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Introduction

Cold Boot Attacks

@ Usenix 2008 - Halderman et al. noted that DRAMSs retain
their contents for a while after power is lost.

@ Bits in memory can be extracted (but it requires physical
access to the machine).

@ The attacker can insert a flash drive to the target machine,

@ the attacker turns off the machine,

© the computer is restarted and the memory contents are
copied to the flash drive.

@ Unfortunately, the extracted bits will have errors.
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Introduction

Cold Boot Attacks

@ The number of errors depends on a humber of things.
@ The machine: newer machines lose data quicker.

@ The temperature: bits decay quicker at higher
temperatures.

@ The amount of time since power was lost: less time results
in fewer errors.
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Introduction

Degradation of bits

@ At room temperature, some machines erase all data within
2.5 seconds. Others require 35 seconds.

@ At temperatures of —50°C (via the use of compressed air)
all machines retained at least 99.9% of data after 60
seconds without power.

@ Cooling memory chips with liquid nitrogen resulted in only
0.17% of bits degrading after 60 minutes without power.
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Introduction

Cold Boot Attacks

@ Portions of memory are eithera 1 — 0 region or 0 — 1.

@ Ina 1 — 0 region, 0 bits will always flip with very low
probability (<1%), but 1 bits will flip with much higher
probability.

B. Poettering & D. L. Sibborn Cold boot attacks for DL



Introduction

Cold Boot Attacks

@ Why is this a problem?
@ Secrets will be stored in memory.

@ If we can recover a noisy memory image, it might be
possible to recover private keys.

Important Question

Given a noisy key obtained from a cold boot attack, how can we
recover the original key?
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Introduction

Previous Approaches

@ This question has been addressed many times before.

@ Most cold boot attacks consider the reconstruction of RSA
private keys.

@ There are attacks against symmetric schemes such as
DES and AES.

@ There is only one paper that discusses cold boot attacks in
the discrete logarithm setting.
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Introduction

Cold Boot Attacks for Discrete Logarithm Keys

@ Cold boot attacks usually exploit redundancy in the private
key’s in-memory representation.

@ E.g. in practice RSA private keys contain the parameters
(p,q.d, dp, dg,qp ") instead of just d.

@ For previous DL cold boot attacks, the authors (Lee et al.)
assumed there was no redundancy in the key.
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Introduction

Lee et al.'s Approach

@ Algorithm in a nutshell:
Let n be the length of the key, and let § be the maximum
probability that a bit flips.

Fori=0to [nd]:
@ Assume the key has i errors,
@ attempt to recover the key using a modified ‘splitting
system’ algorithm,
@ if the key is found, output it.
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Introduction

Problems with this approach

@ It is not much better than a brute-force search.

@ The algorithm assumes we know an upper bound for the
number of errors.

@ The algorithm is designed to work for symmetric errors

(i.e., P(1 — 0) = P(0 — 1)), but this does not reflect the
behaviour of a cold boot attack.
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Introduction

Improving the approach

@ There are several ways we can improve key-recovery
techniques in the DL setting.

@ The most obvious way is to find redundant representations
of keys.

Important Question

Are there any discrete logarithm implementations that contain
redundant information about the private key?
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NAFs and Combs

Non-Adjacent Forms (NAFs)

@ The simplest NAF re-encodes a scalar x € {0,1} as a
string x’ € {0,1, —1}¢1.

@ Binary expansion: 7 = 22 + 21 + 20 — 111,,.

@ Alternatively 7 = 23-2°, so NAF(111,) =10 0 —1.

@ The NAF is designed to reduce the number of additions.

@ For elliptic curves, subtractions are as efficient as
additions.

@ The NAF is more efficient than the standard
double-and-add algorithm.

B. Poettering & D. L. Sibborn Cold boot attacks for DL



NAFs and Combs

@ A generalised and modified version of this NAF is used for
OpenSSL elliptic curve implementations.

@ The generalised NAF has width w. This means there is at
most one non-zero digit in any string of length w (and digits
are any odd number between -2¥~1 + 1 and 2%~ —1).

@ The modified version of the NAF may alter the w + 1 most
significant digits of the NAF (to increase efficiency).
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NAFs and Combs

In-memory representation of NAFs

@ In OpenSSL, each digit of the NAF is represented as a
byte in memory.

