The generalized Quaternion $\ell\text{-}\text{isogeny}$ path problem

Antonin Leroux

DGA, Ecole Polytechnique, Institut Polytechnique de Paris, Inria Saclay

Current cryptography :

- The Integer Factorization Problem
- The Discrete Logarithm Problem

Current cryptography :

- The Integer Factorization Problem
- The Discrete Logarithm Problem

Hard for *classical* computers, solved in **polynomial time** on a *quantum* computer using Shor's Algorithm.

Post-Quantum Cryptography (PQC) \rightarrow usable on classical computer but resistant to quantum computers.

In 2016, the NIST launched a competition for PQC. Looked for **Signature** and **Key exchange** protocols. Different Candidates :

- Lattice-based crypto
- Code-based crypto
- Multivariate-based crypto (Signatures only)
- Hash-based crypto (Signatures only)
- Isogeny-based crypto (Key exchange only)

For isogenies : SIKE a variant of the SIDH protocol (2011 by D. Jao and L. De Feo).

- 1. Isogeny-based cryptography
- 2. The Deuring Correspondence
- 3. The Quaternion $\ell\text{-isogeny}$ Path Problem
- 4. Contribution

Isogeny-based cryptography

Elliptic curve and Isogeny notations

Elliptic Curve over \mathbb{F}_q :

$$y^2 = x^3 + ax + b$$

Elliptic Curve over \mathbb{F}_q :

$$y^2 = x^3 + ax + b$$

The set of (x, y) defined over \mathbb{F}_q is a group with addition \oplus . The scalar multiplication by $n \in \mathbb{Z}$ is *n* consecutive addition and is denoted $[n]_E$.

Separable isogeny:

$$\varphi: E \to E'$$

Elliptic Curve over \mathbb{F}_q :

$$y^2 = x^3 + ax + b$$

The set of (x, y) defined over \mathbb{F}_q is a group with addition \oplus . The scalar multiplication by $n \in \mathbb{Z}$ is *n* consecutive addition and is denoted $[n]_E$.

Separable isogeny:

$$\varphi: E \to E'$$

The **degree** is $deg(\varphi) = |ker(\varphi)|$.

Elliptic Curve over \mathbb{F}_q :

$$y^2 = x^3 + ax + b$$

The set of (x, y) defined over \mathbb{F}_q is a group with addition \oplus . The scalar multiplication by $n \in \mathbb{Z}$ is *n* consecutive addition and is denoted $[n]_E$.

Separable isogeny:

$$\varphi: E \to E'$$

The **degree** is $deg(\varphi) = |ker(\varphi)|$.

The **dual** isogeny $\hat{\varphi}: E' \to E$

 $\hat{\varphi} \circ \varphi = [\deg(\varphi)]_E$

Examples: $[n]_E$ for $n \in \mathbb{Z}$, Frobenius over \mathbb{F}_p i.e $\pi : (x, y) \to (x^p, y^p)$

Examples: $[n]_E$ for $n \in \mathbb{Z}$, Frobenius over \mathbb{F}_p i.e $\pi : (x, y) \to (x^p, y^p)$ Elliptic curves over finite fields:

• Ordinary when End(E) is an order of a quadratic imaginary field.

Examples: $[n]_E$ for $n \in \mathbb{Z}$, Frobenius over \mathbb{F}_p i.e $\pi : (x, y) \to (x^p, y^p)$ Elliptic curves over finite fields:

- Ordinary when End(E) is an order of a quadratic imaginary field.
- **Supersingular** when End(*E*) is a maximal order of a quaternion algebra.

This graph is

• Finite and defined over \mathbb{F}_{p^2}

This graph is

- Finite and defined over \mathbb{F}_{p^2}
- Fully connected

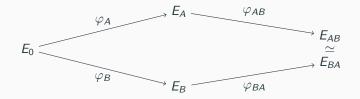
This graph is

- Finite and defined over \mathbb{F}_{p^2}
- Fully connected
- $(\ell + 1)$ -Regular

This graph is

- Finite and defined over \mathbb{F}_{p^2}
- Fully connected
- $(\ell + 1)$ -Regular
- Ramanujan (optimal expander graph)

Supersingular Isogeny Diffie Hellman



The underlying security problem:

Supersingular ℓ -Isogeny Problem: Given a prime p and two supersingular curves E_1 and E_2 over \mathbb{F}_{p^2} , compute an ℓ^e -isogeny $\varphi: E_1 \to E_2$ for $e \in \mathbb{N}^*$.

