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Chapter 1

Introduction and motivations

Error correcting codes are introduced to preserve the quality of information transmitted
across a noisy channel. The classical situation is described as follows:

Sender Receiver

Corrupted message

Noise

Message m

m′ = m⊕ e

Figure 1.1: A communication channel

Error correcting codes provide a way to reduce the influence of the noise. The principle
of error correcting codes consists in adding redundancy in the message so that the receiver
could recover the sent message even if it has been corrupted during the transmission. The
situation is described in Figure 1.2.

Noise

Encoder Decoder

message c

ReceiverSender

Message m Encoded c⊕ e Decoded
message m′

Figure 1.2: Encoding and decoding

The sender wishes to send a message m, then the message is encoded as a message c.
The receiver, gets a corrupted message c⊕ e, inputs this word in the decoder which returns
m′. Our wish is that if the noise is “reasonable”, then m′ = m.
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1.1 Error correcting codes
The point of encoding summarizes in one single sentence: encoding consists in adding re-
dundancy in the message.

1.1.1 Tutorial examples

The French social security number

A classical elementary example are French social security numbers. These numbers consist
of a sequence of 13 digits together with two additional digits. For instance:

2 77 04 59 606 122 — 61

The first 13 digits correspond to information on the owner of the number:

• 2 means that the owner is a woman (1 for men);

• 77 is its year of birth (namely 1977);

• 04, means that she is born in April;

• 59 is the number of the department of her birth (Département du Nord)

• 606 is the town where she is born (Valenciennes)

• 122 means that she’s the 122nd person1 born in Valenciennes in April 1977.

The digits 61 do not give additional information on the owner they are obtained by an
elementary mathematical process:

61 ≡ −2770459696122 mod 97.

It is equal to the opposite of the remainder of the 13 digits number (regarded as an integer
in base 10) by the division by 97, represented as a integer in the range {1, . . . , 97}.

This is an example of error detecting code. Basically, if you enter your social security
number on the health insurance website and make an error, this error will be detected unless
the error on the 13 digits does not change the remainder modulo 97.

1 If the number of births in a month exceeds 999 in a town, then, the counter restarts from 001 and
another number is given for this town this number will describe the town only for this particular month.
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International Standard Book Number

This example is taken in J. Walkers book [Wal00]. The International Standard Book Number
(ISBN) is an international number identifying every edition of a published book. It consists
of a sequence of 10 digits2. The first 9 digits provide information on the book while the 10th
one is a redundancy symbol obtained as follows. For instance, consider the book A course in
Error Correcting Codes, written by J. Justesen and T. Høholdt [JH04]. The ISBN number
of the book is

3 03719 001 9

and the final 9 is obtained as

9 ≡ 3× 1 + 0× 2 + 3× 3 + 7× 4 + 1× 5 + 9× 6 + 0× 7 + 0× 8 + 1× 9 mod 11.

That is, for each of the first digit multiply it by its position number (from 1 to 9), then sum
up all these products and take the remainder of the division by 11. If this remainder is equal
to 10, then the final symbol is an X. This yields another example of error detecting code.

Error correcting codes are based on the very same principle consisting in adding re-
dundancy to information, in order to detect and possibly to correct errors in a corrupted
message.

1.2 Error correcting codes, basic notions
In this course, we only consider the case of block codes: the message is first decomposed in
blocks of bits of fixed length k, that is to say in vectors in Fk2. Let us consider from now on,
that our message consists of a single block m ∈ Fk2. An encoding map is an injective map
Fk2 −→ Fn2 for some integer n > k.

For instance the maps

ρ :

{
F2 −→ F5

2

(b) 7−→ (bbbbb)

and
π :

{
F7

2 −→ F8
2

(b0, b1, b2, b3, b4, b5, b6) 7−→ (b0, b1, b2, b3, b4, b5, b6, b7)
,

where b7 =
∑6

i=0 bi are encoding maps. In terms of error detection and correction, the first
encoding map allows to correct up to 2 errors by a simple majority voting. For instance if
the received word is (01011), one can reasonably hope that the sender sent a 1. The second
encoding map does not allow error correction but detects the presence of one error. Indeed,
it is easy to see that the image of π consists of words having an even number of 1’s. Thus,
if the receiver gets a word with an odd number of 1’s, then he can directly conclude to
the presence of at least one error in the message (and more generally of an odd number of

2Since January 1st 2007, it has been extended to a 13-digit sequence since the former system became
insufficient due to the growth of the number of published books.
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errors). Notice, that the receiver is completely unable to detect the presence of 2 errors or
more generally of an even number of errors.

Notice that the previous considerations do not concern directly the encoding maps but
their images, thus from now on, we will focus on error correcting codes, which are defined
as the image of an encoding map. Before giving formal definitions, let us finish the present
introduction with a few remarks:

• In this course the encoding maps will always be linear and hence, codes will be vector
spaces. It should be noticed that there exists a theory of nonlinear codes but we will
not discuss it in the present course.

• The two examples above considered encoding maps defined on fixed length bit strings
that is on the space Fk2 for some integer k, this seems natural for every computer
theorist, on the other hand, for many reasons appearing in what follows, it is extremely
relevant to consider a more general context and consider codes defined over a general
finite field Fq where q is some prime power.

1.2.1 Codes and their parameters

First of all, even if the definition has been sketched before, let us state a formal definition
of an error correcting code.

Definition 1.1 (Code, length, dimension). Let n be a positive integer, a linear error cor-
recting code C is a vector subspace of Fnq . The integer n is called the length of C . The
dimension of C is its dimension as an Fq–vector space and is in general denoted by k:

k = dimFq C .

Hamming distance and minimum distance

Definition 1.2. Given an element x = (x1, . . . , xn) ∈ Fnq , the Hamming weight of x is
defined as

wH(x)
def
= |{i | xi 6= 0}| .

The Hamming distance between two vectors x and y is defined as

dH(x,y)
def
= wH(x− y).

A ball or Hamming ball of center x ∈ Fmq and radius r 6 n is a ball for the Hamming distance,
that is

BH (x, r)
def
= {y ∈ Fnq | dH(x,y) 6 r}.

Remark 1. One can prove that dH is an actual distance, i.e. it is symmetric, zero if and only
if x = y and satisfies the triangle inequality. The verification is left as an exercise.
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Definition 1.3 (Minimum distance of a code). Let C be a linear code of length n. The
minimum distance of C is the minimum distance between two distinct codewords of C . That
is:

dmin(C )
def
= min

x,y∈C , x6=y
{dH(x,y)}. (1.1)

By linearity, it can equivalently be defined as

dmin(C ) = min
x∈C \{0}

{wH(x)}. (1.2)

The minimum distance of a code is in general denoted as d.

The minimum distance quantifies the theoretical capability of error correction. In par-
ticular, the following elementary lemma asserts that, for a code of minimum distance d if a
received word has less than d−1

2
errors, then it can be corrected. We stress here that this is

purely theoretical, in particular, we do not say that this decoding can be performed easily,
the existence of an efficient decoding algorithm is far from being guaranteed. This will be
discussed in the next chapter.

Lemma 1.4. Let C be a code of minimum distance d, then the balls BH
(
c, bd−1

2
c
)
for c ∈ C

are pairwise disjoint, that is

∀c, c′ ∈ C , c 6= c′, BH

(
c,

⌊
d− 1

2

⌋)
∩BH

(
c′,

⌊
d− 1

2

⌋)
= ∅.

Proof. Let c, c′ be two distinct words in C . Assume that there exists x in BH
(
c, bd−1

2
c)
)
∩

BH
(
c′, bd−1

2
c
)
. Then the triangle inequality asserts that

dH(c, c′) 6 dH(c,x) + dH(x, c′)

6

⌊
d− 1

2

⌋
+

⌊
d− 1

2

⌋
6 d− 1.

But, since C has minimum distance d, then this contradicts the assumption c 6= c′.

Summary and discussion on the parameters

As explained, to a linear code we associate three parameters:

• the length n, which is the length of the blocks (and the dimension of the ambient
space);

• the dimension k, which is its dimension as an Fq–vector space;

• and the minimum distance d.
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Notation 1.1. From now on, we use the notation “C is an [n, k, d]q code” to say “C is a
code of length n, dimension k and minimum distance d over Fq. We also speak about [n, k]q
codes for codes of length n and dimension k.

Before starting a discussion on the parameters, let us introduce, the relative parameters.

Definition 1.5 (Relative parameters). Given a code C of length n, dimension k and mini-
mum distance d, the rate of C is defined as

R
def
=
k

n

and the relative distance as
δ

def
=
d

n
·

The rate and relative distance are rational numbers in [0, 1]. The rate quantifies the
efficiency of the code. It is the ratio between information bits and sent bits. A rate close to
0 corresponds to a very redundant code which requires a huge amount of energy to transmit
a short message. A rate close to 1 corresponds to an efficient code for which the ratio of
pure information in the transmitted bit string is close to 1. On the other hand, the relative
distance quantifies the theoretical capability to correct errors. The closer δ to 1, the larger
number of errors one can theoretically correct.

Clearly, our objective is that both the rate and the relative distance are close to 1.
Unfortunately, these requirements are in contradiction. Indeed, as we will see in the next
chapters, there are several upper bounds implying the impossibility to have both the rate
and the relative distance close to 1. The most famous one is the so-called Singleton bound
which asserts that

R + δ 6 1 +
1

n
·

Thus, a “good code” will be a code satisfying a good trade off between these two relative
parameters.

Another conclusion of this observation is that, one cannot have an efficient (i.e. with low
redundancy) encoding and correct many errors. Thus the choice of codes will depend on
the situation where they are used: for instance if the channel is very noisy, we will probably
choose a code with a large minimum distance, even if its rate is low. On the other hand some
devices require a limitation of energy consumption, and hence will encourage to use a code of
high rate. Notice that many other facts should be taken into account. For instance, in some
communications, one can ask the sender to resend a corrupted block, in such a situation, if
this “re-send operation” is easy to perform, then one can choose a high rate code. On the
other hand, this “re-send operation” may be impossible in long-distance communications, for
instance with spacecrafts. As we will see in the chapter on Reed Muller codes, Nasa used a
[32, 6, 16]2 code to receive photos of Mars from the spacecraft Mariner IX. Using this code,
Nasa could correct up to 7 errors per block while the rate is rather low (0.375). Even if the
spacecraft had limited memory and energy resources, it was important to be able to correct
a large number of errors, since there was no possible interaction with the spacecraft and
hence it was not possible to ask it to resend some corrupted photo.
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The designed parameters

It is frequent that, for a given code, the exact parameters are unknown but that lower bounds
for them are known. In this situation, these lower bounds are called the designed parameters.
Notice that in general, the dimension is known or can be computed by Gaussian elimination.
On the other hand it will be noticed further that the computation of the minimum distance
of a code is a hard algorithmic problem. Thus, it is frequent to deal with codes whose actual
minimum distance is unknown, while a lower bound, i.e. a designed minimum distance is
known. This designed distance is fundamental since in general, the decoding algorithms will
correct errors as soon as their number is less than half the designed distance and not up to
half the actual distance (which is unknown).

Nonlinear codes

One can more generally define an error correcting code as a subset C ⊆ Fnq . For non linear
codes, one can still define a minimum distance using (1.1) but be careful not using (1.2)
which is in general irrelevant3 for nonlinear codes. Instead of dealing with the dimension
which cannot be defined if the code is not a vector space, one can consider the number of
codewords, which is frequently denoted as M . Then a natural analog for the dimension is
logq(M).

While the theory of nonlinear codes is rich and subject to many interesting developments,
we mostly deal with linear codes in this course. The use and the interest of linear codes will
be motivated in Section 1.2.2. From now on, the term code will always mean linear code.

1.2.2 How to describe a code?

There are two manners to describe a code, which are the two classical manners to describe a
vector subspace of Fnq . Namely, one can either give a basis or at least a family of generators
or give a system of linear equations whose solution space is the code. More formally, a code
can be represented either as the image of some matrix or as the kernel of another matrix.
This motivates the following definitions.

Definition 1.6 (Generator matrix). Let C be an [n, k, d]q code. A generator matrix of C is
a matrix G ∈M`,n(Fq) for some ` > k whose rows form a family of generators of C . That is

C =
{
mG | m ∈ F`q

}
.

Definition 1.7 (Parity-check matrix). Let C be an [n, k, d]q code. A parity-check matrix of
C is a matrix H ∈Mn−`,n(Fq) for some ` > k whose right kernel equals C . That is

C = {x ∈ Fnq | HxT = 0}.
3Actually, for (1.2) to be relevant, the code only needs to be additive (i.e. the code must be an additive

group), which is weaker than being linear (unless the base field is F2).
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Remark 2. Frequently in the literature, a generator matrix is defined as an k × n matrix
whose rows form a basis of C and a parity-check matrix is defined as an (n− k)× n matrix
whose right kernel is C . For many reasons which will appear in what follows, we chose
this more general definition. We will speak of full rank generator matrix (resp. full rank
parity–check matrix) when the matrix has k (resp. n− k) rows.
Remark 3. It is worth noting that one cannot say “the generator matrix of C ” but “a generator
matrix of C ”. Indeed, if G ∈ M`,n(Fq) is a generator matrix of C , then for all invertible
`× ` matrix S, then the matrix SG is another generator matrix. Thus, such a matrix is not
unique. For the very same reason, a parity–check matrix is not unique either.

A motivation for using linear codes

This description is actually the main motivation for using linear codes instead of nonlinear
ones. Indeed, generator or parity–check matrices provide a very “compact” description of a
code. To compare, if we have to describe a nonlinear code, then we need to list all of its
codewords. If this code is binary (defined over F2) and contains M words, then we need nM
bits to describe it completely. On the other hand, if the code is linear then, the representation
by a generator matrix requires only nk = n log2(M) bits. Thus, the memory size necessary
to store a nonlinear code of M words is exponentially larger than the size necessary to store
a linear code with the same number of words.

Systematic codes

Definition 1.8 (Systematic generator matrix). Let C ⊆ Fnq be a code and G ∈ Mk,n(Fq)
be a full–rank generator matrix of C . The matrix G is said to be systematic if it is of the
form

G =
(
Ik A

)
for some matrix A ∈ Mk,n−k(Fq). A code is said to be systematic if one of its generator
matrix is systematic.

Not any code is systematic. In particular, the following lemma characterizes such codes.

Lemma 1.9. A code C ⊆ Fnq is systematic if an only if for any full–rank generator matrix
G of C the k first columns of G are linearly independent, or equivalently the k × k minor
composed by the k most left-hand columns of G is nonzero.

Proof. First note that if G and G′ are two generator matrices for C , then, there exists
P ∈ GL(k,Fq) such that G = PG′. Therefore if the most left–hand minor of G is nonzero,
then so is that of G′.

If C is systematic, then it has a systematic generator matrix whose k first columns
are obviously independent since they form the canonical basis of Fkq . Conversely, if C has
a generator matrix whose k first columns are linearly independent, then, by performing
Gaussian elimination on G, we get a systematic generator matrix for C .
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Remark 4. Given a code C with a full–rank generator matrix G ∈Mk,n(Fq), the map{
Fkq −→ Fnq
m 7−→ m ·G

is an encoding map as introduced in § 1.2. If G is systematic, then the corresponding
encoding map is nothing but a map consisting to append to the original message m ∈ Fkq a
redundancy block of length n− k.

Another interest of systematic generator matrix if exist is that they are unique.

Lemma 1.10. Let C be a systematic code. Then there is a unique generator matrix for C
in systematic form.

Proof. Let G,G′ be two generator matrices of C in systematic form. Since they are both
generator matrices for C , there exists P ∈ GL(k,Fq) such that

G = P ·G′. (1.3)

Since both matrices have an Ik as left–hand block, (1.3) entails P = Ik.

Parity–check matrices and the minimum distance

An important property of a parity–check matrix is that the minimum distance of the code
“can be read” by studying the linear relations between the columns of the matrix. The
following elementary lemma is frequently very useful in coding theory.

Lemma 1.11. Let C be a code of length n and minimum distance d. Let H be a parity–
check matrix of C , then every (d − 1)–tuple of columns of H are linearly independent and
there is at least one linearly linked d–tuple of columns.

Proof. Denote by H1, . . . , Hn the columns of the matrix H . Let c ∈ C be a codeword
of weight w. Let i1, . . . , iw be the indexes in {1, . . . , n} such that ci 6= 0 if and only if
i ∈ {i1, . . . , iw}. The relation

HcT = 0

is equivalent to
ci1Hi1 + · · ·+ ciwHiw = 0.

That is to say: zero linear combinations of w distinct columns of H are in one-to-one
correspondence with codewords of weight w in C . This yields the result.

Corollary 1.12. Let C be a code with parity–check matrix H. Let d be the minimum
distance of C .

(i) If H has no zero column, then, d > 1.

(ii) If the columns of H are pairwise non collinear, then d > 2.
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1.3 First examples

1.3.1 The repetition code

The most naive way to add redundancy to data is to repeat the message several times. If
the alphabet we use is F2, then a 5-time repetition encoding map sends the bit 0 onto the
word (00000) and the bit 1 onto the word (11111)

The corresponding code is represented by a generator matrixG and a parity–check matrix
H defined as follows

G =
(
1 1 1 1 1

)
and H =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 .

More generally, for any positive integer n and any finite field, one can define the repetition
code as the code with a generator matrix G ∈M1,n(Fq) of the form (1 1 · · · 1). Such a code
has length n, dimension 1 and minimum distance n. Indeed, the nonzero codewords of such
a code are of the form (a a · · · a) for a ∈ F×q .

Summary of the particularities of this code:

• It is [n, 1, n]q.

• Its rate is Rn = 1
n
, in particular, limn→+∞Rn = 0.

• For each block, one can correct up to bn−1
2
c errors. Indeed, given a corrupted received

word y with less than bn−1
2
c errors, find the unique element a ∈ Fq such that the

majority of digits of y are equal to a; then the original word is equal to (a a · · · a).

As a conclusion, this code has a very bad rate (asymptotically zero) but has a very good
error correction capacity.

1.3.2 The parity code

The parity code is the image of the following encoding map.{
Fn−1
q −→ Fnq

(x1, . . . , xn−1) 7−→ (x1, . . . , xn−1,−
∑n−1

i=1 xi)

The corresponding code has generator and parity–check matrices defined as follows:

G =


1 −1 0 0 0
0 1 −1 0 0

. . . . . .
0 0 0 1 −1

 and H =
(
1 1 · · · 1 1

)
.

If q = 2, then the code is the set of words whose number of 1’s is even, this is the rationale
behind the terminology parity code.

The properties of this code are:
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• Its parameters are [n, n− 1, 2];

• In particular, its relative distance δn = 2
n
and hence limn→+∞ δn = 0.

• The code is not error correcting, but it is error detecting: it can detect the presence of
one error.

Remark 5. The parity code is practically used in the RAID (Redundant array of independent
disks) system. RAID system consists in distributing data in several hard drive and adding
some redundant data so that the data remains recoverable even after a failure of one or
several hard drives.

• RAID 1 is based on the principle of the repetition code: the data is contained in n
hard drives, each one contains a mirror copy of the other one.

• RAID 5 is based on the principle of the parity code: data is distributed on n− 1 hard
drives while the n-th one is a parity disk : its i-th bit is the binary sum of the i-th bits
of the n− 1 other disks.

Remark 6. You may have noticed that a generator matrix of the repetition code is a parity–
check matrix of the parity code and conversely. We will see in the chapter on duality that
these codes are actually dual to each other.

1.3.3 The Hamming code

This is the first non trivial construction of codes. For an integer ` > 3, a Hamming code is a
binary code defined by an `× (2` − 1) parity–check matrix H` whose columns are pairwise
distinct and list all nonzero words of F`2. For instance, if ` = 3, the code with parity–check
matrix H3 and generator matrix G3 defined as

H3 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 and G3 =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


is a Hamming code.

Proposition 1.13. A Hamming code has parameters [2` − 1, 2` − 1− `, 3].

Proof. The length is clear. For the dimension, the code has an ` × (2` − 1) parity–check
matrix. To prove that the code has dimension 2` − 1 − `, we only have to prove that this
matrix has full rank. It is true since every nonzero word in F`2 is a column of H`, one can
extract ` columns of H` which form a basis of F`2, which proves that H` has rank `. Thus
the corresponding code has dimension 2` − 1− `.

Finally, for the minimum distance we can use Lemma 1.11 and Corollary 1.12. More
precisely, it is clear that H` has no zero column (by definition) and that every two columns
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are distinct and hence non collinear4. Thus, from Corollary 1.12, the minimum distance is
at least 3. Second, one sees easily that there are triples of columns which are linearly linked:
since the set of columns of H` is that of nonzero words in F`2, given two distinct columns
Hi, Hj of H`, the column Hi + Hj is also a column of H`. From Lemma 1.11, this proves
that the minimum distance of the code is exactly 3.

Remark 7. One could wonder why we chose ` > 3 in the definition. Actually, one can take
` = 2 and give this definition but this gives the repetition code of length 3. Details are left
to the reader.

Hamming Codes are perfect These codes have a very particular and rare property:
they are perfect. Let us first give the definition of a perfect code.

Definition 1.14. A code C of parameters [n, k, d]q is said to be perfect if

Fnq =
⋃
c∈C

BH

(
c,

⌊
d− 1

2

⌋)
.

Lemma 1.15. Hamming codes are perfect.

Proof. Since the codes have minimum distance 3, we have
⌊
d−1

2

⌋
= 1. Moreover, the cardi-

nality of a Hamming ball of radius 1 is n + 1 = 2` since a word in a Hamming ball centred
at a word c is either c or a word obtained from c after flipping one bit. Now, if we compute
the total volume of the disjoint union of radius 1 balls centred at codewords, we get∑

c∈C

∣∣∣∣BH

(
c,

⌊
d− 1

2

⌋)∣∣∣∣ =
∑
c∈C

2` = 22`−1−` × 2` = 22`−1,

which is nothing but the total number of elements of the ambient space F2`−1
2

Notice that, from Lemma 1.4, the balls centred at codewords and of radius bd−1
2
c are

pairwise distinct. The point is that, in general they are far to cover the whole space. But it
holds for the very particular case of perfect codes. A direct consequence is that for perfect
codes, there exists a decoding procedure5 returning a unique codeword for any input vector.

Hamming codes are 1–correcting One can easily correct one error with such a code.
Let us explain how in the special case ` = 3. Let C be a Hamming code for ` = 3. It is a
[7, 4, 3] code. From now on, denote by H (instead of H3) a parity–check matrix of C . Let
c ∈ C and y = c+e be a corrupted codeword where e has weight 1. That is y is a codeword
with one error. Moreover, e is some vector of the canonical basis of F7

2. Since HcT = 0, we
have

HyT = H(c+ e)T = HeT .

Finally, if e is the i–th vector of the canonical basis of F7
2 for some 1 6 i 6 7. Then HeT is

nothing but the i–th column of H . This provides a simple decoding algorithm for the code.
4Over F2, two nonzero words are collinear if and only if they are equal.
5Caution: we never said that this decoding procedure is algorithmically efficient. It is purely theoretic.
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Algorithm 1: A decoding algorithm for a [7, 4, 3]2 Hamming code correcting one
error
Input : A corrupted word y ∈ F7

2.
Output: A codeword c ∈ C such that y = c+ e for some word e of weight 1.

1 s←HyT ;
2 Find i ∈ {1, . . . , 7} such that s equals the i–th column of H ;
3 Let ei be the i–th vector of the canonical basis;
4 return y + ei;

1.4 Constructing new codes from old
In this section we describe several operations to transform a code to another one.

1.4.1 Extended codes

For a binary code of length n with at least one word of odd weight, one can add append
any codeword with a parity bit (sometimes called check sum) in order to get a new code of
length n+ 1 whose words have all even weight. This notion can be defined for a longer code

Definition 1.16. Let C ∈ Fnq be a code with at least one element c ∈ C such that c1 +
· · ·+ cn 6= 0. The extended code of C is the code

Ext(C )
def
=

{
(c1, . . . , cn,−

n∑
i=1

ci)

∣∣∣∣ c = (c1, . . . , cn) ∈ C

}

The words of the extended code satisfy the property that the sum of their digits is always
zero.

