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Abstract. Proof search has been used to specify a wide range of computation sys-
tems. In order to build a framework for reasoning about such specifications, we make
use of a sequent calculus involving induction and co-induction. These proof princi-
ples are based on a proof theoretic notiordefinition[26, 9, 13] Definitions are
essentially stratified logic programs. The left and right rules for defined atoms treat
the definitions as defining fixed points. The use of definitions makes it possible to rea-
son intensionally about syntax, in particular enforcing free equality via unification.
The full system thus allows inductive and co-inductive proofs involving higher-order
abstract syntax. We extend earlier work by allowing induction and co-induction on
general definitions and show that cut-elimination holds for this extension. We present
some examples involving lists and simulation in the lazyalculus.

1 Introduction

A common approach to specifying computation systems is via deductive systems, e.g.,
structural operational semantics. Such specifications can be represented as logical theo-
ries in a suitably expressive formal logic in whiploof-searchcan then be used to model

the computation. This use of logic as a specification language is along the liogicxHl
frameworkg[21]. The representation of the syntax of computation systems inside formal
logic can benefit from the use tigher-order abstract syntaHOAS), a high-level and
declarative treatment of object-level bound variables and substitution. At the same time,
we want to use such a logic in order to reason ovemtle¢a-theoreticaproperties of ob-

ject languages, for example type preservation in operational semantics [14], soundness and
completeness of compilation [18] or congruence of bisimulation in transition systems [15].
Typically this involves reasoning by (structural) induction and, when dealing with infinite
behaviour, co-induction [5].

The need to support both inductive and co-inductive reasoning and some form of HOAS
requires some careful design decisions, since the two are prima facie notoriously incompat-
ible. While any meta-language based ok-ealculus can be used to specify and possibly
perform computations over HOAS encodings, meta-reasoning has traditionally involved
(co)inductive specifications both at the level of the syntax and of the judgements as well
(which are of course unified at the type-theoretic level). The first provides crucial freeness
properties for datatypes constructors, while the second offers principle of case analysis and
(co)induction. This is well-known to be problematic, since HOAS specifications lead to



non-monotone (co)inductive definitions, which by cardinality and consistency reasons are
not permitted in inductive logical frameworks. Moreover, even when HOAS is weakened
S0 as to be made compatible with standard proof assistants [6] such as HOL or Coq, the lat-
ter tend to be still tostrong in sense of allowing the existence of too many functions and
yielding the so calle@xoticterms. This causes a loss of adequacy in HOAS specifications,
which is one of the pillar of formal verification. On the other hand, logics such as LF [10]
that are weak by design in order to support this style of syntax are not directly endowed
with (co)induction principles.

The contribution of this paper lies in the design of a new logic, called Linc (for a
logic with A-terms, induction and co-induction), that carefully adds principles of induction
and co-induction to a higher-order intuitionistic logic based on a proof theoretic notion of
definition, following on work (among others) by Schroeder-Heister [26], Girard [9] and
McDowell and Miller [13]. Definitions are akin to logic programs, but allow to view theo-
ries as “closed” or defining fixed points. This alone allows us to perform case analysis. Our
approach to formalizing induction and co-induction is via the least and greatest solutions
of the fixed point equations specified by the definitions. Such least and greatest solutions
are guaranteed to exist by a stratification condition on definitions (which basically ensures
monotonicity). The proof rules for induction and co-induction makes use of the notion of
pre-fixed pointsaand post-fixed pointsespectively. In the inductive case, this corresponds
to the induction invariant, while in the co-inductive one to the so-called simulation.

The simply typed language underlying Linc and the notion of definition make it pos-
sible to reasorintensionallyabout syntax, in particular enforcirfgee equality via unifi-
cation, which can be used on first-order terms or higher-okdirms. In fact, we can
support HOAS encodings of constructors without requiring them to belong to a datatype.
In particular we carprovethe freeness properties of those constructors, namely injectiv-
ity, distinctness and case exhaustion. Judgements are encoded as definitions accordingly to
their informal semantics, either inductive, co-inductive or regular, i.e. true in every fixed
point. Given the stratification condition, we (currently) fall short of the LF-like idelawdf
HOAS, although, exploiting the equivalence with the completion of a logic program [25],
the monotonicity requirement can be weakened beyond the scope of current induction-
based proof-assistants.