The Deuring Correspondence

The quaternion algebra H(a, b) is

 $H(a,b) = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$

with $i^2 = a$, $j^2 = b$ and k = ij = -ji.

The quaternion algebra H(a, b) is

$$H(a,b) = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with $i^2 = a$, $j^2 = b$ and k = ij = -ji.

Conjugates:

$$\alpha = a_1 + a_2i + a_3j + a_4k \longmapsto \overline{\alpha} = a_1 - a_2i - a_3j - a_4k$$

The quaternion algebra H(a, b) is

$$H(a,b) = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with $i^2 = a$, $j^2 = b$ and k = ij = -ji.

Conjugates:

$$\alpha = a_1 + a_2i + a_3j + a_4k \longmapsto \overline{\alpha} = a_1 - a_2i - a_3j - a_4k$$

The reduced norm

$$n(\alpha) = \alpha \overline{\alpha}$$

 $I = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}$

The **Reduced norm** $n(I) = \{gcd(n(\alpha)), \alpha \in I\}$

¹similary for the **right order** $\mathcal{O}_R(I)$

 $I = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}$

The **Reduced norm** $n(I) = \{ gcd(n(\alpha)), \alpha \in I \}$

An order \mathcal{O} is an ideal which is also a ring, it is **maximal** when not contained in another order.

¹similary for the **right order** $\mathcal{O}_R(I)$

 $I = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}$

The **Reduced norm** $n(I) = {gcd(n(\alpha)), \alpha \in I}$

An order \mathcal{O} is an ideal which is also a ring, it is **maximal** when not contained in another order.

The (maximal) **left order**¹ $\mathcal{O}_L(I)$ of an ideal is

 $\mathcal{O}_L(I) = \{ \alpha \in H(a, b), \alpha I \subset I \}$

An ideal is **integral** when $I \subset \mathcal{O}_L(I)$.

¹similary for the **right order** $\mathcal{O}_R(I)$

 $I = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}$

The **Reduced norm** $n(I) = {gcd(n(\alpha)), \alpha \in I}$

An order \mathcal{O} is an ideal which is also a ring, it is **maximal** when not contained in another order.

The (maximal) **left order**¹ $\mathcal{O}_L(I)$ of an ideal is

 $\mathcal{O}_L(I) = \{ \alpha \in H(a, b), \alpha I \subset I \}$

An ideal is **integral** when $I \subset \mathcal{O}_L(I)$.

The equivalence relation \sim is $I \sim J$ when I = Jq for $q \in H(a, b)^*$

¹similary for the **right order** $\mathcal{O}_R(I)$

Supersingular curves over $\mathbb{F}_{p^2} \longleftrightarrow Maximal \text{ orders in } \mathcal{A}_p$ $E \longmapsto \mathcal{O} \cong End(E)$

Supersingular curves over $\mathbb{F}_{p^2} \longleftrightarrow$ Maximal orders in \mathcal{A}_p $E \longmapsto \mathcal{O} \cong \operatorname{End}(E)$

Example : $p \equiv 3 \mod 4$, $\mathcal{A}_p = H(-1, -p)$.

$$E_0: y^2 = x^3 + x$$

$$\mathsf{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle \cong \langle 1, i, \frac{i + j}{2}, \frac{1 + k}{2} \rangle$$

 $\pi: (x, y) \mapsto (x^p, y^p)$ is the Frobenius and $\iota: (x, y) \mapsto (-x, \sqrt{-1}y)$ is the twisting automorphism.

