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Objectives

We show the convergence towards Nash equilib-
ria of the HEDGE algorithm in generic potential
games. We focus on the bandit case, where
players only observe their realized payoffs.

Introduction

Motivated by current challenges (network, bi-
ology,...) we study algorithms that can be applied
to a large number of players that only have a lim-
ited knowledge of the game. In such games, no-
regret algorithms are broadly used. Nash equi-
libria (NE), have the desirable property that no
player would benefit from changing alone her strat-
egy. Recent studies [1] show that the long-term limit
of play of certain no-regret algorithms is arbitrarily
close to a NE with probability close to 1.
Can Nash equilibria (NE) almost surely be
the limit result of a no-regret learning algorithm?
We positively answered this question focusing on the
Hedge algorithm [2] that has the property of no-
regret. We studied a low-information frame-
work where players have only access to a estimate
of the pure strategy they played (bandit). We show
that when HEDGE is applied to generic potential
games [3], the induced sequence of play con-
verges towards NE regardless of initialization.

Method

Steps of the proof based on the dynamics of stochas-
tic approximation algorithms:

1 X is an asymptotic pseudo trajectory of the
replicator dynamics [4];

2 The potential function is a strict Lyapunov
function of the dynamics;

3 X converges toward a rest point of the dynamics
[4];

4 If X converges it converges to a NE.

Setup

Game:
•We focus on potential games;
•N players N = {1, ..., N};
•finite set of strategies per player Si:
•mixed strategies Xi = ∆Si;
•payoff functions ui(x) = 〈vi(x), x〉, with
vi(x) = (ui(si, x−i))si∈Si.

Payoff information: ui(s(n)).
Bandit estimator:
v̂i(n) =

(
1si(n)=si

ui(si,s(n)−i)
Xi,si

(n−1)

)
si∈Si

.
Step size: γn ∝ 1

nβ for some β ∈ (1
2, 1].

Logit map: Λi(yi) = (exp(yisi))si∈Si∑
si∈Si

exp(yisi)
.

Algorithm

A variant of the Exponential Weights [2], with:
Algorithm 1 ε-HEDGE with bandit feedback
Require: step-size sequence γn > 0, exploration

factor sequence εn ∈ [0, 1], initial scores Yi ∈
RSi, i ∈ N .

1: for n = 1, 2, ... do
2: for every player i ∈ N do
3: set strategy: Xi← εn/|Si| + (1− εn)Λi(Yi);
4: choose action si ∼ Xi;
5: compute the bandit estimator v̂i(n);
6: update scores: Yi← Yi + γnv̂i;
7: end for
8: end for

Main Result

With an adapted exploration factor, the sequence of play converges to a Nash equilibrium (a.s.).

Experiment

Example Game:

0 3

344

40

3 3

S1

S1

S2

S2

Pl
ay

er
 1

Player 2

Experimentation:
• 10,000 runs of 1,000 steps;
• random initial strategies;
•γn = 0.05 1

n2/3;
• εn = 0.1 1

n1/4.

Results

Convergence to δ-NE with δ →ε→0 0 if εn is
constant.
And convergence to NE almost surely if the
exploration factor εn decreases so that:

lim
n→∞

γn
ε2
n

= 0 ,
∞∑
n=1

γ2
n

εn
<∞ and lim

n→∞
εn − εn+1

γn
= 0.

Convergence rate

Semi-bandit v̂i(n) = (ui(si, s(n)−i) + ξn)si∈Si.
Noise hypotheses: for some q > 2, A > 0, and
for all n = 1, 2, . . . (a.s.):
•P(‖ξi(n)‖2

∞ ≥ z|Fn−1) ≤ A/zq;
•E[ξi(n)|Fn−1] = 0.
We obtain an exponential convergence rate :
Xis∗i (n) ≥ 1−be−c

∑n
i=1 γi for some positive b, c > 0.
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