
The Focused Calculus of Structures
Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger

INRIA & LIX/École Polytechnique
Route de Saclay, 91128 Palaiseau, France
{kaustuv,nguenot,lutz}@lix.polytechnique.fr

Abstract
The focusing theorem identifies a complete class of sequent proofs that have no inessential non-
deterministic choices and restrict the essential choices to a particular normal form. Focused proofs
are therefore well suited both for the search and for the representation of sequent proofs. The
calculus of structures is a proof formalism that allows rules to be applied deep inside a formula.
Through this freedom it can be used to give analytic proof systems for a wider variety of logics
than the sequent calculus, but standard presentations of this calculus are too permissive, allowing
too many proofs. In order to make it more amenable to proof search, we transplant the focusing
theorem from the sequent calculus to the calculus of structures. The key technical contribution is
an incremental treatment of focusing that avoids trivializing the calculus of structures. We give a
direct inductive proof of the completeness of the focused calculus of structures with respect to a
more standard unfocused form. We also show that any focused sequent proof can be represented in
the focused calculus of structures, and, conversely, any proof in the focused calculus of structures
corresponds to a focused sequent proof.

1998 ACM Subject Classification F.4.1 Mathematical Logic: Proof theory

Keywords and phrases Focusing, Polarity, Calculus of Structures, Linear Logic

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Logic has traditionally been seen as a means of representing and systematizing mathematical
knowledge, but it is increasingly being used to encode and reason about formal systems—
programming languages, process calculi, transition systems, etc.—that are inherently com-
putational. In this use of logic, the syntax of proofs is important to build correspondences
between the proofs in logic and the computations of the encoded systems, also known as the
problem of representational adequacy. An adequate encoding is not only manifestly correct,
i.e., it represents all and only the computations of the encoded system, but is also useful
as a device to automate the reasoning in and about the encoded system. In standard proof
systems such as Gentzen’s sequent calculus, it is usually impossible to construct adequate
encodings: there are more proofs than computational traces, because the inference rules are
more non-deterministic than the computational steps.

In recent years the focusing theorem of Andreoli [1] has been used to create certain
“normal forms” of sequent proofs where the question of representational adequacy becomes
considerably easier, often trivial, for focused proofs. Focusing was originally developed for
(classical) linear logic but has since been extended to a wide spectrum of logics [3, 14].
The essential observation of focusing is that sequent rules have certain natural permutative
affinities that can be exploited to fuse logical connectives into larger synthetic connectives;
for example, the synthetic connective −� (−�−) behaves as a ternary connective instead
of as a composition of two binary connectives. The problem of representational adequacy

© Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger;
licensed under Creative Commons License ND

20th Annual EACSL Conference on Computer Science Logic.
Editor: Marcus Bezem; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 The Focused Calculus of Structures

is reduced to that of encoding the computational steps in such a way that they correspond
exactly to the synthetic connectives.

This technique has been successful for the standard classical, intuitionistic, and linear
logics where the sequent calculus is most natural. The sequent calculus is, however, in-
herently limited in its expressivity: it cannot be used to give analytic (i.e., cut-free) proof
systems for many modal and non-commutative logics that have been used for program safety,
operational semantics, or linguistics. The common feature of many of these logics is that
they rely on deep inference or the ability to perform deduction inside a formula. Proof
systems for many such logics need to generalize the sequent calculus; some popular gener-
alizations include: hypersequents [2], nested sequents [5], or the display calculus [4]. The
most permissive, and therefore most expressive, of such generalizations is the calculus of
structures [10, 11, 6] that does not differentiate between formulas and sequents and can
therefore perform deduction anywhere inside a formula. Besides the increased expressivity,
proofs in the calculus of structures can also exploit features that are not available in the
other shallower formalisms; for example, they can be exponentially smaller than sequent
proofs [7], or they can be decomposed in a number of ways [20].

A main distinguishing feature of the calculus of structures is that it divides the sequent
rules into smaller components, thereby introducing more non-deterministic choices. The
sequent calculus operates on entire (multi-)sets of formulas, with a single sequent rule able
to split whole contexts multiplicatively or test for the absence of certain elements. The rules
of the calculus of structures, on the other hand, perform such operations incrementally on
fragments of contexts. Some of the inessential choices introduced by this incremental nature
can be removed by restricting the syntactic congruence in the original formulation of the
calculus [10, 11], leading to the system LS for classical propositional linear logic (outlined
in Section 3.1), which can be seen as a variant of the original formulation in [17, 18] that is
more amenable to automation. One important feature of LS is that contraction is the sole
rule that makes proofs unbounded, and it permutes below all other rules (Proposition 8), a
property that is crucial for the cut-elimination result for LS (also presented in Section 3.1).
The contraction-free fragment of LS is therefore decidable.

Yet, despite its more parsimonious design, LS is still at least as non-deterministic as the
unfocused sequent calculus. It is natural to ask if a result similar to focusing can tame LS
in the same way that the sequent system LLK (without cut) for linear logic (Figure 1)
was tamed to produce the focused system LLKF (Figure 2). For the purely multiplicative
fragment, this question has already been investigated in [9], but the strategy there seems
difficult to generalize. In this paper (in Section 3.2) we construct a focused variant of the
calculus LS, called LSF, for full classical propositional linear logic. It uses the technical device
of polarized formulas [12]; polarities make the synthetic connectives manifest in the syntax,
and the rules of LSF are organized to respect polarity, i.e., to never introduce a polarity
change that did not already exist. Synthetic connectives are thus preserved in LSF proofs.

To show LSF complete with respect to LS in its own right, i.e., that any LS proof can
be turned into an LSF proof, we build a equivalent synthetic variant of LSF called LSS (see
Section 3.2). A special rule that breaks the polarity restriction is added to LSS to represent
unfocused LS proofs directly, and then this rule is shown to be admissible in LSS. We thus
have a simple internal proof of completeness of LSS (and hence of LSF) with respect to
LS. This style of showing completeness of focusing for the calculus of structures can pave
the way for focused variants of other logics that lack an analytic sequent system. Although
we limit our attention to classical propositional linear logic in this paper, we consider it an
important future work to extend our focusing result to logics for which focusing in terms of

K. Chaudhuri, N. Guenot, and L. Straßburger 3

id −−−−−−−
` a, a

` Γ, ?A, ?A
ct −−−−−−−−−−−−−−−

` Γ, ?A
` Γ

wk −−−−−−−−−−
` Γ, ?A

` Γ, A ` ∆, (A)⊥
cut −−−−−−−−−−−−−−−−−−−−−−−−−

` Γ,∆

` Γ, A ` ∆, B
� −−−−−−−−−−−−−−−−−−−−
` Γ,∆, A�B

1 −−−−
` 1

` Γ, A
�1 −−−−−−−−−−−−−−` Γ, A�B

` Γ, B
�2 −−−−−−−−−−−−−−` Γ, A�B

` ?Γ, A
! −−−−−−−−−−−
` ?Γ, !A

` Γ, A,B
O −−−−−−−−−−−−−−
` Γ, AOB

` Γ
⊥ −−−−−−−−
` Γ,⊥

` Γ, A ` Γ, B
N −−−−−−−−−−−−−−−−−−−−

` Γ, ANB
> −−−−−−−−
` Γ,>

` Γ, A
? −−−−−−−−−−
` Γ, ?A

Figure 1 LLK: a one-sided single-zoned sequent calculus for classical propositional linear logic

the sequent calculus is inapplicable. This includes logics like BV [10], the logic of bunched
implications [16], and various modal logics.