Proposition 1.17. Let C be a code of length n and H ∈M`,n(Fq) be a parity check matrix
for C . Then, the (`+ 1)× (n+ 1) matrix

H ′
def
=


0

H
...
0

1 . . . 1 1


is a parity–check matrix for Ext(C ).

Proof. It is a straightforward verification.
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1.4.2 Shortening and puncturing

The most elementary operation to get a short code from a longer one is probably puncturing
which only consists in deleting some prescribed entries of any codeword.

Definition 1.18 (Puncturing). Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n}. Then the
puncturing PI (C ) of C at I is a code of length n− |I| obtained as follows

PI (C ) = {(ci)i∈{1,...,n}\I | c ∈ C }.
It is the set of codewords of C whose i–th entry has been deleted for any i ∈ I.
Lemma 1.19. Let C ⊆ Fnq be a code of dimension k. Let G ∈ M`,n(Fq) be a generator
matrix of C . Let I ⊆ {1, . . . , n}. Then the matrix G′ obtained from G by deleting the
columns whose index is in I is a generator matrix for PI (C ).

Proof. Straightforward.

Proposition 1.20. Let C be an [n, k, d]q code and I ⊆ {1, . . . , n}. Then, then code PI (C )
is [n′, k′, d′] with

n′ = n− |I|
k′ 6 k

d− |I| 6 d′ 6 d.

Proof. The statement for the length is obvious.
For the dimension, consider a full–rank generator matrix G ∈ Mk,n(Fq) for C . From

Lemma 1.19 we get a generator matrix G′ ∈Mk,n−|I|(Fq) for PI (C ). Since this matrix may
fail to have full rank, we can only assert that k′ 6 k.

For the minimum distance, for any word c ∈ C , the word PI (C )
def
= (ci)i∈{1,...,n}\I has

weight
wH(PI (c)) > wH(c)− |I|. (1.4)

Equality holds if I is entirely contained in the support of c, i.e. if for any i ∈ I, ci 6= 0. On
the other hand, we obviously have

wH(PI (c)) 6 wH(c). (1.5)

Considering the minimum over all the nonzero words of PI (C ) of (1.4) and (1.5), we get the
statement for the minimum distance.

Another construction, which is in some sense dual to puncturing (see Chapter 5) is
shortening.

Definition 1.21 (Shortening). Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n}. Then the
shortening SI(C ) of C at I is a code of length n− |I| obtained as follows

SI(C ) = {(ci)i∈{1,...,n}\I | c ∈ C , and, ∀j ∈ I, cj = 0}.
It is the set of codewords of C whose i–th entry is zero for all i ∈ I where these entries have
been deleted.
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Let us start with an obvious fact.

Lemma 1.22. Let c′ ∈ SI (C ), then there exists a codeword c ∈ C such that

∀i ∈ {1, . . . , n}, ci =

{
c′i if i /∈ I
0 if i ∈ I.

Lemma 1.23. Let C ⊆ Fnq be a code and H ∈M`,n(Fq) be a parity–check matrix of C . Let
I ⊆ {1, . . . , n}, then the matrix H ′ obtained from H by deleting the columns whose index is
in I is a parity–check matrix for SI (C ).

Proof. Since c ∈ C , by definition of H , we have H · cT = 0 and hence it is straightforward
to check that H ′ · c′ = 0. Hence, we proved that SI (C ) ⊆ kerH ′.

Conversely, let c′ ∈ Fn−|I|q be such that H ′ · c′T = 0. Then, construct the word c ∈ Fnq as
in Lemma 1.22. Since H ′ · c′T = 0 we get H · c = 0 and hence c ∈ C . Thus, c′ ∈ SI (C ).
Thus, kerH = SI (C ), which concludes the proof.

Proposition 1.24. Let C ⊆ Fnq be an [n, k, d]q code and I ⊆ {1, . . . , n}. Then SI (C ) is
[n′, k′, d′] with

n′ = n− |I|
k′ > k − |I|
d′ > d.

Proof. The statement on the length is obvious.
For the dimension consider a full rank parity–check matrixH ∈Mn−k,n(Fq) and consider

the parity–check matrix H ′ ∈Mk,n−|I|(Fq) of SI (C ) constructed as in Lemma 1.23. Then,
since H ′ may fail to be full rank we can only assert that dim k′ > k − |I|.

For the minimum distance, notice that for any c′ ∈ SI (C ) there exists c ∈ C as in
Lemma 1.22 and obviously,

wH(c′) = wH(c).

By taking the minimum of the above equation over all c′ ∈ SI (C )\{0} we get the result.

1.4.3 Subfield subcode, trace code

Another manner to construct a code from another one is to change the base field. Some
constructions of codes can be done only over a large enough base field, this is for instance
a drawback of Reed Solomon codes (see Chapter 6). On the other hand for many practical
applications it is preferable to have a code defined over a small field: ideally F2.

In what follows,m denotes an integer larger than 1. There exists two manners to construct
a code over a subfield from a code over a larger field. The first one is subfield subcode.

Definition 1.25 (Subfield subcode). Let C ⊆ Fnqm . The subfield subcode of C over Fq is
denote by C|Fq and defined as

C|Fq
def
= C ∩ Fnq .
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Proposition 1.26. If C is an [n, n− r, d]qm code, then C|Fq is an [n,> n−mr,> d]q code.

Proof. C|Fq is contained in C hence its minimum distance is at least as large as that of C .
For the dimension, Consider the Fq–linear map

φ :

{
Fnqm −→ Fnqm

(x1, . . . , xn) 7−→ (xq1 − x1, . . . , x
q
n − xn)

.

The kernel of φ is Fnq which has Fq–dimension n. Thus, Im(φ) has Fq–dimension n(m− 1).
Now consider the restriction φ|C : C → Fnqm . Its image has Fnqm–dimension at most n(m− 1)
and hence

dimFq kerφ|C > dimFq C − n(m− 1)

> m(n− r)− n(m− 1)

> n−mr.

Moreover, kerφ|C is nothing but C|Fq .

The second way to construct a code over a subfield is the trace construction. Its definition
requires the definition of the trace map over finite fields which we recall here.

Definition 1.27. Let Fq be a finite field and Fqm be an extension. Let a ∈ Fqm , the trace
of a over Fq is denoted by TrFqm/Fq(a) and defined as

TrFqm/Fq(a)
def
= a+ aq + · · ·+ aq

m−1

.

The trace of an element of Fqm is in Fq. Indeed, one checks easily that for all a ∈ Fqm ,

Tr(a)q = (a+ aq + · · ·+ aq
m−1)

q
= aq + aq

2

+ · · ·+ aq
m

.

Then, since a ∈ Fqm , aq
m

= a and we deduce that Tr(a)q = Tr(a) which entails that
Tr(a) ∈ Fq.
Remark 8. The terminology trace is explained as follows. Consider the map given by the
multiplication by a: {

Fqm −→ Fqm
x 7−→ a · x.

Regarding this map as an Fq–linear endomorphism of an Fq–linear space of dimension m.
Then the trace of this endomorphism, i.e. the trace of any matrix representation of this
endomorphism, is nothing but Tr(a).

Lemma 1.28. The trace TrFqm/Fq : Fqm → Fq is Fq–linear and surjective.
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Proof. The Fq–linearity is a consequence of the Fq–linearity of the Frobenius map x 7→ xq.
Therefore, the trace map is an Fq–linear form on Fqm regarded as an Fq-vector space. Since
a linear form has its image contained in a vector space of dimension 1, it is either zero or
surjective. Thus, let us prove that the trace map is nonzero. Indeed, the kernel of TrFqm/Fq
is the set of elements a ∈ Fqm such that

a+ aq + · · ·+ aq
m−1 6= 0.

Thus, it is the set of roots of the polynomial X +Xq + · · ·+Xqm−1 . Since this polynomial is
nonzero it has at most qm−1 roots and hence cannot vanish on the whole Fqm . This concludes
the proof.

Corollary 1.29. Let a ∈ Fqm such that for any λ ∈ Fqm we have TrFqm/Fq(λa) = 0, then
a = 0.

Proof. If a was nonzero then for any b ∈ Fqm , we would have

Tr(b) = Tr(aa−1b)

which would be 0 by assumption on a. Thus, the trace map would be zero, which contradicts
its surjectivity.

Now we have the material to define trace codes and study some of their properties.

Definition 1.30 (Trace code). Let C ⊆ Fnqm . The trace code of C over Fq is defined as

TrFqm/Fq(C )
def
=
{

(TrFqm/Fq(c1), . . . ,TrFqm/Fq(cn)) | c = (c1, . . . , cn) ∈ C
}
.

Remark 9. For convenience sake, when there is no possible ambiguity on the subfield we
note preferently Tr(C ) instead of the (rather heavy) notation TrFqm/Fq(C ).

Proposition 1.31. Let C ⊆ Fnqm be a code of Fqm–dimension k. Then, Tr(C ) ⊆ Fnq is a
code of Fq–dimension at most mk.

Proof. Consider the map{
C −→ Fnq

c = (c1, . . . , cn) 7−→ (TrFqm/Fq(c1), . . . ,TrFqm/Fq(cn))
.

This is an Fq–linear map from C which, regarded as an Fq–vector space has Fq–dimension
mk. The trace code is nothing but the image of this map and hence has Fq–dimension less
than or equal to mk.

Remark 10. In general, no relation exists between the minimum distance of a code and that
of its trace code. Indeed, one could have a codeword c ∈ C of weight n such that any entry
of c has a zero trace. Thus, the trace of c would have weight 1 while c had weight n.
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Generator and parity-check matrices of trace codes Actually the generator matrix of
a trace code Tr(C ) can easily be deduced from that of C . To explain this explicit expression
we need the notion of dual basis.

Proposition 1.32 (Dual basis). Let (α1, . . . , αm) be an Fq–basis of Fqm, then there exists a
unique basis (α∗1, . . . , α

∗
m) called dual basis satisfying:

∀i, j ∈ {1, . . . , n}, TrFqm/Fq(αiα
∗
j ) =

{
1 if i = j
0 else.

Proof. Let us prove the existence of α∗1. Let x = x1α1 + · · ·+ xnαn ∈ Fqm where the xi’s are
elements of Fq. Then, consider the system of equations

Tr(α2x) = 0
Tr(α3x) = 0

...
Tr(αnx) = 0

=⇒


Tr(α2α1)x1 + Tr(α2

2)x2 + · · ·+ Tr(α2αn)xn = 0
Tr(α3α1)x1 + Tr(α3α2)x2 + · · ·+ Tr(α3αn)xn = 0
...
Tr(αnα1)x1 + Tr(αnα2)x2 + · · ·+ Tr(αnαn)xn = 0

This system has n−1 equations and n unkowns (x1, . . . , xn) and hence has a nonzero solution.
Let a1 be such a solution, then we claim that Tr(α1a1) 6= 0. Indeed, if Tr(α1a1) was 0, since
we also have Tr(αia1) = 0 for any i > 2, then Tr(αia1) would be zero for any i and by the Fq–
linearity of the trace, we would have Tr(ya1) = 0 for any y ∈ Fqm which, from Corollary 1.29
is impossible since a1 6= 0. Therefore, since Tr(α1a1) 6= 0, then set

α∗1
def
=

1

Tr(α1a1)
· a1.

The α∗i ’s for i > 2 are obtained in the very same manner. There remains to show that it is
a basis and that it is unique. To prove it is a basis, let x1, . . . , xm ∈ Fq such that

x1α
∗
1 + · · ·+ xnα

∗
n = 0.

Then, for any i ∈ {1, . . . , n} one can apply Tr(αi · ) to this previous equation an, using the
definition of the α∗i ’s we get xi = 0. Thus, the family (α∗1, . . . , α

∗
m) is composed by linearly

independent elements, since it has m elements in a space of dimension m, it is a basis.
Finally, let us prove the uniqueness of such a basis. Suppose there exists two elements

α∗1 and α∗∗1 such that

Tr(α1α
∗
1) = Tr(α1α

∗∗
1 ) = 1 and ∀i ∈ {1, . . . ,m}, Tr(αiα∗1) = Tr(αiα∗∗1 ) = 0.

Then, for all i ∈ {1, . . . , n}, Tr(αi(α∗1 − α∗∗1 ) = 0. Thus, by linearity, for any y ∈ Fqm ,
Tr(y(α∗1 − α∗∗1 )) = 0 which, from Corollary 1.29, entails α∗1 = α∗∗1 .

Remark 11. It is actually a more general result in bilinear algebra: given a non degenerated
bilinear map, any basis has a dual basis. Here, the Fq–bilinear map{

Fqm × Fqm −→ Fq
(x, y) 7−→ TrFqm/Fq(xy)

is non degenerate as asserted by Corollary 1.29,
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Corollary 1.33. Let (α1, . . . , αm) be an Fq–basis of Fqm. Let x ∈ Fqm, then x can be
expressed as a linear combination of the αi’s as follows:

x = Tr(α∗1x)α1 + · · ·+ Tr(α∗mx)αm.

Proof. There is a unique decomposition of the form

x = x1α1 + · · ·+ xmαm

for x1, . . . xm ∈ Fq. Next, let i ∈ {1, . . . ,m}, the we have

Tr(α∗ix) = x1Tr(α∗iα1) + · · ·+ xnTr(α∗iαn) = xi.

This concludes the proof.

In a similar manner any vector c ∈ Fnqm expresses as

c = α1Tr(α∗1c) + · · ·αmTr(α∗mc)

and we have the following result.

Proposition 1.34. Let C ⊆ Fnqm be an Fqm–linear code. Let (α1, . . . , αm) be an Fq–basis
of Fqm. Let G ∈ Mk,n(Fqm) be a generator matrix of C . Denote by r1, . . . , rk the rows
of G and consider the matrix G′ ∈ Mmk,n(Fq) whose rows are Tr(α∗1r1), . . .Tr(α∗mr1),
Tr(α∗1r2), . . .Tr(α∗mr2), . . . , Tr(α∗1rk), . . .Tr(α∗mrk). Then, G

′ is a generator matrix of Tr(C ).

Before proving the result, let us explain how useful it is. Choose an Fq–basis (α1, . . . , αm)
of Fqm . From a generator matrixG, express any entry gij in the basis (α1, . . . , αm). According
to Corollary 1.33:

gij = γ1α1 + · · ·+ γmαm.

Then replace each entry of the matrix by the column:

 γ1
...
γm

, and you get a generator

matrix for the trace code.

Example 1.35. Consider the finite field F4 defined as F2[α] with α such that α2 +α+1 = 0.
Over F4, the code with generator matrix(

0 1 α α + 1 0 1
α 1 α + 1 α 1 0

)
Then its trace code over F2 has a generator matrix of the form

0 1 0 1 0 1
0 0 1 1 0 0
0 1 1 0 1 0
1 0 1 1 0 0

 .
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Proof of Proposition 1.34. The rows r1, . . . , rk provide an Fqm-basis of C . Then, an Fq–base
can be obtained as follows.

α∗1r1, . . . , α
∗
mr1, . . . , α

∗
1rk, . . . , α

∗
mrk.

Since Tr(C ) is nothing but the image of C by the Fq–linear map Tr(·), it is spanned over Fq
by an image of an Fq–basis by Tr(·). This concludes the proof.
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Chapter 2

Decoding problems

In the previous chapter we discussed the first definitions and properties of linear codes
without considering the main question, namely How to use codes to correct errors? For
that, let us formalize the notion of decoder or decoding algorithm and the various versions of
decoding problems.

Definition 2.1 (Decoder). Let C ⊆ Fnq be an error correcting code. A decoder for C is a
function D : Fnq → C ∪ {?}, such that for all c ∈ C , D(c) = c.

Remark 12. A decoder cannot correct any error pattern and may fail. This is the reason
why the decoder may return “?”.

The two major features expected from a decoder are:

• A decoder should correct many errors, i.e. it should solve some specific decoding
problem. See § 2.1 for some examples of decoding problems.

• A decoder should be efficient in terms of time and space complexity. By efficient we
mean in general a space and time complexity which is polynomial in the code length
n.

2.1 Deterministic decoding problems

2.1.1 Examples of decoding problems

Here we list several classical decoding problems.

The bounded decoding problem

Given a code C ⊆ Fmq , an integer r and a vector y ∈ Fnq , find (if exists) a word c ∈ C such
that

dH(c,y) 6 r.

Remark 13. A close related decision problem is to decide whether there exists a word c ∈ C
such that dH(c,y) 6 r.
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The unambiguous decoding problem

Given a code C ⊆ Fmq and a vector y ∈ Fnq , find a word c ∈ C such that

dH(c,y) 6

⌊
d− 1

2

⌋
,

where d is the minimum distance of C .

Remark 14. Thanks to Lemma 1.4, the solution of the unambiguous decoding problem, if
exists, is unique. Note that to state the problem, one needs to know the minimum distance
of the code. However, the minimum distance of a code is difficult to compute in general (see
§ 2.1.2).

The list decoding problem

Given a code C ⊆ Fmq , an integer r and a vector y ∈ Fnq , return (if exists) the whole list of
words c1, . . . , cs ∈ C such that

∀i ∈ {1, . . . , s}, dH(ci,y) 6 r.

Remark 15. Decoders as defined in Definition 2.1 cannot solve the list decoding problem in
general and one needs to introduct a notion of list decoder as a function Fnq → P(C ) ∪ {?}
where P(C ) denotes the set of subsets of C .

Remark 16. For a list decoding algorithm to be polynomial, the returned list should have
polynomial size. In Chapter 8 we discuss further the list decoding problem and state an
upper bound called Johnson bound for r which asserts that the list has a size polynomial in
the code length.

2.1.2 Hardness of decoding

One of the major difficulties of coding theory is that for almost every code, no efficient
(i.e. with polynomial space and time complexity) decoder is known. Actually, it has been
proved in [BMvT78] by Berlekamp, McEliece and VanTilborg that the decision version of
the bounded decoding problem (see Remark 13) is NP–complete.

Similarly, the determination of the minimum distance is a difficult problem in general:
more precisely, given a code C ⊆ Fnq and an integer r 6 n. Deciding whether the minimum
distance of C is less than r is an NP–complete problem.

The hardness of the decoding problem motivated R.J. McEliece [McE78] to apply these
problems to cryptography and design a puiblic key encryption scheme based on the hardness
of decoding.
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2.2 Probabilistic decoding problems
The previous decoding problems require the decoder to correct any error patter with Ham-
ming weight below some threshold.

Another class of decoding problem is probabilistic and consists, for some probabilistic
error model in correcting error with a failure probability below some threshold. This prob-
lem will be investigated further in Chapter 3. To introduce this approach, we first need a
probabilistic modelisation of errors. This is the notion of channel.

2.2.1 Channels

A channel is a theoretical model to describe a communication with possible errors. In this
course we will only consider memoryless channels. That is, given a transmitted bit or digit
the errors corrupting it do not depend on the previous transmitted bits/digits.

The binary symmetric channel

The first and most classical example of channel in coding theory is the so-called Binary
Symmetric Channel denoted as BSC(p), where p ∈ [0, 1] is a real parameter. This channel
works as follows. If a 0 is sent on the channel, then the receiver gets a 0 with probability
1 − p and a 1 with probability p. Conversely, if a 1 is sent, then the receiver get a 1 with
probability 1− p and a 0 with probability p. This channel is usually represented by Figure
2.1. The rigorous description of this channel is : let e be a Bernouilli random variable of

0 0

1 1

1− p

1− p

p

Figure 2.1: The binary symmetric channel

parameter p such that for every transmitted bit b, the receiver gets b + e, where the “+”
stands for the addition in F2 (or equivalently the Xor gate).

Remark 17. Actually, one can always assume that p 6 1/2. Indeed, if p > 1/2, then, after
flipping every bit of the received word, we can do as if the message was transmitted across
a binary symmetric channel of parameter 1− p 6 1/2.

Thanks to the above remark, from now on, whenever, we consider a BSC of parameter
p, this parameter is always assumed to be 6 1/2.
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The binary erasure channel

In the present chapter we mainly deal with the binary symmetric channel. This channel
corresponds to a case where during a transmission, some bits may be flipped. Actually in
some situations, bits are not flipped but only lost or destroyed. This is represented by the
so-called binary erasure channel which is described by Figure 2.2.

0 0

1 1

1− p

♯p

1− p

Figure 2.2: The binary erasure channel

The q–ary symmetric and erasure channels

In case of transmission of elements of a finite field Fq instead of F2, we need to define another
channel called the q–ary symmetric channel which is defined as follows. For an input a ∈ Fq,
the receiver gets a with probability 1− p or every element b ∈ Fq \ {a} can be received with
probability p

q−1
.

1− p
a ∈ Fq a

b ∈ Fq \ {a}

p
q−1

Figure 2.3: The q–ary symmetric channel

In a similar fashion, one can of course define a q–ary erasure channel sending an element
α ∈ Fq onto itself with probability p and onto ] with probability 1− p.

2.2.2 A probabilistic decoding problem

The problem can be stated as follows. Consider a fixed channel, a constant ε > 0 and a
given code C ⊆ Fnq .
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Problem. Find a decoder D such that for a uniformly random element c ∈ C and a random
error pattern e produced by the channel we have

P(D(c+ e) 6= c) < ε.

Compared to the decoding problems presented in § 2.1 for which the goal was to correct
any error pattern of weight less than some upper bound, here we aim at correcting “almost
any” error pattern produced by the channel. The decoder may fail with some probability
(which is expected to be low).

2.2.3 The maximum likelihood decoding problem

Given a code C , a uniformly random vector c ∈ C and an error pattern e produced by the
channel. Set y def

= c + e. Find, (if unique) the vector c′ ∈ C maximizing the conditional
probability

Pe∼channel(c
′ is sent | y is received).

Relation with the Hamming distance

If the channel is the binary or q–ary symmetric channel of parameter p, then solving the
maximum likelihood problem is equivalent to solve the following problem

Problem. Given a code C ⊂ Fnq and a vector y ∈ Fnq , find (if unique) the vector c ∈ C
such that dH(c,y) = minx∈C dH(x,y).

Indeed, let x be a binary vector lying in a code C and y = x+ e be the vector received
after transmission of x across a BSC(p). That is, e = (e1, . . . , en) is a vector whose entries
are independent Bernouilli random variables with parameter p. Then, one sees easily that

Pe∼BSC(p)(x is sent | y is received) = pdH(x,y)(1− p)n−dH(x,y).

Thus, a solution of the maximum likelihood decoding problem is nothing but a word of C
which is the closest possible to y with respect to the Hamming distance.

2.3 Some example of decoders

2.3.1 The exhaustive decoder

The most elementary decoding algorithm consists in enumerating all the vectors of the code
and returns the closest one if unique.
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Algorithm 2: The exhaustive decoding alorithm
Input : A code C ⊆ Fnq , a word y ∈ Fnq .
Output: A codeword c ∈ C such that dH(y, c) = minx∈C {dH(x,y)}.

1 dist = n+ 1;
2 tmp = “?”;
3 for x ∈ C do
4 if dH(x,y) < dist then
5 tmp = x;
6 dist = dH(x,y);
7 end
8 if dH(x,y) = dist then
9 tmp = “?”;

10 end
11 end
12 return tmp;

This decoder provides a solution for the maximum likelihood decoding problem (if the
channel is the binary symmetric channel). Unfortunately, unless for very short and small
dimensional codes this decoder cannot be used in practice because of its time complexity
which is O(qk) and hence is exponential in the code dimension.

2.3.2 The syndrome decoder

The syndrome decoder is a generalization of the decoding algorithm proposed for the [7, 4, 3]2
Hamming code in § 1.3.3.

Definition 2.2. Let C ⊆ Fnq be a code and H ∈ Mn−k,n(Fq) be a full rank parity check
matrix of C . Let y ∈ Fnq . The syndrome of y with respect to H is defined as

S(y)
def
= H · yT .

