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Abstract. We present a meta-logic that contains a new quantifier ∇ (for encoding “generic judg-
ments”) and inference rules for reasoning within fixed points of a given specification. We then specify
the operational semantics and bisimulation relations for the finite π-calculus within this meta-logic.
Since we restrict to the finite case, the ability of the meta-logic to reason within fixed points becomes
a powerful and complete tool since simple proof search can compute this one fixed point. The ∇ quan-
tifier helps with the delicate issues surrounding the scope of variables within π-calculus expressions
and their executions (proofs). We shall illustrate several merits of the logical specifications we write:
they are natural and declarative; they contain no-side conditions concerning names of variables while
maintaining a completely formal treatment of such variables; differences between late and open bisim-
ulation relations are easy to see declaratively; and proof search involving the application of inference
rules, unification, and backtracking can provide complete proof systems for both one-step transitions
and for bisimulation.

1 Introduction

In order to treat abstractions within expressions and computation declaratively, we shall work
within a meta-logic which contains a well understood notion of abstraction: in particular, we shall
work with a logic inspired by Church’s Simple Theory of Types [4], where terms are actually
simply typed λ-terms. Just as it is common to use logic-level application to represent object-level
application (for example, the encoding of P +Q is via the meta-level application of the encoding for
plus to the encoding of its two arguments), we shall use logic-level abstractions (via λ-abstractions)
to encode object-level abstractions. The λ-terms in our setting are thus simply typed and satisfy
the usual rules for for α, β, and η-conversion. This style of syntactic encoding has been called
λ-tree syntax [24]. The term higher-order abstract syntax [34] was originally applied to this kind
of encoding, but in more recent years, HOAS has come to encompass the use of arbitrary higher-
order functions to encode abstractions in syntax. Whatever term one wishes to use to classify
our approach here, it is important to understand that λ-abstractions are only intended to form
abstractions over syntax and their functional interpretation is limited to providing object-level
substitution via β-reduction.

We make use of the ∇-quantifier, first introduced in the logic FOλ∆∇ [26], to help encode
the notion of “generic judgment” that occurs commonly when reasoning with λ-tree syntax. The
∇ quantifier is used to introduce new elements into a type within a given scope. In particular, a
reading of the truth condition for ∇xγ .Bx is something like: if given a new element, say c, of type
γ, then check the truth of Bc. Notice that this is hypothetical reasoning about the datatype γ and
it does not require knowing whether or not this type actually contains any members. This is, of
course, rather central to the notion of generic: something holds generically usually means that it
holds for certain “internal” reasons (the structure of an argument, for example) and not for some
accident concerning members of the domain. This is quite different from determining the truth of
∀xγ .Bx: check that Bt is true for all t in the type γ. If the type is empty, this condition is vacuously
true and if the type is infinite, we have an infinite number of checks to make in principle.



It is useful to provide here a high-level comparison between the ∇-quantifier and the “new”
quantifier of Gabbay and Pitts [10]. In their set theory foundations, a domain containing an infinite
number of names is assumed given. To deal with notions of freshness, renaming of bound variables,
substitution, etc, they provide a series of primitives between names and terms that can be used to
guarantee that a name does not occur within a term, that one name can be swapped for another, etc.
Based on these concepts, they can define a new quantifier that guarantees the selection of a “fresh”
name for some specific context. In our approach here, there is no particular class of names: the ∇
quantifier will work at any type. (Later, when we discuss the π-calculus explicitly, we shall assume
a type for names since this is required by this particular application.) Also, here types do not need
to be infinite or even non-empty. Instead, the meaning of ∇xγ .Bx is one of explicitly introducing
a new object of type γ within a certain scope. Thus, the Gabbay-Pitts approach assumes that
the type of names is fixed and closed, while the type used with ∇ is open, in the sense that new
members of that type can be constructed by the meta-logic for use within a ∇-bound scope. More
specifically, the set of theorems for these two quantifiers is quite different. For example, in the logic
considered here, the formulas ∀x.Bx ⊃ ∇x.Bx and ∇x.Bx ⊃ ∃x.Bx are not theorems, but if ∇ is
replaced with the Gabbay-Pitts quantifier, they do hold in their theory.

This distinction between having an open versus closed datatype is also a theme that highlights
the differences between intuitionistic and classical logic. The meta-logic in this paper is based on
intuitionistic logic, a weaker logic than classical logic. One of the principles missing from intuition-
istic logic is that of the excluded middle: that is, A ∨ ¬A is not generally provable in intuitionistic
logic. Consider, for example, the following formula concerning the variable w:

∀xγ [x = w ∨ x 6= w]. (*)

In classical logic, this formula is a trivial theorem. If we think constructively, however, this formula
is not trivial and might not be desirable in all cases. If the type of quantification γ is a conventional
(closed) datatype, then we might expect to have a decision procedure for equality. For example, if
γ is the type for lists, then it is a simple matter to construct a procedure that decides whether or
not two members of γ are equal by considering the top constructor of the list and, in the event of
comparing two non-empty lists, making recursive calls (assuming a decision procedure is available
for the elements of the list). In fact, it is possible to prove in an intuitionistic logic augmented with
induction (see, for example, [41]) the formula (∗) for such closed datatypes.

If the type γ is not given inductively, as is the usual case for names in intuitionistic formal-
izations of the π-calculus (see [6, 8, 16] and below), then the corresponding instance of (∗) is not
provable. Thus, whether or not we allow instances of (∗) to be assumed can change the nature of a
specification. In fact, we show in Section 5, that if we add to our specification of open bisimulation
[37] assumptions corresponding to (∗), then we get a specification of late bisimulation. If we were
working with a classical meta-logic, such a declarative presentation of these two bisimulations would
not have been so easy to present. To see a similar use for an intuitionistic meta-logic and for open
types, see [28], where an intuitionistic logic model allowing for open types is used to help establish
completeness theorems for the simply typed λ-calculus.

The authors first presented the meta-logic used in this paper in [26] and illustrated its usefulness
with the π-calculus: in particular, the specifications of one-step transitions in Figure 2 and of open
bisimulation in Figure 4 also appear in [26], but without proof. In this paper, we state the formal
properties of our specifications, provide a specification of late bisimulation and provide a novel
comparison between open and late bisimulation. In particular, we show that the difference between
open and late bisimulation (apart from the difference that arises from the use of closed and open
types discussed above) can be captured by the different quantification of free names using ∀ and
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∇. The different treatment of free names, that is, whether some free names are instantiable or not,
highlights the difference between late and open bisimulation, as noted in [38], where the notion of
distinction among names is introduced to define the open bisimulation relation. We show in Section 5
that a natural class of distinctions can be captured by the alternation of ∀ and ∇ quantifiers, and
in the case where we are interested only in checking open bisimilarity modulo empty distinction,
the notion of distinction that arises in the process of checking bisimilarity is completely subsumed
by quantifier alternation. In Section 6 we outline the automation of proof search based on these
specifications, which provides us with symbolic bisimulation procedures.

