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Abstract—We study a construction of Quantum LDPC codes
proposed by MacKay, Mitchison and Shokrollahi in the draft
[6]. It is based on the Cayley graph of Fn

2 together with a
set of generators regarded as the columns of the parity–check
matrix of a classical code. We give a general lower bound on the
minimum distance of the quantum code in O(dn2) where d is
the minimum distance of the classical code. When the classical
code is the [n, 1, n] repetition code, we are able to compute
the exact parameters of the associated quantum code which are
[[2n−1, 2

n
2 , 2

n
2
−1]].

I. INTRODUCTION

Classical LDPC codes, it hardly needs to be recalled, come
together with very efficient and fast decoding algorithms and
overall display extremely good performance for a variety of
channels. Quantum error-correcting codes on the other hand,
under the guise of the CSS [2], [7] scheme, are in some ways
strikingly similar to classical codes, and in particular can be
decoded with purely classical means. It is therefore natural to
try to import the classical LDPC know-how to the quantum
setting. There is however a structural obstacle. A quantum
CSS code is defined by two binary parity-check matrices
whose row-spaces must be orthogonal to each other. To have a
quantum LDPC code decodable by message-passing these two
matrices should be sparse, as in the classical case. Therefore
randomly choosing these matrices, the generic method which
works very well in the classical case, is simply not an option
in the quantum case, because the probability of finding two
sparse row-orthogonal matrices is extremely small. A number
of constructions have been suggested by classical coding
theorists nevertheless (see the list of references quoted in
the introduction of [8]) but they do not produce families of
quantum LDPC codes with a minimum distance growing with
the blocklength. While this may be tolerable for practical
constructions of fixed size, this is clearly an undesirable feature
of any asymptotic construction and it raises the intriguing
theoretical question of how large can the minimum distance
of sparse (or LDPC) CSS codes be. Families of sparse CSS
codes with a growing minimum distance do exist, the most
well-known of these being Kitaev’s toric code [4], which has
been generalised to codes based on tesselations of surfaces (see
e.g. [1]) and higher-dimensional objects. These constructions
exhibit minimum distances that scale at most as a square root
of the blocklength N (to be precise, N1/2 logN is achieved
in [3]) though this often comes at the cost of a very low

dimension (recall that the dimension of the toric code is 2).
It is an open question as to whether families of sparse CSS
codes exist with a minimum distance that grows at least as
Nα for α > 1/2, even for quantum codes with dimension 1.
The recent construction [8] manages to reconcile a minimum
distance of the order of N1/2 with a dimension linear in
the blocklength. All these constructions borrow ideas from
topology and can be seen as some generalisation of Kitaev’s
toric code.

In a follow-up to the paper [5] MacKay, Mitchison and
Shokrollahi [6] proposed a construction that seemingly owes
very little to the topological approach. They noticed that the
adjacency matrix of any Cayley graph over Fr2 with an even set
of generators is self-dual and can therefore be used to define a
sparse CSS code. Experiments with some Cayley graphs were
encouraging. In the present work we take up the theoretical
study of the parameters of these CSS codes which was left
open by MacKay et al. The quantum code in the construction
is defined by a classical [n, k, d] linear binary code where n
must be even. Its length is N = 2n−k, and the row-weight of
the parity-check matrix is n. The dimension and the minimum
distance of the quantum code does not depend solely on the
classical code’s parameters, but depend more subtly on its
structure. We solve the problem in the first non-trivial case,
which was an explicit question of MacKay et al., namely the
case when the classical code is the [n, 1, n] repetition code.
Computing the parameters of the associated quantum code
turns out to be not easy, even in this apparently simple case.
Our main result, Theorem 10, gives the exact parameters for
this quantum code, namely:

[[N = 2n−1,K = 2
n
2 , D = 2

n
2−1]].

The construction therefore hits the N1/2 barrier for the mini-
mum distance, but it is quite noteworthy that it does so using
a construction that breaks significantly with the topological
connection. For quantum codes based on more complicated
classical [n, k, d] structures, similarly precise results seem
quite difficult to obtain, but we managed to prove a lower
bound on the quantum minimum distance of the form D ≥
adn2 for some constant a (Theorem 9).