Lemma 2.3. Let e ∈ Fmq be an error pattern and c ∈ C . Set y def
= c+e. Then the syndrome

of y depends only on e. Namely,
S(y) = S(e).

Proof. This is a straightforward consequence of the definition of a parity check matrix.

Proposition 2.4. Let C be a code of minimum distance d with a parity–check matrix H.
The syndromes of vectors e of weight 6 d−1

2
are pairwise distinct.

Proof. Assume that e, e′ both have weight 6 d−1
2

and have the same syndrome, i.e. S(e) =
S(e′). Then wH(e− e′) 6 d− 1 and

S(e− e′) = H · (e− e′) = S(e)− S(e′) = 0.

Therefore e − e′ ∈ C and has weight less than d − 1 which contradicts the fact that the
minimum distance is d.
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Here is the principle of syndrome decoding. Construct a dictionary containing any pair
(S(e), e) for all e of weight less than or equal to d−1

2
. Use a data structure so that given

an entry s ∈ Fn−kq , the pair (S(e), e) such that S(e) = s (if exists) can be found efficiently.
A hash table can perform this search in constant time. The construction of this hash table
is the pre–computation step of the algorithm. Then, the algorithm is elementary, given a
received word y compute H · y and search in the hash table the pair (S(e), e) with the
corresponding entry and return y − e.

Algorithm 3: Precomputation step of the Syndrome decoding
Input : A code C and its minimum distance d
Output: A dictionnary (hash table) H of pairs (S(e), e) for any e of weight less

than d−1
2

1 Initialize a hash table H = ∅;
2 for w = 0 to b(d− 1)/2c do
3 for e ∈ Fnq of weight w do
4 H ← H ∪ {(H · e, e)};
5 end
6 end
7 return H;

Remark 18. The precomputation step can be performed without knowing the minimum
distance of the code. It is only a bit more technical: as soon as two distinct vectors e, e′
with the same weight w have the same syndrome, this means that w is larger than d−1

2
. Then

remove from the hash table any entry (S(e), e) such that wH(e) = w. Details are left to the
reader.

Algorithm 4: Syndrome decoding
Input : A code C , a hash table H of syndroms obtained by pre–computation, a

vector y ∈ Fnq
Output: A vector c ∈ C at distance less than d−1

2
from y if exists. “?” if not.

1 s←H · y;
2 if No pair (S(e), e) ∈ H satisfies S(e) = s then
3 return “?”;
4 else
5 Let (S(e), e) ∈ H be such that S(e) = e;
6 return y − e;
7 end

Remark 19. Actually it is easy to adapt this algorithm in order to be able to correct any
error pattern of weight less than or equal to t for a fixed bound t 6 d−1

2
.
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The syndrome decoding solves the unambiguous problem. Its time complexity is poly-
nomial since the computation of the syndrome is that of a matrix × vector multiplication
which is O(n(n− k)) operations in Fq for the considered matrix and vectors. Moreover, the
cost of searching in H is constant if H is a hash table.

Unfortunately, this decoding algorithm cannot be practically used to correct many errors
since, its major drawback is its space complexity which is the size of the hash table:

|H| =
t∑
i=0

∣∣{e ∈ Fnq | wH(e) = i
}∣∣ ,

where t = d−1
2

(or less, see Remark 19). This size is

|H| =
t∑
i=0

(
n

i

)
(q − 1)i,

which is exponential in t. Therefore, the pre–computation step is exponential in time. Next,
the whole algorithm (pre–computation and computation) has an exponential space complex-
ity.
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Chapter 3

What is doable? What is not? Shannon
Theorem

In this chapter we address the question on the limits of error correction. A natural question,
is :

Given a noisy channel, is optimal error correction possible? And if it does,
is it possible with a nonzero information rate?

Shannon Theorem addresses this question.
The main references for this chapter are other lecture notes: [Rud], [Gur10] and [Zém13].

Notation 3.1. In what follows, the binary symmetric channel and the q–ary symmetric
channel of parameter p are respectively denoted by BSC(p) and qSC(p).

3.1 Prerequisites on probability theory
The following results are useful in what follows.

Theorem 3.1 (Markov inequality). Let X be a non negative random variable, then for all
a > 0

P
(
X > a

)
6

E(X)

a
·

Proof. Let 1X>a be the random variable satisfying

1X>a =

{
1 if X > a,
0 else.

We have E(1X>a) = P(X > a). Moreover, a1X>a 6 X. By applying the expected value to
the last inequality we get

aP
(
X > a

)
6 E(X).
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Theorem 3.2 (Tchebychev inequality). Let X be a real random variable, then for all a > 0

P
(
|X − E(X)| > a

)
6

Var(X)

a2
·

Proof. Apply Markov inequality to the random variable (X − E(X))2.

Application to the binary symmetric channel

Proposition 3.3. Let e ∈ Fnq be an error vector produced by the q–ary symmetric channel,
i.e e = (e1, . . . , en) where e1, . . . , en are pairwise independent Bernouilli random variables.
We have,

E(wH(e)) = pn and Var(wH(e)) = np(1− p).

Proof. For all i, E(ei) = p and Var(ei) = p(1 − p). The expected value is obtained by
summing up the n expected values. Since the variables are independent, summing up the
variances provide the variance.

Corollary 3.4. Let e ∈ Fnq be an error vector produced by the q–ary symmetric channel,
then, for all ε > 0,

P
(
wH(e) > (p+ ε)n

)
6
p(1− p)
ε2n

·

Proof. We have,

P
(
wH(e) > (p+ ε)n

)
6 P

(
wH(e) > (p+ ε)n

)
+ P

(
wH(e) 6 (p− ε)n

)
6 P

(
|wH(e)− pn| > εn

)
.

Then, thanks to Tchebychev inequality, we get,

P
(
wH(e) > (p+ ε)n

)
6
p(1− p)
ε2n

·

This upper bound can actually be improved by:

Theorem 3.5 (Chernoff bound). Let e ∈ Fnq be an error vector produced by the q–ary
symmetric channel. Then, for all ε > 0,

P
(
wH(e) > (p+ ε)n

)
6 e−

pnε2

3 .

Proof. See Appendix A.1.
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3.2 Decoders
Remind that decoders have been introduced in Chapter 2. See Definition 2.1.

Caution. In the present chapter, when we speak about the existence of a decoder, we never
assert that the evaluation of this map is easy to compute: the algorithm used by the
decoder may have a huge complexity which would make it unsuitable for a practical use. In
summary, in this chapter, we discuss the theoretical feasibility but no practical realization.

3.2.1 The failure probability

Definition 3.6. Let C ⊆ Fnq be a code and D be a decoder for C , the failure probability of
D is defined as

Pfail(C ,D)
def
= Pe∼qSC(p), c∼U(C ) (D(c+ e) 6= c) ,

where “c ∼ U(C )” means that c is a uniformly random element of C and the random
variables c and e are independent.

The failure probability of a decoder quantifies its efficiency. The smaller the failure
probability, the better the pair (C ,D).

3.2.2 The maximum likelihood decoder for the q–ary symmetric
channel

The maximum likelihood decoder has been introduced in § 2.2.3. Moreover, it is observed in
§ 2.2.3 that this decoder is nothing but the one who returns the closest codeword to the entry
(if unique) with respect to the Hamming distance. Let us introduce the following notation
for this decoder:

Notation 3.2. The maximum likelihood decoder is denoted as DML. That is,

∀y ∈ Fn2 ,DML(y)
def
=


c if c is the unique element of C

satisfying dH(c,y) = minu∈C {dH(u,y)};
{?} else.

For a linear code C together with the maximum likelihood decoder, the expression of the
failure probability is rather simple.

Lemma 3.7. Let C ⊆ Fnq be a linear code, then,

Pfail(C ,DML) = Pe∼qSC(p)(DML(e) 6= 0), (3.1)

or equivalently,

Pfail(C ,DML) = Pe∼qSC(p) (∃u ∈ BH (e,wH(e)) ∩ C \ {0}) . (3.2)
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c

c′

c + e

Figure 3.1: Situation of decoding failure for the maximum likelihood decoder

Proof. Let c be a uniformly randomly chosen element of C and e be an error vector given
by the binary symmetric channel. The maximum likelihood decoder will fail if there exists
another word in C at least as close as c to c + e or equivalently if BH (c+ e,wH(e)) ∩ C
contains a word distinct from c. This situation is represented by Figure 3.1. Therefore, for
a uniformly random c ∈ C ,

Pe∼qSC(p)(DML(c+ e) 6= c) = P(∃c′ ∈ BH (c+ e,wH(e)) ∩ C \ {c}).

By linearity and after applying a translation by −c, the above probability is nothing but

P(∃u ∈ BH (e,wH(e)) ∩ C \ {0}).

This proves (3.2) and (3.1) is nothing but a reformulation of (3.2).

3.3 Shannon Theorem
Let us start with a question already raised in the introduction.

Question 3.1. Does there exist a family of pairs (Ci,Di)i∈N, where Ci ∈ Fni2 is a code, Di is
a decoder for Ci and such that

lim
i→+∞

Pfail(Ci,Di) = 0?

Roughly speaking: “is it possible to correct almost all errors arising from the channel?”

3.3.1 First idea: use the repetition code

Consider the following sequence (Cn,DML)n where Cn is the [n, 1, n]2 repetition code. Notice
that DML here can be efficiently computed since in this situation it is noting but a majority
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voting process:

DML(y) =


(0 · · · 0) if there is a majority of 0’s in y
(1 · · · 1) if there is a majority of 1’s in y

? if there is the same number of 0’s and 1’s in y

The probability failure of DML is

Pfail(Cn,Dn) = Pe∼qSC(p)

(
wH(e) >

n

2

)
. (3.3)

Indeed the probability of a wrong decoding is nothing but the probability that a majority of
bits are corrupted or equivalently the probability that the number of errors exceeds n

2
(i.e.

wH(e) > n
2
).

Proposition 3.8. For p < 1/2, (Cn,Dn)n described as above we have

lim
n→+∞

Pfail(Cn,Dn) = 0.

Proof. Let 0 < ε < p such that p+ ε 6 1/2.

Pfail(Cn,Dn) = Pe∼qSC(p)

(
wH(e) >

n

2

)
6 Pe

(
wH(e) > (p+ ε)n).

Thanks to Corollary 3.4, we get

Pfail(Cn,Dn) 6
p(1− p)
ε2n

,

which tends to 0 when n tends to infinity.

Here we proved that, for a sufficiently large n, the repetition code together with the
majority voting decoding permits a communication where almost all errors are corrected.
Unfortunately, this approach has a huge drawback. Indeed, the information rate of the
repetition code of length n is 1

n
. Hence, when n tends to infinity, the information rate of the

code tends to 0. This motivates a refinement of Question 3.1.

Question 3.2. Does there exist a family of pairs (Ci,Di)i∈N, where Ci ∈ Fni2 is a linear code,
Di is a decoding algorithm for Ci and such that

lim
i→+∞

Pfail(Ci,Di) = 0?

and the sequence of rates Ri
def
= dim Ci

ni
is bounded below by a nonzero constant?

Shannon Theorem answers positively to this question. To state it, we first need to
introduce the notion of entropy.

33



3.3.2 The entropy function

In information theory, the entropy of a channel is a function quantifying its uncertainty. For
the binary symmetric channel, the entropy function is called the binary entropy and defined
as follows

H2(p) =

{
−p log2 p− (1− p) log2(1− p) if 0 < p < 1;

0 if p = 0 or p = 1

Basically, the higher the entropy, the higher the incertitude of the channel. Let us list a
few remarks on this function.

• The entropy function is continuous and positive.

• The function has maximum for p = 1
2
. Clearly, if the error probability is 1

2
, we reach

the maximal uncertainty.

• For all p ∈ [0, 1], we have H2(p) = H2(1− p). This symmetry is explained by the fact
that both probabilities yield the same uncertainty since one can flip the value of the
outputted bits and then switch from a qSC(p) to a qSC(1− p).

For the q–ary symmetric channel, one can define the q–ary entropy function as

Hq(p) =

{
p logq(q − 1)− p logq p− (1− p) logq(1− p) if 0 < p < 1;

0 if p = 0 or 1.

The q–ary entropy function reaches its maximum for p = 1 − 1
q
. Figure 3.2 represents the

graph of the entropy function for q = 2, 3, 5, 121.
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Figure 3.2: Graphs of entropy functions

34



3.3.3 Shannon Theorem

Theorem 3.9 (Shannon Theorem). For all 0 < p < 1 − 1
q
and all 0 < ε < 1 − 1

q
− p, the

following statements hold.

1. There exists δ > 0 such that, for any large enough n, there exists a pair (C ,D) where
C is a code of length n and rate R = 1−Hq(p)− ε, D is a decoder, and

Pfail(C ,D) < q−δn.

2. For all large enough n and all pair (C ,D), where C has length n and rate R = 1 −
Hq(p) + ε and D is a decoder, then

Pfail(C ,D) >
1

2
·

Remark 20. Actually, the statement holds true even for non linear codes. We provide a proof
of Theorem 3.9(1) only for linear codes. See [Rud] for a proof in the nonlinear case. For (2),
our proof holds even for non linear codes.

Basically, this theorem points out the existence of a threshold called channel capacity
and equal to 1−Hq(p) in case of the qSC(p) channel. Moreover, the statement asserts that
for communication rates below this capacity, then there is a suitable choice of a pair (C ,D)
providing an almost perfect communication. On the other hand, if you wish to communicate
with rates above this threshold, then every choice of a pair (C ,D) will provide a very bad
communication.

Caution. Let us emphasize again that Shannon Theorem is purely theoretic. The first
part of the statement asserts the existence of a pair (C ,D) but is absolutely non constructive:
it does not provide any method to compute or construct such a pair. Moreover, the decoder
D is not necessarily an efficient decoding algorithm and can have a prohibitive complexity
and be unreasonably time and space–consuming.

It should be noticed that this theorem has been proved in 1949, while practical and
efficient realizations of codes with efficient decoding with rates close to the channel capacity
and with very low error rates (after decoding) appeared only during the 90’s, with LDPC
codes and turbo codes.

To prove Shannon Theorem, some prerequisites are necessary and summarized in the
forthcoming Sections 3.3.4, 3.1 and 3.3.5.

3.3.4 The asymptotic volume of Hamming balls

Recall that for all x ∈ Fnq and 0 6 r 6 n, the Hamming ball of radius r and center x is
denoted by BH (x, r).
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Lemma 3.10 (Volume of a Hamming ball). Let n ∈ N, x ∈ Fnq and 0 6 r 6 n. Then,

|BH (x, r) | =
r∑
i=0

(
n

i

)
(q − 1)i.

Proof. Exercise.

Notation 3.3. Notice that this volume does not depend on the center x but only on r and
n, hence from now on, we denote it by Volq(r, n).

Lemma 3.11. Let n ∈ N and 0 6 p 6 1− 1
q
such that pn ∈ N. Then,

(1) Volq(pn, n) 6 qnHq(p).

(2) ∀ε > 0, there exists N > 0 such that,

∀n > N, Volq(pn, n) > qn(Hq(p)−ε).

Proof. See Appendix A.2.

3.3.5 Random codes

A random [n, k]q code is a uniformly random element of the set of linear codes of length n,
dimension k over Fq. The following statement provides another definition which useful in
what follows.

Lemma 3.12. Let G be a uniformly random k × n matrix of rank k. Then, Im(G)
def
=

{mG | m ∈ Fkq} is a random code.

Proof. We only have to prove that for all pairs C ,C ′ of codes of length n and dimension k,

P(Im(G) = C ) = P(Im(G) = C ′).

A classical argument of linear algebra asserts that there exists a n× n invertible matrix M
such that CM = C ′, where CM

def
= {cM | c ∈ C }. Therefore, Im(G) = C if and only if

Im(GM ) = CM = C ′. Hence

P(Im(G) = C ) = P(Im(GM) = C ′). (3.4)

In addition, GM is a uniformly random full-rank matrix since the map G 7→ GM is a
bijection of the set of full-rank k × n matrices onto itself. Therefore

P(Im(GM ) = C ) = P(Im(G) = C ). (3.5)

Combining (3.4) and (3.5), we get the result.
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Lemma 3.13. Let G be a random full-rank k× n matrix. For all m ∈ Fkq \ {0} the random
variable mG is uniformly distributed in Fnq \ {0}.

Roughly speaking the above statement asserts that every nonzero element of a random
[n, k]q code is a uniformly random element of Fnq .

Proof. Let y,y′ be two elements of Fnq \ {0}, we will prove that

P(mG = y) = P(mG = y′).

Indeed, there exists an invertible n× n matrix M such that yM = y′. Therefore,

P(xG = y) = P(xGM = y′).

Moreover, since A 7→ AM is a bijection from the set of full rank k× n matrices onto itself,
GM is a uniformly random full rank k × n matrix and hence

P(xGM = y′) = P(xG = y′).

Combining the previous inequalities yields the result.

3.3.6 Proof of Shannon Theorem

Proof of Theorem 3.9(1)

Set k = b(1 − Hq(p) − ε)nc. Let C be an [n, k]q code and G be a generator matrix for C ,
i.e. C = Im(G). Remind, that, from Lemma 3.7,

Pfail(Im(G),DML) = Pe∼qSC(p)

(
∃m ∈ Fkq \ {0}, mG ∈ BH (e,wH(e))

)
.

Denote by E(G, e) the event:

E(G, e)
def
=
{
∃m ∈ (Fkq \ {0}), mG ∈ BH (e,wH(e))

}
.

Let γ > 0, then,

Pfail(Im(G),DML) = Pe

(
E(G, e)

∣∣∣ wH(e) 6 (p+ γ)n
)
Pe

(
wH(e) 6 (p+ γ)n

)
+ Pe

(
E(G, e)

∣∣∣ wH(e) > (p+ γ)n
)
Pe

(
wH(e) > (p+ γ)n

)
.

Since probabilities are always less than or equal to 1, we get

Pfail(Im(G),DML) 6 Pe

(
E(G, e)

∣∣∣ wH(e) 6 (p+ γ)n
)

+ Pe

(
wH(e) > (p+ γ)n

)
. (3.6)

Thanks to Chernoff bound (Theorem 3.5),

Pe

(
wH(e) > (p+ γ)n

)
6 e−

pnγ2

3 . (3.7)
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There remains to get an upper bound on Pe

(
E(G, e)

∣∣∣ wH(e) 6 (p + γ)n
)
. However, it is

hopeless to get a uniform and sharp upper bound for all G. Therefore, to prove that it is
small for some matricesG (or equivalently for some codes), we will first prove that it is small
in average. Thus, let Gk,n be the set of full rank k × n matrices and consider the mean:

M
def
=

1

|Gk,n|
∑

G∈Gk,n

P
(
∃m ∈ Fkq \ {0}, mG ∈ BH (e,wH(e))

∣∣∣ wH(e) 6 (p+ γ)n
)

6
1

|Gk,n|
∑

G∈Gk,n

P
(
∃m ∈ Fkq \ {0}, mG ∈ BH (e, (p+ γ)n)

∣∣∣ wH(e) 6 (p+ γ)n
)

By the union bound, we get

M 6
1

|Gk,n|
∑

G∈Gk,n

∑
m∈Fkq\{0}

P
(
mG ∈ BH (e, (p+ γ)n)

∣∣∣ wH(e) 6 (p+ γ)n
)

Therefore,

M 6
1

|Gk,n|
∑
G

∑
m

∑
x:wH(x)6(p+γ)n

P
(
mG ∈ BH (x, (p+ γ)n)

)
P
(
e = x

∣∣∣ wH(e) 6 (p+ γ)n
)
.

If m ∈ Fkq \ {0} and G ∈ Gk,n are arbitrary, then, from Lemma 3.13, the word mG is
uniformly random in Fnq \ {0}. Therefore,

P
(
mG ∈ BH (x, (p+ γ)n)

)
=

Vol((p+ γ)n, n)

qn
6 qn(Hq(p+γ)−1),

where the last inequality is a direct consequence of Lemma 3.11(1). Consequently,

M 6
1

|Gk,n|
∑
G

∑
m

∑
x:wH(x)6(p+γ)n

qn(Hq(p+γ)−1)P
(
e = x

∣∣∣ wH(e) 6 (p+ γ)n
)

6 qn(Hq(p+γ)−1)

(
1

|Gk,n|
∑
G

∑
m

1

)
︸ ︷︷ ︸

=qk−1

·

 ∑
x:wH(x)6(p+γ)n

P
(
e = x

∣∣∣ wH(e) 6 (p+ γ)n
)

︸ ︷︷ ︸
=1

Finally, since, k 6 n(1−Hq(p)− ε), we conclude that

M 6 qn(Hq(p+γ)−Hq(p)−ε). (3.8)

Since the mean is taken over all the full-rank n × k matrices, there exists a full rank n × k
matrix G such that:

P
(
∃m ∈ Fkq \ {0}, mG ∈ BH (e,wH(e))

∣∣∣ wH(e) 6 (p+ γ)n
)
6 qn(Hq(p+γ)−Hq(p)−ε). (3.9)
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Putting together (3.9), (3.7) and (3.6), we get

Pfail(Im(G),DML) 6 qn(Hq(p+γ)−Hq(p)−ε) + e−
pnγ2

3

6 qn(Hq(p+γ)−Hq(p)−ε) + q−
pnγ2

3 log q .
(3.10)

Since the function Hq is continuous on [0, 1− 1
q
], for γ small enough, Hq(p+γ)−Hq(p)−ε < 0.

Therefore, for γ small enough, the exponents of both terms of the right hand side of (3.10)
are negative. Thus, for some positive constant δ and for n large enough, we get

Pfail(C ,DML) 6 q−δn.

This concludes the proof.
Remark 21. Actually, one could have been more precise. The above proof asserts that
“almost all codes” together with the maximum likelihood decoder has an exponentially small
failure probability. Indeed, for a random code C , Equations (3.9), (3.7) and (3.6) can be
reformulated as

E
(
Pfail(C ,DML)

)
6 q−δn

for a positive constant δ and n large enough. Indeed, let C be a random code, then, using
Markov inequality,

P
(
Pfail(C ,DML) > q−

δn
2

)
6

E(Pfail(C ,DML))

q−
δn
2

= q−
δn
2 .

Therefore, for a large enough n, with a probability close to 1, the failure probability of a
random code with the maximum likelihood decoder is 6 q−

δn
2 .

Proof of Theorem 3.9(2)

Assume the result is wrong and hence assume that for all N positive, there exists a pair
(Cn,Dn) of length n > N , of rate 1 − Hq(p) + ε and such that Pfail(Cn,Dn) < 1

2
. For

convenience sake we omit the indexes “n” and refer to the pair (C ,D).
The general idea of the proof works as follows, consider for all c ∈ C the set of words

D−1(c)
def
=
{
x ∈ Fnq | D(x) = c

}
·

The subsets D−1(c) are pairwise disjoint, and the assumption “Pfail(C ,D) < 1
2
” entails that

these sets are “large”. In addition, the assumption “C has rate 1 − Hq(p) + ε” entails that
there are too many such sets. Indeed, we will prove that the union of these sets has a volume
larger than qn which is a contradiction.

For this sake we will give a lower bound for the average volume of D−1(c).

Proposition 3.14. Let c be a random variable uniformly distributed over C . Then,

E(|D−1(c)|) > 1

4
q−nHq(p).
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Proof. Let c0 ∈ C and let Sc0 be the set

Sc0
def
=
{
x ∈ Fnq

∣∣∣ |dH(c0,x)− pn| < √n
}
·

The set Sc0,γ is the “shell” BH (c0, (pn+
√
n)\BH (c0, (pn−

√
n) as illustrated in Figure 3.3.
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Figure 3.3: The shell Sc0

Consider the following probability,

Pe(c0 + e ∈ Sc0 ∩ D−1(c0)) =
∑

x∈Sc0∩D−1(c0)

Pe(c0 + e = x) (3.11)

6 |Sc0 ∩ D−1(c0)| max
x∈Sc0

Pe(c0 + e = x). (3.12)

Next, notice that for all x ∈ Sc0 ,

Pe(c0 + e = x) = pdH(x,c0)(q − 1)−dH(x,c0)(1− p)n−dH(x,c0).

