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Abstract

The calculus of structures is a new proof theoretical formalism, like natural de-
duction, the sequent calculus and proof nets, for specifying logical systems syn-
tactically. In a rule in the calculus of structures, the premise as well as the
conclusion are structures, which are expressions that share properties of formu-
lae and sequents. In this paper, I study a system for MELL, the multiplicative
exponential fragment of linear logic, in the calculus of structures. It has the
following features: a local promotion rule, no non-deterministic splitting of the
context in the times rule and a modular proof for the cut elimination theorem.
Further, derivations have a new property, called decomposition, that cannot be
observed in any other known proof theoretical formalism.
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1 Introduction

Sequent calculus [10, 11], natural deduction [10, 24] and proof nets [12] are proof
theoretical formalisms that are used to define logical systems syntactically and to
prove properties of those systems. Such syntactic tools are particularly important
if semantics is missing, incomplete or under development, as it is often the case in
computer science.

Proof theory plays an increasing role in theoretical computer science, mainly via
the two paradigms of proof reduction and proof construction [3]. Proof reduction, also
known as proof normalization, is via the Curry-Howard isomorphism [19], which iden-
tifies formulas and types, tightly connected to the functional programming paradigm.
Correct proofs correspond to well-typed programs, and the normalization of the proof
corresponds to the computation of the program. Proof construction, or proof search,
is connected to the logic programming paradigm via the notion of uniform proof [22].
Intuitively, formulae correspond to instructions, and (possibly incomplete) proofs
correspond to states. In other words, the search for the proof corresponds to the
computation.

The calculus of structures, which is a new proof theoretical formalism, is a general-
ization of the one-sided sequent calculus. It has been introduced by Guglielmi in [14]
for specifying a non-commutative logic. It has then been shown that the calculus of
structures is also suitable for classical logic [7, 5] and linear logic [16, 28]. Preliminary
research shows that also modal logic [27] and intuitionistic logic [6] can benefit from
the presentation in the calculus of structures. The basic principles of the calculus
of structures are that the notions of formulae and sequents are merged into a single
kind of expression, called structure, and that inference rules can be applied anywhere
deep inside structures. Since the calculus of structures allows for cut elimination and
a subformula property, it can have impact on the proof reduction paradigm as well
as the proof construction paradigm.

In this paper, I will study the multiplicative exponential fragment of linear logic
(MELL) [12] within this new formalism. The main results have been presented in a
very brief form in [16]. The starting point for this research are the following (well-
known) observations on the sequent calculus system for MELL.

• Almost all rules in the sequent calculus system for MELL have the following
property: if a rule has to be applied during a proof search, only the main con-
nective of one formula has to be investigated. For instance, for the application
of the par rule

� A,B,Φ
� � A � B,Φ

,

only the main connective � of the formula A � B has to be considered. From
the point of view of proof search this is a very good property, because the
computational resources (time and space) for applying a rule are bounded. This
is particularly important if the proof search is done by a distributed system.
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However, there is one exception in MELL: For applying the promotion rule

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

,

it is necessary to check for each formula in the context of !A, whether it has the
form ?B. Up to now there is no known system for MELL without this problem,
which also occurs in proof nets associated to boxes.

• There is another disturbing fact connected to the promotion rule: The formula
A � ?B1 � · · ·� ?Bn, which corresponds to the sequent in the premise, does
not linearly imply the formula !A � ?B1 � · · ·� ?Bn, which corresponds to the
sequent in the conclusion, whereas for all other rules in MELL we have a proper
implication between premise and conclusion. The reason why the promotion
rule is correct is that if the formula A � ?B1 � · · ·� ?Bn is provable, then
!A � ?B1 � · · ·� ?Bn is also provable. It might be interesting to note here that
the sequent calculus rules for the quantifiers do have the same problem [7].

• Consider the times rule
� A,Φ � B,Ψ

� � A � B,Φ,Ψ
.

From the point of view of proof search, this rule presents a serious problem:
One has to decide how to split the context of the formula A�B at the moment
the rule is applied. For n formulas in Φ,Ψ, there are 2n possibilities. Although
there are methods, like lazy evaluation, that can circumvent this problem inside
an implementation [18], there still remains the question whether it can be solved
inside the logical system.

• In the sequent calculus system for linear logic, the general identity axiom

id � A,A⊥ ,

where A is any formula, can be reduced to its atomic version

id � a, a⊥
,

where a is an atom. This is done via an inductive argument on the size of the
formula A. For example, if A = B � C we can replace

id by� B � C,B⊥
� C⊥

id � B,B⊥ id � C,C⊥
� � B � C,B⊥, C⊥
� .� B � C,B⊥

� C⊥

However, for the general cut rule

� A,Φ � A⊥,Ψ
cut � Φ,Ψ

,
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such an argument is impossible. The cut cannot be reduced to its atomic
version.

An interesting question is whether these facts are inherently connected to the logic
of MELL or not: In the former case one has to use a different logic in order to avoid
the problems mentioned above, and in the latter case one has to find a different
presentation for MELL.

One of the contributions of this paper is to show that it is not MELL itself which
is responsible. As already observed in [14, 16, 15], the reason is due to the following
two properties of the sequent calculus: First, a proof in the sequent calculus is a tree
where branching occurs when inference rules with more than one premise are used,
and there is a proof of the conclusion if there are proofs of each premise. Second, the
main connective plays a central role in the application of an inference rule. A rule
gives a meaning to the main connective in the conclusion by saying that the conclusion
is provable if certain subformulae obtained by removing that connective are provable.
These two properties together have remarkable success in making the study of systems
independent of their semantics, but they also make the sequent calculus unnecessarily
rigid. The calculus of structures allows to relax the two properties of the branching
of derivation trees and the decomposition of formulae around the main connective
without losing the good properties like cut elimination.

In the calculus of structures, inference rules have the shape
S{T}

ρ
S{R}, i.e. all rules

have only one premise. Premise and conclusion are structures. The structure S{R}
consists of the structural context S{ } and the structure R, which fills the hole of
S{ }. The rule ρ above simply says that if (during the proof search) a structure
matches the conclusion S{R}, then it can be rewritten as S{T}, where the context
S{ } does not change (or vice versa if one reasons top-down). The rule ρ corresponds
to the implication T ⇒ R, where⇒ stands for the implication that is modelled in the
system. In the case of MELL it is linear implication −◦. For instance, the implication
!(A � B) −◦ !A � ?B gives us a local promotion rule:

S{!(A � B)}
p↓

S{!A � ?B} .

Observe that this rule is sound. The non-deterministic splitting of the context in the
times rule of linear logic is avoided by using the linear implication A � (B � C) −◦
(A � B) � C in a rule:

S{A � (B � C)}
s
S{(A � B) � C} .

This rule, called switch [14], is also the key to the reduction of the general cut rule to
its atomic version.

Observe that there is a danger here, because any axiom T ⇒ R of a Hilbert system
could be used in a rule, with the consequence that there would be no structural
relation between T and R. And so, all good proof theoretical properties, like cut
elimination, would be lost. Therefore, the challenge is to design inference rules that,
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on the one hand, are liberal enough to overcome the strictness of the sequent calculus
and, on the other hand, are conservative enough to allow a proof of cut elimination
and a subformula property.

Since, in the calculus of structures, derivations are chains of instances of inference
rules (and not trees as in the sequent calculus), they show a top-down symmetry,
which is not present in the sequent calculus. An important consequence of this new
symmetry is that the cut rule

S{A � A⊥}
i↑

S{⊥}
becomes top-down symmetric to the identity rule

S{1}
i↓

S{A � A⊥} .

With this, it is possible to reduce the general cut rule to its atomic version

S{a � a⊥}
ai↑

S{⊥}
in the same way as this can be done for the identity. Furthermore, new manipulations
of derivations become possible. For instance, we can negate a derivation and flip it
upside down, and it remains a valid derivation.

Because of the new top-down symmetry, the calculus of structures allows for a
modular cut elimination proof. This is another reason to study known logics, like
MELL, within this new formalism (in [13], p. 15, Girard deems the lack of modularity
in the sequent calculus as one of the main technical limitations of proof theory).

The top-down symmetry of the calculus of structures does also allow to formu-
late new properties of derivations, that are not observable in other proof theoretical
formalisms. An important such property is decomposition, which basically says the
following: every derivation can be transformed into a derivation consisting of three
phases:

• a creation phase, which contains only rules that increase the size of the structure,

• a merging phase, which contains only rules that do not change the size of the
structure (like the rules p↓ and s shown above), and

• a destruction phase, which contains only rules that decrease the size of the
structure.

Such decomposition theorems have been also considered for other systems in the
calculus of structures: for a non-commutative logic in [14, 17] and for classical logic
in [7, 5].