II. QUANTUM CODES FROM CAYLEY GRAPHS

A quantum CSS code is defined by two binary parity–check
matrices HX and HZ with the same number of columns N



and such that the rows of HX are orthogonal to the rows of
HZ . Denote by CX the classical code of parity–check matrix
HX and by CZ the code of parity–check matrix HZ . We
obtain a quantum code of length N which encodes K quantum
bits or qubits in N qubits with:

K = N − Rank(HX)− Rank(HZ),

and with minimum distance:

D = inf{w(x) : x ∈ CX\C⊥Z ∪ CZ\C⊥X}.

Notation and construction. In what follows, r, n denote two
integers with n even. Denote by ei the i-th vector of the
canonical basis of Fr2. Let H be a full-rank r×n binary matrix
that can be considered as the parity–check matrix of a classical
code C of length n and dimension k = n − r. Denote by S
the set of columns of H . Let G(C) = G(H) be the Cayley
graph over Fr2 with set of generators S. In other words this
graph has Fr2 as vertex set and its edges are {x, x + s} for
all x ∈ Fr2 and all s ∈ S. This graph depends only on C
and is often known as the coset graph of C. Let A(H) be the
adjacency matrix of G(H). When no confusion is possible we
denote A(H) simply by A.

Proposition 1. The matrix A(H) defines a quantum code QH
of length N = 2r with HX = HZ = A(H).

Proof: It is sufficient to prove that A satisfies the orthog-
onality relations. Since n is even, the rows of A have even
weight and hence are self-orthogonal. If x, y ∈ Fr2, denote by
Ax the row indexed by x ∈ Fr2 and by Ax,y the entry indexed
by (x, y). Now, let x, x′ be two distinct elements of Fr2. That
〈Ax, Ax′〉 = 0 means that the cardinality of the set:

{y ∈ Fr2 | Ax,y = Ax′,y = 1} = (x+ S) ∩ (x′ + S)

is even. The subgroup {0, x + x′} acts by translation on the
set x+S ∩x′+S and the action is free. Thus, x+S ∩x′+S
is a disjoint union of classes of cardinality 2 and hence has
an even number of elements. This concludes the proof.

This proposition is present in [6]. In this construction CX =
CZ = KerA, it is the space of vectors c ∈ F2r

2 such that
Atc = 0. A codeword c ∈ KerA is the characteristic vector
of a set of vertices of the graph G(H). It will be convenient
in the sequel to think of a vector c as a set of vertices, or as
a subgraph of G(H), and we will freely apply set and graph-
theoretic operations to vectors c, meaning that they apply to
the underlying subgraph. The reader should also not confuse
indices of the rows of the matrix A, denoted by x or y, which
are elements of Fr2, with the vectors of the space F2r

2 , denoted
by boldface letters c, which support the code KerA.

Remark 1. The matrix A(H) is sparse since its row weight
is logarithmic in N .

III. THE n-CUBE COVER

To begin we study the example of the identity matrix
H = In. The classical code C and the quantum code QH
are trivial, but the code KerA(In) ⊂ F2r

2 is not and will be

of use. We will show that there is a morphism from the Cayley
graph G(In) to G(H) for every r×n matrix. This gives us a
morphism from KerA(In) to KerA(H).

Proposition 2. If n is an even integer, then the matrix A(In)
has rank 2n−1.

Proof: Since the row–space of A is (weakly) self-dual,
its rank is at most 2n−1. It is straightforward to see that if one
sorts the the elements of Fn2 by the lexicographic order, the
matrix A(In) has the following block-representation.

A(In) =

(
A(In−1) I2n−1

I2n−1 A(In−1)

)
.

Thus, this matrix has rank at least 2n−1.
This example is useful because it provides a cover (or lift) of

the general Cayley graph G(H) for arbitrary H . The following
proposition states that the graphs G(In) and G(H), when
restricted to small enough balls, look exactly the same.

Proposition 3. If the classical code C of parity–check matrix
H has minimum distance d, then we have a graph isomorphism
between the balls of radius dd/2e − 1 of G(H) and G(In):

π : BIn(y, dd/2e − 1)
∼−→ BH(x, dd/2e − 1)

for all x in Fr2 and for all y in Fn2 .

