l...n} has rank d, then we can force any value
for (c1, ..., cq).

© More generally, the set of possible (ci, ..., cq) is a vector
space, and it can be covered.

@ If we don't mind which (ci, ..., cg) value we get, easy.

Cost: once for F is computed, cost for each vector in w is same as
ours for one.
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Conclusion

© Solving inhomogeneous linear systems with block Wiedemann
has small overhead.

© Key is to put the right hand side in the starting vectors.
© For NFS-DL, SM columns do NOT have to go in the matrix.
© The same applies to block Lanczos (but less appealing
anyway).
Implementation is more or less straightforward.

Must handle Fy1 gyxq1..np and Frgi1 nyx{1..n) properly.

Block Wiedemann likes Schirokauer maps 29/29



	Context
	The linear system
	Wiedemann algorithm
	Block Wiedemann algorithm
	Ways around
	More inhomogeneous systems