Let me now sketch the outline of this paper. In the next section, I will give a short
introduction to MELL and its sequent calculus presentation. In Section 3, I will intro-
duce the language of structures and some basic notions of the calculus of structures.
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Then, in Section 4, I will present two systems, called system SELS (Symmetric or Self-
dual multiplicative Exponential Linear logic in the calculus of Structures) and system
ELS (multiplicative Exponential Linear logic in the calculus of Structures). The first
system corresponds to MELL with cut. It is self-dual because for every rule in the
system, there is a dual (i.e. contrapositive) rule in the system. It is also called sym-
metric because it demonstrates the top-down symmetry of the calculus of structures.
The second system corresponds to MELL without cut. In Section 5, I will show the
correspondence between these two systems in the calculus of structures and the sys-
tem for MELL in the sequent calculus. As a consequence, we obtain a cut elimination
result for system ELS, which follows (easily) from the cut elimination proof using the
sequent calculus presentation for MELL.

In Section 6, I will study the permutation of rules. This is the basis for the de-
composition of derivations in system SELS and the cut elimination proof within the
calculus of structures. Sections 7 and 8 are devoted to the proof of the decomposition
theorem for system SELS.

In Section 9, I will give a cut elimination proof for system ELS which will com-
pletely be carried out inside the calculus of structures, without the detour of using
the sequent calculus. It will be very different from all known cut elimination proofs
for MELL because it uses the result of the decomposition theorem and because it will
be modular. For a more detailed explanation of cut elimination in the calculus of
structures let me refer the reader to the introductory part of that section.

2 The Multiplicative Exponential Fragment of Linear

Logic

The calculus of structures, being a proof theoretical formalism, is not tied to any
particular logic. It can be used to define many different logical systems, in the same
way as the sequent calculus has been used for various systems, for instance classical
and intuitionistic logic [10], the Lambek calculus [20] or linear logic [12]. In this
paper, I will restrict myself to the multiplicative exponential fragment of linear logic.

2.1 Definition The multiplicative exponential fragment of linear logic (MELL) is
defined as follows:

• Formulae, denoted with A, B and C, are built over atoms according to the
following syntax:

A ::= a | 1 | ⊥ | A � A | A � A | !A | ?A | A⊥ ,

where a stands for any atom, 1 and ⊥ are constants, called one and bottom, re-
spectively, the binary connectives � and � are called par and times, respectively,
the unary connectives ! and ? are called of-course and why-not, respectively, and
A⊥ is the negation of A. When necessary, parentheses are used to disambiguate
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id � A,A⊥
� A,Φ � A⊥,Ψ

cut � Φ,Ψ

� A,B,Φ
� � A � B,Φ

� A,Φ � B,Ψ
� � A � B,Φ,Ψ

� Φ⊥ � ⊥,Φ
1 � 1

� A,Φ
dr �?A,Φ

�?A, ?A,Φ
ct �?A,Φ

� Φ
wk �?A,Φ

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

(for n � 0)

Figure 1: System MELL in the sequent calculus

expressions. Negation obeys the De Morgan laws:

(A � B)⊥ = A⊥
� B⊥ ,

(A � B)⊥ = A⊥
� B⊥ ,

(!A)⊥ = ?A⊥ ,
(?A)⊥ = !A⊥ ,
1⊥ = ⊥ ,
⊥⊥ = 1 ,

A⊥⊥ = A .

Formulae are considered equivalent modulo the smallest congruence satisfying
the equations above.

• Sequents, denoted with Σ, are expressions of the kind

� A1, . . . , Ah ,

where h � 0 and the comma between the formulae A1, . . . , Ah stands for multiset
union. Multisets of formulae are denoted with Φ and Ψ.

• Derivations, denoted with ∆, are trees where the nodes are sequents to which a
finite number (possibly zero) of instances of the inference rules shown in Figure 1
are applied. The sequents in the leaves are called premises, and the sequent in
the root is the conclusion. A derivation with no premises is a proof, denoted
with Π.
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2.2 Example The following derivation shows an example for a proof in MELL:

id �?a, !a⊥

id � a, a⊥
dr �?a, a⊥

id � b, b⊥
� �?a, a⊥ � b, b⊥
dr �?a, ?(a⊥ � b), b⊥
! �?a, ?(a⊥ � b), !b⊥

� �?a, ?(a⊥ � b) � !b⊥
� �?a, ?a, (?(a⊥ � b) � !b⊥) � !a⊥
ct .�?a, (?(a⊥ � b) � !b⊥) � !a⊥

3 The Language of Structures

In the sequent calculus, rules apply to sequents, which in turn are built from for-
mulae. In the calculus of structures, rules apply to structures, which are a kind of
intermediate expressions between formulae and sequents.

In order to present a system in the sequent calculus, we need first to define a
language of formulae and sequents, as I did in the previous section. For presenting a
system in the calculus of structures we have to do the same, i.e. defining a language
of structures first. In this section, I will define the language ELS of structures for the
systems that are discussed in this paper.

3.1 Definition There are countably many atoms, which are denoted with a, b, c,
. . . . The structures of the language ELS are denoted with P , Q, R, S, . . . , and are
generated by

R ::= a | ⊥ | 1 | [ R, . . . , R︸ ︷︷ ︸
>0

] | ( R, . . . , R︸ ︷︷ ︸
>0

) | !R | ?R | R̄ ,

where a stands for any atom, 1 and ⊥ are constants, called one and bottom. A struc-
ture [R1, . . . , Rh ] is called a par structure, (R1, . . . , Rh) is called a times structure,
!R is called an of-course structure, and ?R is called a why-not structure; R̄ is the
negation of the structure R. Structures are considered to be equivalent modulo the
relation =, which is the smallest congruence relation induced by the equations shown
in Figure 2, where �R and �T stand for finite, non-empty sequences of structures. Then
by definition we have for all structures R,R′, R1, R

′
1, . . . , Rh, R′

h and h > 0,

• if R = R′, then !R = !R′ and ?R = ?R′ and R̄ = R̄′;

• if Ri = R′
i for i = 1, . . . , h, then [R1, . . . , Rh ] = [R′

1, . . . , R
′
h ] and (R1, . . . , Rh) =

(R′
1, . . . , R

′
h).
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Associativity

[ �R, [ �T ] ] = [ �R, �T ]
(�R, (�T )) = (�R, �T )

Commutativity

[ �R, �T ] = [ �T , �R]
(�R, �T ) = (�T , �R)

Units

[⊥, �R] = [ �R]
(1, �R) = (�R)

Singleton

[R] = R = (R)

Exponentials

?⊥ = ⊥
!1 = 1

??R = ?R
!!R = !R

Negation

⊥ = 1

1 = ⊥
[R1, . . . , Rh ] = (R̄1, . . . , R̄h)

(R1, . . . , Rh) = [R̄1, . . . , R̄h ]

?R = !R̄
!R = ?R̄
¯̄R = R

Figure 2: Basic equations for the syntactic congruence =

3.2 Definition In the same setting, we can define structure contexts, which are
structures with a hole. Formally, they are generated by

S ::= { } | [ R, . . . , R︸ ︷︷ ︸
�0

, S,R, . . . , R︸ ︷︷ ︸
�0

] | (R, . . . , R︸ ︷︷ ︸
�0

, S,R, . . . , R︸ ︷︷ ︸
�0

) | !S | ?S .

Because of the De Morgan laws there is no need to include the negation into the
definition of the context, which means that the structure that is plugged into the hole
of a context will always be positive. Structure contexts will be denoted with R{ },
S{ }, T{ }, . . . . Then, S{R} denotes the structure that is obtained by replacing the
hole { } in the context S{ } by the structure R. The structure R is a substructure of
S{R} and S{ } is its context. For a better readability, I will omit the context braces
if no ambiguity is possible, e.g. I will write S [R,T ] instead of S{[R,T ]}.
3.3 Example Let S{ } = [(a, ![{ }, ?a], b̄), b] and R = c and T = (b̄, c̄) then

S [R,T ] = [(a, ![c, (b̄, c̄), ?a], b̄), b] .

3.4 Definition In the calculus of structures, an inference rule is a scheme of the
kind

T
ρ

R
,
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where ρ is the name of the rule, T is its premise and R is its conclusion. An inference
rule is called an axiom if its premise is empty, i.e. the rule is of the shape

ρ
R

.

A typical rule has shape
S{T}

ρ
S{R} and specifies a step of rewriting, by the implication

T ⇒ R, inside a generic context S{ }. Rules with empty contexts correspond to the
case of the sequent calculus.

3.5 Definition A (formal) system S is a set of inference rules.

3.6 Definition A derivation ∆ in a certain formal system is a finite sequence of
instances of inference rules in the system:

R
ρ

R′
ρ′ ...
ρ′′ .

R′′

A derivation can consist of just one structure. The topmost structure in a derivation,
if present, is called the premise of the derivation, and the bottommost structure is
called its conclusion. A derivation ∆ whose premise is T , whose conclusion is R, and

whose inference rules are in S will be indicated with
T

R
S∆ . A proof Π in the calculus

of structures is a finite derivation whose topmost inference rule is an axiom. It will

be denoted by
R

��
SΠ .