Then, consider the function f : x 7→ px(q − 1)x(1 − p)n−x. This function is positive on
]0, n[ and its derivative satisfies f ′(x) = log

(
p(q−1)

1−p

)
f(x). Therefore, if p(q−1)

1−p > 1, then f is
increasing else it is decreasing. Thus,

max
x∈Sc0

Pe(c0 + e = x) =

{
ppn+

√
n(q − 1)pn+

√
n(1− p)1−(pn+

√
n) if p(q−1)

1−p > 1

ppn−
√
n(q − 1)pn−

√
n(1− p)1−(pn−

√
n) else.

This entails,

max
x∈Sc0

Pe(c0 + e = x) =

 q−nHq(p)
(
p(q−1)

1−p

)−√n
if p(q−1)

1−p > 1

q−nHq(p)
(
p(q−1)

1−p

)√n
else,

40



which leads to the upper bound

max
x∈Sc0

Pe(c0 + e = x) 6 q−nHq(p). (3.13)

Putting (3.12) and (3.13) together and using the obvious inclusion D−1(c0)∩Sc0 ⊆ D−1(c0),
we get

|D−1(c0)| > Pe(c0 + e ∈ Sc0 ∩ D−1(c0)) qnHq(p) (3.14)

and there remains to bound below Pe(c0 + e ∈ Sc0 ∩ D−1(c0)).
Remind that, from Proposition 3.3, the random variable wH(e) has mean pn and variance

np(1− p). Thus, from Tchebychev inequality (Theorem 3.2),

Pe(c0 + e /∈ Sc0) = P(|wH(e)− pn| 6 √n) 6
Var(wH(e))

n
= p(1− p)·

Moreover, since p < 1/2 we have

Pe(c0 + e /∈ Sc0) <
1

4
· (3.15)

On the other hand,

Pe(c0 + e ∈ Sc0 ∩ D−1(c0)) = 1− Pe(c0 + e ∈ (Fnq \ Sc0) ∪ (Fnq \ D−1(c0)).

Then, by the union bound,

Pe(c0 + e ∈ Sc0 ∩ D−1(c0)) > 1− Pe(c0 + e /∈ Sc0)− Pe(c0 + e /∈ D−1(c0))

> Pe(c0 + e ∈ D−1(c0))− Pe(c0 + e /∈ Sc0).

Consequently, from (3.15),

Pe(c0 + e ∈ Sc0 ∩ D−1(c0)) > Pe(c0 + e ∈ D−1(c0))− 1

4
· (3.16)

Assume for now the following fact which is proved further (see Lemma 3.15). Let c be a
random variable uniformly distributed over C , which is independent from e then

Pfail(C ,D) = Pc,e(D(c+ e) 6= c) = Ec(Pe(D(c+ e) 6= c)).

Consequently, (3.16) yields

Ec

(
Pe(c+ e ∈ Sc ∩ D−1(c))

)
> 1− Pfail(C ,D)− 1

4
·

By assumption, Pfail(C ,D) 6 1
2
and hence

Ec

(
Pe(c+ e ∈ Sc ∩ D−1(c))

)
>

1

4
.

Applying the expected value to (3.14) and using the above inequality, we get the result.

41



In the previous proof, we assumed the following result, which we prove now.

Lemma 3.15. Let c be a random variable uniformly distributed over C and e ∼ qSC(p)
such that c, e are independent. Then

Pfail(C ,D) = Pc,e(D(c+ e) 6= c) = Ec(Pe(D(c+ e) 6= c)).

Proof. The first equality is the very definition of Pfail. Then,

Pc,e(D(c+ e) 6= c) = Ec,e(1D(c+e)6=c)

=
∑

c0∈C ,e0∈Fnq

P({c = c0} ∩ {e = e0})1D(c+e)6=c.

Since c, e are independent, P({c = c0} ∩ {e = e0}) = P(c = c0)P(e = e0) and hence,

Pc,e(D(c+ e) 6= c) =
∑
c0∈C

P(c = c0)

∑
e0∈Fnq

P(e = e0)1D(c+e)6=c


= Ec

(
Ee

(
1D(c+e)6=c

))
= Ec (Pe (D(c+ e) 6= c)) .

Now we can conclude the proof of the second part of Shannon Theorem. Since the sets
D−1(c0) are pairwise disjoint when c0 varies over the elements of C , we have

|Fnq | = qn >

∣∣∣∣∣ ⋃
c0∈C

D−1(c0)

∣∣∣∣∣ =
∑
c0∈C

|D−1(c0)|

and if c is a uniformly distributed random variable over C , we have

E(|D−1(c)|) =
∑
c0∈C

P(c = c0)|D−1(c0)| = 1

|C |
∑
c0∈C

|D−1(c0)|

Therefore,
qn > |C | · Ec(|D−1(c)|).

By assumption, |C | = qn(1−Hq(p)+ε). Then, thanks to Proposition 3.14, the above inequality
yields

qn >
1

4
qn(1+ε)

which is a contradiction for n large enough.
Remark 22. Actually, the statement of Theorem 3.9 (2) could be improved as “for all pair
(C ,D), ..., then Pfail(C ,D) > 1 − δ for all δ > 0.” To prove this improved version, replace
the
√
n by a n3/4 in the proof of Proposition 3.14. Details are left to the reader.
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Chapter 4

Bounds on codes

Problem We wish to produce a code C ⊆ Fnq with a high rate, and a high relative distance.
That is with dimension and distance as close as possible from n. Unfortunately, these
requirements contradict each other.

The point of the present chapter is to introduce several upper bounds on the minimum
distance (resp. the dimension) of codes of fixed length and dimension (resp. minimum
distance). Next we will focus on a lower bound: the famous Gilbert Varshamov bound. We
should be careful that lower bounds have not the same status as upper bounds. An upper
bound asserts that the parameters of every code lie below some bound while a lower bound
asserts the existence of at least one code whose parameters exceed the bound.

4.1 Upper bounds

4.1.1 Singleton bound

The most elementary and probably the most famous upper bound on the parameters of codes
is the Singleton bound.

Theorem 4.1 (Singleton bound). For every code C with parameters [n, k, d]q, we have

k + d 6 n+ 1.

Proof. Let C be a code with parameters [n, k, d]q. Let

φ :

{
Fnq −→ Fn−(d−1)

q

(x1, . . . , xn) 7−→ (x1, . . . , xn−(d−1))
.

We claim that the restriction φ|C of φ to C is injective. Indeed, if x ∈ C satisfies φ(x) = 0,
then x1 = · · · = xn−(d−1) = 0 and hence wH(x) < d, which entails x = 0.

Since φ|C : C → Fn−(d−1)
q is injective, then

k = dim(C ) = dimφ(C ) 6 n− d+ 1,

which yields the result.
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Remark 23. An alternative and more explicit proof can be obtained by Gaussian elimination.
Consider a code of length n and dimension k and consider a full rank generator matrix
G ∈Mk,n(Fq) for C . That is, the rows of G form a basis for C . Note that performing row
operations on G do not change the code and hence provide another generator matrix for the
same code.

The, perform Gaussian elimination onG to put it in row echelon form. After elimination,
the k–th row has weight 6 n− k + 1 and is a nonzero codeword. This concludes the proof.

Remark 24. The above proof is suitable only for linear codes while the Singleton bound holds
true for nonlinear codes. In the context of nonlinear codes it asserts that for all C ⊂ Fnq ,
possibly nonlinear,

|C | 6 qn−d+1.

Definition 4.2. A code is said to be Maximum Distance Separable (MDS) if it reaches the
Singleton bound.

Comments The Singleton bound is sharp for short codes. In particular, we will see in
the next chapters, that for all n 6 q + 1, there always exists an MDS code of length n.
On the other hand, the existence of longer MDS codes is still partially open. It is actually
conjectured that out of some degenerate cases there is no MDS code over Fq of length strictly
higher than q + 1.

Finally, for fixed q and high length compared to q, many other upper bounds are sharper
than Singleton bound.

Asymptotic Singleton bound It can be useful to consider bounds asymptotically. This
point of view is not that relevant for the Singleton bound since, as explained earlier, it is far
from being sharp for long codes. Nevertheless, let us give an asymptotical bound which is
actually elementary to obtain.

Lemma 4.3. Let (Cr)r∈N be a sequence of codes of parameters [nr, kr, dr]q over a fixed base
field Fq such that nr tends to infinity. Assume moreover that the following limits exist:

R
def
= lim

r→+∞

kr
nr

and δ
def
= lim

r→+∞

dr
nr
·

Then,
R + δ 6 1.

4.1.2 Hamming or sphere packing bound

As suggested this bound reposes on the notion of “sphere packing”. It is actually a straightfor-
ward application of Lemma 1.4 asserting that the balls of radius bd−1

2
c are pairwise disjoint.

For an [n, k, d]q code C , we get qk disjoint Hamming balls of radius bd−1
2
c. The volume of

their union should be less than the total volume qn which yields:
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Theorem 4.4 (The Hamming or Sphere Packing bound). Let C ⊆ Fnq be an [n, k, d]q code.
Then,

qkVolq
(⌊

d− 1

2

⌋
, n

)
6 qn.

(See Notation 3.3 for the definition of Volq(·)).

Asymptotic Hamming bound

Lemma 4.5. Let (Cr)r∈N be a sequence of codes of parameters [nr, kr, dr]q over a fixed base
field Fq such that nr tends to infinity. Assume moreover, that the following limits exist

R
def
= lim

r→+∞

kr
nr

and δ
def
= lim

r→+∞

dr
nr
.

Then,

R 6 1−Hq

(
δ

2

)
.

Proof. Let ε > 0 and set for all r ∈ N, δr
def
= dr

nr
and Rr

def
= kr

nr
. From Lemma 3.11(2), for a

large enough r, we have

Volq
(⌊

d− 1

2

⌋
, n

)
> qnr(Hq(

δr
2
− 1

2nr
)−ε).

Thus, the Hamming bound entails

qnr(Rr+Hq(
δr
2
− 1

2nr
)−ε) 6 qnr .

Applying the function logq to both sides and dividing them by nr yields

Rr 6 1−Hq

(
δr
2
− 1

2nr

)
+ ε.

When r tends to infinity, thanks to the continuity of the entropy function, we get

R 6 1−Hq

(
δ

2

)
+ ε,

which holds for all ε > 0 and yields the result.

4.1.3 Plotkin bound

Theorem 4.6 (Plotkin bound). Let C ⊆ Fnq be an [n, k, d]q code, then

d 6 nqk−1 q − 1

qk − 1
·
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Proof. It is based on a double counting argument. Let M be a matrix whose rows are all
the nonzero codewords of C . Thus, M is a (qk − 1)× n matrix with entries in Fq. Let A be
the number of nonzero entries of M. Clearly, counting the nonzero entries by rows, we get
easily that

A > d(qk − 1). (4.1)

On the other hand, the i–th column of M yields the evaluations of a linear form at every
element of C \ {0}. That linear form is either zero on C or vanishes on a vector subspace of
dimension k − 1. Thus, there are at most qk − qk−1 nonzero entries in every column of M.
Consequently,

A 6 n(qk − qk−1). (4.2)

Combining (4.1) and (4.2) yields the result.

Theorem 4.7 (Asymptotic Plotkin bound). Let (C )s be a sequence of [ns, ks, ds]q codes over
a fixed base field Fq such that ns → +∞ and the sequences Rs

def
= ks

ns
and δs

def
= ds

ns
converge

respectively to reals R, δ. Then,

R 6 max

{
1− qδ

q − 1
, 0

}
·

The proof of the Theorem requires first a lemma which involves the code shortening
operation (see Definition 1.21).

Lemma 4.8. Let (Cs)s be a sequence of codes over a fixed base field Fq whose lengths tend
to infinity whose rates converge to R and relative distances converge to δ. Then, for all
0 < γ < 1 there exists a sequence of codes (C ′s)s whose rates and relative distances converge
respectively to R′ and δ′ such that,

R′ > R− γ and δ′ > min

{
1,

δ

1− γ

}
·

Proof. For all s, choose Is ⊆ {1, . . . , ns} such that |Is| = bγnsc and set C ′s = SIs(Cs). From
Proposition 1.24, the parameters of C ′s satisfy

R′s > Rs − γ and δ′s >
d′s

ns − γns
=

δs
1− γ · (4.3)

Since the sequences (R′s)s and (δ′s)s are bounded, then from Bolzano Weierstrass theorem,
after replacing (C ′s)s by a subsequence, one can assume that the sequences of rates and
relative distances converge. Then, passing (4.3) to the limit yields the result.

Proof of Theorem 4.7. Notice first that, if d > n
(
q−1
q

)
, then, the Plotkin bound can be

reformulated as follows

d(qk − 1) 6 nqk
q − 1

q
=⇒ qk

(
d− nq − 1

q

)
6 d.
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In particular,

If d > n
q − 1

q
then, qk 6

d

d− n
(
q−1
q

) · (4.4)

Now consider a sequence of (Cs)s of codes of parameters [ns, ks, ds]q over a fixed field Fq
such that (ns)s tends to infinity, Rs = ks

ns
→ R and δs = ds

ns
→ δ.

Case 1. If δ > q−1
q
, then δs > q−1

q
for s large enough and (4.4) gives

qnsRs 6
δs

δs − q−1
q

·

The right hand side converges to δ

δ− q−1
q

. Therefore, the left hand side is bounded and hence
R = 0.

Case 2. If δ 6 q−1
q
. Let ε > 0, and set γ = 1 − qδ

q−1
+ ε. From Lemma 4.8, there exists a

sequence (C ′s)s of codes over a fixed field Fq with asymptotic parameters

R′ > R− γ and δ′ >
δ

1− γ =
δ

qδ
q−1
− ε

>
q − 1

q
·

Hence, this sequence of codes satisfies the property of Case 1 and hence R′ = 0, which entails
R 6 γ and hence

R 6 1− qδ

q − 1
+ ε.

Since the above inequality holds for all ε > 0, we get the result.

We conclude this section by representing these asymptotic upper bounds for q = 2 in
Figure 4.1.

4.2 Lower bounds

4.2.1 Gilbert Varshamov bound

The Gilbert Varshamov bound is an existential bound: it asserts the existence of a code
whose parameters exceed some bound. This result holds even for non linear codes and it
is actually easier to understand in this case. For this reason, we first prove it for nonlinear
codes and then provide a proof for the case of linear codes.

Theorem 4.9 (Gilbert Varshamov – the nonlinear case). Let n, d be two positive integers
with n > d, then there exists a (possibly nonlinear) code of length n and minimum distance
d with M elements and such that:

MVolq(d, n) > qn.

Proof. We give a constructive proof by exhibiting an algorithm constructing such a non
linear code.
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Figure 4.1: Asymptotic upper bounds on codes for q = 2

Algorithm 5: Construction of a non linear code of minimum distance bounded
below by d
Input : The length n, the prescribed lower bound for the minimum distance d
Output: A code satisfying the Theorem

1 C = ∅, U = Fnq ;
2 while U 6= ∅ do
3 Take c ∈ U at random;
4 C = C ∪ {c}, U = U \BH (c, d);
5 end
6 Return C ;

A loop invariant of the above algorithm is

|U| > qn − |C |Volq(d, n)

and the algorithm stops and returns C when |U| = 0 which entails

qn − |C |Volq(d, n) 6 0.

Moreover, the constructed code has minimum distance d since at each iteration U is the set
of words whose distance to every element of C is strictly larger than d.

Remark 25. Actually Theorem 4.9 holds for linear codes, i.e. there exists a linear code
satisfying the lower bound of the Theorem. See Exercise 3 Sheet 1.

As for the upper bounds, the Gilbert Varshamov bound has an asymptotic counterpart.
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Theorem 4.10. There exists a sequence of linear codes (Cs)s over a fixed field Fq whose
lengths tend to infinity, whose rates sequence converges to R and relative distance sequence
converges to δ and such that

R > 1−Hq(δ).

Proof. Consider a sequence (Cn)n of codes of length n over a fixed field Fq satisfying the
inequality of Theorem 4.9. Then the sequences (Rn)n and (δn)n of rates and relative distances
are bounded and hence by Bolzano Weierstrass, one can extract a subsequence (Cs)s such
that the sequences of rates and relative distance converge.

Then, for all s,
qns−ks 6 Volq(ns, ds) 6 qnsHq(

ds
ns

),

where the second inequality is a consequence of Lemma 3.11. Then, applying logq and
dividing both sides by ns yields

1−Rs 6 Hq(δs)

and we conclude by passing to the limit.

The asymptotic Gilbert Varshamov bound for q = 2 is represented in Figure 4.2.
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Figure 4.2: The asymptotic Gilbert Varshamov bound for q = 2

4.2.2 Random codes and the Gilbert Varshamov bound

A fundamental property of coding theory is that, with a high probability, the parameters of
a random code are close to the Gilbert Varshamov bound.

Theorem 4.11. Let 0 < δ < 1− 1
q
. Let ε > 0 and let C ⊆ Fnq be a random code of dimension

k 6 (1−Hq(δ)− ε)n. Then,

P
(
dmin(C ) > δn

)
> 1− q−εn.
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Proof. From Lemma 3.12, C = Im(G) where G is a uniformly random k×n matrix of rank
k. Then,

P
(
dmin(C ) 6 δn

)
= P

(
∃m ∈ Fkq \ {0}, wH(mG) 6 δn

)
(4.5)

6
∑

m∈Fkq\{0}

P
(
wH(mG) 6 δn

)
. (4.6)

From Lemma 3.13, for allm ∈ Fkq \{0} the wordmG is a uniformly random word of Fnq \{0}.
Therefore,

P
(
wH(mG) 6 δ

)
=

Volq(δn, n)

qn
6 qn(Hq(δ)−1),

where the last inequality is a direct consequence of Lemma 3.11. Therefore, (4.6) becomes

P
(
dmin(C ) 6 δn

)
6 (qk − 1)qn(Hq(δ)−1)

6 qn(1−Hq(δ)−ε)−n(Hq(δ)−1)

6 q−εn.

4.3 Conclusion
Finally a natural question is which pair (δ, R) is achievable by a sequence of codes? That is,
for which pairs (δ, R) there exist a sequence of codes (Cs)s whose relative distance sequence
converges to δ and rate sequence converges to R? is the limit of the re To address this
question, we use first the following lemmas allowing to construct bad codes from good ones.

Lemma 4.12. Let (Cs)s be a sequence of codes over a fixed field Fq whose rates and relative
distances converge to (δ, R), then, for all 0 6 R′ 6 R, there exists a sequence (C ′s)s whose
relative parameters converge to (R′, δ).

Proof. For all s ∈ N choose a minimum weight codeword cs ∈ Cs. Then, choose an arbitrary
subcode C ′s of Cs containing cs and of dimension min{bR′nsc, dim Cs}. For s large enough,
dim C ′s = bR′nsc and its minimum distance equals that of Cs since it contains cs. Therefore,
the parameters of the sequence (C ′s)s converge to (R′, δ).

Lemma 4.13. Let (Cs)s be a sequence of codes over a fixed field Fq whose rates and relative
distances converge to (δ, R), then, for all 0 6 δ′ 6 δ, there exists a sequence (C ′s)s whose
relative parameters converge to (R, δ′).

Proof. For all s, choose a minimum weight codeword cs of Cs. For s large enough, wH(cs) >
δ′ns and, for such large enough ns choose Is ⊆ {1, . . . , ns} such that

|Is| =
⌊
wH(cs)− δ′ns

1− δ′
⌋
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and which is contained in the support of cs, i.e. for all i ∈ Is, the i–th entry of cs is nonzero.
Such a choice is possible since one checks easily that wH(cs) > |Is|. Notice that

lim
s→+∞

|Is|
ns

=
δ − δ′
1− δ′ · (4.7)

Next, consider the map

φs :

{
Fnsq −→ Fns−|Is|q

(x1, . . . , xns) 7−→ (xi)i∈{1,...,ns}\Is

and set C ′′s
def
= φs(Cs) and c′′s

def
= φs(cs). This code has length ns − |Is| and, by construction,

c′′s is a minimum weight codeword of Cs of weight wH(cs) − |Is|. Moreover, since |Is| is
smaller than the minimum distance of Cs, then the restriction of φs to Cs is injective (same
argument as in the proof of Singleton bound, Theorem 4.1), hence Cs and C ′′s have the same
dimension. Therefore since C ′′s has a shorter length, its rate is higher than that of Cs.

Finally, choose C ′s a subcode of C ′′s of dimension min{bR(ns−|Is|)c, dim C ′′s } and contain-
ing c′′s which equals bR(ns−|Is|)c for s large enough. Hence, for s large enough, the code C ′s
has length ns−|Is|, dimension bR(ns−|Is|)c and minimum distance wH(c′′s) = wH(cs)−|Is|.
Therefore, the rate of the sequence (Cs)s converges to R and, thanks to (4.7), the relative
distance converges to

lim
s→+∞

wH(cs)− |Is|
ns − |Is|

= lim
s→+∞

wH(cs)
ns
− |Is|

ns

1− |Is|
ns

=
δ − δ−δ′

1−δ′

1− δ−δ′
1−δ′

= δ′.

Consequently, Lemmas 4.12 and 4.13 assert that, as soon as a point (δ, R) is achieved,
every point in the square with top right hand corner (δ, R) and bottom left hand corner (0, 0)
can be achieved too. Thanks to this fact and to Theorem 4.11, we know that all the area
below the Gilbert Varshamov bound is achievable. On the other hand, we know that every
point above the Hamming, or Plotkin bound is non achievable. This raises the question of the
intermediary area represented in Figure 4.3. Are some points above the Gilbert Varshamov
bound achievable?

This problem is still widely open. In particular, for binary codes, there is no known
explicit family beating the Gilbert Varshamov bound and there is no evidence about the
existence or non existence of such a family. Up to the beginning of the 80’s the common
belief was that asymptotic Gilbert Varshamov bound is optimal and no family could exceed
it. This belief turns out to be false. Indeed, in 1982, Tsfasman Vlăduţ and Zink proved the
existence of families of codes beating Gilbert Varshamov bound over all field Fq such that q
is a square and q > 49. These codes constructed by methods arising from algebraic geometry
and number theory. For further details see [VNT07, TVZ82, Mor91].
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Figure 4.3: An open Problem (the bounds are represented for q = 2)
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Chapter 5

Duality

Duality is a fundamental notion in coding theory. Roughly speaking, to each code C ⊆ Fnq is
associated a dual or orthogonal code C ⊥. In many situations of coding theory, the properties
of the dual code help to have a better understanding of the code itself.

5.1 The dual code

5.1.1 Definitions

We introduce the canonical inner product on Fnq defined as

〈·, ·〉 :

{
Fnq × Fnq −→ Fq
(x,y) 7−→ ∑n

i=1 xiyi
.

Proposition 5.1. The canonical inner product is non degrenerated, i.e. if 〈x,y〉 = 0 for all
y ∈ Fnq , then x = 0.

Proof. Let (e1, . . . , en) be the canonical basis of Fnq . Then, for all i ∈ {1, . . . , n},

〈x, ei〉 = xi

Thus, if 〈x, ei〉 = 0 for all i, then xi = 0 for all i.

Definition 5.2. Let C ⊆ Fnq . The orthogonal or dual of C is defined as

C ⊥
def
=
{
x ∈ Fnq | ∀c ∈ C , 〈c,x〉 = 0

}
.

A natural question is why choosing this bilinear form? There are many non degenerated
bilinear forms on Fnq , why choosing this one? The reason is that this bilinear form behaves
well with the Hamming metric:

• The canonical basis is orthogonal for 〈·, ·〉 and the Hamming weight is naturally as-
sociated to the canonical basis since the Hamming weight of a word is the number of
terms of its decomposition in this basis.
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• One can prove (see Exercises) that the linear isometries of Fnq for the Hamming distance
form a group of matrices spanned by the permutation matrices and the invertible
diagonal matrices. For this bilinear form, the diagonal matrices are self-adjoint (i.e.
symmetric) and the permutation matrices are orthogonal, i.e. for such a permutation
σ,

∀x,y ∈ Fnq , 〈x, σ(y)〉 =
〈
σ−1(x),y

〉
.