We also compare LSF and LLKF by first showing that any LLKF proof can be simulated
in LSF (in Section 4.1), i.e., that LSF is powerful enough to represent focused sequent proofs.
Then we also give an algorithm to extract an LLKF proof from any LSF proof that is unique
up to permutations between negative rules (in Section 4.2). These two results justify the
use of the adjective “focused” for LSF. Together with the completeness of LSF for LS, this
result can be used to give an alternative proof of completeness of LLKF for LLK.

2 The Sequent Calculus and Focusing for Linear Logic

We begin with a quick overview of the standard sequent calculus and the focusing theorem
for classical propositional linear logic whose formulas (A,B, . . .) have the following grammar:

A,B ::= a A�B 1 A�B 0 !A a AOB ⊥ ANB > ?A

The atoms (a, b, . . .) are drawn from some countably infinite set. Formulas are in negation
normal form, with the negation of a written as a, and negation of formulas (−)⊥ as follows:
(a)⊥ = a (A�B)⊥ = (A)⊥ O (B)⊥ (1)⊥ = ⊥ (A�B)⊥ = (A)⊥ N (B)⊥ (0)⊥ = > (!A)⊥ = ? (A)⊥

(a)⊥ = a (AOB)⊥ = (A)⊥ � (B)⊥ (⊥)⊥ = 1 (ANB)⊥ = (A)⊥ � (B)⊥ (>)⊥ = 0 (?A)⊥ = ! (A)⊥

The standard sequent calculus for linear logic, called LLK and shown in Figure 1, is given in
terms of one-sided single-zoned sequents of the form ` Γ where Γ is a context (a multi-set
of formulas).

I Theorem 1 (cut elimination). The cut rule is admissible in LLK \ {cut}. J

Let us now sketch the focused variant of LLK, called LLKF. For this, the formulas are di-
vided into two polarity classes—positive and negative—based on the permutation properties
of their sequent rules. The negative formulas have invertible rules, i.e., rules that may be
applied whenever the formula occurs in the context, while the rules for the positive formulas
are sensitive to the order of application of rules and are therefore generally non-invertible.
Following [12], we syntactically distinguish these two classes and mediate between them by
a pair of shift connectives (and):

P,Q ::= a P �Q 1 P �Q 0 !N N (Positive Formulas)
N,M ::= a N OM ⊥ N NM > ?P P (Negative Formulas)

Here, (N)⊥ = (N)⊥ and (P)⊥ = (P)⊥. We use the following contexts for LLKF:

CSL 2011

4 The Focused Calculus of Structures

Structural
` Γ, P ; Π, [P]

wdc −−−−−−−−−−−−−−−−−−
` Γ, P ; Π

` Γ ; Π, [P]
dc −−−−−−−−−−−−−−

` Γ ; Π, P

` Γ ; Π, N
−−−−−−−−−−−−−−−−
` Γ ; Π, [N]

Positive phase

id −−−−−−−−−−−−−
` Γ ; a, [a]

` Γ ; Π1, [P] ` Γ ; Π2, [Q]
� −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ ; Π1, Π2, [P �Q]
1 −−−−−−−−−−

` Γ ; [1]

` Γ ; Π, [P]
�l −−−−−−−−−−−−−−−−−−−−

` Γ ; Π, [P �Q]
` Γ ; Π, [Q]

�r −−−−−−−−−−−−−−−−−−−−
` Γ ; Π, [P �Q]

no rule for 0
` Γ ; N

! −−−−−−−−−−−−
` Γ ; [!N]

Negative phase

` Γ ; ∆, N, M
O −−−−−−−−−−−−−−−−−−−−

` Γ ; ∆, N OM

` Γ ; ∆
⊥ −−−−−−−−−−−−−

` Γ ; ∆, ⊥
` Γ ; ∆, N ` Γ ; ∆, M

N −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ ; ∆, N NM

> −−−−−−−−−−−−−
` Γ ; ∆, >

` Γ, P ; ∆
? −−−−−−−−−−−−−−−

` Γ ; ∆, ?P

Figure 2 LLKF: a two-zoned focused variant of cut-free LLK

Γ ::= · Γ, P (Positive Sequent Contexts)
∆ ::= · ∆, N (Negative Sequent Contexts)
Π ::= · Π, P Π, a (Reactive Sequent Contexts)

LLKF proofs consist of alternating maximal phases based on the polarity of the principal
formulas. These two phases are represented by two different sequent forms, given below. We
follow Andreoli’s original two-zoned (dyadic) convention for presenting the system because
it is the most common style in presenting focused proof systems.

` Γ ; ∆ (Negative Sequents)
` Γ ; Π, [P] (Positive Sequents)

The sequent ` Γ ; ·, [P] is abbreviated as ` Γ ; [P].
The focused rules of inference are shown in Figure 2. The most important rules are the

decision rules wdc and dc that begin1 a positive phase; in this phase, the focused formula
(written inside []) is principal, and the focus persists on the principal operands if they are of
the same polarity. All essential choices are confined to this phase; they include: disjunctive
choice (for �), multiplicative choice (for �), possible failures (for atoms, 1, and !, if the
context is not of the correct form), and guaranteed failure (for 0, which has no rules). The
positive phase switches to the negative phase with the rules for or !. Observe that in the
negative phase the rules can be applied in any order, and none of the negative rules can fail
to apply. When no more negative rules can apply, a decision rule must be applied to restart
the cycle. There are no structural rules of weakening or contraction because the rules treat
the unrestricted context Γ as a set; in particular, contraction is part of the wdc rule.

The soundness of LLKF with respect to cut-free LLK is straightforward: forgetting the
polarities, the focusing distinctions in sequents, and the rules {dc, }; prefixing the elements
of Γ with ? and using ct and wk to account for its additive treatment in the �, 1 and id
rules; and replacing wdc with the sequence ct then ? on the focused formula produces valid
LLK proofs from LLKF proofs.

I Notation 2. Write bP c (resp. bNc) for the unpolarized formula obtained from P (resp. N)
by erasing all occurrences of and . Similarly we define b∆c.

1 As usual, the intended reading of sequent rules is from conclusion to premises.

K. Chaudhuri, N. Guenot, and L. Straßburger 5

I Theorem 3 (completeness of focusing). If ` b∆c in LLK, then ` · ; ∆ in LLKF.

There are many ways to prove this theorem; we refer the interested reader to one of the
standard approaches [13, 15]. One interesting feature of all such proofs is their unusual com-
plexity forced by the rigidity of the focusing calculus. It is easier to show the completeness
of focusing in the sequent calculus with more synthetic approaches [8].