Proof: It is sufficient to show that the balls of centre 0
and radius dd/2e − 1 are isomorphic because Cayley graphs
are vertex transitive. Consider the natural map from the vertex
set of G(In) to that of G(H), namely the syndrome function:

π : Fn2 −→ Fr2
x 7−→ Htx

Now consider the restriction of this map to the ball of radius
dd/2e − 1 centred at 0. This is a graph morphism and it is
injective by definition of the minimum distance. Therefore, π
induces an isomorphism between the balls.

We say that c is included in a ball if the corresponding
vertices are. We denote by S(x) the sphere of centre x and
radius 1 in the Cayley graph. These spheres play an important
role because they correspond to the rows of A. In particular
we will say that a vector in F2r

2 is a sum a spheres to mean
that it belongs to the row–space of A. The following lemma
is obvious but we state it for reference.

Lemma 4. A word c ∈ F2r

2 is in KerA(H) if and only if it
contains an even number of vertices of S(x) for all x ∈ Fr2.

Lemma 5. Let c be a codeword of KerA(In) such that c is
included in B(0, t) with 0 < t < n. If ∂c := c ∩ S(0, t) is
non-empty, then for all i ∈ {1, . . . , n}, there exists x ∈ ∂c
such that xi 6= 0.

Proof: Suppose that ∂c is non-empty and that there exists
an index i such that xi = 0 for all x in ∂c. Let x be an element
of ∂c. We consider the sphere of centre x+ ei. We have:

S(x+ ei) ∩ c = {x+ ei + ej , 1 ≤ j ≤ n} ∩ ∂c = {x}.



The last equality comes from the hypothesis xi = 0 for all x
in ∂c. This is impossible because c must satisfy Lemma 4.

Proposition 6. Let c be a codeword of KerA(In) such that
c is included in a ball of radius dd/2e − 1. Then c is a sum
of spheres of radius 1 which are included in this ball.

Proof: By vertex–transitivity we can assume that c is
included in the ball centred at 0. Let us prove the result by
induction on the radius t of the ball.

If t = 0, then from Lemma 4, c is the zero codeword and
hence the empty sum of spheres.

Assume the property to be true for t − 1 ≥ 0. If ∂c :=
c ∩ S(0, t) is empty, then c ⊂ B(0, t − 1) and the result is
obtained by induction. Thus, suppose that ∂c 6= ∅. Set

T = S(0, t) ∩ {x ∈ Fr2 | xr = 1}.

From Lemma 5, we have T ∩∂c 6= ∅. Let u1 +er, . . . , us+er
be the elements of T ∩∂c, where ui is in S(0, t−1) and hence
S(ui) ⊂ B(0, t). Moreover, the only neighbour of ui in T is
ui + er. Thus when we add S(ui) to c this deletes ui + ei of
T without other modification of T . Thus, the word

c′ := c−
s∑
i=1

S(ui)

has no elements in T . From Lemma 5, we get ∂c′ = ∅ and,
from the induction hypothesis, c′ is a sum of spheres contained
in B(0, t− 1). Consequently, c is a sum of spheres contained
in B(0, t).

IV. LOWER BOUND ON THE MINIMUM DISTANCE OF THE
QUANTUM CODE QH

To bound the minimum distance of the quantum code, we
examine the weight of the vectors of KerA\KerA⊥. By the
following lemma, this set is exactly the set KerA\ ImA.

By symmetry of A we have:

Lemma 7. (KerA(H))⊥ = ImA(H).

The following lemma concerns the weight of words in
KerA(In). Using the local isomorphism described in Propo-
sition 3 it will yield a lower bound for the minimum distance
of any quantum code QH associated to A(H).

Lemma 8. Let c be a codeword of KerA(In). Then, for all
x in c such that c * B(x, 2) we have:

w(c ∩ B(x, 4)) ≥ an2,

for some constant a > 0.

Sketch of proof: By transitivity, one can assume that x = 0.
Claim 1. For all i ∈ {1 . . . n}, there is at least one vertex

ei + ej in c. Indeed, the word c contains the vertex 0. By
Lemma 4, it must contain at least another vertex of each sphere
S(ei), i.e. a vertex of the form ei+ej . Such a vertex can satisfy
the orthogonality relations for at most two such spheres: S(ei)
and S(ej). This gives us at least n/2 vertices.