Linc can be proved to be a conservative extensiof ©A2N [13] and a generaliza-
tion to the higher-order case of Martirf.[12] first-order theory of iterated inductive
definitions. Moreover, at the best of our knowledge, it is the first sequent calculus with
a cut-elimination theorem for co-inductive definitions. Further, its modular design makes
its extension easy, for example in the directiofF@A" [17] or the regular world assump-
tion [27].

The rest of the paper is organized as follows. Section 2 introduces the proof system
for the logic Linc. Section 3 shows some examples of using induction and co-induction to
prove several properties of list-related predicates and the\l@ajculus. Section 4 gives an
overview of the cut-elimination procedure, the detailed proof of which is available in [30].
Section 5 surveys the related work and Section 6 concludes this paper.
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Fig. 1. Inference rules for the core Linc

2 The LogicLinc

The logic Linc shares the core fragment WiRIDA2N | which is an intuitionistic version of
Church’s Simple Theory of Types. Formulae in the logic are built from predicate symbols
and the usual logical connectivds T, A, V, D, V¢ and3;. Following Church, formulae

will be given typeo. The quantification type can have higher types, but those are restricted

to not containo. Thus the logic has a first-order proof theory but allows for the encoding
of higher-order abstract syntax. The core fragment of the logic is presented in the sequent
calculus in Figure 1. A sequent is denotedby— C whereC is a formula and™ is a
multiset of formulae. Notice that in the presentation of the rule schemes, we make use of
HOAS, e.g., in the applicatioB x it is implicit that B has no free occurrence &f In the

VR and3L rules,y is an eigenvariable that is not free in the lower sequent of the rule.
Whenever we write down a sequent, it is assumed implicitly that the formulae are well-
typed and irBn-long normal forms: the type context, i.e., the types of the constants and the
eigenvariables used in the sequent, is left implicit as well. ihheule is a generalization

of the cut rule that simplifies the presentation of the cut-elimination proof.

We extend the core logic in Figure 1 by allowing the introduction of non-logical con-
stants. An atomic formula, i.e., a formula that contains no occurrences of logical constants,
can be defined in terms of other logical or non-logical constants. Its left and right rules
are, roughly speaking, carried out by replacing the formula corresponding to its definition
with the atom itself. A defined atom can thus be seen as a generalized connective, whose
behaviour is determined by its defining clauses. The syntax of definition clauses used by
McDowell and Miller [13] resembles that of logic programs, that is, a definition clause
consists of a head and a body, with the usual pattern matching in the head; for example, the

predicatenat for natural numbers is writtefinat z £ T, natsX = nat x}. We adopt here
a simpler presentation by putting all pattern matching in the body and combining multiple
clauses with the same head in one clause with disjunctive body. Of course, this will require
us to have explicit equality as part of our syntax. The correspondgingredicate in our



syntax will be written
natx = [X=2]V3y.[x=sy] Anaty

and corresponds to the notionifffcompletionof a logic program.

Definition 1. A definition clausas written v%[pié Bx], where p is a predicate constant.
The atomic formula g is called theheadof the clause, and the formulax8s called the

body. The symboﬁ is used simply to indicate a definition clause: it is not a logical con-
nective. Adefinitionis a (perhaps infinite) set of definition clauses. A predicate may occur
only at most once in the heads of the clauses of a definition.

We will generally omit the outer quantifiers to simplify the presentation. Not all definition
clauses are admitted in our logic, e.g., we rule out definitions with circular calling through
implications (negations) that can lead to inconsistency [24]. The notil@velof a formula
allows to define a proper stratification on definitions. To each predjigate associate a
natural number I\{Ip), the level ofp.