Since our focus in this paper is on names, scoping of names, dependency of names and distinction
of names, we choose to focus on finite π-calculus. For related work on ∇ and infinite process
behaviors, see first author’s PhD [41] and Section 7 of this paper. Since it does not contribute much
to our overall analysis, we only briefly consider early bisimulation in Appendix B.

2 Overview of the logic FOλ∆∇

The logic FOλ∆∇ (pronounced “fold-nabla”) is presented using a sequent calculus that is an ex-
tension of Gentzen’s system LJ [11] for first-order intuitionistic logic. A sequent is an expression
of the form B1, . . . , Bn ` B0 where Bi is a formula and the turnstile ` denotes logical entailment.
To the left of the turnstile is a multiset: thus repeated occurrences of a formula are allowed. If the
formulas B0, . . . , Bn contain free variables, they are considered universally quantified outside the
sequent, in the sense that if the above sequent is provable than every instance of it is also provable.
In proof theoretical terms, such free variables are called eigenvariables.

A first attempt at using sequent calculus to capture judgments about the π-calculus could be to
use eigenvariables to encode names in π-calculus, but this is certainly problematic. For example, if
we have a proof for the sequent ` Pxy, where x and y are different eigenvariables, then logic dictates
that the sequent ` Pzz is also provable (given that the reading of eigenvariables is universal). If the
judgment P is about, say, bisimulation, then it is not likely that a statement about bisimulation
involving two different names x and y remains true if they are identified to the same name z.

To address this problem, the logic FOλ∆∇ extends sequents with a new notion of “local scope”
for proof-level bound variables (originally motivated in [26] to encode “generic judgments”). In
particular, sequents in FOλ∆∇ are of the form

Σ ; σ1 . B1, . . . , σn . Bn ` σ0 . B0

where Σ is a global signature, i.e., the set of eigenvariables whose scope is over the whole sequent,
and σi is a local signature, i.e., a list of variables scoped over Bi. We shall consider sequents to be
binding structures in the sense that the signatures, both the global and local ones, are abstractions
over their respective scopes. The variables in Σ and σi will admit α-conversion by systematically
changing the names of variables in signatures as well as those in their scope, following the usual
convention of the λ-calculus. The meaning of eigenvariables is as before, only that now instantiation
of eigenvariables has to be capture-avoiding, with respect to the local signatures. The variables in
local signatures act as locally scoped generic constants, that is, they do not vary in proofs since they
will not be instantiated. The expression σ.B is called a generic judgment or simply a judgment. We
use script letters A, B, etc. to denote judgments. We write simply B instead of σ.B if the signature
σ is empty. We shall often write the list σ as a string of variables, e.g., a judgment (x1, x2, x3) . B
will be written as x1x2x3 . B. If the list x1, x2, x3 is known from context we shall also abbreviate
the judgment as x̄ . B.
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The logical constants of FOλ∆∇ are ∀ (universal quantifier), ∃ (existential quantifier), ∇, ∧
(conjunction), ∨ (disjunction), ⊃ (implication), > (true) and ⊥ (false). The inference rules for the
quantifiers of FOλ∆∇ are given in Figure 1. The complete set of inference rules can be found in
the appendix. Since we do not allow quantification over predicates, this logic is proof-theoretically
similar to first-order logic (hence, the letters FO in FOλ∆∇).

Σ, σ ` t : γ Σ ; σ . B[t/x], Γ ` C
Σ ; σ . ∀γx.B, Γ ` C ∀L

Σ, h ; Γ ` σ . B[(h σ)/x]

Σ ; Γ ` σ . ∀x.B
∀R

Σ, h ; σ . B[(h σ)/x], Γ ` C
Σ ; σ . ∃x.B, Γ ` C ∃L

Σ, σ ` t : γ Σ ; Γ ` σ . B[t/x]

Σ ; Γ ` σ . ∃γx.B
∃R

Σ ; (σ, y) . B[y/x], Γ ` C
Σ ; σ .∇x B, Γ ` C ∇L

Σ ; Γ ` (σ, y) . B[y/x]

Σ ; Γ ` σ .∇x B
∇R

Fig. 1. The introduction rules for quantifiers of FOλ∆∇.

During the search for proofs (reading rules bottom up), inference rules for ∀ and ∃ quantifier
place new eigenvariables into the global signature while the inference rules for ∇ place them into
the local signature. In the ∀R and ∃L rules, raising [23] is used when moving the bound variable x,
which can range over the variables in both the global signature and the local signature σ, with the
variable h that can only range over variables in the global signature: so as not to miss substitution
terms, the variable x is replaced by the term (hx1 . . . xn), which we shall write simply as (hσ),
where σ is the list x1, . . . , xn (h must not be free in the lower sequent of these rules). In ∀L and
∃R, the term t can have free variables from both Σ and σ. This is presented in the rule by the
typing judgment Σ, σ ` t : τ . The ∇L and ∇R rules have the proviso that y is not free in ∇x B.

Note that the use of raising in ∀R and ∃L means that the eigenvariable introduced might not
be of the same type as the quantified variable. This is illustrated in the following example.

{x : α, h : τ → γ → β} ; Γ ` (a : τ, b : γ) . B (h a b) b

{x : α} ; Γ ` (a : τ, b : γ) . ∀βy.B y b
∀L

{x : α} ; Γ ` (a : τ) .∇γz.∀βy.B y z
∇R

Notice that the quantified variable y is of type β while its corresponding eigenvariable h is raised
to the type τ → γ → β, taking into account its possible dependency on a : τ and b : γ.

The standard inference rules of logic express introduction rules for logical constants. The full
logic FOλ∆∇ additionally allows introduction of atomic judgments, that is, judgments which do
not contain any occurrences of logical constants. To each atomic judgment, A, we associate a
defining judgment, B, the definition of A. The introduction rule for the judgment A is in effect
done by replacing A with B during proof search. This notion of definitions is an extension of work
by Schroeder-Heister [39], Eriksson [7], Girard [12], Stärk [40] and McDowell and Miller [20]. These
inference rules for definitions allow for modest reasoning about the fixed points of definitions.