We want to use this idea with spheres of the form S(ei +
ej + ek) to obtain others vertices in the ball of radius 4.

Let κ be the maximum number of elements of c ∩ S(0, 2)
such that any two of them have disjoint supports. By tran-
sitivity, these κ elements can be assumed to be V = {e1 +
e2, . . . , ek−1 + ek}, where k := 2κ.

Step 1. When k ≥ n/4, we use the spheres S(ei+ei+1+es)
for s ≤ k and s /∈ {i, i + 1}. Such a sphere contains exactly
one vertex of V . Thus it must contain a vertex which is not
in V . This vertex is at most in four such spheres. This gives
us at least an2 vertices for some constant a.

Step 2. Assume k < n/4. By maximality of κ, for all l > k,
if ei + el ∈ c, then i ≤ k. Moreover, by Claim 1, there exists
n− k elements eil + el ∈ c with l = k+ 1, . . . , n and il ≤ k.
Using the spheres S(eil + el + em) where m is such that
im 6= il, we obtain the lemma. Be careful, this uses a word c
of minimum weight.

Applying the local isomorphism π now yields the following:

Theorem 9. Assume that the classical code of parity–check
matrix H has minimum distance d. Then the minimum distance
D of the quantum code of matrix A(H) is bounded from below
as:

D ≥ adn2,
for some constant a > 0.

Sketch of proof: What needs to be done is to bound from
below the minimum weight of a codeword c of KerA\ ImA
for A = A(H). By Propositions 3 and 6, we have that if
a codeword of KerA is included in a ball of radius dd/2e
in G(H), then it is a sum of spheres and therefore lies in
ImA. Therefore if c contains vertex x, it must have non-
zero intersection with all spheres centred on x of even radii
i < dd/2e. To cover c by disjoint balls of radius 4 one needs
Md balls for some M > 0. Using Lemma 8, we get the result.

V. THE QUANTUM CODE ASSOCIATED TO THE REPETITION
CODE

Now we look at an open question proposed by Mackay
et al. in [6]. What are the parameters of the quantum code
constructed from the repetition code?

In what follows, n ≥ 4 is an even integer and Hn is
the (n − 1) × n parity–check matrix of the [n, 1, n] repeti-
tion code whose columns consist of the elements of Fn−12 ,
{e1, e2, . . . , en−1,

∑n−1
1 ei}. Denote by An the adjacency

matrix A(Hn).
Our goal is to prove the following theorem.

Theorem 10. The quantum code associated to the repetition
code has parameters:

[[N = 2n−1,K = 2
n
2 , D = 2

n
2−1]].

In fact we can improve the parameters of this family of
quantum codes using the fact that the Tanner graph can be
decomposed into two disjoint isomorphic graphs. We obtain
the same rate and the same distance but for a length divided
by 2:

[[N = 2n−2,K = 2
n
2−1, D = 2

n
2−1]].



A. The matrices An
We sort the vectors of Fn−12 in the lexicographic order, we

obtain in particular:

A4 =



0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0


To pass from the matrix An to the matrix An+1 the

following formula is proved straightforwardly enough:

Lemma 11. For all integer n ≥ 4, we have:

An+1 =

(
An + Jn In + Jn
In + Jn An + Jn

)
,

where Jn is the binary anti-diagonal matrix of size 2n−1. To
lighten notation, In denotes the 2n−1 × 2n−1 identity matrix
(rather than an n× n matrix).

B. Computation of the dimension

To compute the dimension of the quantum code, it suffices
to find the rank of An. We will determine the dimension of
the classical code KerAn.

Lemma 12. J2
n = In.

Using the symmetries of the matrix An we obtain the
following Lemmas.

Lemma 13. We have:
• x ∈ KerAn ⇔ Jnx ∈ KerAn,
• x ∈ ImAn ⇔ Jnx ∈ ImAn,
• ImAn ⊂ KerAn.

Lemma 14. Let x = (x1,x2,x3,x4) ∈ F2n+1

2 where xi are
vectors of F2n−1

2 . Then we have x ∈ KerAn+2 if and only if:
x4 = x1 + c1 where c1 ∈ KerAn
x3 = x2 + c2 where c2 ∈ KerAn
Anx1 = c2 + Jnc1
Anx2 = c1 + Jnc2

.