@ The digits are represented using two-complement
arithmetic.
@ For example,
e -3 — 11111101
o —1 - 11111111
e 0 — 00000000

e 1 — 00000001
e 3 — 00000011.
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NAFs and Combs

Comb-Based Methods

@ Comb methods are designed to reduce the number of
multiplications.

@ They require some pre-computation that depends on a
fixed base point.

@ Basic combs are a re-ordering of the bits.
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NAFs and Combs

Basic Comb

@ The basic comb has parameters w and d.

@ Consider a bit string, a, which has wd bits (prepend zeros,
if necessary).

@ The string a is rearranged into d blocks of length w, called
K',forie {0,...,d —1}.
o Let K/ denote the jth bit of K', then K/ = a;, ju.

awd—1 aod—1 aq ao
4 + 4 4
| I | || I | | ]

O T T
Ky KK
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NAFs and Combs

Basic Comb

@ For apoint P, the value aP is computed by evaluating a
sum over the K’ values.

@ The basic comb is vulnerable to power analysis
techniques, since K' = 0 with probability 2—".

@ When K' = 0, the addition of this zero vector is easily
identifiable.
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NAFs and Combs

PolarSSL Comb

@ PolarSSL employs a modified comb technique.

@ The modifications are designed to prevent the previous
power analysis attacks.

@ The output of the PolarSSL comb is
(09 K9, o9, KI=1 ... o9 KO).

@ The K' are always odd in the PolarSSL comb, which
prevents K' = Q.

@ The o values are either 1 or —1, to denote whether K' is
positive or negative.
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NAFs and Combs

PolarSSL Comb

@ For the PolarSSL comb, we have w € {2,...,7}.

@ Recall that each K’ has length w. Hence, each pair (o', K')
can be stored in a byte.

@ Foro,—-1+—1and 1+~ 0.

@ The K' values are unchanged.

@ We store (o', K') as “o’, padding, K"

@ Example: w =3 and (¢,K) = (-1,(1,0,1)). The
in-memory representation as a byte is 10000101.
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NAFs and Combs

Attack Model

@ Neither OpenSSL nor PolarSSL explicitly states that the
original private key should be discarded.

@ Hence, both the original key and its re-encoding (NAF or
comb) will be contained in memory, at least for some time.

@ We assume an adversary has mounted a cold boot attack
and obtains noisy versions of the key and its re-encoding.
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NAFs and Combs

Attack Model

@ We assume the adversary knows « and 3, where bits
degrade according to the following channel:

@ We may estimate « and 3 by comparing public values with
the degraded public values that were in memory.
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NAFs and Combs

The Reconstruction Technique

@ The (textbook) NAF is constructed by starting from the
least significant bits.

@ i.e., for the simplest NAF, the least ¢t signed digits only rely
on knowledge of the least t + 1 bits of the bit string.

@ For example, take the integer 7:

partial bit string : partial NAF
11 — -1

111 — 0 —1
0111 — 00 —1

00111 —- 100 —1

@ Comb encodings have a similar property.
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NAFs and Combs

The Reconstruction Technique

@ Our reconstruction procedure will consider partial solutions
for the private key (across a small section of bits).

@ For each candidate we can compute a partial re-encoding
(NAF/comb).

@ We compare these candidate solutions (and their
re-encodings) against the noisy information.

@ We keep a (possibly large) list of candidates for which the
‘correlation’ is ‘good’. Candidates with bad correlation are
discarded.

@ We then consider candidate solutions across a new
section of bits, and repeat the procedure.
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NAFs and Combs

The Reconstruction Technique (Example for NAFs)

@ Suppose we consider 2 bits at a time. We begin like this:

candidate, x | partial-NAF(x) | Correlation
00 0 bad
0 1 1 bad
10 0 bad
11 -1 good

@ The second stage would then look like this:

candidate, x | partial-NAF(x) | Correlation
0011 10 -1 bad
0111 00 -1 good
1011 10 -1 bad
1111 00 -1 good
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NAFs and Combs

The Reconstruction Technique

@ This process would repeat until the candidate solutions are
all of equal size to the private key.