Definition 2. Given a formula B, itsevel Ivl(B) is defined as follows:

1. vl(pt) =IvI(p), IVI(L)=II(T)=0

2. WI(BAC) = IvI(BVC) = max(Ilvl(B), vl (C))

3. IvI(BD> C) =max(Ivl(B) 4+ 1,IvI(C))

4. IvI(Vx.Bx) = Ivl(3x.Bx) = Ivl(Bt), for any term t.

The level of a sequet — Cis the level ofC. A definition clauseérx] px= BX] is stratified
if Ivl (Bx) < Ivl(p). An occurrence of a formula in a formulaC is strictly positiveif that

particular occurrence oA is not to the left of any implication if€. Stratification then
implies that all occurrences of the head in the body are strictly positive.

Given a definition clauspié BX, the right and left rules for predicafeare
Bt,r —C r— Bt

m defL ert— defR,

The rules for equality predicates makes use of substitutions. We assume the usual definition
of capture-avoiding substitutions. We &, d ando to denote those and their application
is written in post-fix notation, e.gt@. The left and right rules for equality are as follows

{rp—Cp | sp=p,tp,p €CSU(s;t)}
s=t, —C

S g

The substitutiorp in eq” is called aunifier of sandt. The selCSU(s;t) is acomplete set

of unifiers i.e., given any unifief; of s andt, there is a unifief, € CSU(s,t) such that

01 = B2 0y, for some substitution. In the first order case, a set containing just the most
general unifier is a complete set of unifiers. In general, however, the complete set of unifiers
may contain more than one unifier and therefore we specify a set of sequents as the premise
of the ecC rule, which is to say that each sequent in the set is a premise of the rule. Note
that in applying eq., eigenvariables can be instantiated as a result.

A definition pxé Bx can be seen as a fixed point equation saying that for every term
t, pt if and only if Bt holds. Since our notion of definition requires strict positivity of



occurrences of in B, existence of fixed points is always guaranteed. Hence the provability
of pt means that is in a solution of the corresponding fixed point equation, although
not necessarily in the least (or greatest) solution (see e.g., [9] for an example). Therefore
we add extra rules that reflect the least and the greatest solutions, respectively. Since we
are in a monotone setting, we can use the pre-fixed point and the post-fixed point as an
approach to the least and greatest fixed points. In the following we assume, for simplicity
of presentation, that predicates are not mutual-recursively defined. The more general case
where mutual recursion is treated can be found in [30].

Let p)?é Bx be a definition clause and I&be a term of the same type @s The
induction rules forp are

BAISE — K 1—C st
MNpt—=C r— pt

IR

The abstractiorgis an invariant of the induction. The variablesre new eigenvariables.
An informal reading ofl £ is to consideiS as denoting a set (i.€. < Siff St holds),B as
denoting a fixed point operator afds a pre-fixed point d8, i.e.,B[S/p] C S Notice that
the right-rule for induction iglef® . The co-induction rules are defined dually.

Bt,r —C r—St Sx— (BX)[S/p]
pir —c L r—pt

CIR, where IV(S) < Ivl(p)

S can be seen as denotingast-fixed pointi.e., SC B[S/p|. The CIL rule is thedefL

rule. The proviso inCIR, although mainly technical, is satisfied by every example we
have examined, since it requires the given predicate to be used “monotonically” in the
simulation.

To avoid inconsistency, some care must be taken in applying induction or co-induction
in a proof. One obvious pitfall is when the fixed point equation corresponding to a definition
clause has different least and greatest solutions. In such case, mixing induction and co-
induction on the same definition clause can lead to inconsistency. For examnﬂe% let
be a definition clause. Given the scheme of rules above without any further restriction, we
can construct the following derivation

_ — 1L —m 1L
_>TTK' T_>TTK 1l — 1 J_—>J_IL
—p CIR p— L
cut
— L

In the above derivation we use and L as the invariant and the simulation in the instance

of CIR andIL rules. This example suggests that we have to use a definition clause con-
sistently through out the proof, either inductively or co-inductively, but not both. To avoid
this problem, we introduce markings into a definition, whose role is to indicate which rules
are applicable to the corresponding defined atoms.

Definition 3. Anextended definitiois a stratified definitionD together with a label, that
indicates whether the clause is eithieiductiveg co-inductive or regular An inductive

clause is written as i)i BX, a co-inductive clause is written as<p- BX and a regular
. . —A _
clause is written as p= BX.