Therefore, Hamming isometries are remarkable endomorphisms with respect of 〈·, ·〉.

5.1.2 Basic properties

Notation 5.1. In what follows, given a matrix M ∈ Ma,b(Fq), we denote respectively by
kerlM and kerrM its left and right kernel. That is

kerlM
def
=
{
m ∈ Faq | mM = 0

}
and kerrM

def
=
{
v ∈ Fbq |MvT = 0

}
.

In the same manner, we define left and right images as

ImlM
def
=
{
mM | m ∈ Faq

}
and ImrM

def
=
{
MvT | v ∈ Fbq

}
.

Proposition 5.3. Let G, H be respectively a generator matrix and a parity–check matrix
of C , then

• H is a generator matrix for C ⊥;

• G is a parity–check matrix for C ⊥.

In particular,
dim C + dim C ⊥ = n.

Proof. By definition, C = kerrH . Therefore, every row h of H satisfies 〈h, c〉 = 0 for all
c ∈ C . Thus, ImrH ⊆ C ⊥. This entails in particular dim C ⊥ > n− k. On the other hand,
C = ImlG and hence every row g of G is in C and satisfies 〈g, c〉 = 0 for all c ∈ C ⊥.
Therefore, C ⊥ ⊆ kerrG which entails in particular that dim C ⊥ 6 n − k. Putting all
together, we get that dim C ⊥ = n− k and C ⊥ = kerrG = ImlH .

Proposition 5.4. (i) (C ⊥)
⊥

= C .

(ii) {0}⊥ = Fnq and (Fnq )⊥ = {0}.

(iii) Given two codes C ,C ′ such that C ⊆ C ′, then C ⊥ ⊇ C ′⊥.

(iv) Given two codes C ,C ′, (C + C ′)⊥ = C ⊥ ∩ C ′⊥ and (C ∩ C ′)⊥ = C ⊥ + C ′⊥.
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Proof. Let c ∈ C , then, for all c′ ∈ C ⊥, 〈c, c′〉 and hence c ∈ (C ⊥)
⊥. Moreover, from

Proposition 5.3, C and (C ⊥)
⊥ have the same dimension. This proves (i). The equality

{0}⊥ = Fnq is obvious. The equality (Fnq )⊥ = {0} is a consequence of (i). This proves (ii).
Let c′ ∈ C ′⊥, then by definition, for all c ∈ C ′, 〈c′, c〉 = 0. Since C ⊆ C ′, for all c ∈ C ,
〈c′, c〉, hence c′ ∈ C ⊥, this proves (iii). Finally, let since C ,C ′ ⊆ C + C ′, then, from (iii),
(C + C ′)⊥ ⊆ C ⊥ ∩ C ′⊥. Conversely, let c ∈ C ⊥ ∩ C ′⊥ then, for all x ∈ C and all x′ ∈ C ′,
we have 〈c,x+ x′〉 = 〈c,x〉 + 〈c,x′〉 = 0 and hence C ⊥ ∩ C ′⊥ ⊆ (C + C ′)⊥. This proves
the first equality of (iv). The seconde equality is obtained by replacing C by C ⊥, C ′ by C ′⊥

and applying (i).

5.1.3 Caution

Let us emphasize two facts which may be confusing.

Be careful with the term “dual”

Regarding a code C as an intrinsic vector space of dimension k, what is usually referred to
as the dual of C in linear algebra is the space of linear forms on C , that is the space:

C ∨
def
= HomFq(C ,Fq).

This vector space is not the dual code C ⊥. Indeed, this space has dimension k while C ⊥

has dimension n − k as proved in Proposition 5.3. If we used the classical terminology of
Euclidean algebra, the space C ⊥ would be referred to as the orthogonal space of C .

Be careful with isotropy

It is tantalising to reason by analogy with Euclidean geometry, since 〈·, ·〉 looks like the
canonical scalar product over the reals. Moreover, Proposition 5.4 suggests that many prop-
erties from Euclidean geometry still hold in our context.

However, we should be careful with the following fact. Given an Euclidean or Hermitian
vector space E and F ⊆ E, then we always have F ⊕ F⊥ = E, which is false in positive
characteristic: in general given a code C ⊆ Fnq we may have

C ∩ C ⊥ 6= {0}.
The intersection C ∩ C ⊥ is usually referred to as the hull of the code and may be large.
An extremal example is given by the so called self–dual codes which satisfy C = C ⊥. For
instance the code over F2 with generator matrix(

1 0 1 0
0 1 0 1

)
.

This difference with Euclidean geometry is due to the presence of nonzero isotropic vectors for
the quadratic form associated to the inner product i.e. nonzero vectors satisfying 〈x,x〉 = 0.
Such vectors do not exist in an Euclidean or Hermitian vector space while one can prove
that Fnq has nonzero isotropic vectors for all n > 3.
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5.2 Duality between some code constructions

5.2.1 Duality between shortening and pucturing

Theorem 5.5. Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n}. Then

SI
(
C ⊥
)

= (PI (C ))⊥ and, equivalently, PI
(
C ⊥
)

= (SI (C ))⊥.

Proof. Let G be a full rank generator matrix of C and G′ be the matrix obtained from
G by deleting the columns whose index is in I. From Proposition 5.3, G is a parity–
check matrix for C ⊥, from Proposition 1.19, G′ is a generator matrix of PI (C ) and, from
Proposition 1.23, it is a parity–check matrix of SI

(
C ⊥
)
. Appying Proposition 5.3 we get

that (PI (C ))⊥ = SI
(
C ⊥
)
.

The second statement can be obtained directly by replacing C by C ⊥ and using (C ⊥)
⊥

=
C (Proposition 5.4(i))

5.2.2 Duality between subfield subcode and trace code : Delsarte
Theorem

In what follows we deal with codes over Fq and codes over Fqm . Thus, we consider two
canonical inner products, one on Fnq and another one on Fnqm which are respectively denoted
as 〈·, ·〉Fnq and 〈·, ·〉Fnqm . Note that there is a canonical field inclusion Fq ↪→ Fqm and hence
that given two vectors u,v ∈ Fnq then

〈u,v〉Fnq = 〈u,v〉Fnqm .

Theorem 5.6 (Delsarte Theorem [Del75, Theorem 2]). Let C ⊆ Fnqm. Then,

(C|Fq)
⊥ = Tr(C ⊥) and, equivalently (C ⊥)|Fq = (Tr(C ))⊥

Proof. As for the proof of Theorem 5.5, the two statements are equivalent and one deduces
one from the other by replacing C by C ⊥ and using Proposition 5.4(i). Thus, let us prove
the first statement. Let u ∈ C ⊥ and v ∈ C|Fq .

〈Tr(u),v〉Fnq =
n∑
i=1

Tr(ui)vi

and, since for all i, vi ∈ Fq, using the Fq–linearity of the trace we obtain.

〈Tr(u),v〉Fnq =
n∑
i=1

Tr(uivi)

= Tr(〈u,v〉Fnqm ) = 0.

56



This proves
Tr(C ⊥) ⊆ (C|Fq)

⊥. (5.1)

Conversely, let u ∈ (Tr(C ⊥))
⊥ and v ∈ C ⊥. Let λ ∈ Fqm .

Tr(λ〈u,v〉Fnqm ) = Tr

(
λ

n∑
i=1

uivi

)

=
n∑
i=1

Tr(λuivi).

Moreover, since u ∈ (Tr(C ⊥))
⊥, it is an element of Fnq and hence, by the Fq–linearity of the

trace, we get

Tr(λ〈u,v〉Fnqm ) =
n∑
i=1

uiTr(λvi)

= 〈u, λv〉Fnqm .

Finally, since C ⊥ is Fqm–linear, λv ∈ C ⊥ and the last term is zero. Thus,

∀λ ∈ Fqm , Tr(λ〈u,v〉Fqm ) = 0.

Consequently, from Corollary 1.29, we get 〈u,v〉Fnqm = 0. Therefore,

(Tr(C ⊥))
⊥ ⊆ C

and, since the left–hand term is a code contained in Fnq , we get

(Tr(C ⊥))
⊥ ⊆ C ∩ Fnq = C|Fq

and hence, using Proposition 5.4(iii) we conclude that

(C|Fq)
⊥ ⊆ Tr(C ⊥). (5.2)

Putting (5.2) and (5.2) together, we get the result.

5.3 Metric relations between a code and its dual, McWilliams
Theorem

In the previous section, we obtained an elementary identity relating the dimension of a code
with that of its dual, namely

dim C + dim C ⊥ = n.
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A natural question, is is there a relation between the minimum distance of C and that of
C ⊥? Unfortunately, the answer is negative. It is possible to construct sequences of codes
(Cs)s whose minimum distances and dual minimum distances are linear in the code length,
i.e. satisfy

ds ∼ δns and d⊥s ∼ δ⊥ns

with δ, δ⊥ > 0. This is for instance what happens for the so-called algebraic geometry codes
constructed by Tsfasman Vlăduţ and Zink to beat the asymptotic Gilbert Varshamov bound
(see Chapter 4). On the other hand, some families of codes called LDPC codes1 have a
minimum distance linear in the length and a bounded dual distance, i.e:

ds ∼ δns and d⊥s 6 w

for some fixed constant w and for some δ > 0.
Actually, the previous examples show that the minimum distance is a too coarse invariant

for this question. On the other hand, there exist actual deep relations between the metric
structure of a code and its dual. But these relations imply not only the minimum distance
but all the weights of the codewords.

5.3.1 The weight enumerator of a code

Definition 5.7. Let C be a code, then for all t ∈ {0, . . . , n}, we define

wt(C )
def
= |{c ∈ C | wH(c) = t}|.

The weight enumerator (resp. homogeneous weight enumerator) is the polynomial defined as

P ]
C (z)

def
=

n∑
i=0

wiz
i and PC (x, y) =

n∑
i=0

wix
iyn−i.

Remark 26. Since C is linear, it contains 0 and hence P ]
C (0) = 1. Moreover, if C has

minimum distance d, then
P ]

C (z) = 1 + zdQ(z)

for some polynomial Q with degQ 6 n− d.

5.3.2 McWilliams Theorem

Theorem 5.8 (McWilliams Theorem). Let C ⊆ Fnq be a linear code, then

PC⊥(x, y) =
1

|C |PC (y − x, y + (q − 1)x).

1 Low Density Parity Check codes, i.e. codes having a “sparse” parity check matrice. More precisely, a
sequence of codes (Cs)s is said to be LDPC if they have for all s a parity–check matrix Hs with row weight
bounded by a constant w.
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This statement is proved in §5.3.3.

Example 5.9. Let C ⊆ Fn2 be the repetition code i.e. the code of dimension 1 spanned by
(1, . . . , 1). We have

PC (x, y) = yn + xn.

The dual C ⊥ is the parity code (see §1.3.2). Thus,

PC⊥ =

bn
2
c∑

i=0

(
n

2i

)
x2iyn−2i.

Moreover,

PC (y − x, y + x) = (y − x)n + (y + x)n

=
n∑
k=0

(
n

k

)
(−1)kxkyn−k +

n∑
k=0

(
n

k

)
xkyn−k

= 2

bn
2
c∑

i=0

(
n

2i

)
x2iyn−2i.

Which gives 1
2
PC (y − x, y + x) = PC⊥(x, y).

Corollary 5.10 (McWilliams Theorem for the non homogeneous weight enumerator). Let
C ⊆ Fnq be a linear code, then

P ]
C⊥

(z) =
1

|C |(1 + (q − 1)z)nP ]
C

(
1− z

1 + (q − 1)z

)
.

Proof of Corollary 5.10. It is easy to deduce P ]
C from PC :

P ]
C (z) = PC (z, 1).

On the other hand, since PC is a homogeneous polynomial of degree n, then for all λ ∈ Fq,

PC (λx, λy) = λnPC (x, y).

Therefore,

PC (x, y) = ynPC

(
x

y
, 1

)
= ynP ]

C

(
x

y

)
. (5.3)

Thus, set z = x
y
, then

yn
(

1 + (q − 1)
x

y

)n
P ]

C

(
1− x

y

1 + (q − 1)x
y

)
= (y + (q − 1)x)P ]

C

(
y − x

y + (q − 1)x

)
and, from (5.3), the last expression is nothing but PC (y − x, y + (q − 1)x).
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5.3.3 Proof of McWilliams Theorem

Trace and characters

The proof of McWilliams requires the introduction of the characters of the additive group
Fq.

Notation 5.2. In what follows, ζn ∈ C denotes the primitive p–th root of 1, ζp
def
= e

2iπ
p .

Since ζpp = 1, then, for all a ∈ Z the number ζap depends only on the class of a modulo p.
Therefore, for all u ∈ Fp, the expression ζup makes sense.

Definition 5.11 (Characters of Fq). For all a ∈ Fq, the character χa is defined as the map

χa :

{
Fq −→ C×

x 7−→ ζ
TrFq/Fp (ax)
p .

In particular, if q = p, then χa(x) = ζaxp .

Sums of characters

The following statements are central in the proof of Theorem 5.8.

Lemma 5.12. (i) Let x0 ∈ Fq, then∑
a∈Fq

χa(x0) =

{
0 if x0 6= 0
q else.

(ii) Let a0 ∈ Fq, then ∑
x∈Fq

χa0(x) =

{
0 if a0 6= 0
q else.

Proof. Let us prove first that both statements are equivalent, indeed,∑
a∈Fq

χa(x0) =
∑
a∈Fq

ζ
TrFq/Fp (ax0)
p =

∑
x∈Fq

ζ
TrFq/Fp (a0x)
p =

∑
x∈Fq

χa0(x).

Therefore, it is sufficient to prove (i). If x0 = 0, then the sum becomes∑
a∈Fq

ζ0
p = |Fq| = q.

If x0 6= 0, then the map

Tr( · x0) :

{
Fq −→ Fp
a 7−→ TrFq/Fp(ax0)
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is a nonzero Fp–linear form on Fq (see Lemma 1.28). Hence, its kernel is an Fp–hyperplane
of Fq and hence has Fp–dimension m− 1, that is

| kerTr( · x0)| = pm−1.

More generally, since it is nonzero, then it is surjective and for all u ∈ Fp,

|{a ∈ Fq | TrFq/Fp(ax0) = u}| = | kerTr( · x0)| = pm−1.

Consequently,

∑
a∈Fq

ζ
TrFq/Fp (ax0)
p = pm−1

∑
u∈Fp

ζu = pm−1

p−1∑
j=0

ζjp = pm−1
1− ζpp
1− ζp

= 0

Lemma 5.13. Let C ⊆ Fnq be a code, then for all u ∈ Fnq∑
c∈C

χ1(〈c,u〉) =

{
|C | if u ∈ C ⊥

0 else.

Proof. If u ∈ C ⊥ then, the sum is ∑
c∈C

χ1(0) = |C |.

Now, assume that u /∈ C ⊥. The map

〈 · ,u〉 :

{
C −→ Fq
c 7−→ 〈c,u〉

is an Fq–linear form over C . Moreover, by definition of C ⊥, since we assumed u /∈ C ⊥, this
linear form is nonzero. Therefore, its kernel is a hyperplane of C and hence has qk−1 elements,
where k denotes the dimension of C . Since the linear form is nonzero, it is surjective and
for all a ∈ Fq, we have

|{c ∈ C | 〈c,u〉 = a}| = | ker 〈 · ,u〉 | = qk−1.

Consequently, ∑
c∈C

χ1(〈c,u〉) = qk−1
∑
a∈Fq

χ1(a) = 0,

where the last equality is a direct consequence of Lemma 5.12(ii) (since 1 6= 0).
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Proof of Theorem 5.8

We have
PC⊥(x, y) =

∑
c∈C⊥

xwH(c)yn−wH(c) = yn
∑
c∈C⊥

(xy−1)
wH(c)

.

Using Lemma 5.13, we get

PC⊥(x, y) = yn
∑
c∈Fnq

1

|C |
∑
x∈C

χ1(〈c,x〉)(xy−1)
wH(c)

.

For all a ∈ Fq, set

wH(a)
def
=

{
1 if a 6= 0
0 else.

Then, after swapping the sums,

PC⊥(x, y) =
yn

|C |
∑
x∈C

∑
c∈Fnq

ζ
TrFq/Fp (〈c,x〉)
p (xy−1)

wH(c)
.

=
yn

|C |
∑
x∈C

∑
c∈Fnq

ζTr(c1x1)+···+Tr(cnxn)
p (xy−1)

wH(c1)+···+wH(cn)

=
yn

|C |
∑
x∈C

n∏
i=1

∑
ci∈Fq

ζTr(cixi)
p (xy−1)wH(ci)


=

yn

|C |
∑
x∈C

n∏
i=1

∑
c∈Fq

χc(xi)(xy
−1)wH(c)


=

yn

|C |
∑
x∈C

n∏
i=1

1 + xy−1
∑
c∈F×q

χc(xi)

 .

Remind that, from Lemma 5.12(i),∑
c∈F×q

χc(xi) =

{
q − 1 if xi = 0
−1 else

Therefore,

PC⊥(x, y) =
yn

|C |
∑
x∈C

(1 + (q − 1)xy−1)n−wH(x)(1− xy−1)wH(x)

=
1

|C |
∑
x∈C

(y − x)wH(x)(y + (q − 1)x)n−wH(x).

This concludes the proof.
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Chapter 6

Reed Solomon codes

Reed–Solomon codes is a family of codes with many remarkable properties. Among others,
they are MDS, i.e. their minimum distance equals n−k+1 and there exist efficient decoding
algorithms to correct any pattern of bd−1

2
c errors. A major breaktrough in the topic of

algebraic codes is due to Sudan [Sud97] who gave in 1997 a polynomial time algorithm
allowing to correct beyond the radius bd−1

2
c.

The family of Reed–Solomon codes is of central interest in coding theory since many
algebraic constructions of codes such as BCH codes, Goppa codes, alternant codes derive
from the family of Reed Solomon codes or generalised Reed Solomon codes.

Reed Solomon codes are practically used for instance in compact discs, DVD’s, BluRay’s,
ADSL, QR codes etc...

6.1 Definition and first properties
Notation 6.1. Let s be a positive integer, we denote respectively by Fq[X]<s and Fq[X]6s
the spaces of polynomials of degree less than (resp. less than or equal to) s.

Definition 6.1. Let x = (x1, . . . , xn) be an n–tuple of pairwise distinct elements of Fq
(in particular n 6 q) and let k 6 n. The code RSk(x) is defined as

RSk(x)
def
= {(f(x1), . . . , f(xn)) | f ∈ Fq[x]<k} .

Remark 27. The code RSk(x) has a generator matrix of the form
1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
...

...
...

xk−1
1 xk−1

2 · · · xk−1
n

 .

which is a truncated Van Der Monde matrix (the n− k last rows are removed).

63



Proposition 6.2. Let x = (x1, . . . , xn) be an n–tuple of pairwise distinct elements of Fq
(in particular n 6 q) and let k 6 n. The code RSk(x) has parameters [n, k, n− k + 1]. It is
an MDS code.

Proof. Consider the map

φk,x :

{
Fq[x]<k −→ Fnq
f 7−→ (f(x1), . . . , f(xn)).

This map is injective, indeed, let f ∈ Fq[x]<k such that f(x1) = · · · = f(xn) = 0. Then f
has n distinct roots, while its degree is < k and hence < n. Thus f = 0. Consequently,

dimFq RSk(x) = dimFq Fq[x]<k = k.

Next, let c = (f(x1), . . . , f(xn)) ∈ RSk(x) be a nonzero codeword. That is f 6= 0. Then
f has at most k − 1 distinct roots and hence wH(c) > n − k + 1. Therefore the minimum
distance of RSk(x) is bounded below by n − k + 1. It is also bounded above by the same
quantity because of the Singleton bound. Thus

dmin(RSk(x)) = n− k + 1.

Remark 28. A major drawback of Reed-Solomon codes is that their length is upper bounded
by the size of the alphabet Fq. In particular, compared to Chapter 4 in which we considered
the asymptotic behaviour of sequence of codes over a fixed base field whose length was
tending to infinity, no such family of RS codes exists since if we consider codes over a fixed
base field Fq all the RS codes have length 6 q.

Reed Solomon codes form a subfamily of a larger family of codes:

Definition 6.3 (Generalised Reed Solomon codes). Let x1, . . . , xn be pairwise distinct ele-
ments of Fq and y1, . . . , yn be elements of F×q . Then we define the code

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[x]<k} .

Notice that since the yi’s are nonzero, the map{
Fnq −→ Fnq

(u1, . . . , un) 7−→ (y1u1, . . . , ynun)

is an isomorphism that preserves the Hamming weights (i.e. an isometry). Since this map
sends RSk(x) onto GRSk(x,y), then both codes are isometric and hence have the same
dimension and minimum distance. In particular, a GRS code is MDS too.
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6.2 Duality

6.2.1 The special case of full support codes

Theorem 6.4. Let x1, . . . , xn ∈ Fq be pairwise distinct and such that n = q, i.e. the set
{x1, . . . , xn} equals the set of elements of Fq. Then for all k 6 n,

RSk(x)⊥ = RSn−k(x).

To prove this result we need the following lemma.

Lemma 6.5. For all 0 < t 6 q − 1, we have∑
α∈Fq

αt =

{
0 if t < q − 1
−1 if t = q − 1.

Proof. Remind that the multiplicative group F×q is cyclic and hence there is an element
γ ∈ F×q such that {1, γ, γ2, . . . , γq−2} = F×q . Now,

∑
α∈F×q

αt =

q−1∑
i=0

γit.

If t 6= q − 1, then γt 6= 1 and we have the sum of the elements of a geometric progression:

∑
α∈F×q

αt =
1− γt(q−1)

1− γt

which is equal to 0 since γq−1 = 1. On, the other hand if t = q − 1, then we have∑
α∈F×q

αq−1 =
∑
α∈F×q

1 = q − 1

which equals 1 in Fq. This concludes the proof.

Proof of Theorem 6.4. As noticed in Remark 27, the codes RSk(x) and RSn−k(x) have
generator matrices respectively of the form

1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
...

...
...

xk−1
1 xk−1

2 · · · xk−1
n

 and


1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
...

...
...

xn−k+1
1 xn−k+1

2 · · · xn−k+1
n

 .
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We will prove that any row of the first matrix is orthogonal to any row of the second. First
notice that the first row of the left hand matrix is orthogonal to the first row of the right
hand matrix since the product is

〈(1, . . . , 1), (1, . . . , 1)〉 =
n∑
i=1

1 = n

and since n = q the sum is zero in Fq. Next, for all 0 6 i < k and all 0 6 j < n − k such
that i+ j 6= 0, we have1

〈
(xi1, . . . , x

i
n), (xji , . . . , x

j
n)
〉

=
n∑
`=0

xi+j` =
∑
x∈Fq

xi+j

which is zero from Lemma 6.5. By linearity, we deduce that every codeword of RSk(x) is
orthogonal to every codeword of RSn−k(x) and hence,

RSn−k(x) ⊆ RSk(x)⊥.

The converse inclusion is obtained by noting that, thanks to Propositions 6.2 and 5.3, both
codes have the same dimension

The general case

In general, the dual of a Reed–Solomon code is not a Reed–Solomon code but it is always a
generalised Reed–Solomon code. More precisely we always have the following result.

Theorem 6.6. Let x = (x1, . . . , xn) ∈ Fnq where the xi’s are pairwise distinct and y =
(y1, . . . , yn) ∈ (F×q )

n. Then,

GRSk(x,y)⊥ = GRSn−k(x,y
′),

where y′ = (y′1, . . . , y
′
n) with for all i,

y′i
def
= − 1

yi
∏n

i=1
j 6=i

(xj − xi)
·

To prove the Theorem, we first use the following lemma.

Lemma 6.7.
∏

α∈F×q α = −1.

Proof. The elements of F×q are the roots of the polynomial Xq−1−1. By the formulas relating
coefficients and elementary symmetric functions on the roots,∏

α∈F×q

= (−1).(−1)q−1.

