
Induction and Co-induction in Sequent Calculus

Alberto Momigliano1,2 and Alwen Tiu3,4

1 LFCS, University of Edinburgh
2 DSI, University of Milan
amomigl1@inf.ed.ac.uk

3 LIX, École polytechnique
4 Computer Science and Engineering Department, Penn State University

tiu@cse.psu.edu

Abstract. Proof search has been used to specify a wide range of computation sys-
tems. In order to build a framework for reasoning about such specifications, we make
use of a sequent calculus involving induction and co-induction. These proof princi-
ples are based on a proof theoretic notion ofdefinition [26, 9, 13] Definitions are
essentially stratified logic programs. The left and right rules for defined atoms treat
the definitions as defining fixed points. The use of definitions makes it possible to rea-
son intensionally about syntax, in particular enforcing free equality via unification.
The full system thus allows inductive and co-inductive proofs involving higher-order
abstract syntax. We extend earlier work by allowing induction and co-induction on
general definitions and show that cut-elimination holds for this extension. We present
some examples involving lists and simulation in the lazyλ-calculus.

1 Introduction

A common approach to specifying computation systems is via deductive systems, e.g.,
structural operational semantics. Such specifications can be represented as logical theo-
ries in a suitably expressive formal logic in whichproof-searchcan then be used to model
the computation. This use of logic as a specification language is along the line oflogical
frameworks[21]. The representation of the syntax of computation systems inside formal
logic can benefit from the use ofhigher-order abstract syntax(HOAS), a high-level and
declarative treatment of object-level bound variables and substitution. At the same time,
we want to use such a logic in order to reason over themeta-theoreticalproperties of ob-
ject languages, for example type preservation in operational semantics [14], soundness and
completeness of compilation [18] or congruence of bisimulation in transition systems [15].
Typically this involves reasoning by (structural) induction and, when dealing with infinite
behaviour, co-induction [5].

The need to support both inductive and co-inductive reasoning and some form of HOAS
requires some careful design decisions, since the two are prima facie notoriously incompat-
ible. While any meta-language based on aλ-calculus can be used to specify and possibly
perform computations over HOAS encodings, meta-reasoning has traditionally involved
(co)inductive specifications both at the level of the syntax and of the judgements as well
(which are of course unified at the type-theoretic level). The first provides crucial freeness
properties for datatypes constructors, while the second offers principle of case analysis and
(co)induction. This is well-known to be problematic, since HOAS specifications lead to



non-monotone (co)inductive definitions, which by cardinality and consistency reasons are
not permitted in inductive logical frameworks. Moreover, even when HOAS is weakened
so as to be made compatible with standard proof assistants [6] such as HOL or Coq, the lat-
ter tend to be still toostrong, in sense of allowing the existence of too many functions and
yielding the so calledexoticterms. This causes a loss of adequacy in HOAS specifications,
which is one of the pillar of formal verification. On the other hand, logics such as LF [10]
that are weak by design in order to support this style of syntax are not directly endowed
with (co)induction principles.

The contribution of this paper lies in the design of a new logic, called Linc (for a
logic with λ-terms, induction and co-induction), that carefully adds principles of induction
and co-induction to a higher-order intuitionistic logic based on a proof theoretic notion of
definition, following on work (among others) by Schroeder-Heister [26], Girard [9] and
McDowell and Miller [13]. Definitions are akin to logic programs, but allow to view theo-
ries as “closed” or defining fixed points. This alone allows us to perform case analysis. Our
approach to formalizing induction and co-induction is via the least and greatest solutions
of the fixed point equations specified by the definitions. Such least and greatest solutions
are guaranteed to exist by a stratification condition on definitions (which basically ensures
monotonicity). The proof rules for induction and co-induction makes use of the notion of
pre-fixed pointsandpost-fixed pointsrespectively. In the inductive case, this corresponds
to the induction invariant, while in the co-inductive one to the so-called simulation.

The simply typed language underlying Linc and the notion of definition make it pos-
sible to reasonintensionallyabout syntax, in particular enforcingfree equality via unifi-
cation, which can be used on first-order terms or higher-orderλ-terms. In fact, we can
support HOAS encodings of constructors without requiring them to belong to a datatype.
In particular we canprove the freeness properties of those constructors, namely injectiv-
ity, distinctness and case exhaustion. Judgements are encoded as definitions accordingly to
their informal semantics, either inductive, co-inductive or regular, i.e. true in every fixed
point. Given the stratification condition, we (currently) fall short of the LF-like idea ofFull
HOAS, although, exploiting the equivalence with the completion of a logic program [25],
the monotonicity requirement can be weakened beyond the scope of current induction-
based proof-assistants.

Linc can be proved to be a conservative extension ofFOλ∆IN [13] and a generaliza-
tion to the higher-order case of Martin-Löf [12] first-order theory of iterated inductive
definitions. Moreover, at the best of our knowledge, it is the first sequent calculus with
a cut-elimination theorem for co-inductive definitions. Further, its modular design makes
its extension easy, for example in the direction ofFOλ∇ [17] or the regular world assump-
tion [27].

The rest of the paper is organized as follows. Section 2 introduces the proof system
for the logic Linc. Section 3 shows some examples of using induction and co-induction to
prove several properties of list-related predicates and the lazyλ-calculus. Section 4 gives an
overview of the cut-elimination procedure, the detailed proof of which is available in [30].
Section 5 surveys the related work and Section 6 concludes this paper.