3 Linear Logic in the Calculus of Structures

The calculus of structures is based on the observation that the connectives of linear logic pre-
serve logical entailment, and therefore, any valid implication in the logic can be turned into
a rewrite step on any subformula. Hence, there is no need to maintain a distinction between
the connectives used in formulas, and structural meta-connectives such as the comma used
to write sequents, or the meta conjunction among the premises of a binary rule. The origi-
nal formulations of the calculus of structures [10, 11, 6] used structures, which are formulas
modulo a syntactic congruence. We deviate from this tradition and use just the formulas,
i.e., we remove the syntactic congruence. Then, inference rules are allowed to operate on
any subformula. These rules are therefore written in terms of formula contexts (ξ, ζ, . . .),
which are formulas with a single hole (written { }), i.e., they have the following grammar:

ξ, ζ ::= { } A ? ξ ξ ? A !ξ ?ξ (Formula Contexts)

where ? can stand for any binary connective (�, �, O, or N). We write ξ{A} for the formula
formed by replacing the single occurrence of { } in ξ with the formula A. For example, if ξ
is ! (aN ({ }� b)) O ?c and A is a � b, then ξ{A} is ! (aN ((a � b)� b)) O ?c.

A derivation D in a system S with premise A and conclusion B is a rewriting path from

A to B, using the rules in S. It is usually depicted as
A

S
∥∥∥D

B

. A proof P in a system S,

depicted as
−

S
∥∥∥P

B
, is a derivation in S with premise 1.

3.1 The Unfocused Systems SLS and LS
The inference rules of the system SLS are given in Figure 3. The first two columns constitute
the multiplicative fragment, the next two columns the exponential fragment, and the last
two columns the additive fragment. The multiplicative and exponential fragment constitute
system SELS, which is a variant of the system studied in [19]. The first four rows in Figure 3
constitute the down fragment of SLS, denoted by SLS↓, and the last four rows the up
fragment, denoted by SLS↑. The down fragment corresponds to the cut-free version of the
system, and following the tradition, we will call it LS. Each rule in either fragment is the
dual of some rule in the other fragment, where the duals of a rule are formed by exchanging
the premise and conclusion and negating both. Note that the two rules sl and sr (read
switch left and switch right) are self-dual and therefore part of both fragments.2 The rules
ai↓ and ai↑, called atomic identity and atomic cut, have the following general versions:

ξ
{

1
}

i↓ −−−−−−−−−−−−−−−−−
ξ
{
AO (A)⊥

} ξ
{

(A)⊥ �A
}

i↑ −−−−−−−−−−−−−−−−−
ξ
{
⊥
}

2 Note that our system SLS is slightly different from the presentation in [17, 18]. The reason for the
differences is that we get stronger results (e.g., the down fragment does not need associativity for �,
�, and N), their proofs become simpler, and the relation to the focused systems is more evident.

CSL 2011

6 The Focused Calculus of Structures

ξ
{

1
}

ai↓ −−−−−−−−−−−
ξ
{
aO a

} ξ
{

1
}

!↓ −−−−−−−
ξ
{

!1
} ξ

{
1
}

>↓ −−−−−−−
ξ
{

>
} ξ

{
1
}

N↓ −−−−−−−−−−−
ξ
{

1 N 1
}

ξ
{
A

}
⊥↓ −−−−−−−−−−−−

ξ
{
AO ⊥

} ξ
{
B OA

}
com↓ −−−−−−−−−−−−−

ξ
{
AOB

} ξ
{

!(AO ?C)
}

pr↓ −−−−−−−−−−−−−−−−−
ξ
{

!AO ?C
} ξ

{
A

}
?↓ −−−−−−−−
ξ
{

?A
} ξ

{
>

}
gc↓ −−−−−−−−−−−−−

ξ
{

> O C
} ξ

{
A

}
�l↓ −−−−−−−−−−−−−

ξ
{
A�B

}
ξ
{

1
}

�↓ −−−−−−−−−−−
ξ
{

1 � 1
} ξ

{
AO (B O C)

}
asc↓ −−−−−−−−−−−−−−−−−−−−−

ξ
{

(AOB) O C
} ξ

{
?AO ?A

}
ct↓ −−−−−−−−−−−−−−−

ξ
{

?A
} ξ

{
⊥

}
wk↓ −−−−−−−−

ξ
{

?A
} ξ

{
(AO C) N (B O C)

}
dt↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ
{

(ANB) O C
} ξ

{
B

}
�r↓ −−−−−−−−−−−−−

ξ
{
A�B

}
ξ
{

(AO C) �B
}

sl −−−−−−−−−−−−−−−−−−−−−
ξ
{

(A�B) O C
} ξ

{
A� (B O C)

}
sr −−−−−−−−−−−−−−−−−−−−−
ξ
{

(A�B) O C
}

ξ
{

⊥ O ⊥
}

�↑ −−−−−−−−−−−−−
ξ
{

⊥
} ξ

{
(A�B) � C

}
asc↑ −−−−−−−−−−−−−−−−−−−−−

ξ
{
A� (B � C)

} ξ
{

!A
}

ct↑ −−−−−−−−−−−−−−
ξ
{

!A� !A
} ξ

{
!A

}
wk↑ −−−−−−−−

ξ
{

1
} ξ

{
(A�B) � C

}
dt↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ
{

(A� C) � (B � C)
} ξ

{
ANB

}
�r↑ −−−−−−−−−−−−−

ξ
{
B

}
ξ
{
A� 1

}
⊥↑ −−−−−−−−−−−−

ξ
{
A

} ξ
{
A�B

}
com↑ −−−−−−−−−−−−−

ξ
{
B �A

} ξ
{

?A� !C
}

pr↑ −−−−−−−−−−−−−−−−−
ξ
{

?(A� !C)
} ξ

{
!A

}
?↑ −−−−−−−−

ξ
{
A

} ξ
{

0 � C
}

gc↑ −−−−−−−−−−−−
ξ
{

0
} ξ

{
ANB

}
�l↑ −−−−−−−−−−−−−

ξ
{
A

}
ξ
{
a � a

}
ai↑ −−−−−−−−−−−

ξ
{

⊥
} ξ

{
?⊥

}
!↑ −−−−−−−−
ξ
{

⊥
} ξ

{
0
}

>↑ −−−−−−−
ξ
{

⊥
} ξ

{
⊥ � ⊥

}
N↑ −−−−−−−−−−−−−

ξ
{

⊥
}

Figure 3 SLS, a symmetric calculus of structures for classical propositional linear logic. The
fragment containing the first four rows is called LS.

Like in the sequent calculus, the general identity rule is derivable. By duality the same
is true for the general cut rule. We have the following proposition, which is standard for
systems in the calculus of structures (see. e.g., [17]).

I Proposition 4. The rule i↓ is derivable in SLS↓, and the rule i↑ is derivable in SLS↑.
Furthermore, every rule in SLS↑ is derivable in SLS↓+ i↑, and dually, every rule in SLS↓ is
derivable in SLS↑+ i↓. J

By an easy induction on the size of the proofs, one can show the following implications,
expressing the relation to the sequent calculus.

I Proposition 5. A formula A is provable in LLK with cut if and only if it is provable
in SLS. And if A is provable in LLK without cut, then it is provable in LS. J

We can now use Theorem 1 to show that provability in SLS implies provability in LS and
that provability in LS, implies provability in LLK without cut.