3.7 Definition A rule ρ is derivable in a system S if ρ /∈ S and for every application

of
T

ρ
R

there is a derivation
T

R
S∆ . A rule ρ is admissible for a system S if ρ /∈ S

and for every proof
R

��
S∪{ρ}Π there is a proof

R

��
SΠ′

.

3.8 Definition Two systems S and S ′ are strongly equivalent if for every derivation
T

R
S∆ there is a derivation

T

R
S ′∆′ , and vice versa. Two systems S and S ′ are (weakly)

equivalent if for every proof
R

��
SΠ there is a proof

R

��
S ′Π′

, and vice versa.

3.9 Definition The function ·
S
defines the obvious translation from MELL formulae
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id′
[R, R̄]

S
id′′

(S, [R, R̄])

(S, [R,P ], [R̄,Q])
cut′

(S, [P,Q])

(S, [R,T, P ])
�
′
(S, [ [R,T ], P ])

(S, [R,P ], [T,Q])
�
′
(S, [(R,T ), P,Q])

(S,P )⊥′
(S, [⊥, P ])

1′
1

S
1′′

(S, 1)

(S, [R,P ])
dr′

(S, [?R,P ])

(S, [?R, ?R,P ])
ct′

(S, [?R,P ])

(S,P )
wk′

(S, [?R,P ])

(S, [R, ?T1, . . . , ?Tn ])
!′

(S, [!R, ?T1, . . . , ?Tn ])
(for n � 0)

Figure 3: System MELL′ in the calculus of structures

into ELS structures:

a
S

= a ,
⊥
S

= ⊥ ,
1
S

= 1 ,
A � B

S
= [A

S
, B

S
] ,

A � B
S

= (A
S
, B

S
) ,

?A
S

= ?A
S

,
!A

S
= !A

S
,

A⊥
S

= A
S

.

The domain of ·
S
is extended to sequents by

�
S

= ⊥ and
� A1, . . . , Ah

S
= [A1

S
, . . . , Ah

S
] ,for h � 0 .

The translation ·
S
induces trivially a set of rules for the calculus of structures that

are able to mimic the derivations in MELL. These rules form system MELL′ which
is shown in Figure 3. (The rules �

′, ⊥′, and 1′′ are vacuous.) These rules are a
one-to-one translation of the rules of the sequent calculus shown in Figure 1. The
structures R and T (possibly indexed) in Figure 3 correspond to the formulas A and
B, respectively, in Figure 1. The structures P and Q correspond to the contexts Φ
and Ψ in the sequent calculus. The structure S carries the information about the
sequent calculus tree, which is not directly visible in the calculus of structures. It is
easy to see that for every derivation in MELL there is a corresponding derivation in
the calculus of structures using system MELL′, and vice versa.

3.10 Example The corresponding proof in MELL′ for the proof in MELL in Exam-
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ple 2.2 becomes:

id′
[b, b̄]

id′′
([a, ā], [b, b̄])

dr′
([?a, ā], [b, b̄])

�
′

[?a, (ā, b), b̄]
dr′

[?a, ?(ā, b), b̄]
!′

[?a, ?(ā, b), !b̄]
id′′

([?a, !ā], [?a, ?(ā, b), !b̄])
�
′
[?a, ?a, ([?(ā, b), !b̄]), !ā]

ct′ .
[?a, ([?(ā, b), !b̄]), !ā]

This shows that the calculus of structures is at least as powerful as the sequent
calculus, because, by this method, any system in the sequent calculus that admits a
one-sided presentation can be ported, trivially, to the calculus of structures. But this
hardly justifies the use of the calculus of structures. In the next section, I will build
two systems that are equivalent to MELL (one to MELL with cut and one to MELL
without cut) and that will use the the new freedom and symmetry of the calculus of
structures. As a consequence they will be much simpler than MELL′ shown above.

3.11 Definition The translation from ELS structures into MELL formulae is realized
by the function ·

L
:

a
L

= a ,
⊥
L

= ⊥ ,
1
L

= 1 ,
[R1, . . . , Rh ]

L
= R1

L
� · · · � Rh

L
,

(R1, . . . , Rh)
L

= R1
L
� · · · � Rh

L
,

?R
L

= ? R
L

,
!R

L
= ! R

L
,

R̄
L

= (R
L
)⊥ .

3.12 Remark Although ELS structures are in fact equivalence classes and MELL
formulae are not, the translations ·

S
and ·

L
work because the DeMorgan laws are

imposed on both and the other equations on structures are logical equivalences in
MELL.
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4 A Symmetric Set of Rules

In the calculus of structures, rules come in pairs, a down-version
S{T}

ρ↓
S{R} and an up-

version
S{R̄}

ρ↑
S{T̄}. This duality derives from the duality between T ⇒ R and R̄⇒ T̄ ,

where⇒ is the implication modelled in the system. In our case it is linear implication.

4.1 Definition The structural rules

S([R,T ], U)
s
S [(R,U), T ]

,
S{![R,T ]}

p↓
S [!R, ?T ]

,
S(?R, !T )

p↑
S{?(R,T )} ,

S{⊥}
w↓

S{?R} ,
S{!R}

w↑
S{1} ,

S [?R,R]
b↓

S{?R} and
S{!R}

b↑
S(!R,R)

are called switch (s), promotion (p↓), copromotion (p↑), weakening (w↓), coweakening
(w↑), absorption (b↓) and coabsorption (b↑), respectively.

Observe that the switch rule is self-dual, i.e. if premise and conclusion are negated
and exchanged, we obtain again an instance of switch, whereas all other rules have a
dual co-rule.

4.2 Definition The rules

S{1}
i↓

S [R, R̄]
and

S(R, R̄)
i↑

S{⊥}

are called interaction and cut (or cointeraction), respectively.

Observe that these rules correspond to the identity and cut rule in the sequent
calculus (the exact correspondence is shown in the proof of Theorem 5.2), with the
difference that the duality between identity and cut is more vivid.

4.3 Definition The rules

S{1}
ai↓

S [a, ā]
and

S(a, ā)
ai↑

S{⊥}

are called atomic interaction and atomic cut (or atomic cointeraction), respectively.

The rules ai↓ and ai↑ are obviously instances of the rules i↓ and i↑ above. It is
well known that in many systems in the sequent calculus, the identity rule can be
reduced to its atomic version. In the calculus of structures we can do the same. But
furthermore, by duality, we can do the same to the cut rule. This is not possible in the
sequent calculus because whenever an atomic cut is applied in the sequent calculus a
branching occurs and there is no way to reunite two branches in a sequent calculus
derivation.

4.4 Proposition The rule i↓ is derivable in the system {ai↓, s, p↓}. Dually, the rule
i↑ is derivable in {ai↑, s, p↑}.
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Proof: For a given application of
S{1}

i↓
S [R, R̄]

, by structural induction on R, we will

construct an equivalent derivation that contains only ai↓, s and p↓.

• R = ⊥ or R = 1: In this case S [R, R̄] = S{1}.
• R is an atom: Then the given instance of i↓ is an instance of ai↓.
• R = [P,Q], where P �= ⊥ �= Q: Apply the induction hypothesis on

S{1}
i↓

S [Q, Q̄]
i↓

S([P, P̄ ], [Q, Q̄])
s
S [Q, ([P, P̄ ], Q̄)]
s .

S [P,Q, (P̄ , Q̄)]

• R = (P,Q), where P �= 1 �= Q: Similar to the previous case.

• R =?P , where P �= ⊥: Apply the induction hypothesis on

S{1}
i↓

S{![P, P̄ ]}
p↓ .

S [?P, !P̄ ]

(Note that S{1} = S{!1}.)
• R =!P , where P �= 1: Similar to the previous case.

The second statement is dual to the first. For the sake of convenience let me show
the two interesting derivations:

S(P,Q, [P̄ , Q̄])
s
S(Q, [(P, P̄ ), Q̄])
s
S [(P, P̄ ), (Q, Q̄)]

i↑
S(Q, Q̄)

i↑ and
S{⊥}

S(!P, ?P̄ )
p↑

S{?(P, P̄ )}
i↑ .

S{⊥}

	

4.5 Definition The system {ai↓, ai↑, s, p↓, p↑,w↓,w↑, b↓, b↑}, shown in Figure 4 is
called Symmetric (or Self-dual) multiplicative Exponential Linear logic in the calculus
of Structures, or system SELS. The set {ai↓, s, p↓,w↓, b↓} is called the down-fragment
and {ai↑, s, p↑,w↑, b↑} is called the up-fragment.

