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Classical Cryptography

Current cryptography :

• The Integer Factorization Problem

• The Discrete Logarithm Problem

Hard for classical computers, solved in polynomial time on a quantum

computer using Shor’s Algorithm.
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Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) → usable on classical computer but

resistant to quantum computers.

In 2016, the NIST launched a competition for PQC. Looked for

Signature and Key exchange protocols. Different Candidates :

• Lattice-based crypto

• Code-based crypto

• Multivariate-based crypto (Signatures only)

• Hash-based crypto (Signatures only)

• Isogeny-based crypto (Key exchange only)

For isogenies : SIKE a variant of the SIDH protocol (2011 by D. Jao and

L. De Feo).
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Elliptic curve and Isogeny notations

Elliptic Curve over Fq:

y2 = x3 + ax + b

The set of (x , y) defined over Fq is a group with addition ⊕. The scalar

multiplication by n ∈ Z is n consecutive addition and is denoted [n]E .

Separable isogeny:

ϕ : E → E ′

The degree is deg(ϕ) = | ker(ϕ)|.

The dual isogeny ϕ̂ : E ′ → E

ϕ̂ ◦ ϕ = [deg(ϕ)]E
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Endomorphism ring

An isogeny ϕ : E → E is an endomorphism. End(E ) is a ring with

addition and composition.

Examples: [n]E for n ∈ Z, Frobenius over Fp i.e π : (x , y)→ (xp, yp)

Elliptic curves over finite fields:

• Ordinary when End(E ) is an order of a quadratic imaginary field.

• Supersingular when End(E ) is a maximal order of a quaternion

algebra.
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Supersingular Isogeny Graph

Supersingular `-isogeny graph: Vertices are supersingular elliptic curves,

Edges are `-isogenies.

This graph is

• Finite and defined over Fp2

• Fully connected

• (`+ 1)-Regular

• Ramanujan (optimal expander graph)
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Supersingular Isogeny Diffie Hellman
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Supersingular Isogeny Problem

The underlying security problem:

Supersingular `-Isogeny Problem: Given a prime p and two

supersingular curves E1 and E2 over Fp2 , compute an `e-isogeny

ϕ : E1 → E2 for e ∈ N?.
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The Deuring Correspondence



Quaternion Algebra

The quaternion algebra H(a, b) is

H(a, b) = Q + iQ + jQ + kQ

with i2 = a, j2 = b and k = ij = −ji .

Conjugates:

α = a1 + a2i + a3j + a4k 7−→ α = a1 − a2i − a3j − a4k

The reduced norm

n(α) = αα

9



Quaternion Algebra

The quaternion algebra H(a, b) is

H(a, b) = Q + iQ + jQ + kQ

with i2 = a, j2 = b and k = ij = −ji .

Conjugates:

α = a1 + a2i + a3j + a4k 7−→ α = a1 − a2i − a3j − a4k

The reduced norm

n(α) = αα

9



Quaternion Algebra

The quaternion algebra H(a, b) is

H(a, b) = Q + iQ + jQ + kQ

with i2 = a, j2 = b and k = ij = −ji .

Conjugates:

α = a1 + a2i + a3j + a4k 7−→ α = a1 − a2i − a3j − a4k

The reduced norm

n(α) = αα

9



Order and ideals

Fractional ideals are Z-lattices of rank 4

I = α1Z + α2Z + α3Z + α4Z

The Reduced norm n(I ) = {gcd(n(α)), α ∈ I}

An order O is an ideal which is also a ring, it is maximal when not

contained in another order.

The (maximal) left order1 OL(I ) of an ideal is

OL(I ) = {α ∈ H(a, b), αI ⊂ I}

An ideal is integral when I ⊂ OL(I ).

The equivalence relation ∼ is I ∼ J when I = Jq for q ∈ H(a, b)?

1similary for the right order OR(I )
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The Deuring Correspondence

Supersingular curves over Fp2 ←→ Maximal orders in Ap

E 7−→ O ∼= End(E )

Example : p ≡ 3 mod 4, Ap = H(−1,−p).

E0 : y2 = x3 + x

End(E0) = 〈1, ι, ι+ π

2
,

1 + ιπ

2
〉 ∼= 〈1, i ,

i + j

2
,

1 + k

2
〉

π : (x , y) 7→ (xp, yp) is the Frobenius and ι : (x , y) 7→ (−x ,
√
−1y) is the

twisting automorphism.
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The Deuring Correspondence, Summary

Supersingular elliptic curve over Fp2 Maximal Orders in Ap

E O ∼= End(E )

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal

and right O1-ideal

deg(ϕ) n(Iϕ)

ϕ̂ Iϕ

ϕ : E → E1, ψ : E → E1 Equivalent Ideals Iϕ ∼ Iψ
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The problem

Supersingular `-Isogeny Problem: Given a prime p and two

supersingular curves E1 and E2 over Fp2 , compute an `e-isogeny

ϕ : E1 → E2 for e ∈ N?.

l

Quaternion `-Isogeny Path Problem: Given a prime number p, two

maximal orders O1,O2 of Ap, find J of norm `e for e ∈ N? with

OL(J) ∼= O1, OR(J) ∼= O2.

Easier Problem ? Can we use it to solve supersingular isogeny problem ?