@ We can then compare each remaining candidate solution
against the public key Q = aP.

@ If xP = Q@ for any candidate x, the algorithm outputs x as
the private key. Otherwise the algorithm fails.

@ A similar technique applies to our comb reconstruction
procedure.

@ Note, our actual OpenSSL reconstruction differs slightly
from the description given here (please see the paper!).
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Multinomial Distribution and Test

How Do We Measure Correlation?

@ How is the correlation measured? However you like.
@ We could use Hamming distance, Maximum-Likelihood, . ..

@ We could measure the correlation of all bits, or only the
newly-added bits, ...

@ But, we chose to use a multinomial test because it
provides us with a neat theoretical analysis of success.
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Multinomial Distribution and Test

Multinomial Distributions

@ Multinomial distributions are a generalisation of binomial
distributions.

@ Multinomial distributions have k mutually exclusive events.

@ Each of the k events has probability p; > 0, and
Zf'(:1 pi=1.
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Multinomial Distribution and Test

Multinomial Distributions

@ Consider a bowl! of sweets from which we sample at
random (with replacement):

2

@ Suppose we have four colours, with P(red) = 0.4,
P(blue) = 0.3, P(yellow) = 0.2, P(green) = 0.1.
@ If we pick 10 sweets randomly, what is the probability of
picking:
e 5red, 2 blue, 2 yellow, 1 green?
e 1 red, 6 blue, 1 yellow, 2 green?
@ The multinomial distribution tells us the probability of any
combination.
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Multinomial Distribution and Test

Multinomial Test

@ Suppose we observe a set of values (say 6 red, 1 blue, 2
yellow, and 1 green).

@ Suppose we believe that
(b1, 2,03, p4) = (0.5,0.2,0.2,0.1).

@ How can we be confident that the observed values were
chosen according to the probabilities pq, p2, p3 and ps?

@ There are several methods, but we chose to use the
multinomial test.
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Multinomial Distribution and Test

Multinomial Test Statistic

@ Suppose we sample N items, with each item belonging to
one of k distinct categories.

@ Let x; be the number of sampled items that belong to
category i.

@ If we hypothesise that each category has probability p;,
then we define

LR = : n (PN
=> xln 5 )

i=0
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Multinomial Distribution and Test

Multinomial Test Statistic

@ Asymptotically, we have —2LR — x2_, whenever the
observed values follow the hypothesised distribution.

@ Therefore P(—2LR < C) — P(x2_, < C).

@ This allows us to set an appropriate confidence interval to
decide whether to reject the hypothesis.

@ i.e., if we are happy to reject the correct hypothesis with
probability 0.05, we set C such that P(x4_, < C) = 0.95.

@ Computing C is easy.
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Multinomial Distribution and Test

Multinomial Test

@ How does this help us?

@ Recall that our algorithm measures the ‘correlation’
between our candidate key and the noisy bits.

@ Recall that in a cold boot attack the bits will degrade
according to the following channel:
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Multinomial Distribution and Test

Multinomial Test

@ Hence, there are four possible bit-pairs.

@ Theseare:0 —+0,0—~1,1—=0and 1 — 1.

@ These four pairs can be viewed as the colours red, blue,
green and yellow of the previous example.

o If we let py, denote the probability of a b-bit appearing in
the original key (together with the re-encoding), then:

e P(0— 0)=po(1—a),
e P(0 — 1) = poa,
o P(1—0)=pif,
o P(1 = 1)=pi(1-7).
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Multinomial Distribution and Test

Multinomial Test

@ For each candidate solution, we perform a multinomial test.

@ If the candidate’s degradation is consistent with the
probability vector (po(1 — ), pocx, p15, p1(1 — 53)), it is kept.
@ Otherwise, the algorithm discards the candidate.

@ The user can specify his own confidence interval for the
multinomial test.

@ This allows the user to recover the private key with an
arbitrary success (with a trade-off between running-time).

@ N.B. This test also works in the RSA setting (and others!).
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Multinomial Distribution and Test

Estimating py and p;

@ We have not yet addressed how to set the values of py and
P1.

@ One option is to estimate these values by using knowledge
of the asymptotic distribution of bits of the NAF or comb.