Supersingular elliptic curve over \mathbb{F}_{p^2}	Maximal Orders in \mathcal{A}_{p}
E	$\mathcal{O}\cong End(E)$
(E_1, φ) with $\varphi: E o E_1$	I_{arphi} integral left \mathcal{O} -ideal
	and right \mathcal{O}_1 -ideal
$deg(\varphi)$	$n(I_{\varphi})$
$\hat{\varphi}$	$\overline{I_{\varphi}}$
$\varphi: E \to E_1, \psi: E \to E_1$	Equivalent Ideals $I_arphi \sim I_\psi$

 \updownarrow

Quaternion ℓ -**Isogeny Path Problem**: Given a prime number p, two maximal orders $\mathcal{O}_1, \mathcal{O}_2$ of \mathcal{A}_p , find J of norm ℓ^e for $e \in \mathbb{N}^*$ with $\mathcal{O}_L(J) \cong \mathcal{O}_1, \mathcal{O}_R(J) \cong \mathcal{O}_2.$

 \updownarrow

Quaternion ℓ -Isogeny Path Problem: Given a prime number p, two maximal orders $\mathcal{O}_1, \mathcal{O}_2$ of \mathcal{A}_p , find J of norm ℓ^e for $e \in \mathbb{N}^*$ with $\mathcal{O}_L(J) \cong \mathcal{O}_1, \mathcal{O}_R(J) \cong \mathcal{O}_2.$

Easier Problem ? Can we use it to solve supersingular isogeny problem ?

 \updownarrow

Quaternion ℓ -**Isogeny Path Problem**: Given a prime number p, two maximal orders $\mathcal{O}_1, \mathcal{O}_2$ of \mathcal{A}_p , find J of norm ℓ^e for $e \in \mathbb{N}^*$ with $\mathcal{O}_L(J) \cong \mathcal{O}_1, \mathcal{O}_R(J) \cong \mathcal{O}_2.$

Easier Problem ? Can we use it to solve supersingular isogeny problem ? KLPT14: *heuristic* **polynomial time** algorithm KLPT for quaternion path problem.

Problems with X are hard, \checkmark are easy. All \checkmark are obtained using KLPT.

Problems with X are hard, ✓ are easy. All ✓ are obtained using KLPT.

 $E \to \mathcal{O} \quad \mathbf{X} \qquad \mathcal{O} \to E \quad \mathbf{\checkmark}$ $\varphi \to I_{\varphi} \quad \mathbf{X} \qquad \qquad I_{\varphi} \to \varphi \quad \mathbf{\checkmark}$ $E_{1}, E_{2} \to \varphi \quad \mathbf{X} \qquad \qquad \mathcal{O}_{1}, \mathcal{O}_{2} \to I \quad \mathbf{\checkmark}$

Problems with **X** are hard, **√** are easy. All **√** are obtained using KLPT.

EHLMP18: use KLPT to prove *heuristic* **polynomial time** reduction from supersingular ℓ -isogeny problem to :

Endomorphism ring Problem: Given a supersingular elliptic curve E over \mathbb{F}_{p^2} , compute its endomorphism ring.

The Quaternion *l*-isogeny Path Problem

Quaternion ℓ -**Isogeny Path Problem**: Given a prime number p, a maximal order \mathcal{O} of \mathcal{A}_p and I a left integral \mathcal{O} -ideal, find $J \sim I$ of norm ℓ^e for $e \in \mathbb{N}^*$.

Quaternion ℓ -**Isogeny Path Problem**: Given a prime number p, a maximal order \mathcal{O} of \mathcal{A}_p and I a left integral \mathcal{O} -ideal, find $J \sim I$ of norm ℓ^e for $e \in \mathbb{N}^*$.

Following lemma indicates a method of resolution :

Lemma: Let *I* be a left integral \mathcal{O} -ideal and $\alpha \in I$. Then, $I \frac{\overline{\alpha}}{n(I)}$ is an integral left \mathcal{O} -ideal of norm $\frac{n(\alpha)}{n(I)}$.

Quaternion ℓ -**Isogeny Path Problem**: Given a prime number p, a maximal order \mathcal{O} of \mathcal{A}_p and I a left integral \mathcal{O} -ideal, find $J \sim I$ of norm ℓ^e for $e \in \mathbb{N}^*$.