Since we shall only be concerned with extended definitions from now on, we shall refer
those simply as definitions. The induction and co-induction rules need additional provisos.
TheIL andIR rules can be applied only to an inductively defined atom. Dually(thé
andCIR rules can only be applied to a co-inductively defined atom. ddfé anddef®R
rules apply only to regular atoms. However, we can showdh&f anddefR are derived
rules for (co-)inductively defined atoms.

Proposition 1. ThedefL and def®_are admissible rules in the cotanc system with the
induction and/or the co-induction rules.

Proof. Consider inferringdefL using core Linc and induction rules, the other case being

dual. Letpié Bx be the definition under consideratiofef£ can be inferred frony L
using the bod)B as the invariant.

3

B[B/p|]x — BX Bt,l —C
pt_,r —C

We can construct the derivatidn by induction on the size dB: since p occurs strictly
positively inB by stratification, the only non-trivial base case we need to consider is when
we reach the sub-formulat of Bx, in which case we just apply theR_rule.

3 Examples

We now give some examples, starting with some that make essential use of HOAS.

3.1 LazyA-Calculus

We consider an untyped version of the pirealculus with lazy evaluation, following the
usual HOAS style, i.e., object-levaloperator and application are encoded as constants
lam:(tm—tm) —tmand @ tm— tm— tm, wheretmis the syntactic category of object-
level A-terms. The evaluation relation is encoded as the following inductive definition

MUN £ (3M’.[M = lamM’]A[M =N]) v
(3M13M23P.[M = My @M2] A M | lamP A (P M) L N)

Notice that object-level substitution is realized Bieduction in the meta-logic.
The notion ofapplicative simulatiorof A-expressions can be encoded as the (stratified)
co-inductive definition

sim R S= VT.R{lamT > 3U.Sl}lamU A VP.sim (TP) (UP).
Given this encoding, we can prove the reflexivity property of simulation,Vsesjm s s
This is proved co-inductively by using the simulatidx\y.x = y. After applyingv®_and

CIR, it remains to prove the sequents> s=s, and

Xx=y — ¥xg.x{lamxg D (Ixg.y §lamxa A Vx3. (X1 X3) = (X2X3))



The first sequent is provable by an application oReaule. The second sequent is proved
as follows.

C zlllamxg — (X1 X3) = (X1 X3) ©
z|llamx; — z{} lamxq nit zllamxy — Vx3.(X1 X3) = (X1 X3)
zlllamxy — (zl} lamxg A VX3.(X1X3) = (X1X3))
zlllamx; — (3xz.z{} lamxz A VX3.(X1X3) = (X2X3))
x=y,x{lamx; — (Ixz.ylamxo A Vx3. (X1 X3) = (X2 X3))
x=y— x{lamx; D (Ixz.yllamxp A Vx3.(X1 X3) = (X2 X3))
x=y— Vxg.x{lamxg D (Ixp.y | lamxz AVx3. (X1 X3) = (X2 X3))

AR

The transitivity property is expressed @s7svt.sim r SAsim St D sim r t. Its proof
involves co-induction orim r t with the simulatiomn\uAv.3w.sim u WA sim w v, followed
by case analyses (i.elef£ and eq rules) onsim r s andsim s t. The rest of the proof is
purely logical.

We can also show the existence of divergent terms. Divergence is encoded as follows.

divig T = (I IT.T = (TL@T2) Adivrg Ty) V
(3T1§|T2.T = (Tl@Tz) AJE. Ty lamE A ding (E Tz)).

Let Q be the tern{lamx.(x@x)) @ (lamx.(x@Xx) ). We show that divr§2 holds. The proof
is straightforward by co-induction using the simulat®n= As.s= Q. Applying theCIR
produces the sequents- Q =QandT =Q — § VvV $ where

S :=3INIL.T=(T1@T2) A(ST), and

S :=INIT.T = (TL@T2) AJE.TL HlamEAS(ET).