Definition 1. A definition clause is written ∀x̄[p t̄
4
= B], where p is a predicate constant, every free

variable of the formula B is also free in at least one term in the list t̄ of terms, and all variables
free in p t̄ are contained in the list x̄ of variables. The atomic formula p t̄ is called the head of the
clause, and the formula B is called the body. The symbol

4
= is used simply to indicate a definitional

clause: it is not a logical connective. The predicate p occurs strictly positively in B, that is, it does
not occur to the left of any ⊃ (implication).
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Let ∀τ1x1 . . .∀τnxn.H
4
= B be a definition clause. Let y1, . . . , ym be a list of variables of types

α1, . . . , αm, respectively. The raised definition clause of H with respect to the signature {y1 :
α1, . . . , ym : αm} is defined as

∀h1 . . .∀hn.ȳ . Hθ
4
= ȳ . Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi, for every i ∈ {1, . . . , n}, is of type
α1 → . . . → αm → τi. A definition is a set of definition clauses together with their raised clauses.

To guarantee the consistency (and cut-elimination) of the logic FOλ∆∇, we need some kind of
stratification of definition that limits the definition of one predicate to depend negatively on another
predicate. We shall not give the full technical details here and but instead refer the interested reader
to [26]. All definitions considered in this paper are stratified appropriately and cut-elimination will
hold for the logic using them.

The introduction rules for a defined judgment are as follow. When applying the introduction
rules, we shall omit the outer quantifiers in a definition clause and assume implicitly that the free
variables in the definition clause are distinct from other variables in the sequent.

{Σθ ; Bθ, Γθ ` Cθ | θ ∈ CSU(A,H) for some clause H 4
= B}

Σ ; A, Γ ` C defL

Σ ; Γ ` Bθ

Σ ; Γ ` A def R, where H 4
= B is a definition clause and Hθ = A

In the above rules, we apply substitution to judgments. The result of applying a substitution θ to a
generic judgment x1, . . . , xn . B, written as (x1, . . . , xn . B)θ, is y1, . . . , yn . B′, if (λx1 . . . λxn.B)θ
is equal (modulo λ-conversion) to λy1 . . . λyn.B′. If Γ is a multiset of generic judgments, then Γθ
is the multiset {Jθ | J ∈ Γ}. In the defL rule, we use the notion of complete set of unifiers (CSU)
[19]. We denote by CSU(A,H) the complete set of unifiers for the pair (A,H), that is, for any
substitution θ such that Aθ = Hθ, there is a substitution ρ ∈ CSU(A,H) such that θ = ρ ◦ θ′

for some substitution θ′. In all the applications of defL in this paper, the set CSU(A,H) is either
empty (the two judgments are not unifiable) or contains a single denoting the most general unifier.
The signature Σθ in defL denotes a signature obtained from Σ by removing the variables in the
domain of θ and adding the variables in the range of θ. In the defL rule, reading the rule bottom-
up, eigenvariables can be instantiated in the premise, while in the def R rule, eigenvariables are
not instantiated. The set that is the premise of the defL rule means that that rule instance has a
premise for every member of that set: if that set is empty, then the premise is proved.

One might find the following analogy with logic programming helpful: if a definition is viewed
as a logic program, then the def R rule captures backchaining and the defL rule corresponds to case
analysis on all possible ways an atomic judgment could be proved. In the case where the program
has only finitely many computation paths, we can effectively encode negation-as-failure using defL
[13].

3 Some meta-theory of the meta-logic

We now illustrate how the structural properties of proofs can be used for meta-reasoning about
the logical specifications mentioned previously. The general reasoning scheme makes use of the cut
rule and the cut-elimination theorem. Cut-elimination says that any proof which makes use of the
cut rule can be transformed to a proof without it (a cut-free proof). Cut-elimination gives rise
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to surprisingly rich structural properties of proofs. One important structural property is that of
the invertibility of inference rules. An inference rule of logic is invertible if the provability of the
conclusion implies the provability of the premise(s) of the rule. The following rules in FOλ∆∇ are
invertible: ∧R,∧L,∨L,⊃ R, ∀R, ∃L, defL (see [41] for a proof). Knowing the invertibility of a rule
can be useful in determining some structure of a proof. For example, if we know that a sequent
A ∨ B, Γ ` C is provable, then by the invertibility of ∨L, we know that it must be the case that
A,Γ ` C and B, Γ ` C are provable.

Another important property of FOλ∆∇ is that concerning the local signatures. Local signatures
can be weakened without affecting provability.

Proposition 2. If B is provable and x is not free in B, then ∇xB is provable.

Proposition 3. If ∀xB is provable then ∇xB is provable.

One might expect the implication ∀τxB ⊃ ∇τxB to hold as well. Notice that if τ is empty this
statement would not be expected to be true and, hence, we do not accept it in the core logic.

The converse of Proposition 3 is not true in general. However, it is true for a restricted class of
formulas and definitions, called hc∀∇-formulas (for Horn clauses with ∀ and∇) and hc∀∇-definitions,
respectively. A hc∀∇-formula is a formula which does not contain any occurrence of the logical
constant ⊃ (implication). A hc∀∇-definition is a definition whose bodies are hc∀∇-formulas. One of
the examples of hc∀∇-definitions is the definition for the one-step transition in Figure 2.

Proposition 4. Let D be a hc∀∇-definition and ∀xG be a hc∀∇-formula. Then ∀xG is provable if
and only if ∇xG is provable.

4 Logical specification of one-step transition

We consider the late transition system for the finite π-calculus as defined in [27], that is, the
fragment of π-calculus without recursion (or replication). The syntax of processes is defined as
follows

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|Q | P + Q.

We use the notation P, Q, R, S and T to denote processes. Names are denoted by lower case letters,
e.g., a, b, c, d, x, y, z. The occurrence of y in the process x(y).P and (y)P is a binding occurrence,
with P as its scope. The set of free names in P is denoted by fn(P), the set of bound names is
denoted by bn(P). We write n(P) for the set fn(P) ∪ bn(P). We consider processes to be syntactical
equivalent up to renaming of bound names.

One-step transition in the π-calculus is denoted by P
α−−→ Q, where P and Q are processes and

α is an action. The kinds of actions are the silent action τ , the free input action xy, the free output
action x̄y, the bound input action x(y) and the bound output action x̄(y). The name y in x(y) and
x̄(y) is a binding occurrence. Just like we did with processes, we use fn(α), bn(α) and n(α) to
denote free names, bound names, and names in α. An action without binding occurrences of names
is a free action, otherwise it is a bound action.