Proof: By the recursion formula of Lemma 11, we have:

An+2 =


An + Jn In In Jn

In An + Jn Jn In
In Jn An + Jn In
Jn In In An + Jn

 .

This gives a characterisation of the vectors of the ker-
nel An+2 in function of An. We have (x1,x2,x3,x4) ∈
KerAn+2 if and only if

⇔


Anx1 = (x2 + x3) + Jn(x1 + x4)
Anx2 = (x1 + x4) + Jn(x2 + x3)
Anx3 = Anx2

Anx4 = Anx1

⇔


x4 = x1 + c1 where c1 ∈ KerAn
x3 = x2 + c2 where c2 ∈ KerAn
Anx1 = c2 + Jnc1
Anx2 = c1 + Jnc2

Proposition 15. dim KerAn = 2n−2 + 2
n
2−1.

Proof: The case of A4 is clear. We will show that the
dimension of the kernel of An satisfies dim KerAn+2 =
2 dim KerAn + 2n−1.

If x ∈ KerAn+2 then by the characterisation of Lemma 14,
c1 + Jnc2 and c2 + Jnc1 are in the image of the matrix An.
To study these couples (c1, c2), let us introduce:

ϕ : KerAn ×KerAn −→ KerAn/ ImAn

(c1, c2) 7−→ c1 + Jnc2

From Lemma 13, c1 +Jnc2 and c2 +Jnc1 are both in ImAn
if and only if (c1, c2) is in the kernel of ϕ.

Given such a couple (c1, c2), we can construct a codeword
in KerAn+2 by choosing x1 and x2 pre-images of c1 +Jnc2
and c2 +Jnc1. From this we deduce a bijection onto the code
KerAn+2. Let Ln be a map from ImAn to F2n−1

2 such that
Ln(y) is a pre-image of y by An, i.e. An(Ln(y)) = y. Let
us introduce the map Ψ:

Kerϕ× (KerAn)2 → KerAn+2

(c1, c2, s1, s2) 7→


x1 = Ln(c2 + Jnc1) + s1
x2 = Ln(c1 + Jnc2) + s2
x3 = x2 + c2
x4 = x1 + c1


This map is injective because Ψ(c, s) = Ψ(c′, s′) implies x1+
x4 = x′1 +x′4. That is c1 = c′1, by the same way c2 = c′2. By
definition of Ln, we obtain s = s′. To see that Ψ is surjective,
we use the characterisation of Lemma 14 of the words of the
code KerAn+2. We can write these vectors (x1,x2,x3,x4)
with: 

x4 = x1 + c1
x3 = x2 + c2
Anx1 = c2 + Jnc1
Anx2 = c1 + Jnc2

where c1, c2 ∈ KerAn. The vectors c1 and c2 appear clearly
and we can see that Anx1 = An(Ln(c2 + Jnc1)) so x1 and
Ln(c2+Jnc1) are equal modulo a codeword s1 of KerAn. We
define s2 similarly. This gives an pre-image of x. We proved
that Ψ is a bijection. So the cardinality of KerAn+2 is ex-
actly |KerAn|2.|Kerϕ|. We deduce the dimension equality:
dim KerAn+2 = 2 dim KerAn + dim Kerϕ. By the rank-
nullity theorem, we get dim Kerϕ = 2n−1, because ϕ is
surjective. Finally we have:

dim KerAn+2 = 2 dim KerAn + 2n−1.

We conclude using the case n = 4.
We know that that the number of encoded qubits is

N − 2 RankAn. From the above proposition, we deduce the
dimension of the quantum code.

Corollary 16. The quantum code Qn associated to the matrix
An has parameters: [[N = 2n−1,K = 2

n
2 ]].



C. Computation of the distance

To compute the minimum distance of the quantum code,
we examine the weight of the vectors of KerAn\KerA⊥n .
By Lemma 7 this set is exactly the set KerAn\ ImAn.

Lemma 17. Every word of KerAn+2/ ImAn+2 has a rep-
resentative either of the form (x1,x2,x2 + c2,x1 + c1) with
c1, c2 /∈ ImAn or of the form (x1, 0, 0,x1) with x1 ∈ KerAn.