B,B,Γ −→C
B,Γ −→C

cL Γ −→C
B,Γ −→C

wL ⊥,Γ −→ B
⊥L Γ −→> >R

B,Γ −→ D
B∧C,Γ −→ D

∧L
C,Γ −→ D

B∧C,Γ −→ D
∧L Γ −→ B Γ −→C

Γ −→ B∧C
∧R

B,Γ −→ D C,Γ −→ D
B∨C,Γ −→ D

∨L Γ −→ B
Γ −→ B∨C

∨R Γ −→C
Γ −→ B∨C

∨R

Bt,Γ −→C

∀x.Bx,Γ −→C
∀L

Γ −→ By

Γ −→ ∀x.Bx
∀R

By,Γ −→C

∃x.Bx,Γ −→C
∃L Γ −→ Bt

Γ −→ ∃x.Bx
∃R

Γ −→ B C,Γ −→ D
B⊃C,Γ −→ D

⊃ L
B,Γ −→C

Γ −→ B⊃C
⊃ R

C−→C
init

∆1 −→ B1 · · · ∆n −→ Bn B1, . . . ,Bn,Γ −→C
∆1, . . . ,∆n,Γ −→C

mc, wheren > 0

Fig. 1. Inference rules for the core Linc

2 The LogicLinc

The logic Linc shares the core fragment withFOλ∆IN , which is an intuitionistic version of
Church’s Simple Theory of Types. Formulae in the logic are built from predicate symbols
and the usual logical connectives⊥, >, ∧, ∨, ⊃, ∀τ and∃τ. Following Church, formulae
will be given typeo. The quantification typeτ can have higher types, but those are restricted
to not containo. Thus the logic has a first-order proof theory but allows for the encoding
of higher-order abstract syntax. The core fragment of the logic is presented in the sequent
calculus in Figure 1. A sequent is denoted byΓ −→ C whereC is a formula andΓ is a
multiset of formulae. Notice that in the presentation of the rule schemes, we make use of
HOAS, e.g., in the applicationBx it is implicit that B has no free occurrence ofx. In the
∀R and∃L rules,y is an eigenvariable that is not free in the lower sequent of the rule.
Whenever we write down a sequent, it is assumed implicitly that the formulae are well-
typed and inβη-long normal forms: the type context, i.e., the types of the constants and the
eigenvariables used in the sequent, is left implicit as well. Themc rule is a generalization
of the cut rule that simplifies the presentation of the cut-elimination proof.

We extend the core logic in Figure 1 by allowing the introduction of non-logical con-
stants. An atomic formula, i.e., a formula that contains no occurrences of logical constants,
can be defined in terms of other logical or non-logical constants. Its left and right rules
are, roughly speaking, carried out by replacing the formula corresponding to its definition
with the atom itself. A defined atom can thus be seen as a generalized connective, whose
behaviour is determined by its defining clauses. The syntax of definition clauses used by
McDowell and Miller [13] resembles that of logic programs, that is, a definition clause
consists of a head and a body, with the usual pattern matching in the head; for example, the

predicatenat for natural numbers is written{nat z 4= >, nat s x
4= nat x}. We adopt here

a simpler presentation by putting all pattern matching in the body and combining multiple
clauses with the same head in one clause with disjunctive body. Of course, this will require
us to have explicit equality as part of our syntax. The correspondingnat predicate in our



syntax will be written

nat x
4= [x = z]∨∃y.[x = s y]∧nat y

and corresponds to the notion ofiff-completionof a logic program.

Definition 1. A definition clauseis written∀x̄[px̄
4= Bx̄], where p is a predicate constant.

The atomic formula p̄x is called theheadof the clause, and the formula B̄x is called the

body. The symbol
4= is used simply to indicate a definition clause: it is not a logical con-

nective. Adefinition is a (perhaps infinite) set of definition clauses. A predicate may occur
only at most once in the heads of the clauses of a definition.

We will generally omit the outer quantifiers to simplify the presentation. Not all definition
clauses are admitted in our logic, e.g., we rule out definitions with circular calling through
implications (negations) that can lead to inconsistency [24]. The notion oflevelof a formula
allows to define a proper stratification on definitions. To each predicatep we associate a
natural number lvl(p), the level ofp.

Definition 2. Given a formula B, itslevel lvl(B) is defined as follows:

1. lvl(pt̄) = lvl(p), lvl(⊥) = lvl(>) = 0
2. lvl(B∧C) = lvl(B∨C) = max(lvl(B), lvl(C))
3. lvl(B⊃C) = max(lvl(B)+1, lvl(C))
4. lvl(∀x.Bx) = lvl(∃x.Bx) = lvl(Bt), for any term t.

The level of a sequentΓ−→C is the level ofC. A definition clause∀x̄[px̄
4= Bx̄] is stratified

if lvl (Bx̄)≤ lvl(p). An occurrence of a formulaA in a formulaC is strictly positiveif that
particular occurrence ofA is not to the left of any implication inC. Stratification then
implies that all occurrences of the head in the body are strictly positive.

Given a definition clausepx̄
4= Bx̄, the right and left rules for predicatep are

Bt̄,Γ −→C
pt̄,Γ −→C

defL Γ −→ Bt̄
Γ −→ pt̄

defR

The rules for equality predicates makes use of substitutions. We assume the usual definition
of capture-avoiding substitutions. We useθ,ρ,δ andσ to denote those and their application
is written in post-fix notation, e.g.,tθ. The left and right rules for equality are as follows

{Γρ −→Cρ | sρ =βη tρ,ρ ∈CSU(s, t)}
s= t,Γ −→C

eqL Γ −→ t = t
eqR

The substitutionρ in eqL is called aunifier of s andt. The setCSU(s, t) is acomplete set
of unifiers, i.e., given any unifierθ1 of s andt, there is a unifierθ2 ∈CSU(s, t) such that
θ1 = θ2 ◦ γ, for some substitutionγ. In the first order case, a set containing just the most
general unifier is a complete set of unifiers. In general, however, the complete set of unifiers
may contain more than one unifier and therefore we specify a set of sequents as the premise
of the eqL rule, which is to say that each sequent in the set is a premise of the rule. Note
that in applying eqL , eigenvariables can be instantiated as a result.