We encode the syntax of process expressions using higher-order syntax as follows. We shall
require three primitive syntactic categories: n for names, p for processes, and a for actions, and the
constructors corresponding to the operators in π-calculus. We do not assume any inhabitants of
type n, therefore in our encoding a free name is translated to a variable of type n, which can later
be either universally quantified or ∇-quantified, depending on whether we want to treat a certain
name as instantiable or not. (Since the rest of this paper is about the π-calculus, the ∇ quantifier
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will from now on only be used at type n.) For instance, in encoding late bisimulation (Section 5)
we treat free names as ∇-quantified variables, while in the encoding of open bisimulation they are
universally quantified variables. To encode actions, we use τ : a (for the silent action), and the
two constants ↓ and ↑, both of type n → n → a for building input and output actions. The free
output action x̄y, is encoded as ↑ xy while the bound output action x̄(y) is encoded as λy (↑ xy)
(or the η-equivalent term ↑ x). The free input action xy, is encoded as ↓ xy while the bound input
action x(y) is encoded as λy (↓ xy) (or simply ↓ x). The process constructors are encoded using
the following constants

0 : p, τ : p → p, out : n → n → p → p, in : n → (n → p) → p,
+ : p → p → p, | : p → p → p, match : n → n → p → p, ν : (n → p) → p.

We use two predicates to encode the one-step transition semantics for the π-calculus. The predicate
· ·−−→ · of type p → a → p → o encodes transitions involving free values and the predicate · ·−−⇀ ·
of type p → (n → a) → (n → p) → o encodes transitions involving bound values. The precise
translation of π-calculus syntax into simply typed λ-terms is given in the following definition.

Definition 5. The following function 〈.〉 translates from process expressions to βη-long normal
terms of type p.

〈0〉 = 0 〈τ.P〉 = τ 〈P〉 〈x̄y.P〉 = out x y 〈P〉 〈x(y).P〉 = in x λy.〈P〉
〈P + Q〉 = 〈P〉+ 〈Q〉 〈P|Q〉 = 〈P〉 | 〈Q〉 〈[x = y]P〉 = match x y 〈P〉 〈(x)P〉 = νλx.〈P〉

The one-step transition judgments are translated to atomic formulas as follows (we overload the
symbol 〈.〉).

〈P x̄y−−→ Q〉 = 〈P〉 ↑xy−−→ 〈Q〉 〈P τ−−→ Q〉 = 〈P〉 τ−−→ 〈Q〉
〈P

x(y)
−−→ Q〉 = 〈P〉 ↓x−−⇀ λy.〈Q〉 〈P

x̄(y)
−−→ Q〉 = 〈P〉 ↑x−−⇀ λy.〈Q〉

We abbreviate νλx.P as simply νx.P . Notice that when τ is written as a prefix, it has type p → p,
and when it is written as an action, it has type a.

The operational semantics of the late transition system for the finite π-calculus is given as a
definition, called Dπ, in Figure 2. In this specification, free variables are schema variables that are
assumed to be universally scoped over the inference rule or definitional clause in which it appears.
These schema variables have primitive types such as a, n, and p as well as functional types such as
n → a and n → p.

Notice that the complicated side conditions in the original specification of π-calculus [27] are no
longer present, as they are now treated directly and declaratively by the meta-logic. For example,
the side condition that X 6= y in the open rule is implicit, since X is outside the scope of y and
therefore cannot be instantiated with y. However, this is not a feature that is peculiar to FOλ∆∇;
rather it is a consequence of the use of HOAS in the encoding. The adequacy of our encoding is
stated in the following lemma and proposition (their proofs can be found in [41]).

Lemma 6. The function 〈.〉 is a bijection.

Proposition 7. Let P and Q be processes and α an action. Let n̄ be a list of free names containing
the free names in P, Q and α. The transition P

α−−→ Q is derivable in π-calculus if and only if the
sequent . ; . ` ∇n̄.〈P α−−→ Q〉 is provable in FOλ∆∇ with the definition Dπ.
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(tau:) τ P
τ−−→ P

4
= >. (in:) in X M

↓X−−⇀ M
4
= >. (out:) out x y P

↑xy−−→ P
4
= >.

(match:) match x x P
A−−→ Q

4
= P

A−−→ Q. match x x P
A−−⇀ Q

4
= P

A−−⇀ Q.

(sum:) P + Q
A−−→ R

4
= P

A−−→ R. P + Q
A−−→ R

4
= Q

A−−→ R.

(sum:) P + Q
A−−⇀ R

4
= P

A−−⇀ R. P + Q
A−−⇀ R

4
= Q

A−−⇀ R.

(par:) P |Q A−−→ P ′ |Q 4
= P

A−−→ P ′. P |Q A−−→ P |Q′ 4= Q
A−−→ Q′

(par:) P |Q A−−⇀ λn(M n |Q)
4
= P

A−−⇀ M. P |Q A−−⇀ λn(P |N n)
4
= Q

A−−⇀ N.

(res:) νn.Pn
A−−→ νn.Qn

4
= ∇n(Pn

A−−→ Qn). νn.Pn
A−−⇀ λm νn.P ′nm

4
= ∇n(Pn

A−−⇀ P ′n).

(open:) νy.My
↑X−−⇀ M ′ 4= ∇y(My

↑Xy−−→ M ′y).

(close:) P |Q τ−−→ νy.My |Ny
4
= ∃X.P

↓X−−⇀ M ∧Q
↑X−−⇀ N

(close:) P |Q τ−−→ νy.My |Ny
4
= ∃X.P

↑X−−⇀ M ∧Q
↓X−−⇀ N.

(com:) P |Q τ−−→ MY |Q′ 4= ∃X.P
↓X−−⇀ M ∧Q

↑XY−−→ Q′

(com:) P |Q τ−−→ P ′ |NY
4
= ∃X.P

↑XY−−→ P ′ ∧Q
↓X−−⇀ N

Fig. 2. Definition clauses for the late transition system.

Since the definition Dπ contains essentially Horn clauses, a consequence Proposition 4 is that
if any of the ∇-bound variables in ∇n̄.〈P α−−→ Q〉 are changed to be ∀-bound variables, the result-
ing formula is still provable. The differences between ∇ and ∀ are revealed more with non-Horn
definitions, such as those for bisimulation.

Given the above adequacy results, we shall omit writing explicitly the function symbol 〈.〉 when
referring to p-term obtained via the translation.