Proof: The vectors of ImAn+2 are of the form:
Any1 + Jn(y1 + y4) + (y2 + y3)
Any2 + Jn(y2 + y3) + (y1 + y4)
Any3 + Jn(y2 + y3) + (y1 + y4)
Any4 + Jn(y1 + y4) + (y2 + y3)

 ,

where y1,y2,y3,y4 ∈ F2n−1

2 . Let x be a vector of KerAn+2.
The first case of the statement is Lemma 14 when c1, c2 /∈
ImAn.

Now, assume that c1 ∈ ImAn. Then c2 is also in the image
of An because Anx1 = c2 + Jnc1. By symmetry this is the
only case that remains to study. Let b1 and b2 be pre-images
of c1, c2. Set y1 = y2 = 0, y3 = b2 and y4 = b1. We obtain
the vector (v, Jnv, Jnv+ c2,v+ c1) ∈ ImAn+2 where v :=
b2 + Jnb1. Thus, modulo the image, x can be written with
c1 = c2 = 0. This yields Anx2 = c1 +Jnc2 = 0. Afterwards,
with y2 = Jnx2 and y1 = y3 = y4 = 0, we get the vector of
the image (Jnx2,x2,x2, Jnx2). Consequently, we can assume
x2 = x3 = 0 and x1 = x4, which yields a representative of
the form x = (x1, 0, 0,x1) with x1 ∈ KerAn.

Proposition 18. The minimum distance of the quantum code
Qn is:

Dn = 2
n
2−1.

Proof: For n = 4 we can see that the distance of the
quantum code is 2. Indeed every non zero codeword has weight
at least 2 and for example the word e2 + e3 = (01100000) is
in the kernel of A4 although it is not a sum of rows.

We will show that the minimum distance is at least multi-
plied by 2 when n increases of 2. Let x ∈ KerAn+2. Assume
that we are in the first case of Lemma 17. The word x has a
representative of the form (x1,x2,x2 +c2,x1 +c1), where c1
and c2 are in KerAn but are not sums of rows. By definition
of the distance, we have w(ci) ≥ Dn. Using the triangle
inequality for the Hamming distance, we get:

w(x1) + w(x1 + c1) = d(0,x1) + d(x1, c1)

≥ d(0, c1)

≥ Dn.

We can apply the same reasoning with c2, so the weight of x
is at least 2Dn.

Now, assume that we are in the second case of Lemma
17. We know that x has a representative of the form x =
(x1, 0, 0,x1) with x1 ∈ KerAn. Assume that x1 ∈ ImAn.
Let w1 be a pre-image of x1. Take y1 = y4 = w1 and
y2 = y3 = 0, this shows that x is in the image of An+2 so its
weight does not appear in the computation of the minimum

distance. Otherwise x1 ∈ KerAn\ ImAn, so by definition of
the distance, the weight of x is at least 2Dn.

It remains to see that the bound holds after adding to x a
vector of the image. Let y be a vector of the image, we know
that:

y =


Any1 + v
Any2 + Jnv
Any3 + Jnv
Any4 + v


where v is a vector of F2n−1

2 depending on y. Look at the
weight of the two first components of x+y. Using the triangle
inequality for the Hamming distance we find:

w(x1 +Any1 + v) + w(Any2 + Jnv)

= d(x1 + v, Any1) + d(Jnv, Any2)

≥ d(x1 + v, ImAn) + d(Jnv, ImAn)

= d(x1 + v, ImAn) + d(v, ImAn)

≥ d(x1, ImAn)

≥ Dn.

The equality d(Jnv, ImAn) = d(v, ImAn) comes from the
fact that Jn is an isometry which stabilises ImAn. We have
the same result for the last two components of x + y so the
weight of every representative of x is at least 2Dn.

We have a lower bound for the minimum distance. Actually,
the distance of Qn+2 is exactly 2Dn. Indeed the vector
(0, 0, c2, c1) is in the code KerAn and its weight is exactly
2Dn when the words ci are words of minimum weight in the
set KerAn\ ImAn. This vector is not in the image otherwise
we should have c1 = An(y1 + y4).
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