KLPT14: heuristic polynomial time algorithm KLPT for quaternion path

problem.
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Algorithmic summary of effective Deuring Correspondence

Problems with 7 are hard, 3 are easy. All 3 are obtained using KLPT.

E → O 7 O → E 3

ϕ→ Iϕ 7 Iϕ → ϕ 3

E1,E2 → ϕ 7 O1,O2 → I 3

EHLMP18: use KLPT to prove heuristic polynomial time reduction from

supersingular `-isogeny problem to :

Endomorphism ring Problem: Given a supersingular elliptic curve E

over Fp2 , compute its endomorphism ring.
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The Quaternion `-isogeny Path

Problem



A key lemma

Quaternion `-Isogeny Path Problem: Given a prime number p, a

maximal order O of Ap and I a left integral O-ideal, find J ∼ I of norm

`e for e ∈ N?.

Following lemma indicates a method of resolution :

Lemma: Let I be a left integral O-ideal and α ∈ I . Then, I α
n(I ) is an

integral left O-ideal of norm n(α)
n(I ) .

Solving the Quaternion `-Isogeny Path Problem reduces to solving the

norm equation n(α) = n(I )`e over I .

KLPT14 → possible when norm equations can be solved over O.
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Norm equation over Special Extremal Orders

We have a poly. time solution when O is special extremal :

contains suborder Z〈ω1, ω2〉 with small q = n(ω1) and n(ω2) = p.

α = (x , y , z , t) ∈ Z〈ω1, ω2〉, n(α) = (x2 + qy2) + p(z2 + qt2)

Algorithm to solve n(α) = M:

Try random z , t until x2 + qy2 = M − p(z2 + qt2) has a solution.

Cornacchia’s algorithm : solutions2 to x2 + qy2 = M ′ when M ′ is

prime.

2when it exists
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The solution of KLPT

Algorithm KLPT:

Input: O,I , n(I ) = N

Output: β ∈ I of norm N`e .

1. Find γ ∈ O of norm N`e0 .

2. Find ν0 ∈ O such that γν0 ∈ I .

3. Find ν ∈ O : the strong approximation of ν0 of norm `e1 .

4. Output β = γν of norm N`e0+e1
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The generalized Solution

We consider the case where neither O1 nor O2 are special extremal order.

Take O0 such an order.

The solution given in KLPT14 : perform KLPT twice between O0,O1 and

O0,O2, then concatenate the paths.

E0

E1

E2

τ1

ϕI

τ2

Output: τ2 ◦ τ̂1
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Contribution



Another Generalized KLPT algorithm, why bother ?

After all, KLPT14’s results are sufficient for our security reductions.

Why we need a new, more refined, algorithm :

• Very specific solution, not satisfying from the theoretical point of

view.

• Twice the size of the solution in the special case → we should be

able to do better.

• Constructive application (GPS17) relying on KLPT.
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Solving norm equations over non-extremal special orders

For a random maximal O the smallest q we can choose is p2/3.

When q is big, x2 + qy2 = M has very small probabilty to have a

solution.

Solution: look for another type of suborder inside O. We know how to

solve things in O0.

Eichler Order: O = O ∩O0 decomposes as Z + J where J is a left-O0

ideal → solving in O is similar to KLPT.

KLPT: Solve a norm equation in I ⊂ O0.

New Generalized KLPT: Solve a norm equation in I ∩ Z + J ⊂ O0.

Norm equation in I ∩ Z + J: KLPT but with two strong approximation

steps.

20
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Analysis of the solution

Output: ideal of norm `e , size of e ? The smallest solution is e ≈ log`(p).

KLPT3:

e = e0 + e1 ≈ 1/2 log`(p)︸ ︷︷ ︸
first norm equation

+ 3 log`(p)︸ ︷︷ ︸
strong approximation

= 7/2 log`(p)

New generalized KLPT:

e = e0 + e1 ≈ 1/2 log`(p)︸ ︷︷ ︸
first norm equation

+ 5 log`(p)︸ ︷︷ ︸
2 combined strong approx.

= 11/2 log`(p)

New solution is less specific : no obvious property. More analysis ?

3The size of the generalized solution of KLPT14 is twice that size
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A constructive application: Signature

GPS17 : A 2-special sound identification protocol.

E0

E1

Es

σ0

σ1

τs

Secret key is τs , public key is Es , Alice wants to identify to Bob.

1. Commitment: Alice selects random path σ1, sends E1.

2. Challenge: Bob sends a bit b.

3. Challenge’s answer: Alice sends σb.

4. Verification: Bob checks if the arrival curve of σb is E1.
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A constructive application: Signature

Previous identification protocol can be extended to 2λ soundness by

repeating it λ times. Can we do better and batch it4 ?

E0

E1

Es

Ec γ
σ

τs

Take an isogeny γ as the challenge ? Answering requires to compute σ

⇒ we need generalized KLPT.

Previous solution reveals a path to E0, not ours.

4This is an on-going work with L. de Feo, D. Kohel, C. Petit, B. Wesolowski
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Conclusion

A new generalized solution to the Quaternion `-isogeny path problem:

• Smaller and more generic solution to the problem.

• A generalization of the signature protocol from GPS17.

• Other applications?
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Questions ?
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