Following lemma indicates a method of resolution :

Lemma: Let *I* be a left integral \mathcal{O} -ideal and $\alpha \in I$. Then, $I \frac{\overline{\alpha}}{n(I)}$ is an integral left \mathcal{O} -ideal of norm $\frac{n(\alpha)}{n(I)}$.

Solving the Quaternion ℓ -Isogeny Path Problem reduces to solving the **norm equation** $n(\alpha) = n(I)\ell^e$ over *I*.

KLPT14 \rightarrow possible when **norm equations** can be solved over \mathcal{O} .

We have a poly. time solution when ${\mathcal O}$ is special extremal :

²when it exists

²when it exists

$$\alpha = (x, y, z, t) \in \mathbb{Z} \langle \omega_1, \omega_2 \rangle, \ n(\alpha) = (x^2 + qy^2) + p(z^2 + qt^2)$$

²when it exists

$$\alpha = (x, y, z, t) \in \mathbb{Z} \langle \omega_1, \omega_2 \rangle, \ n(\alpha) = (x^2 + qy^2) + p(z^2 + qt^2)$$

Algorithm to solve $n(\alpha) = M$: Try random z, t until $x^2 + qy^2 = M - p(z^2 + qt^2)$ has a solution.

²when it exists

$$\alpha = (x, y, z, t) \in \mathbb{Z} \langle \omega_1, \omega_2 \rangle, \ n(\alpha) = (x^2 + qy^2) + p(z^2 + qt^2)$$

Algorithm to solve $n(\alpha) = M$: Try random z, t until $x^2 + qy^2 = M - p(z^2 + qt^2)$ has a solution.

Cornacchia's algorithm : solutions² to $x^2 + qy^2 = M'$ when M' is prime.

²when it exists

1. Find $\gamma \in \mathcal{O}$ of norm $N\ell^{e_0}$.

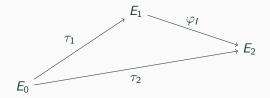
- 1. Find $\gamma \in \mathcal{O}$ of norm $N\ell^{e_0}$.
- 2. Find $\nu_0 \in \mathcal{O}$ such that $\gamma \nu_0 \in I$.

- 1. Find $\gamma \in \mathcal{O}$ of norm $N\ell^{e_0}$.
- 2. Find $\nu_0 \in \mathcal{O}$ such that $\gamma \nu_0 \in I$.
- 3. Find $\nu \in \mathcal{O}$: the *strong approximation* of ν_0 of norm ℓ^{e_1} .

- 1. Find $\gamma \in \mathcal{O}$ of norm $N\ell^{e_0}$.
- 2. Find $\nu_0 \in \mathcal{O}$ such that $\gamma \nu_0 \in I$.
- 3. Find $\nu \in \mathcal{O}$: the *strong approximation* of ν_0 of norm ℓ^{e_1} .
- 4. Output $\beta = \gamma \nu$ of norm $N\ell^{e_0+e_1}$

We consider the case where neither \mathcal{O}_1 nor \mathcal{O}_2 are special extremal order. Take \mathcal{O}_0 such an order.

The solution given in KLPT14 : perform KLPT twice between $\mathcal{O}_0, \mathcal{O}_1$ and $\mathcal{O}_0, \mathcal{O}_2$, then concatenate the paths.



Output: $\tau_2 \circ \hat{\tau_1}$

Contribution

After all, KLPT14's results are sufficient for our security reductions.

After all, KLPT14's results are sufficient for our security reductions. Why we need a new, more refined, algorithm :

• Very specific solution, not satisfying from the theoretical point of view.

After all, KLPT14's results are sufficient for our security reductions. Why we need a new, more refined, algorithm :

- Very specific solution, not satisfying from the theoretical point of view.
- Twice the size of the solution in the special case \rightarrow we should be able to do better.

After all, KLPT14's results are sufficient for our security reductions. Why we need a new, more refined, algorithm :

- Very specific solution, not satisfying from the theoretical point of view.
- Twice the size of the solution in the special case \rightarrow we should be able to do better.
- Constructive application (GPS17) relying on KLPT.

For a **random** maximal O the smallest q we can choose is $p^{2/3}$. When q is big, $x^2 + qy^2 = M$ has very small probability to have a solution.