There is another strong admissibility result involved here, that has already been
observed in [14]. If the rules i↓, i↑ and s are in a system, then any other rule ρ makes
its co-rule ρ′, i.e. the rule obtained from ρ by exchanging and negating premise and
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S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

}
Interaction

S([R,U ], T )
s
S [(R,T ), U ]




Core
S{![R,T ]}

p↓
S [!R, ?T ]

S(?R, !T )
p↑

S{?(R,T )}

S{⊥}
w↓

S{?R}
S{!R}

w↑
S{1}




Non-core
S [?R,R]

b↓
S{?R}

S{!R}
b↑

S(!R,R)

Figure 4: System SELS

conclusion, be derivable: Let
S{P}

ρ
S{Q} be given. Then any instance of

S{Q̄}
ρ′

S{P̄} can be

replaced by the following derivation:

S{Q̄}
i↓

S(Q̄, [P, P̄ ])
s
S [(Q̄, P ), P̄ ]

ρ
S [(Q̄,Q), P̄ ]

i↑ .
S{P̄}

4.6 Proposition Every rule ρ↑ in SELS is derivable in {i↓, i↑, s, ρ↓}.
Propositions 4.4 and 4.6 together say, that the general cut rule i↑ is as powerful as

the whole up-fragment of the system and vice versa.

Observe that in Proposition 4.4 only the rules s, p↓ and p↑ are used to reduce the
general interaction and the general cut to their atomic version, whereas the rules w↓,
w↑, b↓ and b↑ are not used. This motivates the following definition.

4.7 Definition In system SELS, the rules s, p↓ and p↑ are called core part, whereas
the rules w↓, w↑, b↓ and b↑ are non-core.

So far we are only able to describe derivations. In order to describe proofs, we need
an axiom.
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1↓
1

S{1}
ai↓

S [a, ā]

S([R,U ], T )
s
S [(R,T ), U ]

S{⊥}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

S{![R,T ]}
p↓

S [!R, ?T ]

Figure 5: System ELS

4.8 Definition The following rule is called one:

1↓
1

.

In the language of the sequent calculus it simply says that � 1 is provable. I will
put this rule to the down-fragment of system SELS and by this break the top-down
symmetry of derivations and observe proofs.

4.9 Definition The system {1↓, ai↓, s, p↓,w↓, b↓}, shown in Figure 5, which is ob-
tained from the down-fragment of system SELS together with the axiom, is called
multiplicative Exponential Linear logic in the calculus of Structures, or system ELS.

Observe that in every proof in system ELS, the rule 1↓ occurs exactly once, namely
as the topmost rule of the proof.

As an immediate consequence of Propositions 4.4 and 4.6 we get the following:

4.10 Theorem The systems ELS ∪ {i↑} and SELS∪ {1↓} are strongly equivalent.

5 Correspondence between MELL and ELS

In this section, I will show the equivalence between the system MELL in the sequent
calculus and the systems SELS ∪ {1↓} and ELS in the calculus of structures. More
precisely, every proof in system SELS ∪ {1↓} has a translation in system MELL, and
every cut free proof in MELL has a translation in system ELS. As a consequence, we
can obtain an (easy) proof of cut elimination for system SELS∪ {1↓}, or equivalenty,
for system ELS ∪ {i↑}.

In order to show cut elimination for system SELS∪ {1↓}, so as to obtain a system
where each rule satisfies the subformula property (in the sense that the premise is
built from substructures of the conclusion and there are only finitely many possibilities
to apply the rule to a given structure), it would be sufficient to eliminate only the
rules ai↑ and w↑. But we can get more. We can show that the whole up-fragment
of system SELS (except for the switch which does also belong to the down-fragment)
is admissible. This paper contains two very different proofs of this fact. The first,
in this section, uses the cut elimination proof for MELL in the sequent calculus. The

17



second, in Section 9, will be carried out inside the calculus of structures, completely
independently from the sequent calculus.

5.1 Theorem If a given structure R is provable in system SELS ∪ {1↓}, then its
translation � R

L
is provable in MELL (with cut).

Proof: Suppose, we have a proof Π of R in system SELS ∪ {1↓}. By induction on
the length of Π, let us build a proof Π

L
of � R

L
in MELL.

Base case: Π is 1↓
1

: Let Π
L

be the proof 1 � 1.

Inductive case: Suppose Π is

S{R}
ρ

S{T} ,

��
SELS∪{1↓}Π′

where
S{R}

ρ
S{T} is the last rule to be applied in Π. The following MELL proofs

show that � (R
L
)⊥, T

L
is provable in MELL for every rule

S{R}
ρ

S{T} in SELS, i.e.

R
L
−◦ T

L
is a theorem in MELL:

id � a, a⊥
� � a � a⊥⊥ ,� ⊥, a � a⊥

1 � 1
wk ,� 1, ?R

id �!R⊥, ?R

id � R⊥, R
dr � R⊥, ?R

� � (!R⊥
� R⊥), ?R, ?R

ct ,� (!R⊥
� R⊥), ?R

id � R⊥, R
id � U⊥, U

� � R⊥, U⊥, R � U
id � T⊥, T

� � R⊥
� T⊥, U⊥, R � U, T

� � R⊥
� T⊥, U⊥, (R � U) � T

� ,� (R⊥
� T⊥) � U⊥, (R � U) � T

id � R⊥, R
id � T⊥, T

� � R⊥
� T⊥, R, T

dr �?(R⊥
� T⊥), R, T

dr �?(R⊥
� T⊥), ?R,T

! �?(R⊥
� T⊥), ?R, !T

� .�?(R⊥
� T⊥), ?R � !T

This means that for any context S{ }, we also have that S{R}
L
−◦ S{T}

L
is

a theorem in MELL, i.e. � (S{R}
L
)⊥, S{T}

L
is provable in MELL. By induction

hypothesis we have a proof Π′
L

of � S{R}
L

in MELL. Now we can get a proof
Π
L

of � S{T}
L

by applying the cut rule:

� S{R}
L
� (S{R}

L
)⊥, S{T}

Lcut .� S{T}
L
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5.2 Theorem (a) If a given sequent � Φ is provable in MELL (with cut), then the
structure � Φ

S
is provable in system SELS ∪ {1↓}. (b) If a given sequent � Φ is cut

free provable in MELL, then the structure � Φ
S
is provable in system ELS.

Proof: Let Π be the proof of � Φ in MELL. By structural induction on Π, we will
construct a proof Π

S
of � Φ

S
in system SELS∪ {1↓} (or system ELS if Π is cut free).

• If Π is id � A,A⊥ for some formula A, then let Π
S

be the proof obtained via

Proposition 4.4 from

1↓
1

i↓ .
[A

S
, A

S
]

• If
� A,Φ � A⊥,Ψ

cut � Φ,Ψ
is the last rule applied in Π, then there are by induc-

tion hypothesis two derivations
1

[A
S
,Φ

S
]

SELS∆1 and
1

[A
S
,Ψ

S
]

SELS∆2 . Let Π
S

be the proof

obtained via Proposition 4.4 from

1↓
1

[A
S
,Φ

S
]

SELS∆1

([A
S
,Φ

S
], [A

S
,Ψ

S
])

s
[([A

S
,Φ

S
], A

S
),Ψ

S
]

s
[Φ

S
,Ψ

S
, (A

S
, A

S
)]

i↑ .
[Φ

S
,Ψ

S
]

SELS∆2

• If
� A,B,Φ

� � A � B,Φ
is the last rule applied in Π, then let Π

S
be the proof of

[A
S
, B

S
,Φ

S
] that exists by induction hypothesis.

• If
� A,Φ � B,Ψ

� � A � B,Φ,Ψ
is the last rule applied in Π, then there are by induction
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hypothesis two derivations
1

[A
S
,Φ

S
]

SELS∆1 and
1

[B
S
,Ψ

S
]

SELS∆2 . Let Π
S
be the proof

1↓
1

[A
S
,Φ

S
]

SELS∆1

([A
S
,Φ

S
], [B

S
,Ψ

S
])

s
[([A

S
,Φ

S
], B

S
),Ψ

S
]

s .
[(A

S
, B

S
),Φ

S
,Ψ

S
]

SELS∆2

• If
� Φ⊥ � ⊥,Φ

is the last rule applied in Π, then let Π
S

be the proof of � Φ
S

that

exists by induction hypothesis.

• If Π is 1 � 1, then let Π
S
be 1↓

1
.

• If
� A,Φ

dr �?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

[A
S
,Φ

S
]

w↓
[?A

S
, A

S
,Φ

S
]

b↓ ,
[?A

S
,Φ

S
]

��
SELS∪{1↓}Π′

where Π′ exists by induction hypothesis.

• If
�?A, ?A,Φ

ct �?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

[??A
S
, ?A

S
,Φ

S
]

b↓ ,
[??A

S
,Φ

S
]

��
SELS∪{1↓}Π′

where Π′ exists by induction hypothesis. (Note that ??A
S
=?A

S
.)
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• If
� Φ

wk �?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

Φ
Sw↓ ,

[?A
S
,Φ

S
]

��
SELS∪{1↓}Π′

where Π′ exists by induction hypothesis.