This quantity is −1 if q is odd and 1 if q is even, but if q is even, then 1 = −1.
1With the convention 00 = 1.
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Proof of Theorem 6.6. First consider the case of a full support i.e. where n = q and hence
{x1, . . . , xn} = Fq. In this situation, for all i ∈ {1, . . . , n},∏

j 6=i

(xj − xi) =
∏
α∈F×q

α = −1,

where the lat equality is due to Lemma 6.7. Therefore in the case of a full support,

∀i ∈ {1, . . . , n}, y′i = − 1

yi
·

Then, let f ∈ Fq[X]<k and g ∈ Fq[X]<n−k, then

〈(y1f(x1), . . . , ynf(xn)), (y′1g(x1), . . . ,−y′ng(xn))〉 =
n∑
i=1

yiy
′
if(xi)g(xi)

= −〈(f(x1), . . . , f(xn)), (g(x1), . . . , g(xn))〉 .

Since the words (f(x1), . . . , f(xn)) and (g(x1), . . . , g(xn)) are respectively in RSk(x) and
RSn−k(x) their inner product is 0 thanks to Theorem 6.4. Therefore

GRSk(x,y) ⊆ GRSn−k(x,y)⊥

and the converse inclusion holds due to the equality of dimension of the codes.

In the general case, first set

Q(X)
def
=

∏
α∈Fq\{x1,...,xn}

(X − α).

Next, notice that for all j ∈ {1, . . . , n}

y′j = − 1

yj
∏n

i=1
i 6=j

(xj − xi)

=

∏
α∈Fq\{x1,...,xn}(xj − α)

yj
∏

α∈Fq\{j}(xj − α)

=

∏
α∈Fq\{x1,...,xn}(xj − α)

yj
∏

α∈F×q α

= − 1

yj
Q(xj).

Consequently, let f ∈ Fq[X]<k and g ∈ Fq[X]<n−k,

〈(y1f(x1), . . . , ynf(xn)), (y′1(x1), . . . , y′ng(xn))〉 = −
n∑
i=1

Q(xi)f(xi)g(xi)
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Since Q vanishes at every α ∈ Fq \ {x1, . . . , xn},

〈(y1f(x1), . . . , ynf(xn)), (y′1(x1), . . . , y′ng(xn))〉 = −
∑
α∈Fq

Q(α)f(α)g(α). (6.1)

Let α = (α1, . . . , αq) be an n–tuple of pairwise distinct elements in Fq, i.e. such that
{α1, . . . , αq} = Fq. Then, the right hand side of (6.1) is the inner product in Fqq of the words
(Q(α1)f(α1), . . . , Q(αq)f(αq)) and (g(α1), . . . , g(αq)) which are respectively in RSk+q−n(α)
and RSn−k(α) which are dual to each other thanks to Theorem 6.4. Consequently,

〈(y1f(x1), . . . , ynf(xn)), (y′1(x1), . . . , y′ng(xn))〉 = 0

and hence GRSk(x,y) ⊆ GRSn−k(x,y
′)⊥ and the converse inclusion is due to the equality

of the dimensions of these codes.

6.3 Alternant codes
Actually, most of the algebraic code constructions derive from Reed Solomon codes. BCH
codes which will be studied in Chapter 9 can be constructed from Reed Solomon codes. A
larger family of codes derived from Reed Solomon of the family of alternant codes which
contains several subfamilies such as BCH codes and classical Goppa codes. Alternant codes
are nothing but subfield subcodes of Reed Solomon codes. We refer to § 1.4.3 for the definition
and properties of subfield subcodes.

A motivation for such a construction is that Reed Solomon codes have optimal parameters
and benefit from efficient polynomial time decoding algorithms (see Chapter 8). On the other
hand their major drawback, is that their length should be less than or equal to the size of
the alphabet. Alternant codes have not as good parameters as Reed Solomon codes but can
be defined over arbitrary small fields, even over F2.

Definition 6.8. Let x ∈ Fnqm be a support, i.e. a vector of pairwise distinct entries. Let
y ∈ (F×qm)n and r be an integer. The code Ar(x,y) is defined as

Ar(x,y)
def
=
(
GRSr(x,y)⊥

)
∩ Fnq

Remark 29. Note that, since the dual of a generalised Reed Solomon code (see Theorem 6.6)
is another generalised Reed Solomon code, an altenant code is nothing but a subfield subcode
of a generalised Reed Solomon code. The choice of a definition involving a dual is due to
convenience. For instance the parameters are much easier to define from this definition as
you can see in the following statement.

Proposition 6.9. The code Ar(x,y) has parameters [n,> n−mr,> r + 1].

Proof. From Theorem 6.6, the code GRSr(x,y)⊥ is a generalised Reed Solomon code of
dimension n− r and hence of parameters [n, n− r, r + 1]. Then we conclude using Proposi-
tion 1.26.
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Comment on Proposition 6.9 Note that Proposition 6.9, only gives lower bounds for
the dimension and the minimum distance. It is natural to wonder if these bounds are sharp
or not. Actually, the lower bound on the dimension is sharp in general. Some particular
constructions of altenant codes such as the so–called classical Goppa codes (see [MS77,
Chapter 12,§ 3]) have a dimension which exceeds the lower bound but this property is rather
rare.

On the other hand, the lower bound on the minimum distance is far from being sharp
in general. In particular, combinatorial methods permit to prove that some sequence of
alternant codes of constant rate reach the Gilbert Varshamov bound (see [HP03, Theorem
13.5.1]). However, since the actual minimum distance is hard to determine the lower bound
given from Proposition 6.9 is informative even if it may be far below the actual minimum
distance. Moreover, this lower bound gives a decoding radius: if we are able to decode a Reed
Solomon up to some radius t then applying the same decoder to the subfield subcode, we are
able to decode the subfield subcode up to the same radius. In chapter 8 we will show that
the unambiguous decoding, of Reed–Solomon can be performed in polynomial time. From
this decoding algorithm, one deduces a decoding algorithm for an alternant code Ar(x,y)
which corrects up to b r

2
c errors.
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Chapter 7

MDS codes

Maximum distance separable codes are an extremely exciting object of study: they are
exceptional combinatorial objects and have various applications for instance in symmetric
cryptography, since some of their generator matrices provide excellent primitive in the dif-
fusion step of block ciphers.

In the previous chapter we saw an explicit example of maximum distance separable codes
which are Reed–Solomon codes. It is well known that many MDS codes are not generalised
Reed Solomon codes. On the other hand the complete classification of MDS codes is far
from being known and many questions on MDS codes still remain open. A major and still
open question is:

Question 7.1. What is the maximum length of a non trivial MDS code over Fq?

We explain below what we mean by non trivial.

7.1 MDS codes, definition and first examples
Generator and parity check matrices of MDS codes have very particular properties which
are explained in the following statement.

Definition 7.1. An [n, k, d]q MDS code is a code reaching Singleton bound. That is to say
a code such that d = n− k + 1.

Example 7.2. The first and most elementary examples are:

• The full code : Fnq i.e. the whole ambient space is [n, n, 1]q and hence is MDS;

• By convention, we consider that the zero code {0} has minimum distance n+1. Hence
this code is MDS too. The convention is relevant since, there is no nonzero codeword
in the zero code, hence its minimum distance should be larger than n. On the other
hand, the choice d = n + 1 make the code satisfy Singleton bound. Note also that it
will be proved further in Theorem 7.6, that the dual of an MDS code is MDS and {0}
is the dual of the full code which is MDS.

70



• The repetition code spanned by (1 1 · · · 1) is [n, 1, n]q and hence is MDS.

• The repetition code defined in § 1.3.1 is [n, n− 1, 2]q. It is dual to the repetition code
and is MDS too.

Example 7.3. As explained in Chapter 6, generalised Reed Solomon codes are MDS.

7.2 Some properties of MDS codes

7.2.1 Generator and parity–check matrices of MDS codes

Proposition 7.4. Let C ⊆ Fnq be a of dimension k. Let G ∈Mk,n(Fq) and H ∈Mn−k,n(Fq)
be respective full rank generator and parity–check matrices of C . Then C is MDS if and only
if one of these two assertions is satisfied.

(1) any k × k minor of G is nonzero;

(2) any (n− k)× (n− k) minor of H is nonzero.

Proof. The proof of (1) is in the same spirit as the alternative proof for the Singleton bound
(see Remark 23). Assume that some k×k minor ofG corresponding to the columns i1, . . . , ik
is zero. By Gaussian elimination, one can construct a nonzero linear combination c ∈ C of
the rows of G such that ci1 = · · · = cik = 0. Since G has full rank and c has be constructed
as a nonzero linear combination of the rows of G and hence is nonzero. Thus the Hamming
weight of c is less than or equal to n− k, and hence C is not MDS.

Conversely, if any k×k minor is nonzero, then one cannot construct a codeword of weight
6 n− k. This proves (1).

For (2), remind that Proposition 1.11 asserts that the minimum distance of C is the least
number of linearly linked columns of H . Since H is (n − k) × n any (n − k + 1)–tuple of
columns is linked and being MDS is equivalent to the fact that any (n−k)–tuple of columns
is independent and hence that any (n− k)× (n− k) minor is nonzero.

As a consequence, given a code C and a generator matrix G = (Ik | A) in systematic
form, the right–hand block A has a very particular property.

Proposition 7.5. Let C be an MDS code and G = (Ik | A) be its systematic generator
matrix. Then, any minor of A is nonzero. In particular, any entry of A is nonzero.

Proof. By Proposition 7.4 and since k×k of A are nothing but k×k minors of G, the result
is clear for k× k minors. Let us consider a× a minors for a < k. Consider an a× a minor of
A (i.e. of G) which corresponds to the rows Ri1 , . . . , Ria of G and the columns Cj1 , . . . , Cja
such that for all 1 6 i 6 a, we have ji > k. Denote by M the corresponding submatrix of A
so that detM is the minor we are studying. Let i′1, . . . , i′k−a be a sequence of indexes such
that

{i1, . . . , ia} ∪ {i′1, . . . , i′k−a} = {1, . . . , k}
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and consider the minor corresponding to the rows i′1, . . . , i′k−a, i1, . . . , ia and the columns
i′1, . . . , i

′
k−a, j1, . . . , ja. As a submatrix, it is of the form(

In−a (∗)
(0) M

)
Therefore, the determinant of the matrix is a k× k minor of G which is nonzero by assump-
tion. Moreover, this determinant is nothing but that of M , hence the corresponding a × a
minor of A is nonzero. This concludes the proof.

For an MDS code C of length n for n even and dimension n/2, the matrix A of Proposi-
tion 7.5 is a square matrix and such matrix has only nonzero minors. Such matrices are said
to be MDS and are of central interest in symmetric cryptography since they have excellent
diffusion properties.

7.2.2 Duality

Theorem 7.6. The dual of an MDS code is MDS.

Proof. From Proposition 5.3, a generator matrix of a code is a parity–check matrix of its
dual. Thus, the result is a direct consequence of Proposition 7.4.

7.2.3 Puncturing and shortening MDS codes

Proposition 7.7. Let C ∈ Fnq be an MDS code of dimension k. Let I ⊆ {1, . . . , n}. Then,
the punctured and shorten codes PI (C ) and SI (C ) are MDS and have respective parameters
[n− |I|, k, n− k − |I|+ 1]q and [n− |I|, k − |I|, n− k + 1]q.

Proof. Let G be a full–rank generator matrix of C . From Proposition 7.4(1), any k × k
minor of G is nonzero. Now let G′ be the matrix obtained from G by removing the columns
with index in I. From Lemma 1.19, G′ is a generator matrix for PI (C ). Next, obviously
any k× k minor of G′ is nonzero, thus PI (C ) is MDS. Moreover, the MDS property entails
that G′ is full rank and hence PI (C ) has parameters [n− |I|, k, n− k − |I|+ 1]q

Next, from Theorem 5.5, we have SI (C ) = (PI
(
C ⊥
)
)
⊥, moreover, from Theorem 7.6,

C ⊥ is MDS and we proved above that PI
(
C ⊥
)
is MDS. Using Theorem 7.6 again we prove

that (PI
(
C ⊥
)
)
⊥ is MDS and hence SI (C ) is MDS.

7.3 Length of MDS codes, the MDS conjecture
As explained in Chapter 6, Reed Solomon codes are MDS but their major drawback is that
their length is bounded above by the size of their base field. It is actually possible to extend
Reed–Solomon to MDS codes of length q + 1 and the existence of longer MDS codes is still
an open problem. Basically, outside Reed–Solomon codes, the only long MDS code which
are known are the trivial MDS codes of Example 7.2 and the MDS codes described by the
following statement which we will admit.
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Proposition 7.8 (Exceptional MDS codes in characteristic 2 (admitted)). Let q = 2m for
some m > 1. There exists an MDS code of length q + 2 and dimension 3 and an MDS code
of length q + 2 and dimension q − 1. The two codes are dual to each other.

Example 7.9. Consider the finite field F4 defined as F2[α] with α such that α2 +α+ 1 = 0.
Over F4, the code with generator matrix0 1 α α + 1 0 1

0 1 α + 1 α 1 0
1 1 1 1 0 0


is MDS.

Remark 30. The exceptional MDS codes come from very particular combinatorial and geo-
metric properties in characteristic 2. They can be constructed from wonderful and totally
counter–intuitive geometric objects called hyperovals which are subset of the projective plane
which exist only in characteristic 2.

Now we are able to state the well–known MDS conjecture.

Conjecture 1 (MDS conjecture). Any MDS code over Fq has length less than or equal to
q + 1 but

• the trivial MDS codes of Example 7.2;

• the exceptional MDS codes in characteristic 2 of Proposition 7.8.

What do we know about this conjecture The first result one can prove on the length
of MDS codes is:

Theorem 7.10. Let C ⊆ Fnq be a non trivial (i.e. different from the codes of Example 7.2)
MDS code of length n dimension k. Then

n 6 q + k − 1.

In particular, the conjecture is true for k = 2.

Proof. Let us prove the result for k = 2. Let C be an MDS code of dimension 2 and
G ∈ M2,n(Fq) be a full–rank generator matrix of C . Since C is MDS, any pair of columns
of G should be non collinear. Therefore, if we consider for any column Ci of G the vector
line Li ⊆ F2

q spanned by Ci, the lines Li should be pairwise distinct.
On the other hand it is well–known that in the plane F2

q there are exactly q + 1 lines1:

• the line of equation y = 0

• the lines of equation y = αx for α ∈ Fs
1If you like projective geometry it is nothing but the number of elements of the projective line P1(Fq)
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Thus, we get n 6 q + 1 and the theorem is proved for k = 2.
Now, if k > 2, shorten the code C at k−2 positions. From Proposition 7.7, the shortened

code is MDS of parameters [n− (k−2), 2, n−k+ 1]q. Thus, since the result has been proved
for MDS codes of dimension 2 we can apply it to the shortened code, which yields

n− (k − 2) 6 q + 1 =⇒ n 6 q + k − 1.

Corollary 7.11. Let C be a non trivial MDS code of length n and dimension k, then
k 6 q − 1.

Proof. Applying Theorem 7.10 to C ⊥ we get

n 6 q + (n− k)− 1 =⇒ k 6 q − 1.

Finally a recent breaktrough due to Simeon Ball and Jan De Beule provides a partial
proof of the conjecture.

Theorem 7.12 ([BDB12]). Let q = pm and C ⊆ Fnq be a nontrivial MDS code of dimension
k different from the exceptional codes of Proposition 7.8. If k 6 2p− 2, then n 6 q + 1. In
particular, over a prime field Fp the conjecture is true.

74



Chapter 8

Decoding (generalised) Reed Solomon
codes

Another wonderful feature of generalised Reed Solomon codes is that they benefit to efficient
decoding algorithms. In this chapter, we first present Berlekamp Welch algorithm which
permits to correct errors up to half the minimum distance. In the end of the 90’s two
consecutive breakthroughs due to Sudan [Sud97] and Guruswami Sudan [GS99] permitted
first to correct errors beyond half the minimum distance and then to correct errors up to the
so called Johnson bound (see §8.2.2). The price to pay when correcting errors beyond half
the minimum distance is that instead of solving a bounded decoding problem, the algorithm
solves the list decoding problem (see § 2.1.1).

First notice that, as soon as we have a decoding algorithm for Reed–Solomon codes, then
we have a decoding algorithm for generalised Reed–Solomon codes. Indeed, assume that we
have a decoding algorithm for a Reed Solomon code RSk(x) correcting up to t errors.

Then, let c = (c1, . . . , cn) ∈ GRSk(x,y) and assume we received v = c+e = (v1, . . . , vn)
where e ∈ Fnq with wH(e) 6 t. Then, it suffices to notice that (y−1

1 c1, . . . , y
−1
n cn) is an ele-

ment of RSk(x). Therefore, compute (y−1
1 v1, . . . , y

−1
n vn) and apply our algorithm for decod-

ing RSk(x). This algorithm outputs a word c′ = (c′1, . . . , c
′
n) such that (y1c

′
1, . . . , ync

′
n) =

(c1, . . . , cn).
Thus, from now on, we only consider Reed–Solomon codes. According to the previous

remarks, it does not represents any loss of generality.

8.1 Unique decoding : Berlekamp Welch algorithm
Let x = (x1, . . . , xn) be an n–tuple of pairwise distinct elements of Fq and consider the code
RSk(x) with 1 6 k < n. Set

t
def
=

⌊
n− k

2

⌋
.
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Let c = (f(x1), . . . , f(xn)) ∈ RSk(x) with f ∈ Fq[X]<k. Let e ∈ Fnq be the error: wH(e) 6 t.
Set

y
def
= c+ e

the received word. Basically y is known while c, e are not. We introduce the following
(unknown) polynomial

E(X)
def
=

∏
i | ei 6=0

(X − xi).

The key of the algorithm reposes on the following identity:

∀i ∈ {1, . . . , n}, yiE(xi) = f(xi)E(xi). (8.1)

Indeed, either ei 6= 0 but in that case, by the very definition of E, we have E(xi) = 0 or
ei = 0 in which case, yi = f(xi).

Remind that yi’s and xi’s are known, hence the unknowns of the system of equations
given by (8.1) are the coefficients of E and those of f . Unfortunately, this system is non
linear because of the term f(xi)E(xi). For this reason, we proceed to a linearisation. Set

N
def
= Ef.

Then, (8.1) becomes
∀i ∈ {1, . . . , n}, yiE(xi) = N(xi). (8.2)

Here, (8.2) provides a new system of n equations whose unknowns are the coefficients of
E and N . The number of unknowns is k + 2t + 1 since E ∈ Fq[X]6t and hence has t + 1
coefficients and N ∈ Fq[X]6k−1+t and hence has k+ t coefficients. This new system is linear
and has a nontrivial solution given by the pair (E,Ef). Moreover, any other nontrivial
solution allows to find f , thanks to the following result.

Theorem 8.1. Let (E1, N1) and (E2, N2) ∈ Fq[X]6bn−k
2
c × Fq[X]<k+dn−k

2
e be two pairs of

nonzero solutions of (8.2). Then E1, E2 6= 0 and

N1

E1

=
N2

E2

= f.

Proof. If E1 = 0, then from (8.2) the polynomial N1 has n distinct roots while its degree is
< k + dn−k

2
e 6 n. Thus N1 = 0 which contradicts the fact that the pair (E1, N1) is nonzero.

Now, set R def
= N1E2 −N2E1. We have

deg(R) 6 k +

⌊
n− k

2

⌋
+

⌈
n− k

2

⌉
− 1 6 n− 1.

On the other hand, using the fact that (E1, N1), (E2, N2) are solutions of (8.2),

∀i ∈ {1, . . . , n}, R(xi) = N1(xi)E2(xi)−N2(xi)E1(xi)

= yiE1(xi)E2(xi)− yiE1(xi)E2(xi)

= 0.

76



Therefore, R has n distinct roots while its degree is less than n, hence this polynomial is 0.
This proves the equality N1

E1
= N2

E2
. Hence the fraction N

E
is well defined and is the same for

every nonzero pair (E,N) solution to (8.2). Since (E, fE) is solution, we get the result.

Algorithm 6: Berlekamp Welch algorithm
Input : y ∈ Fnq
Output: A codeword c ∈ RSk(x) such that y = c+ e and wH(e) 6 t if exists. Else

returns “?”
1 Let (E0, N0) be a nonzero solution of (8.2);
2 if E0 - N0 then
3 return “?”;
4 else
5 Set f def

= N0

E0
;

6 end
7 if deg f > k or dH(y, (f(x1), . . . , f(xn))) > t then
8 return “?”;
9 else

10 return (f(x1), . . . , f(xn))
11 end

8.1.1 Complexity

By solving a linear system

The most expensive part of the algorithm is the resolution of the linear system (8.2), which
has n equations and about n unknowns and hence costs O(n3) (or O(nω) if you like fast linear
algebra). After this resolution, the computation of f is done by performing an Euclidean
division of N0 by E0 which have respective degrees 6 t and 6 t + k which costs O(tk) and
the evaluation of f at the xi’s which costs O(kn) (by iterating n times the Horner evaluation
scheme). Therefore, all the operations after the resolution of the linear system are in O(n2),
which leads to:

Theorem 8.2. The complexity of Berlekamp Welch algorithm is O(n3).

Using extended Euclid algorithm

Actually, linear algebra can be avoided as follows. Let Y (X) ∈ Fq[X]<n be the Lagrabge
interpolation polynomial of the received vector y. That is, Y is the unique polynomial of
degree < n satisfying

∀i ∈ {1, . . . , n}, Y (xi) = yi.

In addition, set

Π(X)
def
=

n∏
i=1

(X − xi).
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Then, system (8.2) can be reformulated as

E(X)Y (X) ≡ N(X) mod Π(X). (8.3)

Indeed, by the Chinese remainder theorem, being congruent modulo Π means being con-
gruent modulo (X − xi) for any i ∈ {1, . . . , n} and being congruent modulo X − xi means
having the same evaluation at xi.

Then, (8.3) is equivalent to

U(X)Π(X) + E(X)Y (X) = N(X)

for some polynomial V .
On the beginning, one only knows Y (X) which can be computed from the received word

and Π(X) which only depends on the xi’s and hence can be pre-computed once for good.
Then the idea is to apply Extended Euclid algorithm to the pair (Y,Π) and stop at the good
step. To clarify that point, let us recall how extended Euclid algorithm works while using
the current notation. We refer the reader to [Dem09, § 1.5.3] for further details.

Algorithm 7: Extended Euclid algorithm
Inputs : Π, Y ∈ Fq[X]
Outputs: E, V,N ∈ Fq[X] such that N = gcd(Π, Y ) and UΠ + EY = N .

1 U0 = E1 ← 1
2 V1 = E0 ← 0
3 N0 ← Π
4 N1 ← Y
5 i← 0
6 repeat
7 Set Q,Ni+2 the quotient and remainder of the Euclidean division:

Ni = Ni+1Q+Ni+2

8 Ei+2 ← Ei − Ei+1Q
9 Vi+2 ← Vi − Vi+1Q

10 i← i+ 1

11 until Ni+1 = 0;
12 return (Ei, Vi, Ni)

In extended Euclid Algorithm, a loop invariant is that for all i > 0,

UiΠ + EiY = Ni.

On the other hand the degrees of Ei, Vi, Ni are loop variants. By definition of Euclidean di-
vision, the sequence (degNi)i is strictly decreasing. Moreover, we have the following lemma.

Lemma 8.3. For any i > 0, we have

degEi 6 degEi+1

and degEi+1 = deg Π− degNi.
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Proof. When the algorithm starts, N0 = Π and E0 = 0, E1 = 1, hence the property is
trivially satisfied (using the convention deg 0 = −∞).

Let us prove by induction that the property holds at any step. First, by definition of the
Euclidean division, we have at Step 7:

degQ = degNi+1 − degNi+2.

Next, since by assumption, on the previous step we had degEi 6 degEi+1, then

degEi+2 = deg(Ei − Ei+1Q) = degQ+ degEi+1 > degEi+1,

which, by induction, yields degEi+2 = deg Π− degNi+1. This yields the result.