A definition px
4= Bx can be seen as a fixed point equation saying that for every term

t, pt if and only if Bt holds. Since our notion of definition requires strict positivity of



occurrences ofp in B, existence of fixed points is always guaranteed. Hence the provability
of pt means thatt is in a solution of the corresponding fixed point equation, although
not necessarily in the least (or greatest) solution (see e.g., [9] for an example). Therefore
we add extra rules that reflect the least and the greatest solutions, respectively. Since we
are in a monotone setting, we can use the pre-fixed point and the post-fixed point as an
approach to the least and greatest fixed points. In the following we assume, for simplicity
of presentation, that predicates are not mutual-recursively defined. The more general case
where mutual recursion is treated can be found in [30].

Let px̄
4= Bx̄ be a definition clause and letS be a term of the same type asp. The

induction rules forp are

(Bx̄)[S/p]−→ Sx̄ Γ,St̄ −→C

Γ, pt̄ −→C
I L Γ −→ Bt̄

Γ −→ pt̄
I R

The abstractionS is an invariant of the induction. The variables ¯x are new eigenvariables.
An informal reading ofI L is to considerSas denoting a set (i.e.,̄t ∈ S iff St̄ holds),B as
denoting a fixed point operator andSas a pre-fixed point ofB, i.e.,B[S/p]⊆ S. Notice that
the right-rule for induction isdefR . The co-induction rules are defined dually.

Bt̄,Γ −→C
pt̄,Γ −→C

CI L
Γ −→ St̄ Sx̄−→ (Bx̄)[S/p]

Γ −→ pt̄
CI R , where lvl(S)≤ lvl(p)

S can be seen as denoting apost-fixed point, i.e., S⊆ B[S/p]. The CI L rule is thedefL
rule. The proviso inCI R , although mainly technical, is satisfied by every example we
have examined, since it requires the given predicate to be used “monotonically” in the
simulation.

To avoid inconsistency, some care must be taken in applying induction or co-induction
in a proof. One obvious pitfall is when the fixed point equation corresponding to a definition
clause has different least and greatest solutions. In such case, mixing induction and co-

induction on the same definition clause can lead to inconsistency. For example, letp
4= p

be a definition clause. Given the scheme of rules above without any further restriction, we
can construct the following derivation

−→> >R >−→> >R
−→ p CI R

⊥−→⊥ ⊥L ⊥−→⊥ ⊥L

p−→⊥ I L

−→⊥ cut

In the above derivation we use> and⊥ as the invariant and the simulation in the instance
of CI R andI L rules. This example suggests that we have to use a definition clause con-
sistently through out the proof, either inductively or co-inductively, but not both. To avoid
this problem, we introduce markings into a definition, whose role is to indicate which rules
are applicable to the corresponding defined atoms.

Definition 3. An extended definitionis a stratified definitionD together with a label, that
indicates whether the clause is eitherinductive, co-inductive, or regular. An inductive
clause is written as p̄x

µ
= Bx̄, a co-inductive clause is written as p̄x

ν= Bx̄ and a regular

clause is written as p̄x
4= Bx̄.



Since we shall only be concerned with extended definitions from now on, we shall refer
those simply as definitions. The induction and co-induction rules need additional provisos.
TheI L andI R rules can be applied only to an inductively defined atom. Dually, theCI L
andCI R rules can only be applied to a co-inductively defined atom. ThedefL anddefR
rules apply only to regular atoms. However, we can show thatdefL anddefR are derived
rules for (co-)inductively defined atoms.

Proposition 1. ThedefL anddefR are admissible rules in the coreLinc system with the
induction and/or the co-induction rules.

Proof. Consider inferringdefL using core Linc and induction rules, the other case being

dual. Let px̄
4= Bx̄ be the definition under consideration:defL can be inferred fromI L

using the bodyB as the invariant.

Π
B[B/p] x̄−→ Bx̄ Bt̄,Γ −→C

pt̄,Γ −→C
I L

We can construct the derivationΠ by induction on the size ofB: sincep occurs strictly
positively inB by stratification, the only non-trivial base case we need to consider is when
we reach the sub-formulapt̄ of Bx̄, in which case we just apply theI R rule.

3 Examples

We now give some examples, starting with some that make essential use of HOAS.

3.1 Lazyλ-Calculus

We consider an untyped version of the pureλ-calculus with lazy evaluation, following the
usual HOAS style, i.e., object-levelλ-operator and application are encoded as constants
lam :(tm→ tm)→ tmand @ :tm→ tm→ tm, wheretm is the syntactic category of object-
level λ-terms. The evaluation relation is encoded as the following inductive definition

M⇓N
µ
= (∃M′.[M = lamM′]∧ [M = N]) ∨

(∃M1∃M2∃P.[M = M1@M2]∧M1⇓ lamP∧ (PM2)⇓N)

Notice that object-level substitution is realized viaβ-reduction in the meta-logic.
The notion ofapplicative simulationof λ-expressions can be encoded as the (stratified)

co-inductive definition

sim R S
ν= ∀T.R⇓ lamT ⊃ ∃U.S⇓ lamU ∧∀P.sim (T P) (U P).