Clearly, only the second disjunct is provable, i.e., by instantiafingnd T, with the same
term lamx.(x@Xx), andE with the functionAx.(x @x).
3.2 Lists

Lists over some fixed type are encoded as the type, with the usual constructor nillst
for empty list and :: of typex — Ist — Ist. We consider here the append predicate for both
the finite and infinite case.

Finite lists The usual append predicate on finite lists can be encoded as the inductive
definition

applLi Lo L3 2 (Ll =nilALy = L3) V
AL L5 L = x Ly ALs = XLy Aappl) Lo L.

Associativity of append is stated formally as

VI1VI2VI12VI3VI4.(appI1 |2 I12/\appI12 |3 |4) D V|23.app|2 |3 |23 D appl1 |23 |4.



Proving this formula requires us to prove first that the definition of append is functional,
that is,
VI1VIZVI3VI4‘appI1 lo I3/\appI1 o1y D1z =l4.

This is done by induction oh, i.e., we apply thd £ rule on apg1 I I3, after the introduc-
tion rules forvY andD, of course. The invariant in this case is

S:=AriArgAra.vrappriraor Or =rs.

It is a simple case analysis to check that this is the right invariant. Back to our original
problem: after applying the introduction rules for the logical connectives in the formula,
the problem of associativity is reduced to the following sequent

apply 12 12, appliz 13 14, applz I3 123 — appl1 123 14. 1)

We then proceed by induction on the ligtthat is, we apply the £ rule to the hypothesis
appli I2 112. The invariant is simply

S.= )\ll}\|2}\|12.V|3V|4.app|12 |3 |4 D) V|23.app|2 |3 |23 D) appll |23 |4.

Applying the I £ rule, followed byv L, to sequent (1) reduces the sequent to the following
sub-goals

(i) Shlzliz, appliz I3 s, applz I3 123 — apply l23 14,
(II) (|1 =nilAly = |3) — S hlsls,
(i) 1,150 =x:1pAls=x:15AS Bzl — S hialz

The proof for the second sequent is straightforward. The first sequent reduces to

appliz I3 la,appli2 13 123 — app nilloz 4.

This follows from the functionality of append andR.. The third sequent follows by case
analysis. Of course, these proofs could have been simplified by usiegva@dprinciple of
structuralinduction. While this is easy to do, we have preferred here to use the primitive
IL rule.

Infinite lists The append predicate on infinite lists is defined via co-recursion, that is, we
define the behaviour afestructor operationsn lists (i.e., taking the head and the tail of

the list). In this case we never construct explicitly the result of appending two lists, rather
the head and the tail of the resulting lists are computed as needed. The co-recursive append
requires case analysis on all arguments.

coapplLy Lo L3 L (L1 =nil ALz = nil ALz = nil) v
(Ly =nil A3x3L53L5. Lo = x: L5 AL3=x::L5 A coapp nill) L)
V (3xIL 3L Ly = xLi ALs = x::L5 A coappl] Lz L5).

The corresponding associativity property is stated analogously to the inductive one and the
main statement reduces to proving the sequent

coapply I2 112, coappliz I3 14, coapplz I3 123 — coappli I23 l4.



We apply theC TR rule to coappi l23 14, using the simulation
S:= A1AloAl 12312331331 4.coappli2 13 14 A coappls I3 123A coapply 123 14.

Subsequent steps of the proof involve mainly case analysis on dpappls. As in the
inductive case, we have to prove the sub-cases wWheis nil. However, unlike in the
former case, case analyses on the arguments of coapp suffices.

4 Cut-Elimination

A central result of our work is cut-elimination, from which consistency of the logic fol-
lows. Gentzen'’s classic proof of cut-elimination for first-order logic uses an induction on
the size of the cut formula, i.e., the number of logical connectives in the formula. The
cut-elimination procedure consists of a set of reduction rules that reduce a cut of a com-
pound formula to cuts on its sub-formulae of smaller size. In the case of Linc, the use
of induction/co-induction complicates the reduction of cuts. Consider for example a cut
involving the induction rules

i B[S HB—>S strc
A—Bt o [S/ply y St i
A — pt pt, —C

AT —C me

There are at least two problems in reducing this cut. First, any permutation upwards of
the cut will necessarily involve a cut witf that can be of larger size thgn and hence
a simple induction on the size of cut formula will not work. Second, the invaBaldes
not appear in the conclusion of the left premise of the cut. The latter means that we need
to transform the left premise so that its end sequent will agree with the right premise. Any
such transformation will most likely bglobal, and hence simple induction on the height
of derivations will not work either. We define a proof transformation that weurdthlding
to deal with the cut involving L/ IR andCIR /CIL pairs.