I Theorem 6 (cut elimination). If a formula A is provable in SLS then it is provable in LS.

I Corollary 7. The rule i↑ is admissible for LS. J

The proof given in [17] for Theorem 6 relies on the sequent calculus and Theorem 1. In the
following, we present a proof that is internal to SLS, i.e., not using the sequent calculus. Due
to lack of space, we can only give a sketch—all details can be found in [18]. First, observe
that in any derivation D in LS, all the instances of the contraction rule can be permuted to
the bottom. This can be shown by an easy inductive argument.

I Proposition 8. For every
A

LS
∥∥∥D

B

there is a B′ such that
A

LS\{ct↓}
∥∥∥D′

B′
and

B′

{ct↓}
∥∥∥D′′

B

. J

For the internal cut-elimination proof of SLS, we will use a technique called splitting, first
used in [10]. The central ingredients are Lemmas 10 – 12 and Lemma 14 below. Lemmas

K. Chaudhuri, N. Guenot, and L. Straßburger 7

10 – 12 say how the connectives behave in a shallow context, and Lemma 14 says how a
general deep context can be reduced to a shallow one. For formally stating these lemmas,
we need the notions of linear killing context and killing context, denoted by λ〈 〉 and κ〈 〉,
respectively, and generated by this grammar:

λ ::= > | { } | λN λ | λ� 1 | 1� λ (Linear Killing Contexts)
κ ::= > | { } | κN κ | κ� 1 | 1� κ | !κ (Killing Contexts)

We write λ〈 〉n (resp. κ〈 〉n) to indicate that there are exactly n occurrences of { }. Then, we
write λ〈A1, . . . , An〉 (resp. κ〈A1, . . . , An〉) for the formula obtained from λ〈 〉n (resp. κ〈 〉n)
by replacing, from left to right, the n occurrences of { } by the formulas A1, . . . , An. The
two main properties of killing contexts are summarized in the following lemma.

I Lemma 9. Let A,B1, . . . , Bn, and λ〈 〉n and κ〈 〉n be given.

1. If B1, . . . , Bn are provable in LS, then so are λ〈B1, . . . , Bn〉 and κ〈B1, . . . , Bn〉.

2. There are derivations
λ〈AOB1, . . . , AOBn〉

LS
∥∥∥

AO λ〈B1, . . . , Bn〉
and

κ〈?AOB1, . . . , ?AOBn〉
LS
∥∥∥

?AO κ〈B1, . . . , Bn〉
. J

We can now state the splitting lemmas.

I Lemma 10 (binary splitting). Let A, B, and K be formulas.

1. If (ANB)OK is provable in LS, then so are AOK and B OK.
2. If (A�B)OK is provable in LS, then there is an n ≥ 0 and K1, . . . ,Kn and λ〈 〉n, such

that
λ〈K1, . . . ,Kn〉

LS
∥∥∥
K

and for all i ≤ n we have
−

LS
∥∥∥

AOKi
or

−
LS
∥∥∥

B OKi
.

3. If (A�B)OK is provable in LS, then there are n ≥ 0 and KA1,KB1, . . . ,KAn,KBn and

λ〈 〉n, such that
λ〈KA1 OKB1, . . . ,KAn OKBn〉

LS
∥∥∥
K

and
−

LS
∥∥∥

AOKAi
and

−
LS
∥∥∥

B OKBi

for all i ≤ n.

I Lemma 11 (unit and atomic splitting). Let x be an atom or a negated atom, and let K be
a formula.

4. If 1OK is provable in LS, then there is a λ〈 〉n and a derivation
λ〈⊥, . . . ,⊥〉

LS
∥∥∥
K

.
5. If ⊥OK is provable in LS, then so is K.
6. If 0 OK is provable in LS, then there is a λ〈 〉n and a derivation from λ〈>, . . . ,>〉 to

K in LS.
7. If xOK is provable in LS, then there is a λ〈 〉n and a derivation

λ〈x⊥, . . . , x⊥〉
LS
∥∥∥
K

.

I Lemma 12 (exponential splitting). Let A and K be formulas.

8. If !A OK is provable in LS, then there are n ≥ 0 and K1, . . .Kn and λ〈 〉n, such that
λ〈K1, . . . ,Kn〉

LS
∥∥∥
K

and for all i ≤ n we have
−

LS
∥∥∥

AOKi

with Ki = ⊥ or Ki = ?Ki1O· · ·O?Kihi

for some hi ≥ 1.
9. If ?AOK is provable in LS \ {ct↓}, then either K is provable in LS \ {ct↓}, or there are

n ≥ 1 and K1, . . .Kn and κ〈 〉n, such that
κ〈K1, . . . ,Kn〉

LS\{ct↓}
∥∥∥
K

and
−

LS\{ct↓}
∥∥∥

AOKi

for all i ≤ n.

CSL 2011

8 The Focused Calculus of Structures

All three splitting lemmas are proved in a similar way by an induction on the size of the
given proof, and a case analysis on the bottommost rule instance. Although the statements
of the splitting lemmas are different from the ones in [18], the proofs are almost literally the
same. The purpose of the splitting lemmas is to prove the following lemma, which says that
the rules of the up-fragment are admissible in a shallow context.

I Lemma 13. Let K be a formula and let
ξ
{
F
}

r↑ −−−−−−
ξ
{
G
} be a rule in SLS↑. If F OK is provable

in LS, then so is GOK.

This is proved by using splitting to decompose the proof of F OK into smaller pieces which
can then be rearranged to build a proof of G OK. For the rules pr↑ and !↑, we also need
Proposition 8.

For proving Theorem 6, we need to extend Lemma 13 to general contexts. This is done
by the context reduction lemma, whose proof is a straightforward induction on the context,
repeatedly applying splitting.

I Lemma 14 (context reduction). Let A be a formula and ξ be a context in which { } does
not appear inside the scope of a ?-modality. If ξ

{
A
}

is provable in LS, then there exist an
n ≥ 0, a killing context κ〈 〉, and formulas KA1, . . . ,KAn, such that

κ〈C OKA1, . . . , C OKAn〉
LS
∥∥∥

ξ
{
C
} for every formula C and

−
LS
∥∥∥

AOKAi
for every i ≤ n. J

I Lemma 15. Let
ξ
{
F
}

r↑ −−−−−−
ξ
{
G
} be a rule in SLS↑ and let ξ be a context in which { } does not

appear inside the scope of a ?-modality. If ξ
{
F
}

is provable in LS, then so is ξ
{
G
}

.

This follows immediately from Lemma 13 and Lemma 14. In order to deal with ?-contexts,
we use the following lemma, proved by a simple rule permutation argument: any rule applied
inside the scope of a ? can be permuted up until it leaves the scope of the ?-modality.

I Lemma 16 (?-reduction). For every proof P in SLS there is a proof P ′ in SLS with the
same conclusion as P, such that in P ′ no inference rule is applied inside the scope of a
?-modality. J

Now Theorem 6 can be shown by first applying Lemma 16 and then eliminating all up-rules,
starting with the topmost one, using Lemma 15.