• If
� A, ?B1, . . . , ?Bn

! � !A, ?B1, . . . , ?Bn

is the last rule applied in Π, then there is by induction

hypothesis a derivation
1

[A
S
, ?B1

S
, . . . , ?Bn

S
]

SELS∆ . Now let Π
S
be the proof

1↓
!1

![A
S
, ?B1

S
, . . . , ?Bn

S
]

p↓ ...
p↓

[![A
S
, ?B1

S
], ??B2

S
, . . . , ??Bn

S
]

p↓ .
[!A

S
, ??B1

S
, ??B2

S
, . . . , ??Bn

S
]

SELS∆′

	


5.3 Theorem (Cut Elimination) The systems SELS∪{1↓} and ELS are equivalent.

Proof: Given a proof in SELS ∪ {1↓}, transform it into a proof in MELL (by Theo-
rem 5.1), to which we can apply the cut elimination procedure in the sequent calculus.
The cut free proof in MELL can then be transformed into a proof in system ELS by
Theorem 5.2. 	

5.4 Corollary The rule i↑ is admissible for system ELS.

Proof: Immediate consequence of Theorems 4.10 and 5.3. 	


6 Permutability of Rules

The top-down symmetry of derivations in the calculus of structures enables us to
study the mutual permutability of rules in a very natural way. This is the starting
point for the investigation of several properties of logical systems in the calculus of
structures. If we have, for example, a system with three rule ρ, π and σ, and we know

that ρ permutes over π and σ, then we can transform every derivation
T

R
{ρ,π,σ} into
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a derivation
T

T ′
{ρ}

R
{π,σ}

for some structure T ′. This is the basis for the decomposition theorem in Section 8
and the cut elimination proof of Section 9.

6.1 Definition A rule ρ permutes over a rule π (or π permutes under ρ) if for every

derivation

Q
π

U
ρ

P

there is a derivation

Q
ρ

V
π

P

for some structure V .

In order to study the permutation properties of rules, some more definitions are
needed. The inference rules of SELS, as it is presented in Figure 4, are all of the kind

S{W}
ρ

S{Z} : the structure Z is called the redex and W the contractum of the rule’s

instance. A substructure that occurs both in the redex and in the contractum of
a rule without changing is called passive, and all the substructures of redexes and
contracta, that are not passive, (i.e. that change, dissappear or are duplicated) are
called active. Consider for example the rules

S{![R,T ]}
p↓

S [!R, ?T ]
and

S [?R,R]
b↓

S{?R} .

In p↓, the redex is [!R, ?T ] and the contractum is ![R,T ]; the structures R and T are
passive; the structures [!R, ?T ], !R and ?T are active in the redex; and the structures
![R,T ] and [R,T ] are active in the contractum. In b↓ there are no passive structures;
in the redex the structures ?R and R are active and in the contractum [?R,R], ?R,R
and R are active (i.e. both occurrences of the structure R are active).

6.2 Definition An application of a rule
T

ρ
R

will be called trivial if R = T .

6.3 Case Analysis In order to find out whether a rule ρ permutes over a rule π, we
have to consider all possibilities of interference of the redex of π and the contractum
of ρ in a situation

Q
π

U
ρ .

P

Similarly as in the study of critical pairs in term rewriting systems, it can happen
that one is inside the other, that they overlap or that they are independent. Although
the situation is symmetric with respect to ρ and π, in almost all proofs of this paper,
the situation to be considered will be of the shape

Q
π

S{W}
ρ ,

S{Z}
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(1)

(d, [a, c], b)
ai↓

([b, b̄], d, [a, c], b)
s
([b, b̄], d, [(a, b), c])

(2)

(!(a, c), [ā, d])
s

[ā, (!(a, c), d)]
ai↓

[ā, (!(a, [b, b̄], c), d)]

(3)

([a, c], b)
ai↓

([(a, [b, b̄]), c], b)
s

[(a, [b, b̄], b), c]

(4)

(a, ![b, (c, d)])
p↓

(a, [!b, ?(c, d)])
s

[(a, !b), ?(c, d)]

(5)

[a, b]
w↓

[a, b, ?[(c, c̄), ā] ]
ai↑

[a, b, ?ā]

(6)

[?[a, b], a, ([b, c], d)]
s

[?[a, b], a, b, (c, d)]
b↓

[?[a, b], (c, d)]

Figure 6: Possible interferences of redex and contractum of two consecutive rules

where the redex Z and the contractum W of ρ are known and we have to make a
case analysis for the position of the redex of π inside the structure S{W}. Then the
following six cases exhaust all possibilities and Figure 6 shows an example for each
case:

(1) The redex of π is inside the context S{ } of ρ.

(2) The contractum W of ρ is inside a passive structure of the redex of π.

(3) The redex of π is inside a passive structure of the contractum W of ρ.

(4) The redex of π is inside an active structure of the contractum W of ρ but not
inside a passive one.

(5) The contractum W of ρ is inside an active structure of the redex of π but not
inside a passive one.

(6) The contractum W of ρ and the redex of π (properly) overlap.

In the first two cases, we have that Q = S′{W} for some context S′{ }. This means
that the derivation above is of the shape

S′{W}
π

S{W}
ρ ,

S{Z}
where we can permute ρ over π as follows

S′{W}
ρ

S′{Z}
π .

S{Z}

In the third case, we have that Z = Z ′{R} and W = W ′{R} for some contexts Z ′{ }
and W ′{ } and some structure R, and Q = S{W ′{R′}} for some structure R′. This
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means the derivation is
S{W ′{R′}}

π
S{W ′{R}}

ρ ,
S{Z ′{R}}

where R is passive for ρ, and we can permute ρ over π as follows

S{W ′{R′}}
ρ

S{Z ′{R′}}
π .

S{Z ′{R}}

This means that in a proof of a permutation result the cases (1)–(3) are always trivial,
whereas for the remaining cases (4)–(6), more elaboration will be necessary.

In every proof concerning a permutation result I will follow this scheme.

6.4 Lemma The rule w↓ permutes over the rules ai↓, ai↑, p↓ and w↑.

Proof: Consider a derivation

Q
π

S{⊥}
w↓

S{?R}
, where π ∈ {ai↓, ai↑, p↓,w↑}. Without loss

of generality, assume that the application of π is not trivial. According to 6.3, the
following cases exhaust all possibilities.

(1) The redex of π is inside S{ }. Trivial.

(2) The contractum ⊥ of w↓ is inside a passive structure of the redex of π. Trivial.

(3) The redex of π is inside a passive structure of the contractum ⊥ of w↓. Not
possible because there are no passive structures.

(4) The redex of π is inside the contractum ⊥ of w↓. Not possible because the

application of π is not trivial. (Observe that the case

S(a, ā)
ai↑

S{⊥}
w↓

S{?R}
is the same as

S [(a, ā),⊥]
ai↑

S [⊥,⊥]
w↓

S [⊥, ?R]

and is therefore covered by case (1).)

(5) The contractum ⊥ of w↓ is inside an active structure of the redex of π but not

inside a passive one. Not possible. (Observe that the case

S{![U, T ]}
p↓

S [!U, ?T ]
w↓

S [![U, ?R], ?T ]

is covered by (2) and the case

S{![U, T ]}
p↓

S [!U, ?T ]
w↓

S [!U, ?R, ?T ]

is covered by (1) because

[!U, ?R, ?T ] = [?R, [!U, ?T ] ].)
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(6) The contractum ⊥ of w↓ and the redex of π overlap. Not possible, because the
structure ⊥ cannot properly overlap with any other structure. 	


6.5 Lemma The rule w↑ permutes under the rules ai↓, ai↑, p↓ and w↓.
Proof: Dual to Lemma 6.4. 	

6.6 Lemma The rule ai↓ permutes over the rules ai↑, s, p↑ and w↑.

Proof: Consider a derivation

Q
π

S{1}
ai↓

S [a, ā]

, where π ∈ {ai↑, s, p↑,w↑}. Without loss

of generality, assume that the application of π is not trivial. Again, follow 6.3.

(1) The redex of π is inside S{ }. Trivial.

(2) The contractum 1 of ai↓ is inside a passive structure of the redex of π. Trivial.

(3) The redex of π is inside a passive structure of the contractum 1 of ai↓. Not
possible because there are no passive structures.

(4) The redex of π is inside the contractum 1. Not possible because the application

of π is not trivial. (Similarly as in the proof of Lemma 6.4, the case

S{!R}
w↑

S{1}
ai↓

S [a, ā]
is covered by (1).)

(5) The contractum 1 of ai↓ is inside an active structure of the redex of π, but not

inside a passive one. Not possible. (For instance the case

S([R,T ], U)
s
S [(R,U), T ]

ai↓
S [(R,U, [a, ā]), T ]

is covered by (2) because S [(R,U, [a, ā]), T ] = S [(R, (U, [a, ā])), T ].)