Given this encoding, we can prove the reflexivity property of simulation, i.e.,∀s.sim s s.
This is proved co-inductively by using the simulationλxλy.x = y. After applying∀R and
CI R , it remains to prove the sequents−→ s= s, and

x = y−→ ∀x1.x⇓ lamx1 ⊃ (∃x2.y⇓ lamx2∧∀x3.(x1x3) = (x2x3))



The first sequent is provable by an application of eqR rule. The second sequent is proved
as follows.

z⇓ lamx1 −→ z⇓ lamx1
init

z⇓ lamx1 −→ (x1x3) = (x1x3)
eqR

z⇓ lamx1 −→ ∀x3.(x1x3) = (x1x3)
∀R

z⇓ lamx1 −→ (z⇓ lamx1∧∀x3.(x1x3) = (x1x3))
∧R

z⇓ lamx1 −→ (∃x2.z⇓ lamx2∧∀x3.(x1x3) = (x2x3))
∃R

x = y,x⇓ lamx1 −→ (∃x2.y⇓ lamx2∧∀x3.(x1x3) = (x2x3))
eqL

x = y−→ x⇓ lamx1 ⊃ (∃x2.y⇓ lamx2∧∀x3.(x1x3) = (x2x3))
⊃ R

x = y−→ ∀x1.x⇓ lamx1 ⊃ (∃x2.y⇓ lamx2∧∀x3.(x1x3) = (x2x3))
∀R

The transitivity property is expressed as∀r∀s∀t.sim r s∧ sim s t⊃ sim r t . Its proof
involves co-induction onsim r t with the simulationλuλv.∃w.sim u w∧ sim w v, followed
by case analyses (i.e.,defL and eqL rules) onsim r s andsim s t. The rest of the proof is
purely logical.

We can also show the existence of divergent terms. Divergence is encoded as follows.

divrg T
ν= (∃T1∃T2.T = (T1@T2)∧divrg T1) ∨

(∃T1∃T2.T = (T1@T2)∧∃E.T1⇓ lamE∧divrg (E T2)).

Let Ω be the term(lamx.(x@x))@(lamx.(x@x)). We show that divrgΩ holds. The proof
is straightforward by co-induction using the simulationS:= λs.s= Ω. Applying theC I R
produces the sequents−→ Ω = Ω andT = Ω −→ S1 ∨ S2 where

S1 := ∃T1∃T2.T = (T1@T2)∧ (ST1), and

S2 := ∃T1∃T2.T = (T1@T2)∧∃E.T1⇓ lamE∧S(E T2).

Clearly, only the second disjunct is provable, i.e., by instantiatingT1 andT2 with the same
term lamx.(x@x), andE with the functionλx.(x@x).

3.2 Lists

Lists over some fixed typeα are encoded as the typelst, with the usual constructor nil :lst
for empty list and :: of typeα → lst → lst. We consider here the append predicate for both
the finite and infinite case.

Finite lists The usual append predicate on finite lists can be encoded as the inductive
definition

appL1 L2 L3
µ
= (L1 = nil∧L2 = L3) ∨
∃x∃L′1∃L′3.L1 = x::L′1∧L3 = x::L′3∧appL′1 L2 L′3.

Associativity of append is stated formally as

∀l1∀l2∀l12∀l3∀l4.(appl1 l2 l12∧appl12 l3 l4)⊃ ∀l23.appl2 l3 l23⊃ appl1 l23 l4.



Proving this formula requires us to prove first that the definition of append is functional,
that is,

∀l1∀l2∀l3∀l4.appl1 l2 l3∧appl1 l2 l4 ⊃ l3 = l4.

This is done by induction onl1, i.e., we apply theI L rule on appl1 l2 l3, after the introduc-
tion rules for∀ and⊃, of course. The invariant in this case is

S:= λr1λr2λr3.∀r.appr1 r2 r ⊃ r = r3.

It is a simple case analysis to check that this is the right invariant. Back to our original
problem: after applying the introduction rules for the logical connectives in the formula,
the problem of associativity is reduced to the following sequent

appl1 l2 l12, appl12 l3 l4, appl2 l3 l23−→ appl1 l23 l4. (1)

We then proceed by induction on the listl1, that is, we apply theI L rule to the hypothesis
appl1 l2 l12. The invariant is simply

S:= λl1λl2λl12.∀l3∀l4.appl12 l3 l4 ⊃ ∀l23.appl2 l3 l23⊃ appl1 l23 l4.

Applying theI L rule, followed by∨L , to sequent (1) reduces the sequent to the following
sub-goals

(i) S l1 l2 l12, appl12 l3 l4, appl2 l3 l23−→ appl1 l23 l4,
(ii) (l1 = nil∧ l2 = l3)−→ S l1 l2 l3,
(iii ) ∃x, l ′1, l

′
3.l1 = x:: l ′1∧ l3 = x:: l ′3∧S l′1 l2 l ′3 −→ S l1 l2 l3

The proof for the second sequent is straightforward. The first sequent reduces to

appl12 l3 l4,appl12 l3 l23−→ app nil l23 l4.

This follows from the functionality of append andI R . The third sequent follows by case
analysis. Of course, these proofs could have been simplified by using aderivedprinciple of
structural induction. While this is easy to do, we have preferred here to use the primitive
I L rule.