3.2 LSF and LSS: Polarized, Focused, and Synthetic Variants of LS
In this section we study two complete polarized and focused variants of LS. Like in Andreoli’s
original formulation of focusing in the sequent calculus [1], we keep the general form of the
rules of LS but modify them to respect polarity. The resulting calculus, called LSF, can be
seen to be related to LS in the same way that LLKF is related to LLK. (In Section 4 below,
we formalize the comparison between LLKF and LSF.) Just as in the sequent calculus, the
proofs of completeness of the focusing restriction will become more manageable in a synthetic
formulation of LSF, that we call LSS, which we present immediately after LSF.

Because LSF uses polarized formulas, the contexts in LSF are sensitive to the polarity of
their holes. We use π and ρ for positive formula contexts, i.e., π{P} is a well-formed polarized
formula for any positive formula P . Likewise, we use ν and µ for negative formula contexts.
Note that the polarity of π

{
P
}
(resp. ν

{
N
}
) need not itself be positive (resp. negative).

K. Chaudhuri, N. Guenot, and L. Straßburger 9

Decision
ν
{
P

}
?F −−−−−−−−
ν
{

?P
} ν

{
(P : L)

}
intF −−−−−−−−−−−−−−−

ν
{
P O L

}
Interaction

π
{

1
}

aiF −−−−−−−−−−−
π

{
a: a

} π
{

(P : L)�Q
}

slF −−−−−−−−−−−−−−−−−−−
π

{
(P �Q): L

} π
{
P � (Q: L)

}
srF −−−−−−−−−−−−−−−−−−−

π
{

(P �Q): L
} π

{
P

}
�lF −−−−−−−−−−−−

π
{
P �Q

} π
{
Q

}
�rF −−−−−−−−−−−−

π
{
P �Q

}
π

{
(N O L)

}
pcF −−−−−−−−−−−−−−−−

π
{
N : L

} π
{

!(N O ?P)
}

prF −−−−−−−−−−−−−−−−−
π

{
!N : ?P

}
Superposition

ν
{

(M1 ON)N (M2 ON)
}

dtF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{

(M1 NM2)ON
} ν

{
>

}
gcF −−−−−−−−−−−−

ν
{

>ON
}

Exponentiation
ν
{

?P O ?P
}

ctF −−−−−−−−−−−−−−−
ν
{

?P
} ν

{
⊥

}
wkF −−−−−−−−

ν
{

?P
}

Start
π

{
1
}

−−−−−−−−
π

{
1
} π

{
1
}

−−−−−−−−−−
π

{
1� 1

} π
{

1
}

−−−−−−−−
π

{
! 1

} ν
{

1
}

−−−−−−−−−−−−−
ν
{

1N 1
} ν

{
1
}

−−−−−−−
ν
{

>
}

Congruence
ν
{
N

}
−−−−−−−−−−−−
ν
{
N O⊥

} ν
{
N OM

}
−−−−−−−−−−−−−
ν
{
M ON

} ν
{

(N1 ON2)ON3
}

−−−−−−−−−−−−−−−−−−−−−−−
ν
{
N1 O (N2 ON3)

}
Figure 4 LSF: a polarized and focused variant of LS

Inside positive contexts, we will use a notational device to mark the foci. To motivate this
notation, consider the properties of the foci in LLKF sequents: they interact with the context
by splitting it (for �), by testing it for emptiness (for 1 and !), or by checking for the presence
of negated atoms (for id). For LSF, these interactions need to be made incremental—formula
by formula—because the formulas of the corresponding sequent context may not (yet) be
present in a O relation at the point of the switch rules.

I Definition 17. An interaction formula (or simply an interaction) is a positive formula of
the form P : L. We call P in P : L the focus of the interaction, and L its spine.

Here, we use L to stand for reactive formulas, which correspond to the formulas that occur
in LLKF sequents ` Γ ; Π, which are precisely those sequents that are introduced by the
decision rules wdc and dc. Recall that such sequents represent formulas of the formO(?Γ,Π).
Reactive formulas, and their duals, the active formulas, therefore have this grammar:

R ::= a !N N (Active Formulas)
L ::= a ?P P (Reactive Formulas)

Figure 4 lists the inference rules of LSF. A proof in LSF is a derivation with premise 1
or 1. The start rules in Figure 4 define what it means to finish an LSF proof. The first
start rule removes a pair of shifts from a 1, and the other four are polarized versions of
the rules �↓, !↓, N↓, and >↓ of LS (Figure 3). Interactions are created by the intF rule,
which corresponds to dc in LLKF. When the focus of the interaction involves a polarity shift,
the interaction dissipates into an ordinary O using pcF, which is the analogue of the rule
of LLKF. In order to remain true to the spirit of LS, we keep contraction and decision as
separate rules instead of building a specialized version of intF that incorporates contraction.
This lets us preserve the permutability of contraction (Proposition 8) even in the focused
setting. To retain completeness, the ?F rule derelicts a ? to a . The remaining rules for
interactions follow the shape of the focus of the interaction, just as in the sequent calculus.
For example, for �, the rules slF and srF (that are the focused versions of the sl and sr rules of
LS) send the spine of the interaction into one of the components of the focus. The remaining
(non-interaction) rules are simply the direct polarity-respecting translations of the LS rules.

CSL 2011

10 The Focused Calculus of Structures

I Theorem 18 (soundness). For any N , if N is provable in LSF, then bNc is provable in LS.

Proof. Just replace P : L with P O L and erase the polarity shifts. J

To show completeness, we will now move to a synthetic variant of LSF, called LSS, that
keeps a sequence of interactions on subformulas of a focus together. While the correspon-
dence with LLKF is clearer in LSF without this synthetic step, the proof of completeness is
drastically simplified with synthetic formulations, a phenomenon that has also been observed
for focusing in the sequent calculus [8].

The key observation needed to produce a synthetic variant of LSF is the following: in an
interaction formula P :L, the spine L is switched (using slF and srF) deep inside P until the
focus of the interaction become active. During this switching, any �-formulas in the focus
are destructed by removing (using �lF and �rF) one of its operands. Thus, we can define a
special tensor context, written using π⊗ and ρ⊗, with this grammar:

π⊗ ::= { } | π⊗ � P | P � π⊗ (Tensor Contexts)

Note that, because π⊗ contains no shift or exponential connectives, any substitution π⊗
{
P
}

is itself positive. Tensor contexts allow us to write the following synthetic forms of the
interaction rules:

ν
{
π⊗
{

1
}}

saiF −−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
a
}
O a
} ν

{
π⊗
{

(N O L)
}}

spcF −−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
N
}
O L
} ν

{
π⊗
{

!(N O ?P)
}}

sprF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{

!N
}
O ?P

}
I Definition 19. The system LSS is LSF \ {intF, aiF, slF, srF, pcF, prF} ∪ {saiF, spcF, sprF}.

I Theorem 20. Any formula is provable in LSS if and only if it is provable in LSF.