(6) The contractum 1 of ai↓ and the redex of π overlap. Not possible. 	


6.7 Lemma The rule ai↑ permutes under the rules ai↓, s, p↓ and w↓.
Proof: Dual to Lemma 6.6. 	


Observe that the rule w↓ does not permute over p↑. This is easy to see from the
derivation

S(?U, !V )
p↑

S{?[(U, V ),⊥]}
w↓ .

S{?[(U, V ), ?R]}
However, with the help of the switch rule, we can get

S(?U, !V )
w↓

S(?U, ![V, ?R])
p↑

S{?(U, [V, ?R])}
s .
S{?[(U, V ), ?R]}
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For the rules ai↓ and p↓ the situation is similar. Furthermore, the rule ai↓ does not
permute over w↓. For example, in the derivation

S{⊥}
w↓

S{?(a, b)}
ai↓ ,

S{?(a, [c, c̄], b)}
we cannot permute ai↓ up, but we could replace the whole derivation by a single
application of w↓:

S{⊥}
w↓ .

S{?(a, [c, c̄], b)}
This leads to the following definition.

6.8 Definition A rule ρ permutes over a rule π by a rule σ if for every derivation

Q
π

U
ρ

P

there is either a derivation

Q
ρ

V
π

P

for some structure V or a derivation

Q
ρ

V
π

V ′
σ

P

for

some structures V and V ′ or a derivation
Q

π
P

or a derivation
Q

ρ
P

or a derivation

Q
σ

P
. Dually, a rule π permutes under a rule ρ by a rule σ if for every derivation

Q
π

U
ρ

P

there is either a derivation

Q
ρ

V
π

P

for some structure V or a derivation

Q
σ

V
ρ

V ′
π

P

for some

structures V and V ′ or a derivation
Q

π
P

or a derivation
Q

ρ
P

or a derivation
Q

σ
P

.

6.9 Lemma (a) The rule w↓ permutes over p↑ and s by s. (b) The rule w↑ permutes
under p↓ and s by s. (c) The rule ai↓ permutes over p↓ and w↓ by s. (d) The rule ai↑
permutes under p↑ and w↑ by s.

Proof: (a) Consider a derivation

Q
π

S{⊥}
w↓

S{?R}
, where π ∈ {p↑, s} is not trivial. Then

the cases (1)–(4) and (6) are as in the proof of Lemma 6.4. The only non-trivial case
is:

(5) The contractum ⊥ of w↓ is inside an active structure of the redex of π but not
inside a passive one. Then there are two subcases
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(i) π = p↑ and S{⊥} = S′{?(U, [(U ′, V ),⊥], V ′)}. Then we have

S′(?(U,U ′), !(V, V ′))
p↑

S′{?(U,U ′, V, V ′)}
w↓ ,

S′{?(U, [(U ′, V ), ?R], V ′)}
which yields

S′(?(U,U ′), !(V, V ′))
w↓

S′(?(U, [U ′, ?R]), !(V, V ′))
p↑

S′{?(U, [U ′, ?R], V, V ′)}
s .
S′{?(U, [(U ′, V ), ?R], V ′)}

(ii) π = s and S{⊥} = S′ [(U, [(U ′, V ),⊥], V ′), T ]. Then we have

S′([(U ;U ′), T ], V, V ′)
s

S′ [(U,U ′, V, V ′), T ]
w↓ ,

S′ [(U, [(U ′, V ), ?R], V ′), T ]

which yields
S′([(U ;U ′), T ], V, V ′)

w↓
S′([(U, [U ′, ?R]), T ], V, V ′)
s

S′ [(U, [U ′, ?R], V, V ′), T ]
s .
S′ [(U, [(U ′, V ), ?R], V ′), T ]

(b) Dual to (a).

(c) Consider a derivation

Q
π

S{1}
ai↓

S [a, ā]

, where π ∈ {p↓,w↓} is not trivial. The cases

(1)–(4) and (6) are as in the proof of Lemma 6.6. The only non-trivial case is:

(5) The contractum 1 of ai↓ is inside an active structure of the redex of π, but not
inside a passive one. There are three subcases.

(i) π = p↓ and S{1} = S′ [(!R, 1), ?T ]. Then

S′{![R,T ]}
p↓

S′ [(!R, 1), ?T ]
ai↓ yields

S′ [(!R, [a, ā]), ?T ]

S′{![R,T ]}
ai↓

S′(![R,T ], [a, ā])
p↓

S′([!R, ?T ], [a, ā])
s .
S′ [(!R, [a, ā]), ?T ]

(ii) π = p↓ and S{1} = S′ [!R, (?T, 1)]. Similar to (i).
(iii) π = w↓ and S{1} = S′{?S′′{1}}. Then

S′{⊥}
w↓

S′{?S′′{1}}
ai↓ yields

S′{?S′′ [a, ā]}
S′{⊥}

w↓ .
S′{?S′′ [a, ā]}
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(d) Dual to (c). 	

This is sufficient to show that in any derivation that does not contain the rules b↓

and b↑, we can permute all instances of w↓ and ai↓ to the top of the derivation and
all instances of w↑ and ai↑ to the bottom.

6.10 Proposition For every derivation
T

R
SELS\{b↓,b↑}∆ there are derivations ∆1, ∆2

and ∆3, such that
T

T ′
{ai↓,w↓}∆1

R′
{s,p↓,p↑}∆2

R
{ai↑,w↑}∆3

for some structures T ′ and R′.

6.11 Remark The statement of Proposition 6.10 can be strengthened because the

derivation
T

T ′
{ai↓,w↓}∆1 can be further decomposed into

T

T ′′
{ai↓}

T ′
{w↓}

and

T

T ′′′
{w↓}

T ′
{ai↓}

for some structures T ′′ and T ′′′. Dually,
R′

R
{ai↑,w↑}∆3 can be decomposed into

R′

R′′
{ai↑}

R
{w↑}

and

R′

R′′′
{w↑}

R
{ai↑}

for some structures R′′ and R′′′.

Observe that in the sequent calculus the identity rules are at the top of the deriva-
tion by default, and the weakening rule can also be pushed up to the top. But it is
not possible to permute the cut rule downwards to the bottom of the derivation.

Proposition 6.10 is already half of the decomposition theorem. For the full decom-
position theorem it is necessary to handle the rules b↓ and b↑. This is not possible
with a trivial permutation argument because they neither permute over nor under
any other rule.
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7 Cycles in Derivations

In this section, I will provide a tool for dealing with the rules b↓ and b↑ in the
decomposition theorem. The goal is to permute in any derivation all instances of b↑
up to the top and all instances of b↓ down to the bottom. If we try to permute the
rule b↑ over the other rules in system SELS applying the schema in 6.3, we encounter
(among others) the following case:

S{![R,T ]}
p↓

S [!R, ?T ]
b↑ .

S [(!R,R), ?T ]

It is easy to see that there is no way to permute b↑ over p↓ in this case. But the
derivation can be replaced by

S{![R,T ]}
b↑

S(![R,T ], [R,T ])
p↓

S([!R, ?T ], [R,T ])
s
S [([!R, ?T ], R), T ]
s

S [(!R,R), ?T, T ]
b↓ .

S [(!R,R), ?T ]

This seems to solve the problem because now the instance of b↑ is over the instance
of p↓. However, there is now a new instance of b↓ which needs to be permuted down
to the bottom of the derivation. Applying the schema in 6.3 again, we encounter the
dual case:

S(!R, [?T, T ])
b↓

S(!R, ?T )
p↑ .

S{?(R,T )}
This has now to be replaced by

S(!R, [?T, T ])
b↑

S(!R,R, [?T, T ])
s
S([(!R,R), ?T ], T )
s
S [(!R, ?T ), (R,T )]

p↑
S [?(R,T ), (R,T )]

b↓ ,
S{?(R,T )}

which introduces a new instance of b↑. And so on.

The problem is to show that this cannot run forever, but must terminate eventually.
In order to do so, we have to inspect the path that is taken by an instance of b↑ while
it moves up to the top and the path taken by a b↓ while it moves down. This is the
motivation for the definition of !-chains and ?-chains. These chains can be composed
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to complex chains. In the next section, I will show that in the process described
above, the instances of b↑ and b↓ travel upwards and downwards along such chains.
Furthermore, the process will not terminate if such a chain has the form of a cycle.
The purpose of this section is to show that there is no such cycle.

In Definition 3.2, I introduced the concept of a context as a structure with a hole.
In this section, I also need the concept of a structure with more than one hole. An n-
ary context S{ } . . . { } is then a context with n holes. For example [!{ }, (a, { }, b)]
is a 2-ary context.

7.1 Definition A !-link is any of-course structure !R that occurs as substructure of
any structure S inside a derivation ∆.