Infinite lists The append predicate on infinite lists is defined via co-recursion, that is, we
define the behaviour ofdestructor operationson lists (i.e., taking the head and the tail of
the list). In this case we never construct explicitly the result of appending two lists, rather
the head and the tail of the resulting lists are computed as needed. The co-recursive append
requires case analysis on all arguments.

coappL1 L2 L3
ν= (L1 = nil∧L2 = nil∧L3 = nil) ∨

(L1 = nil∧∃x∃L′2∃L′3.L2 = x::L′2∧L3 = x::L′3 ∧ coapp nilL′2 L′3)
∨ (∃x∃L′1∃L′3.L1 = x::L′1∧L3 = x::L′3 ∧ coappL′1 L2 L′3).

The corresponding associativity property is stated analogously to the inductive one and the
main statement reduces to proving the sequent

coappl1 l2 l12, coappl12 l3 l4, coappl2 l3 l23−→ coappl1 l23 l4.



We apply theCI R rule to coappl1 l23 l4, using the simulation

S:= λl1λl2λl12.∃l23∃l3∃l4.coappl12 l3 l4∧ coappl2 l3 l23∧ coappl1 l23 l4.

Subsequent steps of the proof involve mainly case analysis on coappl12 l3 l4. As in the
inductive case, we have to prove the sub-cases whenl12 is nil. However, unlike in the
former case, case analyses on the arguments of coapp suffices.

4 Cut-Elimination

A central result of our work is cut-elimination, from which consistency of the logic fol-
lows. Gentzen’s classic proof of cut-elimination for first-order logic uses an induction on
the size of the cut formula, i.e., the number of logical connectives in the formula. The
cut-elimination procedure consists of a set of reduction rules that reduce a cut of a com-
pound formula to cuts on its sub-formulae of smaller size. In the case of Linc, the use
of induction/co-induction complicates the reduction of cuts. Consider for example a cut
involving the induction rules

Π1
∆ −→ Bt
∆ −→ pt

I R

ΠB
B[S/p]y−→ Sy

Π
St,Γ −→C

pt,Γ −→C I L

∆,Γ −→C
mc

There are at least two problems in reducing this cut. First, any permutation upwards of
the cut will necessarily involve a cut withS that can be of larger size thanp, and hence
a simple induction on the size of cut formula will not work. Second, the invariantS does
not appear in the conclusion of the left premise of the cut. The latter means that we need
to transform the left premise so that its end sequent will agree with the right premise. Any
such transformation will most likely beglobal, and hence simple induction on the height
of derivations will not work either. We define a proof transformation that we callunfolding
to deal with the cut involvingI L/I R andCI R /CI L pairs.

In the following definition, we refer to a premise of a rule as aminor premiseif it is
the left-premise of⊃ L or I L , or the right-premise ofCI R or mc, otherwise it is amajor
premise. A derivation of a minor [major] premise is aminor [major] premise derivation.
To simplify the definitions of unfolding, we restrict theinit-rule to the atomic form. Non-
atomic init-rule can easily be shown to be derivable using only structural rules, logical
rules and atomicinit. We shall refer to this non-atomicinit derivation asΠId . We use the
notationΠθ to denote the application of the substitutionθ to Π, which amounts to applying
the substitution to every sequent inΠ.

Definition 4. Inductive unfolding.Let px̄
µ
= Bx̄ be an inductive definition. Suppose we

are given a derivationΠ of Γ −→C where each occurrence of p in C is strictly positive,
and a derivationΠS of B[S/p] x̄−→ Sx̄, for some closed term S. We define the derivation
µ(Π,ΠS) of Γ −→ C[S/p] as follows. If C[S/p] = C, then µ(Π,ΠS) = Π. Otherwise, we
define µ(Π,ΠS) based on the last rule inΠ.



1. If Π ends withinit on atom p̄t, then µ(Π,ΠS) is the derivation

ΠS
B[S/p] x̄−→ Sx̄

ΠId

St̄ −→ St̄

pt̄ −→ St̄
I L

2. If Π ends with⊃ R

Π′
Γ,C1 −→C2

Γ −→C1 ⊃C2
⊃ R then µ(Π,ΠS) is

µ(Π′,ΠS)
Γ,C1 −→C2[S/p]

Γ −→C1 ⊃C2[S/p]
⊃ R

Note that the restriction on the occurrence of p in C implies that(C1 ⊃ C2)[S/p] =
C1 ⊃C2[S/p].

3. If Π ends withI R on pū, for some terms̄u,

Π′
Γ −→ Bū
Γ −→ pū

I R then µ(Π,ΠS) is
µ(Π′,ΠS)

Γ −→ B[S/p] ū
ΠS[ū/x̄]

B[S/p] ū−→ Sū
Γ −→ Sū

mc

4. Otherwise, ifΠ ends with any other rule, with the minor premise derivationsΞ1,. . .,
Ξm for some m≥ 0 and the major premise derivations{Πi}i∈I for some index setI ,
then µ(Π,ΠS) ends with the same rule, with the same minor premises and the major
premises{µ(Πi ,ΠS)}i∈I .

Definition 5. Co-inductive unfolding.Let px̄
ν= Bx̄ be a co-inductive definition. Let C be a

formula in which every occurrence of p is strictly positive. Suppose we are given a deriva-
tion Π of Γ−→C[S/p] and a derivationΠS of Sx̄−→B[S/p] x̄, for some closed term S. We
define the derivationν(Π,ΠS) of Γ−→C as follows. If C[S/p] = C, thenν(Π,ΠS) = Π. If
C = pt̄ for some terms̄t, then C[S/p] t̄ = St̄ andν(Π,ΠS) is the derivation

Π
Γ −→ St̄

ΠS
Sx̄−→ Bx̄

Γ −→ pt̄
CI R

Otherwise, we defineν(Π,ΠS) based on the last rule inΠ. If Π ends with⊃ R

Π′

Γ,C1 −→C2[S/p]
Γ −→C1 ⊃C2[S/p]

⊃ R then µ(Π,ΠS) is
ν(Π′,ΠS)

Γ,C1 −→C2

Γ −→C1 ⊃C2
⊃ R .