In the following definition, we refer to a premise of a rule amaor premisef it is
the left-premise ob L or I L, or the right-premise of TR or mc, otherwise it is anajor
premise A derivation of a minor [major] premise israinor [major] premise derivation
To simplify the definitions of unfolding, we restrict theit-rule to the atomic form. Non-
atomic init-rule can easily be shown to be derivable using only structural rules, logical
rules and atomidnit. We shall refer to this non-atomiait derivation ad1'?. We use the
notationl@ to denote the application of the substitut@®to 1, which amounts to applying
the substitution to every sequentlin

Definition 4. Inductive unfolding.Let p)?i Bx be an inductive definition. Suppose we
are given a derivatiol of T — C where each occurrence of p in C is strictly positive,
and a derivation1s of B[S/ p]x — Sx, for some closed term S. We define the derivation
W(n,Ns) of I — C[S/p] as follows. If §S/p] = C, then |{M,MNs) = N. Otherwise, we
define (M, Ms) based on the last rule iAl.



1. If M ends withinit on atom g, then WM, Ms) is the derivation

Mg _l—lld B
B[S/p|x — S St — St
[S/plX— S St—st
pt — St
2. If N ends witho R
n’ u(n/>n5)
rc—=aG then N,Ms)is ,C1— C[S/p]
e — :) )
F—cioc X F—GoGisp X
Note that the restriction on the occurrence of p in C implies @t > C)[S/p] =
CiD> Cz[S/p].
3. If M ends with/®_on pu, for some terms,
n__ u(r’, Ms) As[u/x]
r— Bu IR then yM,Ms)is T — B[S/p|u B[S/p]u— Su
r—pu r— Su me

4. Otherwise, iff1 ends with any other rule, with the minor premise derivatiéns . .,
=m for some m> 0 and the major premise derivatiof$l; }ic; for some index sef,
then YIM,Ms) ends with the same rule, with the same minor premises and the major

premises{ (i, Ns) }icr.

Definition 5. Co-inductive unfoldingLet p)?i BX be a co-inductive definition. Let C be a
formula in which every occurrence of p is strictly positive. Suppose we are given a deriva-
tion M of I — C[S/p] and a derivatiorTs of Sx— B[S/ p] X, for some closed term S. We
define the derivation(,Ms) of T — C as follows. If §S/p] = C, thenv(M,Ms) = . If

C = pt for some terms, then S/ p|t = St andv(I,Ms) is the derivation

n _ Ns
r— St SX_—>BX
N — pt

CIR

Otherwise, we defing(I, Mg) based on the last rule iAA. If M ends witho ®

n’ V(n/ans)
r,C1 — C[S/p] g thenyN.Ngis MG —Cp %
r—Cy D>C[S/p] r—CioG '

If M ends with any other rule, with the minor premise derivatigns . ., =, for some nm> 0
and the major premise derivatiod$1; }ic; for some index sef, then |(1,Ms) also ends
with the same rule, with the same minor premises and the major prefpdas Ns) }ic;.

Our proof of cut-elimination uses the technique of reducibility originally due to Tait.
The method was applied by Martin3£ [12] to the setting of natural deduction, and to
sequent calculus by McDowell and Miller for the logiOA2N [13]. The original idea of
Martin-Lof was to use derivations directly as a measure by defining a well-founded ordering
on them. The basis for the latter relation is a set of reduction rules that are used to eliminate



the applications of cut rule. For the cases involving logical connectives, the cut-reduction
rules used to prove the cut-elimination for Linc are the same to tho$eOdfN. The

crucial cases involving (co)-induction are given in the following definition. For simplicity

of presentation, we assume the reduction involves the leftmost and the rightmost premise
derivations ofmc.

