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Classical Cryptography

Current cryptography :

e The Integer Factorization Problem

e The Discrete Logarithm Problem

Hard for classical computers, solved in polynomial time on a quantum
computer using Shor's Algorithm.



Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) — usable on classical computer but
resistant to quantum computers.

In 2016, the NIST launched a competition for PQC. Looked for
Signature and Key exchange protocols. Different Candidates :

e | attice-based crypto

e Code-based crypto

e Multivariate-based crypto (Signatures only)
e Hash-based crypto (Signatures only)

Isogeny-based crypto (Key exchange only)

For isogenies : SIKE a variant of the SIDH protocol (2011 by D. Jao and
L. De Feo).



Table of contents

1. Isogeny-based cryptography
2. The Deuring Correspondence
3. The Quaternion f-isogeny Path Problem

4. Contribution



Isogeny-based cryptography



Elliptic curve and Isogeny notations

Elliptic Curve over [F:

y2=x3+ax+0b



Elliptic curve and Isogeny notations

Elliptic Curve over [F:
y2=x3+ax+0b

The set of (x,y) defined over Fy, is a group with addition &. The scalar
multiplication by n € Z is n consecutive addition and is denoted [n]g.

Separable isogeny:
p:E— FE



Elliptic curve and Isogeny notations

Elliptic Curve over [F:
y2=x3+ax+0b

The set of (x,y) defined over Fy, is a group with addition &. The scalar
multiplication by n € Z is n consecutive addition and is denoted [n]g.
Separable isogeny:

p:E— FE

The degree is deg(p) = | ker(¢)].



Elliptic curve and Isogeny notations

Elliptic Curve over [F:
y2=x3+ax+0b

The set of (x,y) defined over Fy, is a group with addition &. The scalar
multiplication by n € Z is n consecutive addition and is denoted [n]g.
Separable isogeny:

p:E— FE
The degree is deg(p) = | ker(¢)].
The dual isogeny ¢ : E/ — E

o = [deg(p)]e
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Endomorphism ring

An isogeny ¢ : E — E is an endomorphism. End(E) is a ring with
addition and composition.

Examples: [n]g for n € Z, Frobenius over F, i.e m: (x,y) — (xP, yP)

Elliptic curves over finite fields:

e Ordinary when End(E) is an order of a quadratic imaginary field.

e Supersingular when End(E) is a maximal order of a quaternion
algebra.
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Supersingular Isogeny Graph

Supersingular (-isogeny graph: Vertices are supersingular elliptic curves,
Edges are (-isogenies.

This graph is

Finite and defined over Fpe

Fully connected
(¢ 4 1)-Regular

Ramanujan (optimal expander graph)



Supersingular Isogeny Diffie Hellman



Supersingular Isogeny Problem

The underlying security problem:

Supersingular /-Isogeny Problem: Given a prime p and two
supersingular curves E; and E; over 2, compute an /*-isogeny
p: Ey — E, for e € N*.
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Order and ideals

Fractional ideals are Z-lattices of rank 4
| = 041Z + OQZ + CK3Z + 044Z

The Reduced norm n(/) = {gcd(n(a)),a € 1}

An order O is an ideal which is also a ring, it is maximal when not
contained in another order.

The (maximal) left order! O/(/) of an ideal is

O(l)={a € H(a,b),al C I}

An ideal is integral when | C O, (/).

The equivalence relation ~ is | ~ J when | = Jq for g € H(a, b)*

Lsimilary for the right order Og(/)

10
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The Deuring Correspondence

Supersingular curves over . <— Maximal orders in A,
E +— OZEnd(E)

Example : p=3 mod 4, A, =H(-1,—p).

Eo:y?=x3+x

t+m 14w | i) 14k
P >:<17Ia ) >
2 2 2 2

7 (x,y) > (xP,yP) is the Frobenius and ¢ : (x,y) — (—x,+/—1y) is the
twisting automorphism.

End(E) = (1,,
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The Deuring Correspondence, Summary

Supersingular elliptic curve over F» | Maximal Orders in A,

E O =~ End(E)

(E1, ) with p: E — E; I, integral left O-ideal
and right O;-ideal

deg(¢) (k)

% ly

p:E—>E,v:E—EF Equivalent Ideals /, ~ Iy
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The problem

Supersingular /-Isogeny Problem: Given a prime p and two
supersingular curves E; and E, over F2, compute an /°-isogeny
p: Ey — E; for e € N*,

!

Quaternion /-lIsogeny Path Problem: Given a prime number p, two
maximal orders Oy, O, of A, find J of norm ¢¢ for e € N* with
OL(J) 2 04, Or(J) 2 0O,.

Easier Problem ? Can we use it to solve supersingular isogeny problem ?

KLPT14: heuristic polynomial time algorithm KLPT for quaternion path
problem.
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Algorithmic summary of effective Deuring Correspondence

Problems with X are hard, v are easy. All v/ are obtained using KLPT.