In general, in a given derivation ∆, most of the !-links in ∆ are uninteresting for
the purpose mentioned before. For that reason, I will always mark those !-links that
are under discussion with a !�.

7.2 Example The derivation

(!� [(b, !a), ā], !c)
p↓

([!�(b, !a), ?ā], !c)
s
([!(b, !�a), (?ā, !�c)])

p↑
([!(b, !a), ?(ā, c)])

contains many !-links, but only four of them are marked.

7.3 Definition Two !-links !�R and !�R′ inside a derivation ∆ are connected if they

occur in two consecutive structures, i.e. ∆ is of the shape

P

S′{!�R′}
ρ

S{!�R}

Q

, such that one

of the following cases holds (see Figure 7):

(1) The link !�R is inside the context of ρ, i.e. R = R′ and S{!�R} = S′′{!�R}{Z}
and S′{!�R′} = S′′{!�R}{W} for some context S′′{ }{ }, where Z and W are
redex and contractum of ρ.

(2) The link !�R is inside a passive structure of the redex of ρ, i.e. R = R′ and
there are contexts S′′{ }, Z ′{ } and W ′{ } such that S{!�R} = S′′{Z{!�R}}
and S′{!�R′} = S′′{W{!�R}}, where Z{!�R} and W{!�R} are redex and con-
tractum of ρ.

(3) The redex of ρ is inside R, i.e. S{ } = S′{ } and there is a context R′′{ } such
that S{!�R} = S{!�R′′{Z}} and S′{!�R′} = S{!�R′′{W}}, where Z and W
are redex and contractum of ρ.

(4) The link !�R is inside an active structure of the redex of ρ, but not inside a
passive one. Then six subcases are possible:
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(1)
S′′{!�R}{W}

ρ
S′′{!�R}{Z} (2)

S′′{W{!�R}}
ρ

S′′{Z{!�R}} (3)
S{!�R′′{W}}

ρ
S{!�R′′{Z}}

(4.i)
S′{!� [R,T ]}

p↓
S′ [!�R, ?T ]

(4.ii)
S′{!�R}

b↑
S′(!�R,R)

(4.iii)
S′′{!V {!�R}}

b↑
S′′(!V {!�R}, V {!R}) (4.iv)

S′′{!V {!�R}}
b↑

S′′(!V {!R}, V {!�R})

(4.v)
S′′ [?U{!�R}, U{!R}]

b↓
S′′{?U{!�R}} (4.vi)

S′′ [?U{!R}, U{!�R}]
b↓

S′′{?U{!�R}}

Figure 7: Connection of !-links

(i) ρ = p↓ and there is a structure T such that S{!�R} = S′ [!�R, ?T ] and
S′{!�R′} = S′{!� [R,T ]}, i.e. R′ = [R,T ].

(ii) ρ = b↑, R = R′, S{!�R} = S′(!�R,R) and S′{!�R′} = S′{!�R}.
(iii) ρ = b↑, R = R′ and there are contexts S′′{ } and V { } such that S{!�R} =

S′′(!V {!�R}, V {!R}) and S′{!�R′} = S′′{!V {!�R}}.
(iv) ρ = b↑, R = R′ and there are contexts S′′{ } and V { } such that S{!�R} =

S′′(!V {!R}, V {!�R}) and S′{!�R′} = S′′{!V {!�R}}.
(v) ρ = b↓, R = R′ and there are contexts S′′{ } and U{ } such that S{!�R} =

S′′{?U{!�R}} and S′{!�R′} = S′′ [?U{!�R}, U{!R}].
(vi) ρ = b↓, R = R′ and there are contexts S′′{ } and U{ } such that S{!�R} =

S′′{?U{!�R}} and S′{!�R′} = S′′ [?U{!R}, U{!�R}].

7.4 Example In the derivation shown in Example 7.2, the two !-links !� [(b, !a), ā]
and !�(b, !a) are connected (by case (4.i)), whereas the !-link !�a is neither connected
to !�(b, !a) nor to !�c.

7.5 Definition A !-chain χ inside a derivation ∆ is a sequence of connected !-links.
The bottommost !-link of χ is called its tail and the topmost !-link of χ is called its
head.

Throughout this paper, I will visualize !-chains by giving the derivation and marking
all !-links of the chain by !�. For example the derivation on the left in Figure 8 shows
a !-chain with tail !�(b, ?a) and head !�b.

7.6 Definition The notion of ?-link is defined in the same way as the one of !-link.
The notion of ?-chain is defined dually to !-chain, in particular, the tail of a ?-chain
is its topmost ?-link and its head is its bottommost ?-link.

Similar as !-links, I will mark ?-links that are under discussion with ?�.

For convenience, Figure 9 shows the possibilities how ?-links can be connected inside
a ?-chain. Observe that cases (4.i) and (4.ii) are the only cases that are different from
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(!�b, !c)
b↑

(!�b, !c, b)
ai↓

(!�(b, [a, ā]), !c, b)
w↓

(!�(b, [?a, a, ā]), !c, b)
s
(!� [(b, [?a, a]), ā], !c, b)

b↓
(!� [(b, ?a), ā], !c, b)

p↓
([!�(b, ?a), ?ā], !c, b)

s
([!�(b, ?a), (?ā, !c)], b)

p↑
([!�(b, ?a), ?(ā, c)], b)

![!c, (?�a, !c), 1]
p↓

[?!c, ![(?�a, !c), 1] ]
w↓

[?!([?a, 1], !c), ![(?�a, !c), 1] ]
s

[?![(?a, !c), 1], ![(?�a, !c), 1] ]
b↓

?![(?�a, !c), 1]
ai↓

?![(?�a, !c), b, b̄]
p↓

?[![(?�a, !c), b], ?b̄]
b↑

?[(![(?�a, !c), b], [(?a, !c), b]), ?b̄]
p↑

?[(![?�(a, c), b], [(?a, !c), b]), ?b̄]

Figure 8: A !-chain and a ?-chain

(1)
S′′{?�T}{W}

ρ
S′′{?�T}{Z} (2)

S′′{W{?�T}}
ρ

S′′{Z{?�T}} (3)
S{?�T ′′{W}}

ρ
S{?�T ′′{Z}}

(4.i)
S′(!R, ?�T )

p↑
S′{?�(R,T )} (4.ii)

S′(?�T, T )
b↑

S′{?�T}

(4.iii)
S′′ [?U{?�T}, U{?T}]

b↓
S′′{?U{?�T}} (4.iv)

S′′ [?U{?T}, U{?�T}]
b↓

S′′{?U{?�T}}

(4.v)
S′′{!V {?�T}}

b↑
S′′(!V {?�T}, V {?T}) (4.iv)

S′′{!V {?�T}}
b↑

S′′(!V {?T}, V {?�T})

Figure 9: Connection of ?-links

Figure 7. The cases (1)–(3) are exactly the same as in Figure 7 and the cases (4.iii)
and (4.v) as well as the cases (4.iv) and (4.vi) are exchanged in order to maintain the
duality.

The derivation on the right in Figure 8 shows an example for a ?-chain with tail
?�a and head ?�(a, c).

7.7 Definition An upper link is any structure of the shape [!R, ?T ] that occurs
as substructure of a structure S inside a derivation ∆. Dually, a lower link is any
structure of the shape (?T, !R) that occurs as substructure of a structure S inside a
derivation ∆.

As !-links and ?-links, I will mark upper links as [!�R, ?�T ] and lower links as
(?�T, !�R).

7.8 Definition Let ∆ be a derivation. The set X(∆) of chains in ∆ is defined

32



(![a, (c, c̄), b], !�c)
p↓

([![a, (c, c̄)], ?b], !�c)
ai↑

([!�a, ?�b], !�c)
s

[!�a, (?�b, !�c)]
p↑

[!�a, ?(b, c)]
ai↓

[!�(a, [d, d̄]), ?(b, c)]

(a, ![c, d])
p↓

(a, [!�c, ?�d])
s

[(a, !�c), ?�d]
w↓

[([a, ?�b], !�c), ?�d]
s

[a, (?�b, !�c), ?�d]
w↑

[a, ?b, ?�d]
b↓

[?b, ?�d]

Figure 10: Two chains

inductively as follows:

(1) For every !-chain χ in ∆, we have χ ∈ X(∆).

(2) For every ?-chain χ in ∆, we have χ ∈ X(∆).

(3) If ∆ contains two chains χ1 and χ2 and an upper link [!�R, ?�T ] such that !�R
is the head of χ1 and ?�T is the tail of χ2, then the concatenation of χ1 and χ2

forms a chain χ3 ∈ X(∆). The tail of χ3 is the tail of χ1 and the head of χ3 is
the head of χ2.