When q is big, $x^2 + qy^2 = M$ has very small probability to have a solution.

Solution: look for another type of suborder inside \mathcal{O} . We know how to solve things in \mathcal{O}_0 .

When q is big, $x^2 + qy^2 = M$ has very small probability to have a solution.

Solution: look for another type of suborder inside \mathcal{O} . We know how to solve things in \mathcal{O}_0 .

Eichler Order: $\mathfrak{O}=\mathcal{O}\cap\mathcal{O}_0$

When q is big, $x^2 + qy^2 = M$ has very small probability to have a solution.

Solution: look for another type of suborder inside \mathcal{O} . We know how to solve things in \mathcal{O}_0 .

Eichler Order: $\mathfrak{O} = \mathcal{O} \cap \mathcal{O}_0$ decomposes as $\mathbb{Z} + J$ where J is a left- \mathcal{O}_0 ideal \rightarrow solving in \mathfrak{O} is similar to KLPT.

When q is big, $x^2 + qy^2 = M$ has very small probability to have a solution.

Solution: look for another type of suborder inside \mathcal{O} . We know how to solve things in \mathcal{O}_0 .

Eichler Order: $\mathfrak{O} = \mathcal{O} \cap \mathcal{O}_0$ decomposes as $\mathbb{Z} + J$ where J is a left- \mathcal{O}_0 ideal \rightarrow solving in \mathfrak{O} is similar to KLPT.

KLPT: Solve a norm equation in $I \subset \mathcal{O}_0$.

When q is big, $x^2 + qy^2 = M$ has very small probability to have a solution.

Solution: look for another type of suborder inside \mathcal{O} . We know how to solve things in \mathcal{O}_0 .

Eichler Order: $\mathfrak{O} = \mathcal{O} \cap \mathcal{O}_0$ decomposes as $\mathbb{Z} + J$ where J is a left- \mathcal{O}_0 ideal \rightarrow solving in \mathfrak{O} is similar to KLPT.

KLPT: Solve a norm equation in $I \subset \mathcal{O}_0$. New Generalized KLPT: Solve a norm equation in $I \cap \mathbb{Z} + J \subset \mathcal{O}_0$.

When q is big, $x^2 + qy^2 = M$ has very small probability to have a solution.

Solution: look for another type of suborder inside \mathcal{O} . We know how to solve things in \mathcal{O}_0 .

Eichler Order: $\mathfrak{O} = \mathcal{O} \cap \mathcal{O}_0$ decomposes as $\mathbb{Z} + J$ where J is a left- \mathcal{O}_0 ideal \rightarrow solving in \mathfrak{O} is similar to KLPT.

KLPT: Solve a norm equation in $I \subset \mathcal{O}_0$. New Generalized KLPT: Solve a norm equation in $I \cap \mathbb{Z} + J \subset \mathcal{O}_0$.

Norm equation in $I \cap \mathbb{Z} + J$: KLPT but with two strong approximation steps.

Output: ideal of norm ℓ^e , size of e? The smallest solution is $e \approx \log_{\ell}(p)$. KLPT³:

$$e = e_0 + e_1 \approx \underbrace{1/2 \log_{\ell}(p)}_{\ell} + \underbrace{3 \log_{\ell}(p)}_{\ell} = 7/2 \log_{\ell}(p)$$

first norm equation strong approximation

³The size of the generalized solution of KLPT14 is twice that size

Output: ideal of norm ℓ^e , size of e? The smallest solution is $e \approx \log_{\ell}(p)$. KLPT³:

$$e = e_0 + e_1 \approx \underbrace{\frac{1/2\log_{\ell}(p)}{\text{first norm equation}}}_{\text{first norm equation}} + \underbrace{\frac{3\log_{\ell}(p)}{\text{strong approximation}}}_{\text{strong approximation}} = \frac{7/2\log_{\ell}(p)}{e_1}$$
New generalized KLPT:

$$e = e_0 + e_1 \approx \underbrace{\frac{1/2\log_{\ell}(p)}{\text{first norm equation}}}_{2 \text{ combined strong approx.}} = \frac{11/2\log_{\ell}(p)}{1/2\log_{\ell}(p)}$$

