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Isogeny-based Signatures

Generic Isogeny feature: compact keys (unless specific tradeoffs).

• [Yoo+17] Digital Signature: Based on SIDH,
Multiple rounds ⇒ long sig, slow.

• [GPS17] GPS signature: Based on quaternions ⇒ weaker
assumption,
Multiple rounds ⇒ long sig, no implem.

• [DG19] SeaSign: Based on CSIDH,
Multiple rounds ⇒ slow, size tradeoffs.

• [BKV19] CSI-FiSh: Based on CSIDH + precomp. ⇒ bad scaling,
similar to SeaSign with improved efficiency and sizes.

Yoo et al. “A post-quantum digital signature scheme based on supersingular
isogenies”
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SQISign: Short Quaternion Isogeny Signature

Signature:1 one round, high soundness from Deuring Correspondence.

Most compact PQ signature scheme: PK + Signature combined 5×
smaller than Falcon (most compact NIST Round 3 candidate).

Secret Key (bytes) Public Key (bytes) Signature (bytes) Security
16 64 204 NIST-1

Efficient verification and reasonably efficient signature.

Keygen Sign Verify
ms 575 2,279 42

New security assumption.

1"SQISign: Compact Post-Quantum Signatures from Isogenies and Quaternions", L.
De Feo, D. Kohel, A. Leroux, C. Petit and B. Wesolowski, ASIACRYPT 2020
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The Deuring Correspondence



Quaternion Algebra, Orders and Ideals

The Quaternion algebra H(a, b) is

H(a, b) = Q+ iQ+ jQ+ kQ with i2 = a, j2 = b

Fractional ideals are Z-lattices of rank 4 inside H(a, b)

I = α1Z+ α2Z+ α3Z+ α4Z

The Reduced norm n(I ) = {gcd(n(α)), α ∈ I}

An order O is an ideal which is also a ring, it is maximal when not
contained in another order.

The (maximal) left order2 OL(I ) of an ideal is

OL(I ) = {α ∈ H(a, b), αI ⊂ I}

2similary for the right order OR(I )
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The Deuring Correspondence

Supersingular elliptic curves over Fp2 Maximal Orders in Ap

E O ∼= End(E )
Isogeny with φ : E → E1 Ideal Iφ left O-ideal

and right O1-ideal
Degree deg(φ) Norm n(Iφ)

Example : p ≡ 3 mod 4, Ap = H(−1,−p).

E0 : y2 = x3 + x

End(E0) = ⟨1, ι, ι+ π

2
,
1 + ιπ

2
⟩ ∼= ⟨1, i , i + j

2
,
1 + k

2
⟩

π : (x , y) 7→ (xp, yp) is the Frobenius

ι : (x , y) 7→ (−x ,
√
−1y) is the twisting automorphism of E0.
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A new security problem?

Supersingular ℓ-Isogeny Problem: Given a prime p and two
supersingular curves E1 and E2 over Fp2 , compute an ℓe-isogeny

φ : E1 → E2 for e ∈ N⋆.

⇕

Quaternion ℓ-Isogeny Path Problem: Given a prime number p, two
maximal orders O1,O2 of Ap, find an ideal J of norm ℓe for e ∈ N⋆ with

OL(J) ∼= O1, OR(J) ∼= O2.

[Koh+14]: heuristic polynomial time algorithm KLPT for quaternion path
problem.

Kohel et al. “On the quaternion ℓ-isogeny path problem”
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Algorithmic summary of effective Deuring Correspondence

Problems with ✗ are hard, ✓ are easy. All ✓ are obtained using KLPT.

E → O ✗ O → E ✓

φ→ Iφ ✗ Iφ → φ ✓

E1,E2 → φ ✗ O1,O2 → I ✓

[Eis+18; Wes22]: use KLPT to prove polynomial time reduction from
supersingular ℓ-isogeny problem to :

Endomorphism Ring Problem: Given a supersingular elliptic curve E

over Fp2 , compute its endomorphism ring.

Eisenträger et al. “Supersingular Isogeny Graphs and Endomorphism Rings:
Reductions and Solutions” and Wesolowski “The supersingular isogeny path and
endomorphism ring problems are equivalent”
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Proof of Knowledge of
Endomorphism Ring



Quaternions for Proofs?

The knowledge of the endomorphism ring of a curve E lets us perform
powerful operations otherwise impossible.

Use KLPT to prove knowledge of endomorphism ring?

First attempt: GPS Signature in 2017, derived from 2-special sound
identification protocol.

SQISign contributions:

• A new generic KLPT algorithm to reach high soundness.

• New algorithmic tools to make the scheme practical.

Galbraith, Petit, and Silva “Identification Protocols and Signature Schemes Based
on Supersingular Isogeny Problems”
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GPS Identification Scheme

[GPS17]: A 2-special sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0

b ∈ {0, 1}

E

EA

τ

σ0

σ1 (KLPT)

commitment isogeny (prover)

• challenge bit (verifier)

response isogeny (prover)

secret key isogeny

Repeat this λ times to reach 2λ-bits of soundness.
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SQISign Identification Scheme

SQISign: A 2λ-sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0

E1

E2

EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Probability to cheat without knowledge of End(EA): O( 1
degφ ).

9



SQISign Identification Scheme

SQISign: A 2λ-sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0

E1

E2

EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Probability to cheat without knowledge of End(EA): O( 1
degφ ).