The restriction operator is interpreted at the meta-level as the ∇ quantifier. The use of ∇,
instead of ∀, allows to prove negative statements about the transitions, as illustrated in Example 8.
When writing encoded process expressions, we shall use the syntax of π-calculus along with the
usual abbreviations: for example, when a name z is used as a prefix, it denotes the prefix z(w)
where w is vacuous in its scope; when a name z̄ is used as a prefix it denotes the output prefix z̄a
for some fixed name a. We also abbreviate (y)x̄y.P as x̄(y).P and the process term 0 is omitted
if it appears as the continuation of a prefix. We assume that the operators | and + associate the
right, e.g., we write P + Q + R to denote P + (Q + R).

Example 8. Consider the process (y)([x = y]x̄z). This process cannot make any transition since the
bound variable y denotes a name different from x. One can think of this process as a continuation
of some other process which inputs x on some channel, e.g., a(x).(y)[x = y]x̄z. We would therefore
expect that the following is provable.

∀x∀z∀Q∀α.[((y)[x = y](x̄z)
α−−→ Q) ⊃ ⊥]

This type of statement naturally occurs when one is asking whether two processes are bisimilar
(see Section 5), where it is necessary to know what transitions a process can make and what it
cannot. The scoping constraint between y and x is captured properly by the alternation of ∀ and
∇. Notice that in the above specification, y is inside the scope of x, which means that whatever
value we substitute for x cannot be equal to y (since substitution is capture-avoiding). The formal
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derivation of the above formula is (ignoring the terminal uses of ⊃ R and ∀R):

{x, z, Q, α} ; y . ([x = y](x̄z.0)
α−−→ Q) ` ⊥

defL

{x, z, Q, α} ; . .∇y.([x = y](x̄z.0)
α−−→ Q) ` ⊥

∇L

{x, z,Q, α} ; . . ((y)[x = y](x̄z.0)
α−−→ Q) ` ⊥

defL

The success of the topmost instance of defL depends on the failure of the unification problem
λy.x = λy.y. Notice that the scoping of object variables is maintained at the meta-level by the
separation of (global) eigenvariables and (locally bound) generic variables. The “newness” of y is
internalized as a λ-abstraction and, hence, it is not subject to instantiation.

5 Logical specifications of strong bisimilarity

We consider specifying two notions of bisimilarity, tied to the late transition system: the strong late
bisimilarity and the strong open bisimilarity. As we shall see, the essential difference between the
specification of late bisimulation and that of open bisimulation is in the presence (or the absence)
of the axiom of excluded middle on names. The original definitions of late and open bisimilarity
are given in [27, 38]. Here we choose to make the side conditions explicit, instead of adopting the
bound variable convention in [38].

Definition 9. Strong late bisimilarity is the largest symmetric relation, ∼l, such that whenever
P ∼l Q,

1. if P
α−−→ P′ and α is a free action, then there is Q′ such that Q

α−−→ Q′ and P′ ∼l Q
′,

2. if P
x(z)
−−→ P′ and z 6∈ n(P, Q) then there is Q′ such that Q

x(z)
−−→ Q′ and P′[y/z] ∼l Q

′[y/z] for every
name y,

3. if P
x̄(z)
−−→ P′ and z 6∈ n(P, Q) then there is Q′ such that Q

x̄(z)
−−→ Q′ and P′ ∼l Q

′.

Definition 10. A distinction D is a finite symmetric and irreflexive relation on names. A sub-
stitution θ respects a distinction D if (x, y) ∈ D implies xθ 6= yθ. We refer to the substitution θ
as a D-substitution. Given a distinction D and a D-substitution θ, the result of applying θ to all
variables in D, written Dθ, is another distinction. We denote with fn(D) the set of free names
occuring in D.

Definition 11. Strong open bisimilarity {∼D
o | D a distinction } is the largest family of symmetric

relations such that if P ∼D
o Q and θ respects D, then

1. if Pθ
α−−→ P′ and α is a free action, then there is Q′ such that Qθ

α−−→ Q′ and P′ ∼Dθ
o Q′,

2. if Pθ
x(z)
−−→ P′ and z 6∈ n(Pθ, Qθ) then there is Q′ such that Qθ

x(z)
−−→ Q′ and P′ ∼Dθ

o Q′,

3. if Pθ
x̄(z)
−−→ P′ and z 6∈ n(Pθ, Qθ) then there is Q′ such that Qθ

x̄(z)
−−→ Q′ and P′ ∼D′

o Q′ where
D′ = Dθ ∪ ({z} × fn(Pθ, Qθ)) ∪ ({z} × fn(Dθ)).

Note that we strengthen a bit the condition 3 in Definition 11 to include the distinction ({z}×
fn(Dθ)). Strengthening the distinction this way does not change the open bisimilarity, as noted in
[38], but in our encoding of open bisimulation, the distinction D is part of the specification and the
modified definition above helps us account for names better.
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lbisim P Q
4
= ∀A∀P ′ [(P A−−→ P ′) ⊃ ∃Q′.(Q A−−→ Q′) ∧ lbisim P ′ Q′] ∧
∀A∀Q′ [(Q A−−→ Q′) ⊃ ∃P ′.(P A−−→ P ′) ∧ lbisim Q′ P ′] ∧
∀X∀P ′ [(P ↓X−−⇀ P ′) ⊃ ∃Q′.(Q ↓X−−⇀ Q′) ∧ ∀w.Ew ⊃ lbisim (P ′w) (Q′w)] ∧
∀X∀Q′ [(Q ↓X−−⇀ Q′) ⊃ ∃P ′.(P ↓X−−⇀ P ′) ∧ ∀w.Ew ⊃ lbisim (Q′w) (P ′w)] ∧
∀X∀P ′ [(P ↑X−−⇀ P ′) ⊃ ∃Q′.(Q ↑X−−⇀ Q′) ∧∇w.lbisim (P ′w) (Q′w)] ∧
∀X∀Q′ [(Q ↑X−−⇀ Q′) ⊃ ∃P ′.(P ↑X−−⇀ P ′) ∧∇w.lbisim (Q′w) (P ′w)]

Fig. 3. Specification of late bisimulation. Here, E = λw ∀z (w = z ∨ w 6= z).

obisim P Q
4
= ∀A∀P ′ [(P A−−→ P ′) ⊃ ∃Q′.(Q A−−→ Q′) ∧ obisim P ′ Q′] ∧
∀A∀Q′ [(Q A−−→ Q′) ⊃ ∃P ′.(P A−−→ P ′) ∧ obisim Q′ P ′] ∧
∀X∀P ′ [(P ↓X−−⇀ P ′) ⊃ ∃Q′.(Q ↓X−−⇀ Q′) ∧ ∀w.obisim (P ′w) (Q′w)] ∧
∀X∀Q′ [(Q ↓X−−⇀ Q′) ⊃ ∃P ′.(P ↓X−−⇀ P ′) ∧ ∀w.obisim (Q′w) (P ′w)] ∧
∀X∀P ′ [(P ↑X−−⇀ P ′) ⊃ ∃Q′.(Q ↑X−−⇀ Q′) ∧∇w.obisim (P ′w) (Q′w)] ∧
∀X∀Q′ [(Q ↑X−−⇀ Q′) ⊃ ∃P ′.(P ↑X−−⇀ P ′) ∧∇w.obisim (Q′w) (P ′w)]

Fig. 4. Specification of open bisimulation.