³The size of the generalized solution of KLPT14 is twice that size

Output: ideal of norm ℓ^e , size of e? The smallest solution is $e \approx \log_{\ell}(p)$. KLPT³:

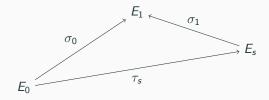
$$e = e_0 + e_1 \approx \underbrace{\frac{1/2\log_{\ell}(p)}{\text{first norm equation}} + \underbrace{3\log_{\ell}(p)}{\text{strong approximation}} = 7/2\log_{\ell}(p)$$
New generalized KLPT:

$$e = e_0 + e_1 \approx \underbrace{\frac{1/2\log_{\ell}(p)}{\text{first norm equation}} + \underbrace{5\log_{\ell}(p)}{2 \text{ combined strong approx.}} = 11/2\log_{\ell}(p)$$

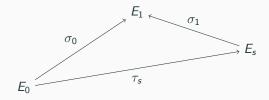
New solution is less specific : no obvious property. More analysis ?

³The size of the generalized solution of KLPT14 is twice that size

GPS17 : A 2-special sound identification protocol.



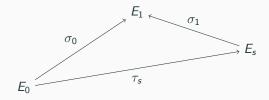
GPS17 : A 2-special sound identification protocol.



Secret key is τ_s , public key is E_s , Alice wants to identify to Bob.

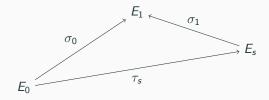
1. **Commitment**: Alice selects random path σ_1 , sends E_1 .

GPS17 : A 2-special sound identification protocol.



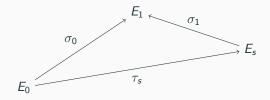
- 1. **Commitment**: Alice selects random path σ_1 , sends E_1 .
- 2. Challenge: Bob sends a bit b.

GPS17 : A 2-special sound identification protocol.



- 1. **Commitment**: Alice selects random path σ_1 , sends E_1 .
- 2. Challenge: Bob sends a bit b.
- 3. Challenge's answer: Alice sends σ_b .

GPS17 : A 2-special sound identification protocol.

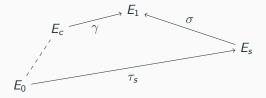


- 1. **Commitment**: Alice selects random path σ_1 , sends E_1 .
- 2. Challenge: Bob sends a bit b.
- 3. Challenge's answer: Alice sends σ_b .
- 4. **Verification**: Bob checks if the arrival curve of σ_b is E_1 .

Previous identification protocol can be extended to 2^{λ} soundness by repeating it λ times. Can we do better and batch it⁴ ?

⁴This is an on-going work with L. de Feo, D. Kohel, C. Petit, B. Wesolowski

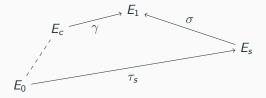
Previous identification protocol can be extended to 2^{λ} soundness by repeating it λ times. Can we do better and batch it⁴ ?



Take an isogeny γ as the challenge ? Answering requires to compute σ \Rightarrow we need generalized KLPT.

⁴This is an on-going work with L. de Feo, D. Kohel, C. Petit, B. Wesolowski

Previous identification protocol can be extended to 2^{λ} soundness by repeating it λ times. Can we do better and batch it⁴ ?



Take an isogeny γ as the challenge ? Answering requires to compute σ \Rightarrow we need generalized KLPT.

Previous solution reveals a path to E_0 , not ours.

⁴This is an on-going work with L. de Feo, D. Kohel, C. Petit, B. Wesolowski

A new generalized solution to the Quaternion $\ell\text{-}\mathsf{isogeny}$ path problem:

• Smaller and more generic solution to the problem.

A new generalized solution to the Quaternion ℓ -isogeny path problem:

- Smaller and more generic solution to the problem.
- A generalization of the signature protocol from GPS17.

A new generalized solution to the Quaternion ℓ -isogeny path problem:

- Smaller and more generic solution to the problem.
- A generalization of the signature protocol from GPS17.
- Other applications?

Questions ?