@ However, given the small sample sizes, the asympitotic
estimates may not be very good or useful.

@ Instead, we perform two multinomial tests: one for the 0
bits of the candidate key, and one for the 1s.
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Multinomial Distribution and Test

Example

@ Consider the following example.

Candidate key: 01001010100010111 ...
Noisy memory: 11100001100100001 ...

@ We parse the candidate key into 1s and Os.

Candidate key: 000000000 11111111
Noisy memory: 110010010 10010001

@ Now we test the 1s and Os separately, which avoids the
need to estimate py and p;.
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Multinomial Distribution and Test

Why Not Maximum-Likelihood?

@ At Asiacrypt 2012, Paterson et al. showed that
Maximume-Likelihood (ML) decoding is very successful and
quick to recover RSA keys from a cold boot attack.

@ Why, then, do we not use ML decoding?

@ Firstly, the ML algorithm does not have a rigorous
theoretical analysis of success, whereas the multinomial
test does.

@ Secondly, the ML algorithm benefits from several
advantages that are inherent in the RSA recovery
procedure.
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Experimental Results

Experiments

@ We will shortly see some of our experimental results.

@ For each experiment we degraded 100 keys (each of
length 160 bits).

@ We then used our algorithm to attempt to recover the
original keys.
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Experimental Results

OpenSSL (NAF) Experiments

@ For these experiments we set « = 0.001. (N.B. There are
several extra parameters to the algorithm that are not
displayed here.)

I 0.1 |015| 0.2 |0.25| 0.3
Predicted Success | 0.15 | 0.15 | 0.02 | 0.01 | 0.01
Success 0.17 | 0.2 | 0.07 | 0.06 | 0.04
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Experimental Results

PolarSSL (comb) Experiments

@ For these experiments we set « = 0.001. (N.B. There are
several extra parameters to the algorithm that are not
displayed here.)

IS 0.01 | 0.03 | 0.06 | 0.08 | 0.1
Predicted Success | 0.73 | 0.17 | 0.04 | 0.01 | 0.01
Success 0.81| 0.6 | 0.55 | 0.37 | 0.08
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Experimental Results

Predicted Success vs Actual Success

@ There is sometimes a big discrepancy between the
predicted success and the observed success!

@ The predicted success is based on the chi-squared
distribution.

@ Recall that the distribution of the multinomial test
converges to the chi-squared distribution.

@ For small sample sizes, the convergence is poor.

@ Due to the probabilities used in our model (i.e., a = 0.001),
the chi-squared test is providing a lower bound on the
success of our algorithm.
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Experimental Results

0—1vs1— 0region

@ Recall that portions of memory are either 0 —+ 1 or1 — 0.

@ In previous cold boot attacks, the targeted private keys
have an (approximately) uniform distribution of 1 bits and 0
bits.

@ Hence, the key-recovery algorithms work equally well in
each region.

@ For the PolarSSL comb, there are slightly more 1s than Os,
but this will make a negligible difference to the algorithm.
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Experimental Results

0—+1vs1—0

@ For the OpenSSL NAF, there are many more Os than 1s.

@ Theoretically, the success of the algorithm is independent
of whether we areina 0 — 1 or 1 — 0 region.

@ However, in practice the success will be affected (because
different regions will result in different rates of convergence
to the chi-squared statistic).

@ |t will also affect the running time of the algorithm.
@ Ina 0 — 1 region, the running-time will be much longer.
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Experimental Results

Open Problems

@ Bound the running-time of the algorithm.

@ Bound the probability of a Type Il error for the multinomial
test.

e This requires assumptions regarding the distribution of
incorrect solutions.

o In the RSA setting there is a conjecture regarding this
distribution, and this would allow us to bound the
running-time of the algorithm (but not the running-time of
our DL algorithm).
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Experimental Results

Conclusions

@ We have proposed practical key-recovery algorithms
against OpenSSL and PolarSSL elliptic curve
implementations.

@ Our algorithms allow keys to be recovered with a
user-chosen success rate (at the expense of running-time).

@ The statistical test we use can be implemented with other
key-recovery algorithms in other settings, such as RSA.

@ Our paper provides the first exposition of the PolarSSL
encoding in the cryptographic literature.
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