The corresponding specifications for late and open bisimulation in FOλ∆∇ are given in Figure 3
and Figure 4. The specifications make use of the syntactic equality predicate, which is defined as the
definition: X = X

4
= >. Note that the symbol = here is a predicate symbol written in infix notation.

The inequality x 6= y is an abbreviation for x = y ⊃ ⊥. Actually the specifications shown in the
figures do not readily encode bisimulations, since they do not yet address the notion of distinction
among names. The notion of distinction will be addressed later. For the moment it is enough to
note that when reasoning about the specification of late bisimulation, we encode free names as
∇-quantified variables whereas in the specification of open bisimulation we encode free names as
∀-quantified variables. For example, the processes Pxy = (x|ȳ) and Qxy = (x.ȳ + ȳ.x) are late
bisimilar. The corresponding encoding in FOλ∆∇ would be ∇x∇y.lbisim (Pxy) (Qxy). The free
names x and y should not be ∀-quantified, for the obvious reason: in logic we have the implication
∀x∀y lbisim (Pxy) (Qxy) ⊃ ∀z lbisim (Pzz) (Qzz). That is, either ∀x∀y lbisim (Pxy) (Qxy) is not
provable, or it is provable and we have a proof of ∀x lbisim (Pzz) (Qzz). In either case we lose the
adequacy of the encoding.

Notice that in the specification of late bisimulation, we use the axiom of excluded middle on
names while in the open case we do not. For example, the two processes (taken from [37])

P = x(u).(τ.τ + τ), Q = x(u).(τ.τ + τ + τ.[u = z]τ)

are late bisimilar but not open bisimilar: last bisimulation makes use of doing a case analysis
on names. Since the meta-logic FOλ∆∇ is intuitionistic, this difference between late and open
bisimulation is easily observed. This would not be the case if the meta-logic were classical.

The following theorem states the soundness and completeness of the lbisim specification with
respect to the notion of late bisimilarity in π-calculus. By soundness we mean that, given a pair
of processes P and Q, if the encoding of the late bisimilarity, ∇n̄.lbisim P Q, is provable in FOλ∆∇

then the processes P and Q are late bisimilar. Completeness is the converse. The soundness and
completeness of the open bisimilarity encoding is presented in at the end of this section, where we
consider the encoding of the notion of distinction in π-calculus. Proofs of these results and their
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associated lemmas can be found in the appendices of an extended version of this paper on the
authors’ web pages.

Theorem 12. Let P and Q be two processes and let n̄ be the free names in P and Q. The formula
∇n̄.lbisim P Q is provable if and only if P ∼l Q.

It is well-known that the late bisimulation relation is not a congruence since it is not preserved by
the input prefix. Part of the reason why the congruence property fails is that in the late bisimilarity
there is no syntactic distinction made between instantiable names and non-instantiable names. This
is one of the motivations behind the introduction of the notion of distinction and open bisimulation.
The alternation of quantifiers in FOλ∆∇ gives rise to a particular kind of distinction, the precise
definition of which is given below.

Definition 13. A quantifier prefix is a list Q1x1Q2x2 . . . Qnxn for some n ≥ 0, where Qi is either
∇ or ∀. Let Qx̄ be the above quantifier prefix. A Qx̄-distinction is the distinction

{(xi, xj), (xj , xi) | i 6= j and Qi = Qj = ∇, or i < j and Qi = ∀ and Qj = ∇}.
Notice that if Qx̄ consists only of universal quantifiers then the Qx̄-distinction is empty. Obvi-
ously, the alternation of quantifiers does not capture all possible distinction, e.g., the distinction
{(x, y), (y, x), (x, z), (z, x), (u, z), (z, u)} does not correspond to any quantifier prefix. However, we
can encode the full notion of distinction by explicit encoding of the inequal pairs, as shown later.

Definition 14. Let D = {(x1, y1), . . . , (xn, yn)} be a distinction. We define a translation from a
distinction D to a formula [[D]] as follows [[D]] = x1 6= y1 ∧ . . . ∧ xn 6= yn. If n = 0 then [[D]] is the
logical constant > (empty conjunction).

Theorem 15. Let P and Q be two processes, let D be a distinction and let Qx̄ be a quantifier prefix,
where x̄ contains the free names in P, Q and D. If the formula Qx̄.([[D]] ⊃ obisim P Q) is provable
then P ∼D′

o Q, where D′ is the union of D and the Qx̄-distinction.

Theorem 16. If P ∼D
o Q then the formula ∀x̄.[[D]] ⊃ obisim P Q, where x̄ are the free names in P, Q

and D, is provable.

To conclude this section, we should explicitly compare the two specifications of late bisimulation
in Definition 9 and in Figure 3, and the two specifications of late bisimulation in Definition 11 and
in Figure 4. Notice that those specifications that rely on logic are written without the need for any
explicit conditions on variable names or any need to mention distinctions explicitly. These various
conditions are, of course, present in the detailed description of the proof theory of our logic, but it
seems to be very desirable to push the details of variable names, substitutions, equalities, etc into
logic, where they have elegant and standard solutions. We do not address the early bisimulation
[27] in this section, but it is not difficult to see that the analysis on names in late bisimilarity
carries over to early bisimilarity. In fact, the essential difference between late and early bisimilarity
is that in the early bisimilarity the case analysis on names is carried out “one step ahead” of late
bisimilarity. This amounts to enlarging the scope of quantified variable w (in the input prefix case).
The specification of early bisimilarity is given in the appendix.