Definition 6. Cut-reductionLet= be the derivation

M1 Mn I
A]_%D]_ An%Dn D]_,...7Dn,r%c me
Aq, ..., 0T — '

Casex/IL: If Dy = pt, where p(= BX; andr ends with7 £ on the cut formula p
Ms _ n
B[S/p|]x— Sx St,Dg,...,Dn, T —C
pt—aD27"'aDn7r —C

1L

then= reduces to

ll(rllyﬂs)_ M, My _ n’
B —SU Ap—Dp - Bp—Dy SEDp...0nF—C
Di,....AnT —C
CaseCIR/CIL: 1f D1 = pt, where p?i Bx, andl; and are
n _ Ns _ n’
A — St Sx— B[S/p|X Bt,Do,...,Dp, I C
1 ” [S/pl CIR t,D2 n[ — CIL
A — pt pt,Da,...,Dy, —C
then= reduces to
n = _
A — St St_—>Bt me My 3 n’
A — Bt Ay —Dp BE...DpF—C

A AT —C
where=; = v(Mg, Ms)[t/X].

Notice that these two reductions are not symmetric. This is because we use an asymmetric
measure to show the termination of cut-reduction, that is, the complexity of cut is always
reduced on the right premise. The difficulty in getting a symmetric measure, in the presence
of contraction and implication (in the body of definition), is already observed in [24].

To show the termination of cut-reduction, we define two orderings on derivations:
malizability and reducibility (called computability in [12]). The well-foundedness of the
normalizability ordering immediately implies that the cut-elimination process terminates.
Reducibility is a superset of normalizability and hence its well-foundedness implies the
well-foundedness of normalizability. The main part of the proof lies in showing that all
derivations in Linc are reducible, and hence normalizable. This is stated in the Lemma 1,
of which cut-elimination is a simple corollary.



Lemma 1. For any derivationl of By,...,By, T — C, reducible derivation$l,... My
of Ay — By, ...,Ay — By (n > 0), and substitutionsy, ..., d,,y such that B = By, for
every i€ {1,...,n}, the following derivatiork is reducible.

Mid Mndn My
A161 e B]_6]_ cee Anén — Bn6n B]_y, ey Bny7 ry — Cy
mc
A1617 cee 7An6n> ry—> Cy

The proof proceeds by induction on the heighfbfvith subordinate inductions amand

on the (well-founded) reduction tree @f, ..., M,. We give a general idea of the proof for
the cases/IL and CIR /CIL in Definition 6, and refer to [30] for full details. In the
following description, we refer to Definition 6 for the particular shapes of the derivations
My andM. In thex/IL case, it is sufficient to show that given the reducibilitylof, the
unfolding derivatiory(IM1,Ms) is still reducible. This is done by induction on the construc-
tion of p(M4,Ms). The non-trivial case is when new cutad) is introduced. But here we
see that this instance afc is always cutting witl'ls, and hence by the outer induction hy-
pothesis [Is is of smaller height thafl) this instance ofnc is reducible. TheC IR /CIL

case is more complicated. In addition to showing that the co-inductive unfolding preserves
reducibility, we also need to show that the unfolded derivatififis, INMs) is “closed” with
respect to cut, that is, for every reducible derivatiénf A’ — Su, the resulting derivation
obtained by cutting¥ with v(IMs, Ms)[U/X] is reducible. This case is dealt with by building
into the notion of reducibility this closure condition.

5 Related Work

Linc has been designed as iatentionallyweak logical framework to be used as a meta-
language for reasoning over deductive systems encoded via HOAS. In particular, it can
be seen as the meta-theory of the simply typechlculus, in the same sense in which
Schirmann’sd, [27] is the meta-theory dfF [10]. M, is a constructive first-order logic,
whose quantifiers range over possibly open LF objects over a signature. By the adequacy of
the encoding, the proof of the existence of the appropriate LF object(s) guarantees the proof
of the corresponding object-level property. It must be remarked®atioes not support
co-induction yet. However, LF can be used directly to specify an inductive meta-theorem
as a relation between judgements, with a logic programming interpretation providing the
operational semantics.