Now, the idea to solve our decoding problem is to stop the extended Euclid algorithm at
a well–chosen intermediary step.

Proposition 8.4. Let i0 be the least degree such that degNi0 > k + dn−k
2
e − 1. Then

degNi0+1 6 k + dn−k
2
e − 1 and degEi0+1 6 bn−k2

c

Proof. From Lemma 8.3, we have

degEi0+1 = deg Π− degNi0

6 n−
(
k +

⌈
n− k

2

⌉)
6

⌊
n− k

2

⌋
.

Therefore, by stopping the extended Euclid algorithm at the i0–th step and returning
(Ei0+1, Ni0+1) yields a valid solution of the system without performing Gaussian elimination.
This represents a significant speedup since the naive implementation of extended Euclid
algorithm runs in O(n2) [BCG+17, Thm. 6.1]. In addition, thanks to fast arithmetic, this
complexity can be reduced to almost linear time i.e. O(nP (log(n))) for some polynomial P .
See [BCG+17, Thm. 6.16] for further details.

8.2 List decoding
A fundamental result in coding theory is that, out of trivial codes (e.g. Fnq , repetition codes),
Hamming and Golay codes (see [Dem09, Chapter 13.2]), codes are not perfect in general and
actually the density of the union of balls of radius bd−1

2
c is rather small. Roughly speaking

there remains many room out of this union of balls. This observation suggests that decoding
can be improved and that correcting more than bd−1

2
c errors might be possible. In short,

there is room for improvement.
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Example 8.5. If you consider a Reed–Solomon code over Fq with rate R = 1
2
. Using

Berlekamp Welch, one can correct up to ≈ 1−R
2
n = n

4
errors. On the other hand, Shannon

Theorem asserts the existence of an algorithm correcting almost any error pattern of weight
δn where Hq(δ) = 1−R− ε = 1

2
− ε. For q large enough (which is necessary to have n large

when dealing with Reed–Solomon codes), Hq(δ) ≈ δ and hence Shannon asserts that ≈ n
2

errors can be corrected, which is twice what Berlekamp welch can perform!

To improve the decoding radius and hence to correct more errors, a solution consists in
designing algorithms which are able to return a list of solutions instead of a unique solution.
See § 2.1.1 for further details.

For this sake, the radius r should be chosen so that the list is not too large. Indeed, if
for instance r = n then the algorithm would return the list of any codeword of the code,
which would be stupid. For this reason the decoding radius should be so that the size of the
output list is less than polynomial in the code length. This is the point of Johnson bound
introduced in §8.2.2.

Before introducing this bound let us first discuss informally the rationale behind list
decoding.

8.2.1 Are list-decoding algorithms relevant?

A natural question is: if I want to correct errors, what could I do with a list of solutions?
There are several answers which lead to a common opinion: list decoding is relevant.

1. In the list you receive, you can sort the elements by decreasing distance to the emitted
word, and choose the closest which is the solution of the maximum likelihood decoding
problem. But what if non unique?

2. If not unique, it depends on the device/situation in which you use codes, may be you
can ask the sender to resend the same block.

3. But actually we don’t care since, in practice, the algorithm turns out to return a list
of size 6 1 almost all the time.

8.2.2 The Johnson bound

For a list decoding algorithm to be relevant, the size of the list should be bounded above
and it is reasonable to expect an upper bound which is polynomial in the code length. The
Johnson bound is a bound is a bound on the number of errors that, if satisfies, asserts that
the returned list will have at most a polynomial size.

The proof of the following result is omitted and can be found in [Rud].

Theorem 8.6 (Johnson bound). Let C ⊆ Fnq be a code of minimum distance d = δn. Set

ρ
def
=

(
1− 1

q

)
·
(

1−
√

1− qδ

q − 1

)
.
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Then, for any y ∈ Fnq ,

|{c ∈ C | dH(y, c) 6 ρn}| 6 qdn = O(qn2).

The quantity ρ in the previous Theorem is a relative decoding radius and is usually
referred to as the Johnson radius.

Remark 31. For q = 2, we get a Johnson radius:

ρ2 =
1

2

(
1−
√

1− 2δ
)
.

Remark 32. When q tends to infinity, we get an asymptotic Johnson radius:

ρ∞ = 1−
√

1− δ.

In particular for a Reed–Solomon of large length, the base field should be large, and hence
q should be large. And since such a code is MDS, we get a radius

ρ = 1−
√
R.

From now on, this asymptotic relative decoding radius is our target

8.2.3 Sudan algorithm

In 1997 Madhu Sudan proposed a polynomial time list decoding algorith for Reed–Solomon
codes. This result was an impressive breakthrough in the area of algebraic coding theory for
which Sudan received the Nevanlinna award.

Notation 8.1. For a two variables polynomial P ∈ Fq[X, Y ], the total degree of P is referred
to as degP while its degree as a polynomial in X (resp. Y ) is referred to as degX P (resp.
degY P ). For instance the polynomial P := 1 + 2X + 3X2Y satisfies

degP = 3, degX P = 2, and degY P = 1.

One can reformulate Berlekamp Welch algorithm as follows. Set t def
= n−k

2
which is sup-

posed to be an upper bound on the number of errors.

Step 1. Interpolation Construct a polynomial Q ∈ Fq[X, Y ] of degree 1 in y of the form
Q = Q0(X) +Q1(X)Y with degQ0 < n− t and degQ1 6 n− k − t such that

∀i ∈ {1, . . . , n}, Q(xi, yi) = 0.

Step 2. Root finding Compute the root of Q as a polynomial in y, that is compute −Q0

Q1
.
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The algorithm works since if f ∈ Fq[X]<k is such that (f(x1), . . . , f(xn)) is the transmit-
ted word and hence has distance less than t to y, then the univariate polynomial Q(X, f(X))
is zero. Indeed, degQ0(X) + Q1(X)f(X) < n − t while this polynomial vanishes a at least
n − t of the xi’s since for all the indexes i where no error occured, yi = f(xi) and hence
Q(xi, f(xi)) = Q(xi, yi) = 0.

The key idea of Sudan is that, to correct more errors than d−1
2
, we need to allow the

algorithm to return more than one unique solution. Since the solutions are computed as
roots (with respect to the variable Y ) of Q(X, Y ), the Y –degree of Q should be larger than
1. Here is the core of Sudan’s algorithm. Assume we received a word y and we seek all the
words c ∈ RSk(x) at distance less than t from y. The optimal integer t will be determined
further.

Step 1. Interpolation. First compute a polynomial

Q =
∑̀
i=0

Qi(X)Y i

such that

(S1) ∀i, degQi + i(k − 1) < n− t;
(S2) ∀j ∈ {1, . . . , n}, Q(xj, yj) = 0.

Step 2. Root finding. Compute all the polynomials f ∈ Fq[X]<k such that Q(X, f(X)) ≡
0.

The first step consists in solving a system of linear equations. The variables of the system
are the coefficients of Q and the equations are given by the interpolation conditions. For the
second step, there is no necessity to perform a complete factorization of Q since, only the
factors of Y –degree 1 worth. These factors can be computed by Newton or Newton–Puiseux
method.
Remark 33. In practice, the most costly part of the algorithm is the first part: solving a
linear system.

The following lemma asserts that every solution of our problem is returned by the algo-
rithm.

Lemma 8.7. Let Q be a bivariate polynomial satisfying conditions (S1) and (S2). Let
f ∈ Fq[X]<k such that dH(y, (f(x1), . . . , f(xn))) 6 t. Then

Q(X, f(X)) ≡ 0.

Proof. Condition (1) on degrees asserts that

Q(X, f(X)) =
∑
i

Qif
i(X)
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has degree < n − t. Moreover, since dH(y, (f(x1), . . . , f(xn))) 6 t, then for at least n − t
indexes j, we have f(xj) = yj. Hence, because of condition (2), for at least n − t indexes
j, we have Q(xj, f(xj)) = 0. Therefore, the univariate polynomial Q(X, f(X)) has degree
< n− t and at least n− t roots. Consequently, this univariate polynomial is zero.

Remark 34. Notice that the algorithm may return polynomials which do not satisfy the con-
dition dH(y, (f(x1), . . . , f(xn))) 6 t. On the other hand, the point is that all the polynomials
which satisfy this inequality are returned.

Thus, Lemma 8.9 asserts that any solution of the list decoding problem is returned by
the algorithm. On the other hand, the size of the list is bounded above by the degree in Y
of the polynomial Q.

Decoding radius of Sudan algorithm

For the algorithm to work, the polynomial Q computed in the first step should be nonzero.
Since this polynomial is obtained as from the resolution of a linear system. If the system has
a number of variables which exceeds that of equations, then there is a nontrivial solution.
The system has n equations given by the n interpolating conditions (2).

On the other hand, the number of variables are given by the degree conditions (1). Thus
the number if variables is

v
def
=

degY (Q)∑
i=0

n− t− i(k − 1).

Therefore, the maximum possible Y –degree of Q is the maximum integer i such that

n− t− i(k − 1) > 0

That is
degY (Q) <

⌊
n− t
k − 1

⌋
.

Set ` def
=
⌊
n−t
k−1

⌋
. Therefore,

v =
∑̀
i=0

n− t− i(k − 1)

= (n− t+ 1)`− (k − 1)
`(`+ 1)

2

Finally, to make sure the linear system computed in Step 1 has a nontrivial solution, we
need to have more variables than equations, i.e. n should be less than v:

n < (n− t+ 1)`− (k − 1)
`(`+ 1)

2
(8.4)

Exact computations permit to deduce an exact decoding radius but the complete calcu-
lation is cumbersome. To get some intuition of this decoding radius, let us finish with an
asymptotic analysis of this radius.
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Caution. Compared to the asymptotic analyses done in Chapter 4 which were done for a
fixed base field, here, since we want the length of the codes to tend to infinity and that the
length of a Reed Solomon code is bounded above by q, then we need to consider various base
fields. Therefore, in the following analysis, the size q of the base field tends to infinity.

Consider a sequence of Reed Solomon codes whose length tends to infinity and with
constant rate R. Let ρ def

= r
n
be the relative decoding radius. Then the asymptotic list size `

is equivalent to

` ∼ 1− ρ
R

Next, (8.4) gives (after dividing by n and for n→ +∞)

1 / (1− ρ)
1− ρ
R
−R · 1

2
·
(

1− ρ
R

)2

1 /
(1− ρ)2

2R

ρ / 1−
√

2R.

The comparison between Sudan radius and Berlekamp Welch radius is illustrated by Fig-
ure 8.1

One observes in particular that this algorithm represents an improvement only for low
rates. More precisely The rate should be less than ≈ 0.17 for Sudan algorithm to correct
more errors than Berlekamp Welch. On the other hand for rates close to zero, it corrects
almost twice more errors.
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Figure 8.1: Comparison between Sudan and Berlekamp Welch decoding radii

Complexity of Sudan algorithm

According to Remark 33, assuming that the costly part of the algorithm turns out to be
the linear algebraic part, then, this part reduces to solve a linear system of n equations and
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about n unknowns, which leads to a complexity of O(n3) operations in Fq.

8.2.4 Decoding up to the Johnson radius : Guruswami Sudan algo-
rithm

In [GS99], Guruswami and Sudan proposed a generalised version of the algorithm which
turns out to correct errors up to the Johnson bound. The major input in the algorithm is
to enhance the interpolating part by adding some multiplicity constraints.

Definition 8.8. Let Q ∈ Fq[X, Y ] be a polynomial. One says that Q vanishes at (0, 0) with
multiplicity m if the smallest degree of a monomial of Q is m. One says that Q vanishes
at (a, b) ∈ F2

q with multiplicity m if Q(X − a, Y − b) vanishes at (0, 0) with multiplicity m.
Equivalently, it means that the Taylor expansion of Q in the variables X − a, Y − b is of the
form:

Q(X, Y ) = λ0(X − a)m + λ1(X − a)m−1(Y − b)
+ · · ·+ λm−1(X − a)(Y − b)m−1 + λm(Y − b)m +R(X − a, Y − b),

where R has only monomials of degree > m and at least one of the λi’s is nonzero.

Remark 35. Another description of a polynomial Q ∈ Fq[X, Y ] vanishing at (0, 0) (resp.
(a, b)) with multiplicity m is that any of its monomials ai,jX iY j (resp. bi,j(X − a)i(Y − b)j)
have total degree i+j > m. In particular if the polynomial vanishes at (a, b) with multiplicity
m then it can be written as

Q(X, Y ) =
m∑
j=0

(X − a)j(Y − b)m−jQj(X, Y ) (8.5)

for some polynomials Q0, Q1, . . . , Qm ∈ Fq[X, Y ].

As said above, Guruswami Sudan algorithm is almost the same as Sudan algorithm with
the additional constraint that the interpolating polynomial Q should vanish at the (xi, yi)
with mutliplicity m for some positive integer m.

The algorithm runs as follows (as in Sudan’s algorithm, the algorithm depends on the
decoding radius t which will be determined further):

Step 1. Interpolation. First compute a polynomial

Q =
∑̀
i=0

Qi(X)Y i

such that

(GS1) ∀i, degQi + i(k − 1) < m(n− t);
(GS2) ∀j ∈ {1, . . . , n}, Q vanishes at (xj, yj) with multiplicity m.
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Step 2. Root finding. Compute all the polynomials f ∈ Fq[X]<k such that Q(X, f(X)) ≡
0.

The following lemma is the counterpart of Lemma 8.9.

Lemma 8.9. Let Q be a bivariate polynomial satisfying conditions (GS1) and (GS2). Let
f ∈ Fq[X]<k such that dH(y, (f(x1), . . . , f(xn))) 6 t. Then

Q(X, f(X)) ≡ 0.

Proof. Thanks to condition (GS1), one sees easily that the univariate polynomialQ(X, f(X))
has degree less than m(n− t). Moreover, from condition (GS2) and since

dH(y, (f(x1), . . . , f(xn))) 6 t,

the polynomial Q(X, f(X)) vanishes at least at n − t of the xi’s. Let us prove that if
f(xi) = yi, then Q(X, f(X)) vanishes at xi with multiplicity at least m. From Condition (2)
and thanks to (8.5), Q can be written as

Q(X, Y ) =
m∑
j=0

(X − xi)j(Y − yi)m−jQj(X, Y )

for some polynomials Q0, . . . , Qm. Moreover, since f(xi) = yi, the polynomial f(X) − yi
vanishes at xi and hence

f(X)− yi = (X − xi)g(X)

for some g ∈ Fq[X]. Therefore,

Q(X, f(X)) =
m∑
j=0

(X − xi)j(X − xi)m−jg(X)m−jQj(X, f(X))

= (X − xi)m
m∑
j=0

g(X)m−jQj(X, f(X)).

Therefore, (X − xj)
m divides Q(X, f(X)) and hence this polynomial vanishes at xi with

multiplicity at least m.
In summary, the polynomial Q(X, f(X)) has degree < m(n − t) and has at least n − t

roots, each one with multiplicity > m. Hence it is identically zero.

Decoding radius of Guruswami Sudan algorithm

A major change in the radius analysis is the number of equations. Requiring the vanishing
of a polynomial Q ∈ Fq[X, Y ] at a couple (a, b) ∈ F2

q imposes one linear equation that the
coefficients of Q. Next requiring its vanishing at (a, b) with multiplicity m imposes m(m+1)

2

equations on the coefficients of Q. Indeed, expanding Q as

Q =
∑
i,j

qi,j(X − a)i(Y − b)j
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then any coefficient qi,j with i+ j < m should vanish. Hence this imposes 1 + 2 + · · ·+m =
m(m+1)

2
linear conditions on the coefficients of Q.

Consequently, the number of linear equations is:

n
m(m+ 1)

2
·

The number of variables is

v
def
=

degY (Q)∑
i=0

m(n− t)− i(k − 1).

Therefore, the maximum possible Y –degree of Q is the largest integer i such that

m(n− t)− i(k − 1) > 0.

Hence
degY Q 6 `

def
=

⌊
m(n− t)
k − 1

⌋
·

An approximative analysis in the similar spirit as in Sudan’s case gives:

bm(n−t)
k−1 c∑
i=0

m(n− t)− i(k − 1) > n
m(m+ 1)

2
(8.6)

m2(n− t)2

k − 1
− 1

2

m2(n− t)2

(k − 1)2
· (k − 1) ' n

m(m+ 1)

2
(8.7)

m2(n− t)2

2(k − 1)
' n

m(m+ 1)

2
(8.8)

(n− t)2 ' n
m+ 1

m
(k − 1) (8.9)

Dividing both sides by n2m2

2
and setting ρ def

= t
n
, we get:

(1− ρ)2

R
'
m+ 1

m

ρ / 1−
√
m+ 1

m
R·

Consequently, when m tends to infinity, we get a radius of the form

ρ / 1−
√
R

which yields Johnson bound.
To summarize, a comparison between the decoding radii of Berlekamp Welch, Sudan and

Guruswami Sudan algorithm is proposed in Figure 8.2
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Figure 8.2: Comparison between Berlekamp Welch, Sudan and Guruswami Sudan radii

Complexity of Guruswami Sudan

Here again, let us only consider the cost of the linear algebra. For Guruswami Sudan, the
size of the linear system is much larger, since we have O(nm2) equations and unknowns.
Therefore the complexity is O(n3m6). Moreover, according to (8.9), for n(k − 1)m+1

m
to be

≈ n(k − 1), we need to have m ≈ nk = O(n2) which yields a total complexity of O(n15)!
Clearly, this algorithm is of theoretical interest, since it asserts that correcting up to

the Johnson bound in polynomial time is possible. However, the exponent makes practical
implementations hopeless. On the other hand, it is also possible to reduce the multiplicity
and get a much smaller complexity at the cost of a shorter decoding radius.
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Chapter 9

Cyclic codes and BCH codes

The family of cyclic codes is another fascinating facet of coding theory. Cyclic codes have
been subject to intense study since they are of deep interest from theoretical and practical
point of views. Indeed, for practical point of view:

• they have a very compact representation since a single row of the generator matrix is
sufficient to represent the whole code.

• They benefit from very efficient encoding algorithms using fast Fourier transform.

On the other hand, on the theoretical side cyclic codes, have a wonderfully rich algebraic
structure which will be described in what follows.

Let us start with a definition.

Definition 9.1. Let σ : Fnq → Fnq be the cyclic shift:

σ :

{
Fnq −→ Fnq

(x0, . . . , xn−1) 7−→ (xn−1, x0, . . . , xn−2)
.

A code C is said to be cyclic if it is stable by σ that is to say: σ(C ) = C .

Caution. In the previous chapters the vectors were indexe from 1 to n as (x1, . . . , xn). In
the present chapter it is more convenient (for a reason which will naturally appear further)
to index them from 0 to n− 1 as x0, . . . , xn−1.

9.1 First examples
For sure, trivial codes such as the zero code, the full code Fnq , the parity codes and the
repetition codes are cyclic. Now, let us give less trivial examples of cyclic codes.

Lemma 9.2. Let α ∈ Fq be a generator of the multiplicative group F×q . Let x = (1, α, α2, . . . , αq−2).
Then, for any k 6 q − 1, the code RSk(x) is cyclic.
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Proof. Let f ∈ Fq[x] such that deg(f) and c = (f(1), f(α), . . . , f(αq−2)) ∈ RSk(x) be the
corresponding codeword. Let g(X)

def
= f(αX). One can check that

c′ = (g(1), g(α), . . . , g(αq−1)) = σ(c).

Since g ∈ Fq[X] with deg(g) < k, then σ(c) ∈ RSk(x) and this holds for any c ∈ RSk(x).

Lemma 9.3. Let p be a prime number and x = (0, 1, . . . , p− 1). Then, for any k 6 q − 1,
the code RSk(x) is cyclic.

Proof. Let f ∈ Fq[x] such that deg(f) and c = (f(0), f(1), . . . , f(p − 1)) ∈ RSk(x) be
the corresponding codeword. The proof is similar to that of Lemma 9.2 using g(X)

def
=

f(X + 1).

9.2 The algebraic structure of cyclic codes

9.2.1 Polynomial representation

To understand the algebraic structure behind cyclic codes we use the following polynomial
representation of codewords: a codeword c = (c0, . . . , cn−1) is canonically associated to the
polynomial c(x) = c0 + c1x+ · · ·+ cn−1x

n−1.
More formally, there is an Fq–vector space isomorphism{

Fq[X]/(Xn − 1) −→ Fnq
c(X) =

∑n−1
i=0 ciX

i 7−→ (c0, . . . , cn−1)
. (9.1)

Note that the left–hand term is not written as Fq[X]<n
def
= {P ∈ Fq[X] | degP < n} but

as the quotient ring Fq[X]/(Xn − 1). As vector spaces, Fq[X]<n and Fq[X]/(Xn − 1) are
isomorphic. On the other hand, Fq[X]/(Xn − 1) has a richer structure: it is a ring. This
structure of ring is one of the keys of the study of cyclic codes. Indeed, the cyclic shift
corresponds in Fq[X]/(Xn − 1) to the multiplication by X. Formally, the following diagram
commutes:

Fq[X]/(Xn − 1) ∼ //

×X
��

Fnq
σ

��
Fq[X]/(Xn − 1) ∼ // Fnq

Thus, cyclic codes, which are subspaces of Fnq which are stable by σ correspond under this
isomorphism to subspaces of Fq[X]/(Xn − 1) stable by multiplication by X. Note that
a subspace of Fq[X]/(Xn − 1) which is stable by multiplication by X is also stable by
multiplication by any element of the ring and hence is an ideal of Fq[X]/(Xn − 1). This is
summarized by the following statement.

Proposition 9.4. The isomorphism (9.1) induces a one–to–one correspondence between
cyclic codes of Fnq and ideals of Fq[X]/(Xn − 1).
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And the previous statement can be turned into a more explicit one.

Proposition 9.5. The ideals of Fq[X]/(Xn − 1) are in one–to–one correspondence with
unitary (with leading coefficient equal to 1) divisors of Xn − 1.

Proof. See appendix B. This is a direct consequence of Propositions B.1 and B.2.

As a conclusion, we get the following one–to–one correspondences.

{
Cyclic codes of

length n

} %%{
Ideals of

Fq[X]/(Xn − 1)

}
ee

%%{
Unitary divisors

of Xn − 1

}
ee

Example 9.6. Let us consider the list of cyclic codes of length 7 over F2. The decomposition
of X7 − 1 into irreducible factors is

X7 + 1 = (X + 1) · (X3 +X + 1) · (X3 +X2 + 1).

To the polynomial 1 +X corresponds the code with generator matrix
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1

 ,

which is nothing but the parity code of length 7 over F2.
To the polynomial 1 +X +X3 corresponds the code with generator matrix:

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

And so on...

9.2.2 First consequences for cyclic codes

Example 9.6 suggest two phenomena:

• A generator matrix of a cyclic code associated to a polynomial P can be obtained by
stacking the vector representation of P and some of its iterated cyclic shifts.
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• The larger the degree of the generating polynomial, the smaller the dimension of the
code.

Let us prove these facts.

Theorem 9.7. Let C be a cyclic code of length n and dimension k over Fq. There exists a
codeword c ∈ C called generator such that c, σ(c), σ2(c), . . . , σk−1(c) is a basis of the code.

Proof. Consider a generator matrix for C and perform Gaussian elimination in order to
construct a nonzero codeword whose last k − 1 entries are 0. Call

c = (c0 c1 . . . cn−k 0 . . . 0)

this codeword. The codewords c, σ(c), . . . , σk−1(c) are linearly independent. Indeed, they
form an echelonized basis: 

c0 · · · cn−k 0 · · · 0

0 c0 · · · cn−k
. . . ...

... . . . . . . . . . 0
0 · · · 0 c0 · · · cn−k

 . (9.2)

Remark 36. From the codeword c in the above proof, one deduce a polynomial c(X) =
c0 + c1X + · · ·+ cn−kX

n−k. This polynomial turns out to be generator of the corresponding
ideal of Fq[X]/(Xn − 1) and hence is a divisor of Xn − 1.