6 Automation of proof search

The above specifications for one-step transitions and for late and open bisimulation are not only
declarative and natural, an implementation of proof search using them can provide effective and
symbolic implementation of both one-step transitions and bisimulations. We outline here what is
needed to implement the meta-logic presented above.
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Unification. Proof search requires unification in a couple of places: one in the implementation
of the defL inference rule and one to determine the appropriate terms necessary to instantiate
the ∃ quantifier in the ∃R inference rules. In the specifications presented here, unification is always
within the Lλ or higher-order pattern unification [22] problem. This style of unification, which can be
described as first-order unification extended to allow for bound variables and their mobility within
terms and proofs, is known to have efficient and practical unification algorithms that compute most
general unifiers whenever unifiers exist [32]. The Teyjus implementation [30, 31] of λProlog provides
an effective implementation of such unification, as does Isabelle [33] and Twelf [35].

Proof search for one-step transitions. Computing one-step transitions can be done entirely using a
conventional, higher-order logic programming language, such as λProlog: since the definition Dπ for
one-step transitions is Horn, we can use Proposition 4 to show that for the purposes of computing
one-step transitions, all occurrences of ∇ in Dπ can be changed to ∀. The resulting definition is then
a logic program for which λProlog provides an effective implementation. In particular, after loading

that definition, we would simply ask the query P
A−−→ P ′, where P is the encoding of a particular π-

calculus expression and A and P ′ are (meta-level) free variables. Standard logic programming would
then systematically bind these two variables to the actions and continuations that P can make.

Similarly, if the query was, instead, P
A−−⇀ P ′, logic programming search would systematically

return all bound actions (here, A has type n → a) and corresponding bound continuations (here,
P ′ has type n → p).

Proof search for open bisimulation. Proof search for bisimulation is not immediately implemented
for bisimulation by, say, λProlog, since neither ∇ nor the case analysis of defL are implemented.
None-the-less, the implementation of proof search for open bisimulation is easy to specify. The key
steps in a direct implementation of open bisimulation are outlined as follows. (Sequents missing
from this outline are trivial to address.) In the following, we use the quantifier prefix Q to denote
either ∀x or ∇x or the empty quantifier prefix.

1. When searching for a proof of Σ ; ` σ .Q.obisim P Q apply right-introduction rules.

2. If the sequent has a formula on its left-hand sides, then that formula is σ . P
A−−→ P ′, where P

denotes a particular closed term and A and P ′ are terms, possibly containing eigen-variables.
In this case, select the defL inference rule: the premises of this inference rule will then be either
(i) the empty-set of premises (which represents the only way that proof search terminates), or
(ii) a set of premises that are all again of the form of one-step judgments, or (iii) the premise
contains > instead of an atom on the left, in which case, we must consider the remaining case
that follows (after using the weakening wL inference rule).

3. If the sequent has the form Σ ; ` σ . ∃Q′[Q
A−−→ Q′ ∧ B(P ′, Q′)], where B(P ′, Q′) involves a

recursive call to obisim and where P ′ is a closed term, then we must instantiate the existen-
tial quantifier with an appropriate substitution. Standard logic programming techniques (as

described in step 1 above) can be used to find a substitution for Q′ such that Q
A−−→ Q′ is prov-

able (during this search, eigenvariables and locally scoped variables are treated as constants and
P and A denote particular closed terms). There might be several ways to prove such a formula
and, as a result, there might be several different substitutions for Q′. If one chooses the term T
to instantiate Q′, then one proceeds to prove the sequent Σ ; ` σ.Q.obisim P ′ T . If the sequent

has the form Σ ; ` σ . ∃Q′[Q
A−−⇀ Q′ ∧B(P ′, Q′)], one proceeds in the same manner.
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Proof search for the first two cases is invertible (no backtracking is needed for those cases). On
the other hand, the approach in the third case is not invertible, and backtracking on possibly all
choices of substitution term T might be necessary to ensure completeness.

Proof search for late bisimulation. The main difference between doing proof search for open bisim-
ulation and late bisimulation is that in the later, we need to instantiate the formula Ex and explore
the cases generated by the ∨L rule. First, consider a sequent of the form Σ, x ; Ex, Γx ` Cx, where
Γx ∪ {Cx} is a set of formulas which may have x free. One way to proceed with search for a proof
would be to instantiate ∀z(x = z∨x 6= z) with, say, a and with b. Thus, we need to consider proofs
of the sequent is Σ, x ; x = a ∨ x 6= a, x = b ∨ x 6= b, Γx ` Cx. Using the ∨L rule twice, we are left
with four sequents to prove:

1. Σ, x ; x = a, x = b, Γx ` Cx which is proved trivially since the equalities are contradictory;
2. Σ, x ; x = a, x 6= b, Γx ` Cx, which is equivalent to Σ ; Γa ` Ca;
3. Σ, x ; x 6= a, x = b, Γx ` Cx, which is equivalent to Σ ; Γb ` Cb; and
4. Σ, x ; x 6= a, x 6= b, Γx ` Cx.

In this way, the excluded middle can be used with a set of n items to produce n + 1 sequents: one
for each member of the set and one extra sequent to handle all other cases (if there are any).

The main issue for implementing proof search with this specification of late bisimulation is
to determine at what instances we should make instances of the excluded middle: answering this
question would then reduce proof search to one similar to open bisimulation. There seems to be
two extreme approaches to take: at one extreme, we can take instances for all possible names that
are present in our process expressions: determining such instances is simple but might lead to
many more cases to consider than is necessary. Another approach would be more lazy in that we
would suggest an instance of the excluded middle only when there seems to be a need to consider
that instance. The failure of a def R rule because of a mismatch (at the meta-level) between an
eigenvariable and a constant would, for example, suggest that excluded middle should be invoked
for that eigenvariable and that constant. The exact details of such schemes is left for future work.

7 Related and future work

There are many papers on topics related to the encoding of the operational semantics of the π-
calculus into formal systems. In [6], Despeyroux presented an encoding of one-step transitions for
the π-calculus using Coq but she did not consider the problem of computing bisimulation. Honsell,
Miculan, and Scagnetto [18] encode the π-calculus in Coq and assume that there are an infinite
number of global names. They then build formal mechanisms to support notions such as “freshness”
within a scope, substitution of names, occurrences of names in expressions, etc. Gabbay [9] does
something similar but uses a certain kind of set theory [10] to help develop his formal mechanisms.
Hirschkoff [15] also used Coq but employed deBruijn numbers [5] instead of explicit names. In those
paper that address bisimulation, formalizing names and their scopes, occurrences, freshness, and
substitution is considerable work. In our approach, much of this same work is required, of course,
but it is available in rather old technology, particularly, via Church’s Simple Theory of Types (where
bindings and terms and formulas was put on a firm foundation via λ-terms), Gentzen’s sequent
calculus and central cut-elimination theorem, Huet’s unification procedure for λ-terms, etc. More
modern work on proof search in higher-order logics is also available to make our task easier and
more declarative.