If Π ends with any other rule, with the minor premise derivationsΞ1, . . ., Ξm for some m≥ 0
and the major premise derivations{Πi}i∈I for some index setI , then µ(Π,ΠS) also ends
with the same rule, with the same minor premises and the major premises{µ(Πi ,ΠS)}i∈I .

Our proof of cut-elimination uses the technique of reducibility originally due to Tait.
The method was applied by Martin-Löf [12] to the setting of natural deduction, and to
sequent calculus by McDowell and Miller for the logicFOλ∆IN [13]. The original idea of
Martin-Löf was to use derivations directly as a measure by defining a well-founded ordering
on them. The basis for the latter relation is a set of reduction rules that are used to eliminate



the applications of cut rule. For the cases involving logical connectives, the cut-reduction
rules used to prove the cut-elimination for Linc are the same to those ofFOλ∆IN . The
crucial cases involving (co)-induction are given in the following definition. For simplicity
of presentation, we assume the reduction involves the leftmost and the rightmost premise
derivations ofmc.

Definition 6. Cut-reduction.Let Ξ be the derivation

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dn

Π
D1, . . . ,Dn,Γ −→C

∆1, . . . ,∆n,Γ −→
mc.

Case∗/I L : If D1 = pt̄, where p̄x
µ
= Bx̄, andΠ ends withI L on the cut formula p̄t

ΠS
B[S/p] x̄−→ Sx̄

Π′
St̄,D2, . . . ,Dn,Γ −→C

pt̄,D2, . . . ,Dn,Γ −→C
I L

thenΞ reduces to

µ(Π1,ΠS)
∆1 −→ St̄

Π2
∆2 −→ D2 · · ·

Πn
∆n −→ Dn

Π′
St̄,D2, . . . ,Dn,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

CaseCI R /CI L : If D1 = pt̄, where p̄x
ν= Bx̄, andΠ1 andΠ are

Π′
1

∆1 −→ St̄
ΠS

Sx̄−→ B[S/p] x̄
∆1 −→ pt̄

CI R
Π′

Bt̄,D2, . . . ,Dn,Γ −→C
pt̄,D2, . . . ,Dn,Γ −→C

CI L

thenΞ reduces to

Π′
1

∆1 −→ St̄
Ξ1

St̄ −→ Bt̄
∆1 −→ Bt̄

mc · · ·
Πn

∆n −→ Dn

Π′
Bt̄, . . . ,Dn,Γ −→C

∆1, . . . ,∆n,Γ −→C
mc

whereΞ1 = ν(ΠS,ΠS)[t̄/x̄].

Notice that these two reductions are not symmetric. This is because we use an asymmetric
measure to show the termination of cut-reduction, that is, the complexity of cut is always
reduced on the right premise. The difficulty in getting a symmetric measure, in the presence
of contraction and implication (in the body of definition), is already observed in [24].

To show the termination of cut-reduction, we define two orderings on derivations:nor-
malizability and reducibility (called computability in [12]). The well-foundedness of the
normalizability ordering immediately implies that the cut-elimination process terminates.
Reducibility is a superset of normalizability and hence its well-foundedness implies the
well-foundedness of normalizability. The main part of the proof lies in showing that all
derivations in Linc are reducible, and hence normalizable. This is stated in the Lemma 1,
of which cut-elimination is a simple corollary.



Lemma 1. For any derivationΠ of B1, . . . ,Bn,Γ −→C, reducible derivationsΠ1, . . . ,Πn

of ∆1 −→ B1, . . . ,∆n −→ Bn (n≥ 0), and substitutionsδ1, . . . ,δn,γ such that Biδi = Biγ, for
every i∈ {1, . . . ,n}, the following derivationΞ is reducible.

Π1δ1
∆1δ1 −→ B1δ1 · · ·

Πnδn
∆nδn −→ Bnδn

Πγ
B1γ, . . . ,Bnγ,Γγ −→Cγ

∆1δ1, . . . ,∆nδn,Γγ −→Cγ
mc

The proof proceeds by induction on the height ofΠ with subordinate inductions onn and
on the (well-founded) reduction tree ofΠ1, . . . ,Πn. We give a general idea of the proof for
the cases∗/I L andCI R /CI L in Definition 6, and refer to [30] for full details. In the
following description, we refer to Definition 6 for the particular shapes of the derivations
Π1 andΠ. In the∗/I L case, it is sufficient to show that given the reducibility ofΠ1, the
unfolding derivationµ(Π1,ΠS) is still reducible. This is done by induction on the construc-
tion of µ(Π1,ΠS). The non-trivial case is when new cuts (mc) is introduced. But here we
see that this instance ofmc is always cutting withΠS, and hence by the outer induction hy-
pothesis (ΠS is of smaller height thanΠ) this instance ofmc is reducible. TheCI R /CI L
case is more complicated. In addition to showing that the co-inductive unfolding preserves
reducibility, we also need to show that the unfolded derivationν(ΠS,ΠS) is “closed” with
respect to cut, that is, for every reducible derivationΨ of ∆′ −→Sū, the resulting derivation
obtained by cuttingΨ with ν(ΠS,ΠS)[ū/x̄] is reducible. This case is dealt with by building
into the notion of reducibility this closure condition.