Proof. Each instance of saiF, spcF, or sprF can be derived by one of

ν
{
π⊗
{

1
}}

aiF −−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
a: a

}}
{slF,srF}

∥∥∥D

ν
{

(π⊗
{
a
}
: a)

}
intF −−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗
{
a
}
O a
}

ν
{
π⊗
{

(M O L)
}}

pcF −−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
M : L

}}
{slF,srF}

∥∥∥D

ν
{

(π⊗
{
M
}
: L)

}
intF −−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗
{
M
}
O L
}

ν
{
π⊗
{

!(M O ?P)
}}

prF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{

!M : ?P
}}

{slF,srF}
∥∥∥D

ν
{

(π⊗
{

!M
}
: ?P)

}
intF −−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗
{

!M
}
O ?P

}
where D can be constructed by a straightforward induction on π⊗.

In the other direction, note that : is not commutative, i.e., the order of the spines is
fixed in iterations of :. We can therefore permute any LSF proof to guarantee that the
focus of any interaction isn’t itself an interaction. Finally, we permute all instances of �lF
and �rF as low as possible in the LSF proof so that all interactions are introduced by aiF,
pcF or prF. The synthetic rules saiF, spcF and sprF can now be easily recovered. J

For giving the proof of completeness of LSS with respect to LS, we proceed by inductive
transformation of LS proofs in three steps. First, we rewrite the instances of the switch
rules in LS to respect the restriction of the spines to reactive formulas, which corresponds
to applying negative rules eagerly like in LLKF. Second, we use an auxiliary rule, called psF,
that breaks the polarity restrictions by means of an extra pair of shifts in the premise. This
rule allows us to transform any LS proof into a proof in LSS ∪ {psF}. And third, we show
that psF can be eliminated from LSS ∪ {psF}.

For the first step, let LSr stand for LS where the rules sl and sr (see Figure 3) are replaced
by the following rules slr and srr, respectively:

ξ
{

(AO bLc)�B
}

slr −−−−−−−−−−−−−−−−−−−−−−−
ξ
{

(A�B)O bLc
} ξ

{
A� (B O bLc)

}
srr −−−−−−−−−−−−−−−−−−−−−−−

ξ
{

(A�B) O bLc
}

K. Chaudhuri, N. Guenot, and L. Straßburger 11

Recall that L stands for reactive formulas. The following can be shown by an easy induction:

I Lemma 21. The rules
ξ
{

(ANB) � C
}

cc↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ
{

(A� C) N (B � C)
} ξ

{
> �A

}
ga↓ −−−−−−−−−−−−

ξ
{

>
} ξ

{
AO ⊥

}
⊥̄↓ −−−−−−−−−−−−

ξ
{
A

} ξ
{

(ANB) O C
}

d̄t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ
{
AO C

}
N (B O C)

ξ
{

> O C
}

ḡc↓ −−−−−−−−−−−−−
ξ
{

>
}

are admissible in LSr. J

I Lemma 22. If a formula A is provable in LS, then it is also provable in LSr.

Proof. Let the size of an instance of sl or sr with conclusion ξ
{

(A�B)OC
}
be defined as

the number of symbols used in C. For transforming an LS proof into an LSr proof we take
two steps:

−
LS
∥∥∥D1

A
−−−−−−→

−
LSr∪{cc↓,ga↓,⊥̄↓,d̄t↓,ḡc↓}

∥∥∥D2

A

Lemma 21−−−−−−→
−

LSr
∥∥∥D3

A

For the first step, proceed by induction on the multi-set of the sizes of all switch instances
in D1, under multi-set ordering, showing that all instances of sl and sr can be reduced to slr

and srr. Any instance of sl but not of slr can be replaced by one of the following derivations,
reducing the size. (Note that we omitted some instances of asc↓ and com↓.)

(B O (G O H)) � C
sl −−−−−−−−−−−−−−−−−−−−−−−−

((B O G) � C) O H
sl −−−−−−−−−−−−−−−−−−−−−−−−

(B � C) O (G O H)

(B O ⊥) � C
⊥̄↓ −−−−−−−−−−−−−−−−

B � C
⊥↓ −−−−−−−−−−−−−−−−(B � C) O ⊥

(B O (G N H)) � C
d̄t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−((B O G) N (B O H)) � C

cc↓ −−((B O G) � C) N ((B O H) � C)
sl −−

((B O G) � C) N ((B � C) O H)
sl −−

((B � C) O G) N ((B � C) O H)
dt↓ −−(B � C) O (G N H)

(B O >) � C
ḡc↓ −−−−−−−−−−−−−−−−> � C

ga↓ −−−−−−−>
gc↓ −−−−−−−−−−−−−−−−(B � C) O >

The cases for sr are similar. J

The second step of the transformation of LS proofs to LSS proofs involves the following
partial switch synthetic rule:

ν
{
π⊗
{

(P O L)
}}

psF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
P
}
O L
}

This rule has more shifts in the premise than in the conclusion and is therefore not derivable
in LSS. It can permute above any rule in LSS \ {saiF, spcF, sprF}. Before we can show that
psF can always be eliminated from any proof of LSS, we need a lemma stating that can
be removed from an LSS proof with the use of psF.

I Lemma 23. If there is a proof D of a negative formula π
{

P
}

in LSS∪{psF}, then there
is a proof of π

{
P
}

in LSS ∪ {psF} of at most the same height as D .

Proof. Proceed by induction on the height of D . In the base case, π
{

P
}
is 1 and the

result is immediate. In the general case, consider the bottommost rule instance r in D ; in
most cases the induction hypothesis is directly applicable so the pair of shifts can simply be
removed. The only interesting case is where r is a matching instance of spcF. We replace it
by an instance of psF as follows:

ν
{
π⊗
{

(P O L)
}}

spcF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{

P
}
O L
} −→

ν
{
π⊗
{

(P O L)
}}

psF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
P
}
O L
} J

I Remark. Note that we also have the converse: if there is a proof of π
{
P
}
in LSS ∪ {psF},

then there is also a proof of π
{

P
}
in LSS ∪ {psF}.

CSL 2011

12 The Focused Calculus of Structures

I Lemma 24. For every N , if bNc is provable in LSr, then N is provable in LSS ∪ {psF}.

Proof. Proceed by induction on the height of the LSr proof D of bNc to build a proof of
N in LSS ∪ {psF}. The base case, where bNc is 1, is trivial. Now make a case analysis
for the bottommost rule instance r in D . In most cases, we can simply replace r with the
corresponding rule in LSS, and appeal to the induction hypothesis on the proof above r.
The four interesting cases involve r being an instance of ai↓, slr, srr, or pr↓. We can apply
the induction hypothesis to the proof above r and glue the result to one the following rule
instances depending on the case:

ν
{

1
}

saiF −−−−−−−−−−−−−
ν
{
aO a

} ν
{

((P O L)�Q)
}

psF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{

(P �Q) O L
} ν

{
(P � (QO L))

}
psF −−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{

(P �Q) O L
} ν

{
!(N O ?P)

}
sprF −−−−−−−−−−−−−−−−−−−

ν
{

!N O ?P
}

If the premises and conclusions do not match (because of extra pairs) we appeal to
Lemma 23 and the remark above. J

I Lemma 25. The rule psF is height-preserving admissible in LSS.