E—-0 X O—E V
o—=l, X lp =@ V
E,Eb—¢ X 01,0, > 1 /

EHLMP18: use KLPT to prove heuristic polynomial time reduction from
supersingular /-isogeny problem to :

Endomorphism ring Problem: Given a supersingular elliptic curve E
over >, compute its endomorphism ring.
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The Quaternion /-isogeny Path
Problem




A key lemma

Quaternion /-Isogeny Path Problem: Given a prime number p, a
maximal order O of A, and | a left integral O-ideal, find J ~ | of norm
0¢ for e € N*.
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A key lemma

Quaternion /-Isogeny Path Problem: Given a prime number p, a
maximal order O of A, and | a left integral O-ideal, find J ~ | of norm
0¢ for e € N*.

Following lemma indicates a method of resolution :

Lemma: Let / be a left integral O-ideal and o € /. Then, I% is an

integral left O-ideal of norm 77((7))-

Solving the Quaternion /-Isogeny Path Problem reduces to solving the
norm equation n(«) = n(/)¢¢ over .

KLPT14 — possible when norm equations can be solved over O.
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Norm equation over Special Extremal Orders

We have a poly. time solution when O is special extremal :
contains suborder Z{wy,ws) with small g = n(w1) and n(w,) = p.

a=(xy,z,t) € Z{wy,wa), n(a)=(x*+ qy®)+p(z* + qt°)

Algorithm to solve n(a) = M:
Try random z, t until x2 + qy?> = M — p(z? + qt?) has a solution.

Cornacchia’s algorithm : solutions? to x> + qy?> = M’ when M’ is
prime.

2when it exists
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The solution of KLPT

Algorithm KLPT:
Input: O,/, n(l) =N
Output: 5 € [ of norm N¢€.
1. Find v € O of norm N{®.
2. Find vy € O such that vy € [.
3. Find v € O : the strong approximation of vy of norm (€.
4

. Output 3 = v of norm N¢®te
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The generalized Solution

We consider the case where neither Q1 nor O, are special extremal order.
Take Oq such an order.

The solution given in KLPT14 : perform KLPT twice between Oy, 071 and
Op, Oy, then concatenate the paths.

E;

®1
T E
/ 2!
E 2

Output: o7
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Another Generalized KLPT algorithm, why bother ?

After all, KLPT14's results are sufficient for our security reductions.
Why we need a new, more refined, algorithm :
e Very specific solution, not satisfying from the theoretical point of
view.

e Twice the size of the solution in the special case — we should be
able to do better.

e Constructive application (GPS17) relying on KLPT.
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Solving norm equations over non-extremal special orders

For a random maximal O the smallest g we can choose is p/3.

When q is big, x?> + qy?> = M has very small probabilty to have a
solution.

Solution: look for another type of suborder inside O. We know how to
solve things in Op.

Eichler Order: O = O N Oy decomposes as Z + J where J is a left-Oq
ideal — solving in © is similar to KLPT.

KLPT: Solve a norm equation in | C Q.
New Generalized KLPT: Solve a norm equation in INZ + J C Oq.

Norm equation in I N Z + J: KLPT but with two strong approximation

steps.
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Analysis of the solution

Output: ideal of norm ¢, size of e ? The smallest solution is e ~ log,(p).

KLPT3:

e=e+e~ 1/2log(p) + 3log/(p) =7/2log,(p)
———— ————

first norm equation  strong approximation

3The size of the generalized solution of KLPT14 is twice that size
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Analysis of the solution

Output: ideal of norm ¢, size of e ? The smallest solution is e ~ log,(p).

KLPT3:

e=e+e~ 1/2log(p) + 3log/(p) =7/2log,(p)
———— ————

first norm equation  strong approximation

New generalized KLPT:

e=e+e~ 1/2log/(p) + 5log,(p) = 11/2log,(p)
—_———— ———

first norm equation 2 combined strong approx.

New solution is less specific : no obvious property. More analysis ?

3The size of the generalized solution of KLPT14 is twice that size

21



A constructive application: Signature

GPS17 : A 2-special sound identification protocol.
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A constructive application: Signature

GPS17 : A 2-special sound identification protocol.

E
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£ /

Secret key is 75, public key is Eg, Alice wants to identify to Bob.

1. Commitment: Alice selects random path o1, sends E;.
2. Challenge: Bob sends a bit b.
3. Challenge’s answer: Alice sends op.

4. Verification: Bob checks if the arrival curve of oy is Ej.
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A constructive application: Signature

Previous identification protocol can be extended to 2* soundness by
repeating it \ times. Can we do better and batch it* ?

4This is an on-going work with L. de Feo, D. Kohel, C. Petit, B. Wesolowski
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A constructive application: Signature

Previous identification protocol can be extended to 2* soundness by
repeating it \ times. Can we do better and batch it* ?

Ts

Take an isogeny «y as the challenge ? Answering requires to compute o
= we need generalized KLPT.

Previous solution reveals a path to Eg, not ours.

4This is an on-going work with L. de Feo, D. Kohel, C. Petit, B. Wesolowski
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Conclusion

A new generalized solution to the Quaternion /-isogeny path problem:

e Smaller and more generic solution to the problem.
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Conclusion

A new generalized solution to the Quaternion /-isogeny path problem:

e Smaller and more generic solution to the problem.
e A generalization of the signature protocol from GPS17.

e Other applications?
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Questions ?
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