9



SQISign Identification Scheme

SQISign: A 2λ-sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0 E1

E2

EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Probability to cheat without knowledge of End(EA): O( 1
degφ ).

9



SQISign Identification Scheme

SQISign: A 2λ-sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0 E1

E2EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Probability to cheat without knowledge of End(EA): O( 1
degφ ).

9



SQISign Identification Scheme

SQISign: A 2λ-sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0 E1

E2EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Probability to cheat without knowledge of End(EA): O( 1
degφ ).

9



SQISign Identification Scheme

SQISign: A 2λ-sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0 E1

E2EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Probability to cheat without knowledge of End(EA): O( 1
degφ ).

9



Proving the Soundness

Soundness: Given two valid transcripts for two different challenges for
the same commitment, some knowledge is revealed on the secret key.

E0

E1

E2

EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Smooth Endomorphism Problem: Given a supersingular elliptic curve
E over Fp2 , compute a non-trivial endomorphism θ ∈ End(E ) of smooth

norm.

[Eis+18]: prove heuristic polynomial reduction to the Endomorphism
Ring Problem.
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The KLPT algorithm and the Zero-knowledge

Zero-Knowledge: It is possible to generate a transcript indistinguishable
from a valid one with the sole knowledge of the public key.

E0

E1

E2

EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Show that σ is a random isogeny ⇒ depends on the alg. to compute σ.

Solution from [Koh+14]: σ reveal a path to E0.

We propose a new SigningKLPT algorithm.
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A New Security Assumption

Lemma: Fix D as σ’s degree. There exists Pdeg(τ) a set of isogenies of
degree D such that:

SigningKLPT outputs an uniform element in
{ρ, ρ = [τ ]∗ι, ι ∈ Pdeg(τ)}.

E0 E1

E2EA

τ

ι

σ = [τ ]∗ι

ZK reduces to the distinguishing problem between:

1. σ is uniformly random isogeny of degree D;

2. σ is uniformly random in [τ ]∗ Pdeg(τ).

Pdeg(τ) can be computed from deg(τ) only and has exponential size.

12



A New Security Assumption

Lemma: Fix D as σ’s degree. There exists Pdeg(τ) a set of isogenies of
degree D such that: SigningKLPT outputs an uniform element in
{ρ, ρ = [τ ]∗ι, ι ∈ Pdeg(τ)}.

E0 E1

E2EA

τ

ι

σ = [τ ]∗ι

ZK reduces to the distinguishing problem between:

1. σ is uniformly random isogeny of degree D;

2. σ is uniformly random in [τ ]∗ Pdeg(τ).

Pdeg(τ) can be computed from deg(τ) only and has exponential size.

12



A New Security Assumption

Lemma: Fix D as σ’s degree. There exists Pdeg(τ) a set of isogenies of
degree D such that: SigningKLPT outputs an uniform element in
{ρ, ρ = [τ ]∗ι, ι ∈ Pdeg(τ)}.

E0 E1

E2EA

τ

ι

σ = [τ ]∗ι

ZK reduces to the distinguishing problem between:

1. σ is uniformly random isogeny of degree D;

2. σ is uniformly random in [τ ]∗ Pdeg(τ).

Pdeg(τ) can be computed from deg(τ) only and has exponential size.

12



A New Security Assumption

Lemma: Fix D as σ’s degree. There exists Pdeg(τ) a set of isogenies of
degree D such that: SigningKLPT outputs an uniform element in
{ρ, ρ = [τ ]∗ι, ι ∈ Pdeg(τ)}.

E0 E1

E2EA

τ

ι

σ = [τ ]∗ι

ZK reduces to the distinguishing problem between:

1. σ is uniformly random isogeny of degree D;

2. σ is uniformly random in [τ ]∗ Pdeg(τ).

Pdeg(τ) can be computed from deg(τ) only and has exponential size.

12



The effective Deuring
Correspondence: algorithmic
challenges



From Ideals to Isogenies

SigningKLPT computes an ideal. Translate into the isogeny σ.

[GPS17]: IdealToIsogeny : J 7→ σ polynomial alg. for degree D,
domain E with E [D] and action of End(E ) on this set. No
implementation!

We have D ≫ p2 and the kernel cannot be represented in Fp2 . Two
solutions:

• Take D powersmooth → E [D] in ∼ small extension ([GPS17]).

• Take D = ℓf and split σ in smaller isogenies of degree ℓe and apply
IdealToIsogeny for each (SQISign).

New Pb: for generic E of known End(E ), hard to evaluate End(E )...
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Choice of Parameters for SQISign

For fast verification we take σ of degree 2f , f = O(log2(p)).

For efficient signature: need a prime p such that p2 − 1 is divided by
2eT with odd smooth T satisfying T 2 ∼ p3.

We found a 256 bits prime p with e = 33, f = 1000 and 213-smooth
integer of 395 bits:

T = 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983

353 · 43 · 103 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859

883 · 1019 · 2713 · 4283

Bottleneck of the signature: Θ(f /e) T -isogeny computations .
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What now?



Conclusion and Important Problems

GPS and SQISign are the first applications of constructive Deuring
correspondence but there is still lot of room for improvements and new
discoveries. Some follow-up work and future direction:

• Improve the KLPT algorithm and ideal to isogeny translation
mechanism.

• Study the new ZK assumption.

• "SETA: Supersingular Encryption from Torsion Attacks",
DDFKLPSW, ASIACRYPT 2021

• "A New Isogeny Representation and Applications to Cryptography",
L (preprint).
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