The encoding of late transition of π-calculus using HOAS and its related advantages have been
studied in a number of previous works [17, 25, 6, 18, 36, 26]. Our encoding, presented as a definition
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in Figure 2, has appeared in [26]. The material on proof automation in Section 6 clearly seems
related to work on symbolic bisimulation (for example, see [3, 14]) and work on using unification
and logic programming techniques to compute symbolic bisimulations (see, for example, [1, 2]).
Since the technologies used to describe these other approaches is rather different than what is
described here, a detailed comparison is left for future work.

It is, of course, interesting to consider the general π-calculus where infinite behaviors are allowed
(by including ! or recursive definitions). In such cases, one might be able to still do many proofs
involving bisimulation if the proof system included induction and co-induction inference rules. In-
ference rules for induction and co-induction appropriate for the sequent calculus has been presented
in [29] and a version of these rules that also involves the ∇ quantifier has been presented in the first
author’s PhD [41]. The encoding of π-calculus involving ! and a formalization of late bisimulation
have been presented in [41]. Open bisimulation, however, has not been studied in this setting. We
plan to investigate further how these stronger proof systems can be used establish properties about
π-calculus expressions with infinite behaviors.

Specifications of operational semantics using a meta-logic should make it possible to formally
prove properties concerning that operational semantics. This was the case, for example, with speci-
fications of the evaluation and typing of simple functional and imperative programming languages:
a number of common theorems (determinacy of evaluation, subject-reduction, etc) can be naturally
inferred using meta-logical specifications [21]. We plan to investigate using our meta-logic (also in-
corporating rules for induction and co-induction) for formally proving parts of the theory of the
π-calculus. It seems, for example, rather transparent to prove that open bisimilarity is a congruence
in our setting.

Acknowledgements. We are grateful to the reviewers of an earlier draft of this paper for their
detailed and useful comments.
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Appendix A. Inference rules of FOλ∆∇

The “core” inference rules for FOλ∆∇ are given in Figure 5. Except for the rules for ∇, these
are essentially the inference rules for intuitionistic logic given by Gentzen [11]. The only missing
inference rules are those for introducing defined formulas: these are given in Section 2.

Σ ; σ . B, Γ ` σ . B
init

Σ ; ∆ ` B Σ ; B, Γ ` C
Σ ; ∆, Γ ` C cut

Σ ; σ . B, σ . C, Γ ` D
Σ ; σ . B ∧ C, Γ ` D ∧L Σ ; Γ ` σ . B Σ ; Γ ` σ . C

Σ ; Γ ` σ . B ∧ C
∧R

Σ ; σ . B, Γ ` D Σ ; σ . C, Γ ` D
Σ ; σ . B ∨ C, Γ ` D ∨L Σ ; Γ ` σ . B

Σ ; Γ ` σ . B ∨ C
∨R Σ ; Γ ` σ . C

Σ ; Γ ` σ . B ∨ C
∨R

Σ ; Γ ` σ . B Σ ; σ . C, Γ ` D
Σ ; σ . B ⊃ C, Γ ` D ⊃ L Σ ; σ . B, Γ ` σ . C

Σ ; Γ ` σ . B ⊃ C
⊃ R

Σ, σ ` t : γ Σ ; σ . B[t/x], Γ ` C
Σ ; σ . ∀γx.B, Γ ` C ∀L

Σ, h ; Γ ` σ . B[(h σ)/x]

Σ ; Γ ` σ . ∀x.B
∀R

Σ, h ; σ . B[(h σ)/x], Γ ` C
Σ ; σ . ∃x.B, Γ ` C ∃L

Σ, σ ` t : γ Σ ; Γ ` σ . B[t/x]

Σ ; Γ ` σ . ∃γx.B
∃R

Σ ; (σ, y) . B[y/x], Γ ` C
Σ ; σ .∇x B, Γ ` C ∇L(∗) Σ ; Γ ` (σ, y) . B[y/x]

Σ ; Γ ` σ .∇x B
∇R(∗)

Σ ; σ .⊥, Γ ` B ⊥L
Σ ; Γ ` σ .> >R Σ ; B,B, Γ ` C

Σ ; B, Γ ` C cL Σ ; Γ ` C
Σ ; B, Γ ` C wL

(*) provided that y is not free in λx B.

Fig. 5. The core rules of FOλ∆∇.

Appendix B. Specification of strong early bisimilarity

We take the notion of strong early bisimilarity as it is defined in [27] for late transition system. The
corresponding specification is given in Figure 6. As noted in [27], the essential difference between
late and early bisimulation is in the scope of (universal) quantification of names in the case of
bound input transitions. This is reflected in the specification in Figure 6, where not only the scope
of quantification is enlarged, but also the scope of the excluded middle axiom on names.

ebisim P Q
4
= ∀A∀P ′ [(P A−−→ P ′) ⊃ ∃Q′.(Q A−−→ Q′) ∧ ebisim P ′ Q′] ∧
∀A∀Q′ [(Q A−−→ Q′) ⊃ ∃P ′.(P A−−→ P ′) ∧ ebisim Q′ P ′] ∧
∀X∀P ′[ (P ↓X−−⇀ P ′) ⊃ ∀w.Ew ⊃ ∃Q′.(Q ↓X−−⇀ Q′) ∧ ebisim (P ′w) (Q′w)] ∧
∀X∀Q′[ (Q ↓X−−⇀ Q′) ⊃ ∀w.Ew ⊃ ∃P ′.(P ↓X−−⇀ P ′) ∧ ebisim (Q′w) (P ′w)] ∧
∀X∀P ′ [(P ↑X−−⇀ P ′) ⊃ ∃Q′.(Q ↑X−−⇀ Q′) ∧∇w.ebisim (P ′w) (Q′w)] ∧
∀X∀Q′ [(Q ↑X−−⇀ Q′) ⊃ ∃P ′.(P ↑X−−⇀ P ′) ∧∇w.ebisim (Q′w) (P ′w)]

where E = λx ∀y(x = y) ∨ (x = y ⊃ ⊥).

Fig. 6. Specification of strong early bisimulation.
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