5 Related Work

Linc has been designed as anintentionallyweak logical framework to be used as a meta-
language for reasoning over deductive systems encoded via HOAS. In particular, it can
be seen as the meta-theory of the simply typedλ-calculus, in the same sense in which
Scḧurmann’sMω [27] is the meta-theory ofLF [10]. Mω is a constructive first-order logic,
whose quantifiers range over possibly open LF objects over a signature. By the adequacy of
the encoding, the proof of the existence of the appropriate LF object(s) guarantees the proof
of the corresponding object-level property. It must be remarked thatMω does not support
co-induction yet. However, LF can be used directly to specify an inductive meta-theorem
as a relation between judgements, with a logic programming interpretation providing the
operational semantics.

Of course, there is a long association between mathematical logic and inductive def-
initions [2] and in particular with proof-theory, possibly the earliest relevant entry being
Martin-Löf’s original formulation of the theory ofiterated inductive definitions[12]. From
the impredicative encoding of inductive types [4] and the introduction of (co)recursion [7]
in system F, (co)inductive types became common [16] and made it into type-theoretic proof
assistants such as Coq [19], first via a primitive recursive operator, but eventually in the
let-rec style of functional programming languages, as in Gimenez’sCalculus of Infinite
Constructions[8]; here termination (resp. guardedness) is ensured by a syntactic check
(see also [1]). Note that this has severe limitations (e.g., in the possibility of using lem-
mas in the body of a guarded proof) that do not applies to our approach. Circular proofs
are also connected with the emerging proof-theory offixed point logicsandprocess cal-
culi [23, 28, 29], in particular w.r.t. the relation between systems with local and global



induction, that is, between fixed point vs. well-founded and guarded induction (i.e. circular
proofs).

In higher order logic (co)inductive definitions are obtained via the usual Tarski fixed
point constructions, as realized for example in Isabelle/HOL [20]. As we mentioned before,
those approaches are at odd with HOAS even at the level of the syntax. Several compro-
mises have been proposed: theTheory of Contexts[11] (ToC) marriesWeakHOAS with an
axiomatic approach encoding basic properties of names.Hybrid [3] is a λ-calculus on top
of Isabelle/HOL which provides the user aFull HOAS syntax, compatible with a classical
(co)-inductive setting. Linc improves on the latter on several counts. First it disposes of Hy-
brid notion ofabstraction, which is used to carve out the “parametric” function space from
the full HOL space. Moreover it is not restricted to second-order abstract syntax, as the
current Hybrid version is (and as ToC cannot escape from being). Finally, at higher types,
reasoning viadefL is more powerful than inversion: for example∀y.λx.y 6= λx.0 is provable
in Linc, but fails both in Isabelle/HOL and Coq – the latter for extensionality reasons.

6 Conclusion and Future Work

We have presented a proof theoretical treatment of both induction and co-induction in a
sequent calculus compatible with HOAS encodings. The proof principle underlying the
explicit proof rules is basically fixed point (co)induction. Our proof system is, as far as
we know, the first which incorporates a co-induction proof rule and still preserves cut-
elimination. We have shown several examples where informal (co)inductive proofs using
invariants and simulations are reproduced formally in Linc. Consistency of the logic is an
easy consequence of cut-elimination.

We currently have two prototype implementations of Linc. The one in the Hybrid sys-
tem [3, 18] is better characterized as an approximation: definitional reflection is mimicked
by the elimination rules of (co)inductive definitions, which also provides (co)induction
principles, while the Hybridλ-calculus takes care of the freeness properties: notwithstand-
ing the limitations mentioned in Section 5, the implementation has the benefit of inheriting
all the automation of Isabelle/HOL on whose top Hybrid is realized. The second is a direct
implementation of Linc rules inλProlog, with a Java graphical user interface (available
on the web athttp://www.lix.polytechnique.fr/˜tiu). This prototype is currently
limited to be a proof-checker. A serious implementation would require more study on the
proof search properties of Linc. It is true that with induction and co-induction there is no
hope of automation in general. Nevertheless, a large subset of the logic may still admit
some uniformity in proof search.

On the theoretical level, we conjecture that the proviso in theC I R rule can be elimi-
nated. Similarly, we can loosen the stratification condition for example in the sense oflocal
stratification and of terminating higher-order logic programs [22], possibly allowing to en-
code proofs such as type preservation in operational semantics directly in Linc rather than
with the 2-level approach [14, 18].

Another interesting problem to investigate is the connection withcircular proofs, which
is particularly attractive from the viewpoint of proof search, both inductively and co-inductively.
This could be realized by directly proving a cut-elimination result for a logic where circu-
lar proofs, under termination and guardedness conditions completely replace (co)inductive
rules. Alternatively, we could reduce “global” proofs in such a system to “local” proofs



in Linc, similarly to [29]. Finally, extensions of Linc, for example in the direction of
FOλ∇ [17] are worth investigating.

AcknowledgementsThe Linc logic was developed in collaboration with Dale Miller.
Alberto Momigliano has been supported by EPSRC grant GR/M98555 and partly by the
MRG project (IST-2001-33149), funded by the EC under the FET proactive initiative on
Global Computing. Alwen Tiu has been supported in part by NSF grants CCR-9912387,
INT-9815645, and INT-9815731 and LIX atÉcole polytechnique.