Therefore, the above proof, explain how to construct explicitely a generating polynomial
of a cyclic code and get a circulant generator matrix, i.e. a generator matrix whose rows are
obtained by iterating the cyclic shift on the first one. In particular such a matrix is entirely
defined by its first row. This has important practical consequences for the storage of such
codes: only n bits are necessary to represent any binary cyclic code of length n.

Another consequence of the previous theorem is:

Corollary 9.8. Let C be a cyclic code of dimension k has a generating polynomial of degree
n− k.

Proof. Using the proof of Theorem 9.7, one sees that the code has a generating polynomial
c(X) of degree less than or equal n− k. Suppose that its degree is < n− k. Then the family
c, σ(c), . . . , σk−1(c), σk(c) would be an echelonized family of vectors in the code, which would
contradict the hypothesis on the dimension of the code.

9.2.3 Duality for cyclic codes

Let us start with a lemma on the behaviour of the cyclic shift. with respect to the inner
product
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Lemma 9.9. Let x,y ∈ Fnq , then

〈x, σ(y)〉 = 〈σ−1(x),y〉.

Proof.

〈x, σ(y)〉 = x0y1 + x1y2 + · · ·+ xn−2yn−1 + xn−1y0

= xn−1y0 + x0y1 + x1y2 + · · ·+ xn−2yn−1

= 〈σ−1(x),y〉.

The main result on duality is the following theorem.

Theorem 9.10. The dual of a cyclic code is cyclic.

Proof. Let C be a cyclic code and c ∈ C . Let c′ ∈ C ⊥. Thanks to Lemma 9.9,

〈c, σ(c′)〉 = 〈σ−1(c), c′〉.

Since C is cyclic, then σ−1(c) ∈ C and hence the above product is zero. Therefore, we prove
that for any c ∈ C ,

〈c, σ(c′)〉 = 0.

Thus, by definition of C ⊥, σ(c′) ∈ C ⊥. Since this holds for any c′ ∈ C ⊥, we conclude that
it is a cyclic code.

In addition to the previous theorem, a generating polynomial of C ⊥ can easily be deduced
from a generating polynomial of C . To explain this, we first need the following definition.

Definition 9.11. Let f ∈ Fq[X] of degree d. The reciprocal polynomial f̄ of f is the
polynomial obtained by reversing the order of the coefficients, i.e:

f̄
def
= Xkf(1/X).

Theorem 9.12. Let g, h be two polynomials of respective degrees n − k and k satisfying
gh = Xn − 1. Then the cyclic codes associated to g and h̄ are dual to each other.

Proof. Let us denote by C (g) and C (h̄) these two codes. Note first that, since gh = Xn− 1

deg g + deg h̄ = deg g + deg h = n.

Therefore, according to Corollary 9.8, we get that

dim C (g) + dim C (h̄) = n

and hence, we only have to prove the orthogonality between the two codes. Let k be the
degree of h. If k = 0 then, h = h̄ = 1 and g = Xn − 1 and the codes C (g) and C (h̄) are
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respectively {0} and Fnq which are dual to each other. Thus, from now on, one can assume
that k > 1.

Set

cg
def
= (g0 g1 · · · gn−k 0 · · · 0)

ch̄
def
= (hk hk−1 · · · h0 0 · · · 0).

From Theorem 9.7, the codes C (g) and C (h) are respectively generated by cg, σ(cg), . . . , σ
k−1(cg)

and ch̄, σ(ch̄), . . . , σ
n−k−1(ch̄). It suffices to prove that any element of the first basis is or-

thogonal to an element of the second one. Let 0 6 i < k a,d 0 6 j < n− k and suppose first
that j > i. We have, from Lemma 9.9,

〈σi(cg), σj(ch̄)〉 = 〈cg, σj−i(ch̄)〉
= gj−ihk + gj−i+1hk−1 + · · · gj−i+kh0

with the convention gs = 0 for any s > k. It is easy to check that the above quantity is
nothing but the coefficient of degree j − i + k of gh = Xn − 1. Since j < n − k, j > i and
k > 1, then 0 < j − i+ k < n and hence this coefficient is zero. Therefore:

〈σi(cg), σj(ch̄)〉 = 0.

The case j < i can be treated in a very similar fashion.

9.3 The use of roots of unity
From now on, we consider cyclic codes whose length n is prime to the characteristic of the
ground field. Thus, the polynomial Xn − 1 ∈ Fq[X] has simple roots in a suitable extension
of Fq. This suitable extension is referred to as the n–th cyclotomic extension of Fq and is
the smallest extension of Fq containing the n–th roots of 1. Let ζn be a primitive root of
unity in the algebraic closure of Fq, then Fq(ζn) is the n–th cyclotomic extension of Fq and
the n–th roots of 1 are nothing but 1, ζn, ζ

2
n, . . . , ζ

n−1
n .

9.3.1 Cyclotomic classes

Remind that our interest lies in the decomposition of Xn − 1 as a product of irreducible
factors in Fq[X]. Indeed, because of the correspondence between cyclic codes and divisors of
Xn − 1, the irreducible factors of Xn − 1 can be regarded as elementary bricks to construct
cyclic codes.

Of course, the decomposition of X − 1 in Fq(ζn)[X] is obvious:

Xn − 1 =
∏

i∈Z/nZ

(X − ζ in).
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Remark 37. The notation “product over Z/nZ” makes sense since ζnn = 1 and hence, for any
integer i, ζ in depends only on the class of i modulo n.

The point is that the factors (X − ζ in) are not defined over Fq in general, thus we need
to find products of such factors which are in Fq[X]. The following lemma is useful for this
purpose.

Lemma 9.13. Let Fq` be a finite extension of Fq and α1, . . . , αm be a tuple of distinct
elements of Fq`. Then the polynomial

P
def
=

m∏
i=1

(X − αi)

is in Fq[X] if and only if for all i ∈ {1, . . . ,m}, we have αqi ∈ {α1, . . . , αm}.
Proof. If P ∈ Fq[X], i.e. P =

∑m
i=0 piX

i where the pi’s are in Fq then, for all i, we have
pi = pqi and hence

P (Xq) =
m∑
i=0

pi(X
q)i =

m∑
i=0

pqi (X
q)i

=
m∑
i=0

(piX
i)q =

(
m∑
i=0

piX
i

)q

= P (X)q.

Therefore, if α ∈ Fq` is a root of P , then P (α) = 0 = P (α)q = P (αq). Hence, αq is also a
root of P .

Conversely, if the set of roots of P is closed under the Frobenius map, then, since, the
coefficients of P =

∑m
i=0 piX

i are the elementary symmetric polynomials:

p0 = (−1)mα1α2 · · ·αm
...

pm−2 = (−1)m−1
∑

16i<j6m

αiαj

pm−1 = −α1 − · · · − αm
pm = 1

Then, one checks that, since any of these coefficients are symmetric polynomials in the α′is,
then for all j, pqj = pj and hence, P ∈ Fq[X].

Corollary 9.14. A factor of Xn − 1 in Fq[X] is of the form

g =
∏
i∈I

(X − ζi)

where I ⊂ Z/nZ is stable by multiplication by q.
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Definition 9.15. A cyclotomic class is a subset of Z/nZ which is stable by multiplication
by q. A nonempty cyclotomic class is said to be minimal if it is minimal for inclusion, that
is: if any nonempty subset is not a cyclotomic class.

The point of this definition is that cyclotomic classes are in one-to-one correspondence
with factors of Xn−1 in Fq[X]. Moreover, one checks easily that minimal cyclotomic classes
are in one-to-one correspondence with irreducible factors of Xn − 1 in Fq[X].

This observation permits to complete the picture page 91:

{
Cyclic codes of

length n

} &&{
Ideals of

Fq[X]/(Xn − 1)

}
ff

&&{
Unitary divisors

of Xn − 1

}
ff

tt{
Cyclotomic classes

of Z/nZ

}

33

Example 9.16. For q = 2 and n = 17, the minimal cyclotomic classes are:

{0}, {1, 2, 4, 8, 16, 15, 13, 9}, {3, 6, 12, 7, 14, 11, 5, 10}

This entails that X17 − 1 has 3 irreducible factors over F2, namely:

1 +X, 1 +X3 +X4 +X5 +X8, and 1 +X +X2 +X4 +X6 +X7 +X8.

Moreover, the complete list of cyclotomic classes is:

∅, {0}, {1, 2, 4, 8, 16, 15, 13, 9}, {3, 6, 12, 7, 14, 11, 5, 10},
{0, 1, 2, 4, 8, 16, 15, 13, 9}, {0, 3, 6, 12, 7, 14, 11, 5, 10}, and Z/17Z.

which correspond respectively to the following divisors of X17 − 1:

1, 1 +X, 1 +X3 +X4 +X5 +X8, 1 +X +X2 +X4 +X6 +X7 +X8,

1 +X +X3 +X6 +X8 +X9, 1 +X3 +X4 +X5 +X6 +X9, and X17 − 1,

which correspond respectively to the following codes.

• Polynomial 1 corresponds to the full code: F17
2 ;
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• X − 1 corresponds to the parity code whose (which is obviously cyclic). It has a
generator matrix whose first row is

(1 1 0 · · · 0)

and whose other rows are obtained by iterating the cyclic shift on the first one.

• 1 +X3 +X4 +X5 +X8 corresponds to a cyclic code of dimension 9 having a generator
matrix whose first row is:

(1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0)

and the other rows are obtained by iterating the cyclic shift on the first one.

• etc...

• X17 − 1 corresponds to the zero code.

9.3.2 BCH codes

The name “BCH” is due to the fathers of this family of codes: Bose, Chaudhury and Hoc-
quenghem. BCH codes are cyclic codes whose generating polynomial has prescribed roots in
geometric progression. That is a sequence of roots of the form

ζan, ζ
a+1
n , . . . , ζa+s

n .

The interest of having roots in geometric progression is that the size of this sequence of roots
provides a lower bound for the minimum distance. This is the point of the following result.

Theorem 9.17 (The BCH bound). Let C be a cyclic code defined by a cyclotomic class
I ⊆ Z/nZ. Assume that I contains s consecutive integers, a, a + 1, . . . , a + s − 1, then the
minimum distance d of C satisfies

d > s+ 1.

Proof. Let c = (c0 · · · cn−1) ∈ C and c(X) the corresponding polynomial c(X) = c0 +c1X+
· · ·+ cn−1X

n−1. We have

c(ζan) = c(ζa+1
n ) = · · · = c(ζa+s−1

n ) = 0. (9.3)

Assume that r def
= wH(c) 6 s, then only r of the coefficients of c are nonzero. Let ci1 , . . . , cir

be these nonzero coefficients. From (9.3),

ci0ζ
ai0
n + · · · + cir−1ζ

air−1
n = 0

ci0ζ
(a+1)i0
n + · · · + cir−1ζ

(a+1)ir−1
n = 0

...
...

...
ci0ζ

(a+s−1)i0
n + · · · + cir−1ζ

(a+s−1)ir−1
n = 0
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Which can be re-written as a matrix–vector product:
1 · · · 1
ζ i0n · · · ζ ir−1

n
...

...
ζ

(s−1)i0
n · · · ζ

(s−1)ir−1
n

 ·


ci0ζ
ti0
n

ci1ζ
ti1
n
...

cir−1ζ
tir−1
n

 = 0.

The left-hand matrix is a troncated Van der Monde matrix, i.e. a van der Monde matrix
whose last rows have been removed. Since the elements ζ i0n , . . . , ζ ir−1

n are distinct, this matrix
has full rank and hence his kernel is zero. Thus, ci0 = ci1 = · · · = cir−1 = 0, which is a
contradiction. Therefore, no nonzero codeword has weight 6 s.

Definition 9.18 (BCH code). Let δ be a positive integer. The BCH code BCHq,n(a, δ)
is the cyclic code of length n over Fq associated to the smallest cyclotomic class containing
a+1, a+2, . . . , a+δ−1. If t, the the code is denoted BCHq,n(δ). According to Theorem 9.17,
such a code has a minimum distance larger than or equal to δ.

Remark 38. Of course, the actual minimum distance of the code BCHq,n(a, δ) may exceed δ.
The quantity δ is however the designed minimum distance and the known algebraic decoding
algorithms correct errors up to b δ−1

2
c.

A first example

Take q = 2 and n = 15. For q = 2, the minimal nonempty cyclotomic classes of Z/15Z are:

{0}, {1, 2, 4, 8}, {3, 6, 12, 9}, {5, 10}, {7, 14, 13, 11}.
They correspond respectively to the polynomials

g0
def
= 1 +X, g1

def
= 1 +X +X4, g3

def
= 1 +X +X2 +X3 +X4, and g5

def
= 1 +X +X2.

Remark 39. The index of each polynomial correspond to the first element of the correspond-
ing cyclotomic class.
Remark 40. Note that the above correspondence may depend on the choice of a primitive
n–th root of unity ζn.

Then, one can construct the following codes.

Code Cyclotomic class Dimension Correction capability Polynomial
BCH2,15(3) {1, 2, 4, 8} 11 1 g1

BCH2,15(5) {1, 2, 3, 4, 6, 8, 9, 12} 7 2 g1g3

BCH2,15(7) {1, 2, 3, 4, 5, 6, 8, 9, 10, 12} 5 3 g1g3g5

Remark 41. The degree of the field extension [Fq(ζn) : Fq] is the cardinality of the largest cy-
clotomic class (left as exercise). Therefore, in the previous example, the cyclotomic extension
F2(ζn) is nothing but F16.
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Reed-Solomon codes of length q − 1 as particular BCH codes

In the case n = q − 1, then Fq contains all (q − 1)–th roots of unity. Indeed, remind that

Xq−1 − 1 =
∏
a∈F×q

(X − a).

In this situation, the minimal nonempty cyclotomic classes have a unique element (multipli-
cation by q un Z/(q − 1)Z is multiplication by 1!). By this manner, one can construct BCH
codes with designed distance δ with a cyclotomic class of size δ − 1 and hence have a cyclic
code with a generating polynomial of degree δ − 1 and hence a code of length n = q − 1,
dimension n− δ + 1 and minimum distance > δ. Such a cyclic code is obviously MDS. One
can prove that such codes are nothing but Reed-Solomon codes whose support is the set of
elements of F×q ordered as follows:

(1, α, α2, . . . , αq−2)

where α is a generator of the multiplicative group F×q .

9.3.3 Decoding BCH codes

See Exercise sheet #4.
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Appendix A

Complements on probability theory

A.1 Proof of Chernoff bound
To prove Chernoff bound, we need the following lemma.

Lemma A.1. For all x > 0, we have log(1 + x) > x
1+x

2
·

Proof. Indeed, let f : R+ → R defined as f(x) = log(1 + x)− x
1+x

2
. Then, f(0) = 0 and

∀x ∈ R+, f
′(x) =

1

1 + x
− 1

(1 + x
2
)2
·

For all x ∈ R+, we have(
1 +

x

2

)2

= 1 + x+
x2

4
6 1 + x ⇐⇒ 1

1 + x
− 1

(1 + x
2
)2

6 0.

Therefore, f ′ is negative on R+, hence f is decreasing on R+. Since f(0) = 0, we conclude
that f(x) is negative for all x ∈ R+, which concludes the proof.

Proof of Chernoff Bound. For all positive real number t, we have,

P
(
wH(e) > (p+ ε)n

)
= P

(
etwH(e) > et(1+ε)pn

)
6

E
(
etwH(e)

)
et(1+ε)pn

·
(A.1)

The last inequality is a direct consequence of Markov inequality. Remind that e = (e1, . . . , en).
For all i, denote by wH(ei) the integer 0 is ei = 0 and 1 if ei 6= 0. We have wH(e) =∑n

i=1 wH(ei) and, since the ei’s are independent random variables, so are the random vari-
ables etwH(ei). Hence,

E
(
etwH(e)

)
= E

(
et
∑n
i=1 wH(ei)

)
= E

(
n∏
i=1

etwH(ei)

)
=

n∏
i=1

E
(
etwH(ei)

)
, (A.2)
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where the last equality is a consequence of the independence of the random variables. More-
over, for all i ∈ {1, . . . , n},

E(etwH(ei)) = (1− p) + pet = 1 + p(et − 1) 6 ep(e
t−1). (A.3)

Therefore, from (A.2) and (A.3),

E
(
etwH(e)

)
6 epn(et−1).

Using (A.1), we obtain,

P
(
wH(e) > (p+ ε)n

)
6
epn(et−1)

epnt(1+ε)
·

Set1 t = log(1 + ε), we get,

P
(
wH(e) > (p+ ε)n

)
6 epn(ε−(1+ε) log(1+ε)). (A.4)

Combining (A.4) and Lemma A.1, we get

P
(
wH(e) > (p+ ε)n

)
6 e

pn
(
− ε2

2+ε

)
.

Since 0 < ε < 1, we get the result:

P
(
wH(e) > (p+ ε)n

)
6 e−

pnε2

3 .

A.2 Entropy and volume of balls
Proof of Lemma 3.11. Let n be a non negative integer. From Newton formula, we have

1 = (p+ (1− p))n =
n∑
i=0

(
n

i

)
pi(1− p)n−i (A.5)

>
pn∑
i=0

(
n

i

)
pi(1− p)n−i. (A.6)

>
pn∑
i=0

(
n

i

)
(q − 1)i

(
p

q − 1

)i
(1− p)n−i (A.7)

> (1− p)n
pn∑
i=0

(
n

i

)
(q − 1)i

(
p

(q − 1)(1− p)

)i
(A.8)

1By “ log” we mean the Neperian logarithm such that log(e) = 1.
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Moreover, since, by assumption, p 6 1− 1
q
,

p

(q − 1)(1− p) 6
1− 1

q

(q − 1)1
q

= 1,

and hence,

∀i ∈ {0, . . . , pn},
(

p

(q − 1)(1− p)

)i
>

(
p

(q − 1)(1− p)

)pn
. (A.9)

Combining (A.8) and (A.9), we get:

1 > (1− p)n
(

p

(q − 1)(1− p)

)pn pn∑
i=0

(
n

i

)
(q − 1)i︸ ︷︷ ︸

= Volq(pn, n)

.

and since,

(1− p)n
(

p

(q − 1)(1− p)

)pn
= ppn(1− p)(1−p)n(q − 1)−pn = q−nHq(p),

we obtain
1 > q−nHq(p)Volq(pn, n) and hence, Volq(pn, n) 6 qnHq(p).

This proves (1).

To prove (2), we first use the following obvious fact: “the volume of the ball of radius pn
is larger than the volume of the sphere of radius pn.” That is:

Volq(pn, n) =

pn∑
i=0

(
n

i

)
(q − 1)i >

(
n

pn

)
(q − 1)pn. (A.10)

Next, using Stirling formula2,(
n

pn

)
=

n!

pn!((1− p)n)!
∼

(
n
e

)n√
2nπ(

pn
e

)pn√
2pnπ ·

(
(1−p)n

e

)(1−p)n√
2(1− p)nπ

∼ 1√
2p(1− p)nπ

· p−pn(1− p)(1−p)n.

Therefore, (
n

pn

)
(q − 1)pn ∼ 1√

2p(1− p)nπ
· p−pn(1− p)(1−p)n(q − 1)pn

∼ qnHq(p)
1√

2p(1− p)nπ
.

2Recall that Stirling formula asserts that n! ∼n→+∞
(
n
e

)n√
2nπ.
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That is to say (
n

pn

)
(q − 1)pn = qnHq(p)

1√
2p(1− p)nπ

(1 + ◦(1)) (A.11)

= qn(Hq(p)−ε)

(
qεn

1√
2p(1− p)nπ

(1 + ◦(1))

)
. (A.12)

Moreover, for all ε > 0, we have

lim
n−→+∞

qεn
1√

2p(1− p)nπ
= +∞.

and hence, for all ε > 0 there exists a large enough integer n such that,

Volq(pn, n) > qn(Hq(p)−ε).

Remark 42. From (A.10), we also proved that asymptotically, the ball and the sphere have
the same volume. This phenomenon of discrete geometry holds in some sense in Euclidean
geometry. Indeed, if you consider the unit ball Bn of Rn:

Bn
def
= {x ∈ Rn | ‖x‖2 6 1} ,

where ‖ · ‖2 denotes the Euclidean norm. Then, let 0 < δ < 1 and

Sδ,n
def
= {x ∈ Rn | 1− δ 6 ‖x‖2 6 1}

then, one can prove that for all δ, we have

lim
n−→∞

Vol(Bn)

Vol(Sδ,n)
= 1.

That is to say, when n tends to infinity, most of the volume of the ball is concentrated “on
its surface”.
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Appendix B

Rings in algebra

Remind that an abelian group is a set A with an addition law + which is associatve, com-
mutative, such that A contains a zero element denoted by 0 for this law and any a ∈ A has
an opposite element denoted by −a.

A ring R is an abelian group with a multiplication law “×” which is associative and
distributive with respect to +. If the law × is commutative (this is always what happens
in these notes), then the ring is said to be a commutative ring and if there is an element
denoted by 1 ∈ R such that ∀a ∈ R, a × 1 = a, then the ring is said to be an unit ring.
Finally, a unit ring in which any nonzero element is invertible with respect to × is said to
be a field.

An ideal I of a ring R is a sub-group of R with respect to law + which is stable by
multiplication by any element of R. Given an ideal I of a ring R, the relation a ∼ b if
b− a ∈ I is an equivalence relation and the quotient set R/I is also a ring.

Given an element a of a ring R the set aR def
= {a × r | r ∈ R} is an ideal called the

ideal spanned by a. Such an ideal is said to be principal and a ring in which every ideal is
principal is said to be a principal ideal ring. For instance, the following result is well–known.

Proposition B.1. Let k be a field, then the ring k[X] is a principal ideal ring.

In chapter 9, we need the following result.

Proposition B.2. Let R be a principal ideal ring and I = aR for some a ∈ R be an ideal
of R, then R/I is a principal ideal ring. Moreover, any ideal J of R/I is generated by the
class b̄ ∈ R/I of an element b ∈ R such that b divides a. That is to say: ideals of R/I are in
one to one correspondence with divisors of b (up to multiplication by an invertible element
of R).

The proof of this proposition reposes on the following result.

Theorem B.3 (Correspondence of ideals). Let A be a ring and I an ideal of A. Then, the
canonical map π : A → A/I induces a one–to–one correspondence between ideals of A/I
and ideals of A containing I. This one–to–one correspondence is explicit: an ideal J of
A containing I corresponds to π(J), on the other hand, an ideal H of A/I corresponds to
π−1(H).
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Proof. Remind that the inverse image of an ideal by a morphism of rings is always an ideal.
Therefore, for any ideal H ⊆ A/I, the inverse image π−1(H) is an ideal. On the other hand,
since π is a surjective morphism, direct images of ideals by π are ideals.

Second, using again that the map π is surjective, for any ideal H of A/I, we have
π(π−1(H)) = H.

Conversely, let J be an ideal of A containing I, then clearly J ⊆ π−1(π(J)). Conversely,
let x ∈ π−1(π(J)), then, by definition of the inverse image, π(x) ∈ π(J), thus, π(x) = π(a)
for some a ∈ J . Therefore, π(x − a) = 0 and hence x − a ∈ kerπ = I. Since a ∈ J and
I ⊆ J , we conclude that x ∈ J and hence that J = π−1(π(J)).

Consequently, we have two reciprocal maps:

{
Ideals of A

containing I

}
π(·)

!!
{Ideals of A/I}

π−1(·)

dd

which proves the one–to–one correspondence.

Proof of Proposition B.2. By Theorem B.3, the ideals of R/I are in one–to–one correspon-
dence with ideals of R containing I. Since I is the principal ideal spanned by a, the ideals of
R/I are in correspondence with ideals of R containing aR. Since R is a principal ideal ring,
such ideals are of the form bR with bR ⊆ aR which means that a = br for some r ∈ R and
hence that b|a. Finally, for any b ∈ R such that b|a, the ideal b̄R/I is an ideal of R/I and
any ideal of R/I can be obtained by this manner. Thus, R/I is a principal ideal ring.
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