Of course, there is a long association between mathematical logic and inductive def-
initions [2] and in particular with proof-theory, possibly the earliest relevant entry being
Martin-Lof’s original formulation of the theory dferated inductive definitiond 2]. From
the impredicative encoding of inductive types [4] and the introduction of (co)recursion [7]
in system F, (co)inductive types became common [16] and made it into type-theoretic proof
assistants such as Coq [19], first via a primitive recursive operator, but eventually in the
let-rec style of functional programming languages, as in Gimer@alsulus of Infinite
Constructiong8]; here termination (resp. guardedness) is ensured by a syntactic check
(see also [1]). Note that this has severe limitations (e.g., in the possibility of using lem-
mas in the body of a guarded proof) that do not applies to our approach. Circular proofs
are also connected with the emerging proof-theoryixad point logicsand process cal-
culi [23, 28, 29], in particular w.r.t. the relation between systems with local and global



induction, that is, between fixed point vs. well-founded and guarded induction (i.e. circular
proofs).

In higher order logic (co)inductive definitions are obtained via the usual Tarski fixed
point constructions, as realized for example in Isabelle/HOL [20]. As we mentioned before,
those approaches are at odd with HOAS even at the level of the syntax. Several compro-
mises have been proposed: Fieeory of Contextfl 1] (ToC) marriedNeakHOAS with an
axiomatic approach encoding basic properties of naimglrid [3] is a A-calculus on top
of Isabelle/HOL which provides the usefFall HOAS syntax, compatible with a classical
(co)-inductive setting. Linc improves on the latter on several counts. First it disposes of Hy-
brid notion ofabstraction which is used to carve out the “parametric” function space from
the full HOL space. Moreover it is not restricted to second-order abstract syntax, as the
current Hybrid version is (and as ToC cannot escape from being). Finally, at higher types,
reasoning vialefL is more powerful than inversion: for examplgAx.y # Ax.0 is provable
in Linc, but fails both in Isabelle/HOL and Coq — the latter for extensionality reasons.

6 Conclusion and Future Work

We have presented a proof theoretical treatment of both induction and co-induction in a
sequent calculus compatible with HOAS encodings. The proof principle underlying the
explicit proof rules is basically fixed point (co)induction. Our proof system is, as far as
we know, the first which incorporates a co-induction proof rule and still preserves cut-
elimination. We have shown several examples where informal (co)inductive proofs using
invariants and simulations are reproduced formally in Linc. Consistency of the logic is an
easy consequence of cut-elimination.

We currently have two prototype implementations of Linc. The one in the Hybrid sys-
tem [3, 18] is better characterized as an approximation: definitional reflection is mimicked
by the elimination rules of (co)inductive definitions, which also provides (co)induction
principles, while the Hybrid\-calculus takes care of the freeness properties: notwithstand-
ing the limitations mentioned in Section 5, the implementation has the benefit of inheriting
all the automation of Isabelle/HOL on whose top Hybrid is realized. The second is a direct
implementation of Linc rules idProlog, with a Java graphical user interface (available
on the web athttp://www.lix.polytechnique.fr/ tiu). This prototype is currently
limited to be a proof-checker. A serious implementation would require more study on the
proof search properties of Linc. It is true that with induction and co-induction there is no
hope of automation in general. Nevertheless, a large subset of the logic may still admit
some uniformity in proof search.

On the theoretical level, we conjecture that the proviso in@fi&_ rule can be elimi-
nated. Similarly, we can loosen the stratification condition for example in the selmsmbf
stratification and of terminating higher-order logic programs [22], possibly allowing to en-
code proofs such as type preservation in operational semantics directly in Linc rather than
with the 2-level approach [14, 18].

Another interesting problem to investigate is the connection gwttlular proofs which
is particularly attractive from the viewpoint of proof search, both inductively and co-inductively.
This could be realized by directly proving a cut-elimination result for a logic where circu-
lar proofs, under termination and guardedness conditions completely replace (co)inductive
rules. Alternatively, we could reduce “global” proofs in such a system to “local” proofs



in Linc, similarly to [29]. Finally, extensions of Linc, for example in the direction of
FOA" [17] are worth investigating.
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