References

[1] A. Abel and T. Altenkirch. A predicative strong normalisation proof for aλ-calculus with
interleaving inductive types. In T. Coquand, P. Dybjer, B. Nordström, and J. Smith, editors,
TYPES ’99, vol 1956 ofLNCS, pp 21–40. Springer-Verlag, 2000.

[2] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,Handbook of Math-
ematical Logic, vol 90 of Studies in Logic and the Foundations of Mathematics, pp 739–782.
North-Holland, Amsterdam, 1977.

[3] S. Ambler, R. Crole, and A. Momigliano. Combining higher order abstract syntax with tactical
theorem proving and (co)induction. In V. A. Carreño, editor,TPHOLs 2002, vol 2342 ofLNCS.
Springer Verlag, 2002.

[4] C. Bohm and A. Berarducci. Automatic synthesis of typed lambda programs on term algebras.
Theoretical Computer Science, 39(2-3):135–153, Aug. 1985.

[5] R. L. Crole. Lectures on [Co]Induction and [Co]Algebras. Technical Report 1998/12, Depart-
ment of Mathematics and Computer Science, University of Leicester, 1998.

[6] J. Despeyroux and A. Hirschowitz. Higher-order abstract syntax with induction in Coq. In
Fifth Conference on Logic Programming and Automated Reasoning, pp 159–173, 1994.

[7] H. Geuvers. Inductive and coinductive types with iteration and recursion. In B. Nordström,
K. Pettersson, and G. Plotkin, editors,Proceedings of Workshop on Types for Proofs and Pro-
grams, pp 193–217. Dept. of Computing Science, Chalmers Univ. of Technology, 1992.

[8] E. Giménez. Un Calcul de Constructions Infinies et son Application a la Verification des
Systemes Communicants. PhD thesis, Ecole Normale Supérieure de Lyon, Dec. 1996.

[9] J.-Y. Girard. A fixpoint theorem in linear logic. Email to the linear@cs.stanford.edu mailing
list, February 1992.

[10] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.Journal of the ACM,
40(1):143–184, 1993.

[11] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning on sys-
tems in higher-order abstract syntax. InProc. ICALP’01, number 2076 in LNCS, pp 963–978.
Springer-Verlag, 2001.

[12] P. Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In J. Fen-
stad, editor,Proceedings of the Second Scandinavian Logic Symposium, vol 63 of Studies in
Logic and the Foundations of Mathematics, pp 179–216. North-Holland, 1971.

[13] R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induction.Theo-
retical Computer Science, 232:91–119, 2000.

[14] R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a logical frame-
work. ACM Transactions on Computational Logic, 3(1):80–136, January 2002.

[15] R. McDowell, D. Miller, and C. Palamidessi. Encoding transition systems in sequent calculus.
TCS, 294(3):411–437, 2003.

[16] N. P. Mendler. Inductive types and type constraints in the second order lambda calculus.Annals
of Pure and Applied Logic, 51(1):159–172, 1991.

[17] D. Miller and A. Tiu. A proof theory for generic judgments: An extended abstract. Proceedings
of LICS’03, January 2003.



[18] A. Momigliano and S. Ambler. Multi-level meta-reasoning with higher order abstract syntax.
In A. Gordon, editor,FOSSACS’03, vol 2620 ofLNCS, pp 375–392. Springer, 2003.

[19] C. Paulin-Mohring. Inductive definitions in the system Coq: Rules and properties. In M. Bezem
and J. Groote, editors,TCLA, pp 328–345, Springer-Verlag LNCS 664, 1993.

[20] L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic.Journal of
Logic and Computation, 7(2):175–204, Mar. 1997.

[21] F. Pfenning. Logical frameworks. InHandbook of Automated Reasoning, pp 1063–1147. MIT
Press, 2001.

[22] E. Rohwedder and F. Pfenning. Mode and termination analysis for higher-order logic programs.
In Proc. of the European Symposium on Programming, pp 296–310, April 1996.

[23] L. Santocanale. A calculus of circular proofs and its categorical semantics. In M. Nielsen and
U. Engberg editors,Proc. of FoSSaCS 2002, pp 357–371, Grenoble, Apr. 2002, Springer-Verlag
LNCS 2303.

[24] P. Schroeder-Heister. Cut-elimination in logics with definitional reflection. In D. Pearce and
H. Wansing, editors,Nonclassical Logics and Information Processing, vol 619 of LNCS, pp
146–171. Springer, 1992.

[25] P. Schroeder-Heister. Definitional reflection and the completion. In R. Dyckhoff, editor,Pro-
ceedings of WELP’93, pp 333–347. Springer-Verlag LNAI 798, 1993.

[26] P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,Eighth Annual Sym-
posium on Logic in Computer Science, pp 222–232. IEEE Press, June 1993.

[27] C. Scḧurmann. Automating the Meta-Theory of Deductive Systems. PhD thesis, Carnegie-
Mellon University, 2000. CMU-CS-00-146.

[28] A. K. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for an arbitrary
GSOS. In D. Kozen, editor,Proceedings of LICS’95, pp 420–430, San Diego, California, June
1995. IEEE Computer Society Press.

[29] C. Spenger and M. Dams. On the structure of inductive reasoning: Circular and tree-shaped
proofs in theµ-calculus. In A. Gordon, editor,FOSSACS’03, vol 2620 ofLNCS, pp 425–440,.
Springer Verlag, 2003.

[30] A. Tiu. Cut-elimination for a logic with induction and co-induction. Draft, available via
http://www.cse.psu.edu/˜tiu/lce.pdf, Sept. 2003.