Proof. Given a proof D of a negative formula N in LSS ∪ {psF}, we prove by induction on
the height of D that there is a proof of N in LSS of at most the same height as D . In the
base case, N is 1 and we are done. In the general case, we case-analyze the bottommost
rule instance r in D . If this is not an instance of psF, we appeal to the induction hypothesis
on the proof above r and compose the result with r. In the case where r is an instance of
psF, we consider the rule instance r1 above r in D , and consider the cases for r1. If r1 is
not a synthetic rule, then we can permute r up above r1 and then appeal to the induction
hypothesis on the proof now above r1. If r1 was an instance of ctF or dtF, then we need to
appeal to the induction hypothesis twice, which is possible because our reduction does not
increase the height of D . If r1 was wkF or gcF, we do not need to appeal to the induction
hypothesis. If r1 ∈ {saiF, spcF, sprF}, we merge r and r1 by replacing them with a new
instance of r1, as follows:

ν
{
π⊗

{
ρ⊗

{
1
}}}

saiF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗

{
(ρ⊗

{
a
}

O a)
}}

psF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗

{
ρ⊗

{
a
}}

O a
}

ν
{
π⊗

{
ρ⊗

{
M O L

}}}
spcF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
(ρ⊗

{
M

}
O L)

}}
psF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
ρ⊗

{
M

}}
O L

}
ν
{
π⊗

{
ρ⊗

{
!(M O ?L)

}}}
sprF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
(ρ⊗

{
!M

}
O ?P)

}}
psF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
ρ⊗

{
!M

}}
O ?P

}
↓ ↓ ↓

ν
{
π⊗

{
ρ⊗

{
1
}}}

saiF −−−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗

{
ρ⊗

{
a
}}

O a
} ν

{
π⊗

{
ρ⊗

{
M O L

}}}
spcF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
ρ⊗

{
M

}}
O L

} ν
{
π⊗

{
ρ⊗

{
!(M O ?L)

}}}
sprF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
ρ⊗

{
!M

}}
O ?P

}
Now we appeal to the induction hypothesis on the proof above r1 to produce a new proof
on which we apply Lemma 23 to get a proof D ′, with a conclusion matching the premise of
the new instances resulting from the merge. We appeal to the induction hypothesis again
on D ′ and plug the result above the merged instance. Lastly, if r1 is also an instance of psF,
then we appeal to the induction hypothesis on the proof above r1 and apply the technique
used for the other cases. J

We now have all the ingredients for the completeness theorem for LSS.

I Theorem 26. For any N , if bNc is provable in LS, then N is provable in LSS.

Proof. Let a proof of bNc in LS be given. By Lemma 22, there is a proof of bNc in LSr. By
Lemma 24, we have a proof of N in LSS ∪ {psF}, and thus by Lemma 25 also in LSS. J

Note that since LSS and LSF are equivalent, Theorem 26 also proves the completeness
of LSF with respect to LS.

K. Chaudhuri, N. Guenot, and L. Straßburger 13

4 Comparing Sequent and Structural Focusing

In order to justify the adjective “focused” for LSF, it is important to give a precise comparison
with LLKF. In this section we shall prove that every LLKF proof can be simulated in LSF, and,
conversely, every LSF proof has a corresponding LLKF proof. Both results are surprising, as
there is no reason a priori that the two systems should have such a close correspondence.
Indeed, there are significant differences such as the treatment of weakening and contraction
and the incremental splitting of contexts around �.

4.1 Simulating LLKF in LSF
First, let us simulate LLKF proofs in LSF, i.e., show that LSF is adequate with respect to
LLKF. The two proof systems are not isomorphic, so we use an abstraction.

I Definition 27. For a non-empty LLKF sequent σ and a polarized formula A, we say that
A is a structural interpretation of σ, written A≈ σ, iff it can be derived from these rules:

−−−−−−−−−−−−−−−−−−−
P ≈ (` · ; [P])

Q≈ (` Γ ; Π, [P])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(Q : L)≈ (` Γ ; Π, L, [P])

Q≈ (` Γ, P ; Π, [P ′])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(Q : ?P)≈ (` Γ, P ; Π, [P ′])

Q≈ (` Γ ; Π, [P ′])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Q≈ (` Γ, P ; Π, [P ′])

−−−−−−−−−−−−−−−−−−
N ≈ (` · ; N)

M ≈ (` Γ ; ∆)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(M O N)≈ (` Γ ; ∆, N)

M ≈ (` Γ, P ; ∆)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(M O ?P)≈ (` Γ, P ; ∆)

M ≈ (` Γ ; ∆)
−−−−−−−−−−−−−−−−−−−−−−−
M ≈ (` Γ, P ; ∆)

In other words, structural interpretations can arbitrarily reorder the LLKF sequent and
potentially erase or duplicate the unrestricted formulas, but they must preserve the multi-
plicities of the linear formulas. The simulation theorem shows that LSF can preserve the
structural interpretations of each rule of LLKF.

I Theorem 28 (simulation). For any Γ, ∆, Π, and P ,
If ` Γ ; Π, [P] in LLKF, then there is a Q≈ (` Γ ; Π, [P]) such that

1
LSF\{ctF}

∥∥∥
Q

.

If ` Γ ; ∆ in LLKF, then there is a N ≈ (` Γ ; ∆) such that
1

LSF\{ctF}
∥∥∥
N

.

Proof. By structural induction on the given LLKF proofs. J

I Corollary 29 (completeness). If ` P1, . . . , Pm ; N1, . . . , Nn is provable in LLKF,
then N1 O · · ·ONn O ?P1 O · · ·O ?Pm is provable in LSF.

Proof. We have:
1∥∥∥Theorem 28

N1 O · · ·ONn Ou1 ?P1 Ou2 · · ·Oum ?Pm

ctF,wkF

∥∥∥
N1 O · · ·ONn O ?P1 O · · ·O ?Pm

where M1 Ou M2 stands for M1 O (M2 O · · ·OM2︸ ︷︷ ︸
u times

) if u ≥ 1, and for M1 if u = 0. J

4.2 Extracting LLKF Proofs from LSF Proofs
Let an LSF proof D with conclusion N0 be given. We present here an algorithm that extracts
an LLKF proof of ` · ; N0 that is unique up to rule permutations which are entirely confined
to the negative phases, i.e., the extraction does not make any essentially non-deterministic
choices. We begin by labelling the active and reactive formulas in N0, i.e., we modify the
grammar of formulas as follows:

CSL 2011

14 The Focused Calculus of Structures

P,Q ::= au !uN uN P �Q 1 P �Q 0 P :N

N,M ::= au ?uP uP N NM > N OM ⊥

We use u, v, . . . for labels drawn from some infinite set, and Λ for a multi-set of labels. We
write Lu or Ru to denote that the (re)active formula L or R has label u. The rules of LSF
(Figure 4) are modified to be label-sensitive. The key cases are as follows:

ν
{

u(P : Lv)
}

intF −−−−−−−−−−−−−−−−−−−
ν
{

uP O Lv

} π
{

1
}

aiF −−−−−−−−−−−−−−−
π
{
au : av

} π
{

u(N O Lv)
}

pcF −−−−−−−−−−−−−−−−−−−−
π
{

uN : Lv

} π
{

!u (N O ?vP)
}

prF −−−−−−−−−−−−−−−−−−−−−
π
{

!uN : ?vP
}

ν
{

uP
}

?F −−−−−−−−−−
ν
{

?uP
} ν

{
u1P O u2P

}
ctF −−−−−−−−−−−−−−−−−−−−− [{u} {u1, u2}]

ν
{

uP
} ν

{
⊥
}

wkF −−−−−−−−−− [{u} ∅]
ν
{

?uP
}

For all other rules the labelling is straightforward. The rules {intF, aiF, prF, pcF} in the first
line above induce an ordering, written <, among the labels, with u < v in each case. For
ctF, the labels u1 and u2 in the premise are assumed to be different from each other and
from all labels in the conclusion of the rule. The rules ctF and wkF induce a rewrite relation
 on multi-sets of labels that tracks the exponential uses of ?-formulas. We assume that if
u < v and {v} Λ, w, then u < w. We label all active and reactive formulas in N0 with
unique labels and label every rule instance in D as above. Note that the reflexive-transitive
closure of this label ordering, written ≤, is a partial order.

Our algorithm will extract a labelled LLKF proof of ` · ; N0 where the unrestricted
contexts contain positive formulas annotated with a multi-set of labels, i.e., their elements
will be of the form PΛ. The wdc rule is modified to consume one of the available labels in
this multi-set; if this multi-set is empty, then the rule is inapplicable. Likewise, the dc rule
consumes the label of the linear reactive formula. Finally, in the ? rule, the label of the ? is
normalized with respect to .

` Γ, PΛ ; Π, [P]
wdc −−−−−−−−−−−−−−−−−−−−

` Γ, PΛ,u ; Π
` Γ ; Π, [P]

dc −−−−−−−−−−−−−−−−
` Γ ; Π, uP

({u} ⇓ Λ) ` Γ, PΛ ; ∆
? −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ ; ∆, ?uP

The remaining rules of LLKF (Figure 2) can be modified to use labelled formulas in a
straightforward manner. We say that a label is available in a labelled LLKF sequent if it is
the label of some top-level formula in the sequent. The extraction of the labelled LLKF proof
of ` · ; N0 proceeds by backwards proof search (i.e., proof search from this goal sequent
upwards by applying LLKF rules from conclusion to premises) with some constraints:

For a negative sequent for which there are available negative rules (i.e., rules in the
negative phase in Figure 2), we apply one of these rules. The choice and order of the
application of these rules is immaterial.
From a negative sequent where no negative rules apply, we pick the unique ≤-smallest
label from the available labels, and use wdc or dc as appropriate. Each pair of formulas
in such a sequent has a corresponding pair of formulas in a O-relation in D . Because we
normalize with respect to , every surviving available label in this sequent is involved
in some instance of intF with another available label of the sequent in D . Thus, the
available labels are ≤-connected, and, because there is a sub-proof in D of the O-formula
corresponding to this sequent, there is always a unique ≤-smallest label.
For the � rule of LLKF focused on P � Q, we send those side formulas to the premise
involving P whose labels are ≤-larger than some label of a subformula of P , and the
rest to the premise involving Q. There is no splitting ambiguity: the sets of labels in
subformulas of P and Q are disjoint because the labelling is unique.

K. Chaudhuri, N. Guenot, and L. Straßburger 15

For �, we repeat the same choices made in D .

This algorithm is deterministic and always succeeds: it has no choice points that require
backtracking. There are no labels in any subformula of 1, so no formula will ever be sent to
a branch of a � that has focus on 1, guaranteeing that its LLKF rule will succeed. Similarly,
the sole formula that can be sent to a branch with focus on au will be a formula av with
u < v, and therefore the id rule of LLKF will succeed. Lastly, the only formulas that have
labels ≤-greater than a !-formula are ?-formulas, as ensured by the prF rule in LSF, so the
corresponding ! rule of LLKF succeeds. The algorithm terminates because each decision rule
consumes one of the finitely many labels of D . We can erase the labels from the computed
labelled LLKF proofs as a post-processing step.

References
1 J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and

Computation, 2(3):297–347, 1992.
2 A. Avron. The method of hypersequents in the proof theory of propositional non-classical

logics. In Logic: from foundations to applications: European logic colloquium, pages 1–32.
Clarendon Press, 1996.

3 D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In LPAR, volume
4790 of LNCS, pages 92–106, 2007.

4 N. D. Belnap, Jr. Display logic. J. of Philosophical Logic, 11:375–417, 1982.
5 K. Brünnler. Nested Sequents. Habilitationsschrift, Universität Bern, 2010.
6 K. Brünnler and A. F. Tiu. A local system for classical logic. In LPAR, volume 2250 of

LNCS (LNAI), pages 347–361. Springer, 2001.
7 P. Bruscoli and A. Guglielmi. On the proof complexity of deep inference. ACM Trans. on

Computational Logic, 10(2), 2009.
8 K. Chaudhuri. Focusing strategies in the sequent calculus of synthetic connectives. In

LPAR, volume 5330 of LNCS, pages 467–481, 2008.
9 N. Guenot. Focused proof search for linear logic in the calculus of structures. In ICLP,

volume 7 of LIPIcs, pages 84–93. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2010.
10 A. Guglielmi. A system of interaction and structure. ACM Trans. on Computational Logic,

8(1), 2007.
11 A. Guglielmi and L. Straßburger. Non-commutativity and MELL in the calculus of struc-

tures. In CSL, volume 2142 of LNCS, pages 54–68. Springer, 2001.
12 O. Laurent. Étude de la Polarisation en Logique. PhD thesis, Univ. Aix-Marseille II, 2002.
13 O. Laurent. A proof of the focalization property of linear logic. Unpublished note, 2004.
14 C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical

logics. TCS, 410(46):4747–4768, 2009.
15 D. Miller and A. Saurin. From proofs to focused proofs: a modular proof of focalization in

linear logic. In CSL, volume 4646 of LNCS, pages 405–419. Springer, 2007.
16 P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,

5(2):215–244, 1999.
17 L. Straßburger. A local system for linear logic. In LPAR, volume 2514 of LNCS (LNAI),

pages 388–402. Springer, 2002.
18 L. Straßburger. Linear Logic and Noncommutativity in the Calculus of Structures. PhD

thesis, Technische Universität Dresden, 2003.
19 L. Straßburger. MELL in the Calculus of Structures. TCS, 309(1–3):213–285, 2003.
20 L. Straßburger and A. Guglielmi. A system of interaction and structure IV: The exponen-

tials and decomposition, 2009. To appear in ACM Trans. on Computational Logic.

CSL 2011

	Introduction
	The Sequent Calculus and Focusing for Linear Logic
	Linear Logic in the Calculus of Structures
	The Unfocused Systems =SLSLLKF and =LSLLKF
	=LSFLS and =LSSLS: Polarized, Focused, and Synthetic Variants of =LSLS

	Comparing Sequent and Structural Focusing
	Simulating LLKF in LSF
	Extracting LLKF Proofs from LSF Proofs