(4) If ∆ contains two chains χ1 and χ2 and a lower link (?�T, !�R) such that ?�T
is the head of χ1 and !�R is the tail of χ2, then the concatenation of χ1 and χ2

forms a chain χ3 ∈ X(∆). The tail of χ3 is the tail of χ1 and the head of χ3 is
the head of χ2.

(5) There are no other chains in X(∆).

7.9 Definition The length of a chain χ is the number of !-chains and ?-chains it is
composed of.

Figure 10 shows two examples of chains in derivations. In the first chain, the tail
is !�(a, [d, d̄]) and the head is !�c. In the second example the tail is ?�b and the head
is ?�d. Both have length l = 3.

7.10 Definition Let ∆ be a derivation. A chain χ ∈ X(∆) is called a cycle if ∆
contains an upper link [!�R, ?�T ] such that !�R is the head of χ and ?�T is the tail
of χ, or ∆ contains a lower link (?�T, !�R) such that ?�T is the head of χ and !�R
its tail.

In other words, a cycle can be seen as a chain without head or tail. Figure 11 shows
an example for a cycle. Observe that for every cycle χ there is a number n = n(χ) � 1
such that χ consists of n !-chains, n ?-chains, n upper links and n lower links. I will
call this n(χ) the characteristic number of χ. For the example in Figure 11, we have
n = 2.
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(![c, d], !a, ?b)
p↓

([!�c, ?�d], !a, ?b)
s
([!�c, (!a, ?�d)], ?b)
s

[(!�c, ?b), (!a, ?�d)]
w↓

[?(!c, [!�a, ?�b], ?d), (!�c, ?b), (!a, ?�d)]
s

[?(!c, [(!�a, ?d), ?�b]), (!�c, ?b), (!a, ?�d)]
s

[?[(!c, ?�b), (!�a, ?d)], (!�c, ?b), (!a, ?�d)]
b↓

?[(!�c, ?�b), (!�a, ?�d)]
p↑

?[?(c, b), (!�a, ?�d)]
w↑

?[?(c, b), ?d]

Figure 11: A cycle χ with n(χ) = 2

7.11 Definition A cycle χ is called a promotion cycle if every upper link of χ is
redex of a p↓-rule (called link promotion) and every lower link of χ is contractum of
a p↑-rule (called link copromotion).

The example in Figure 11 is not a promotion cycle because the upper link [!�a, ?�b]
is not redex of a p↓-rule and the lower link (!�a, ?�d) is not contractum of a p↑-rule.
Figure 12 shows an example for a promotion cycle. Observe that it is not necessarily
the case that all upper links are above all lower links in the derivation.

7.12 Definition Let χ be a cycle inside a derivation ∆, and let all !-links and ?-
links of χ be marked with !� or ?�, respectively. Then, χ is called forked if one of the
following holds:

(i) There is an instance of
S [?U,U ]

b↓
S{?U} inside ∆, such that both substructures ?U

and U of the contractum contain at least one substructure marked by !� or ?�.

(ii) There is an instance of
S{!V }

b↑
S(!V, V )

inside ∆, such that both substructures !V

and V of the redex contain at least one substructure marked by !� or ?�.

A cycle is called non-forked if it is not forked.

Both examples for cycles, that I have shown, are forked cycles. In the remainder
of this section, I will show that there are no non-forked cycles.

7.13 Definition If a context can be generated by the syntax

S ::= { } | [ R, . . . , R︸ ︷︷ ︸
�0

, S,R, . . . , R︸ ︷︷ ︸
�0

] | (R, . . . , R︸ ︷︷ ︸
�0

, S,R, . . . , R︸ ︷︷ ︸
�0

) ,

i.e. the hole does not occur inside an !- or ?-structure, then it is called a basic context.
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!(![a, b], ![c, d], ![e, f ])
p↓

!([!�a, ?�b], ![c, d], ![e, f ])
p↓

!([!�a, ?�b], ![c, d], [!�e, ?�f ])
b↑

(!([!�a, ?b], ![c, d], [!e, ?�f ]), [!a, ?�b]![c, d], [!�e, ?f ])
w↑

(!([!�a, ?b], [!e, ?�f ]), [!a, ?�b]![c, d], [!�e, ?f ])
s
(![(!�a, [!e, ?�f ]), ?b], [!a, ?�b]![c, d], [!�e, ?f ])
s

(![(!�a, ?�f), !e, ?b], [!a, ?�b]![c, d], [!�e, ?f ])
p↑

(![?(a, f), !e, ?b], [!a, ?�b]![c, d], [!�e, ?f ])
w↑

([!a, ?�b]![c, d], [!�e, ?f ])
p↓

([!a, ?�b] [!�c, ?�d], [!�e, ?f ])
s
([(!�c, [!a, ?�b]), ?�d], [!�e, ?f ])
s

([(!�c, ?�b), !a, ?�d], [!�e, ?f ])
p↑

([?(c, b), !a, ?�d], [!�e, ?f ])
s

[?(c, b), !a, (?�d, [!�e, ?f ])]
s

[?(c, b), !a, (!�e, ?�d), ?f ]
p↑

[?(c, b), !a, ?(e, d), ?f ]

Figure 12: A promotion cycle χ with n(χ) = 3

7.14 Example The contexts [a, b, (ā, [c, d, b̄, { }, a], ?c)] and ([!(b, ?a), { }], b) are
basic, whereas ([!({ }, ?a), ?(ā, c)], b) is not basic.

7.15 Lemma Let S{ } be a basic context and R and T be any structures. Then
there is a derivation

S [R,T ]

[S{R}, T ]
{s}∆ .

Proof: By structural induction on S{ }.

• S = { }. Trivial because S [R,T ] = [R,T ] = [S{R}, T ].

• S = [S′, S′′{ }]. Then by induction hypothesis we have
[S′, S′′ [R,T ] ]

[S′, S′′{R}, T ]
{s}∆ .

• S = (S′, S′′{ }). Then let ∆ be

(S′, S′′ [R,T ])

(S′, [S′′{R}, T ])
s ,

[(S′, S′′{R}), T ]

{s}∆′
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where ∆′ exists by induction hypothesis. 	


7.16 Definition A cycle χ is called pure if

(i) for each !-chain and each ?-chain contained in χ, head and tail are equal, and

(ii) all upper links occur in the same structure and all lower links occur in the same
structure.

For example, the two cycles in Figures 11 and 12 are not pure. Although in both
cases condition (i) is fulfilled, condition (ii) is not. Figure 13 shows an example for a
pure cycle.

If a derivation
P

Q

SELS∆ contains a pure cycle then there are structures R1, . . . , Rn

and T1, . . . , Tn (for some n � 1) and two n-ary contexts S{ } . . . { } and S′{ } . . . { },
such that ∆ is of the shape

P

S [!�R1, ?�T1 ] [!�R2, ?�T2 ] . . . [!�Rn, ?�Tn ]
SELS∆1

S′(!�R2, ?�T1)(!�R3, ?�T2) . . . (!�R1, ?�Tn)
SELS∆2

Q

SELS∆3

,

where inside ∆1 and ∆3 no structures are marked with !� or ?� because the structure

S [!�R1, ?�T1 ] [!�R2, ?�T2 ] . . . [!�Rn, ?�Tn ]

contains all upper links and

S′(!�R2, ?�T1)(!�R3, ?�T2) . . . (!�R1, ?�Tn)

contains all lower links of the pure circle.

7.17 Proposition If there is a derivation
P

Q
SELS∆ that contains a non-forked pro-

motion cycle, then there is a derivation
P̃

Q̃

{ai↓,ai↑,s}∆̃ that contains a pure cycle.

Proof: Let χ be the non-forked promotion cycle inside ∆ and let all !-links and
?-links of χ be marked with !� and ?�, respectively (see Figure 14, first derivation).
Furthermore, let all instances of a link promotion (Definition 7.10) and all instances
of a link copromotion be marked as p↓• and p↑•, respectively (see Figure 14, second
derivation). Now, I will stepwise construct ∆̃ from ∆ by adding some more markings
and by permuting, adding and removing rules, until the cycle is pure. Observe that the
transformations will not destroy the cycle but might change premise and conclusion
of the derivation.
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[?(!c, [!a, ?b], ?d), (![c, d], !a, ?b)]
p↓

[?(!c, [!�a, ?�b], ?d), ([!�c, ?�d], !a, ?b)]
s

[?(!c, [!�a, ?�b], ?d), ([!�c, (!a, ?�d)], ?b)]
s

[?(!c, [!�a, ?�b], ?d), (!�c, ?b), (!a, ?�d)]
s

[?(!c, [(!�a, ?d), ?�b]), (!�c, ?b), (!a, ?�d)]
s

[?[(!c, ?�b), (!�a, ?d)], (!�c, ?b), (!a, ?�d)]
b↓

?[(!�c, ?�b), (!�a, ?�d)]
p↑

?[?(c, b), (!a, ?d)]

Figure 13: A pure cycle χ with n(χ) = 2
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Figure 14: Example (with n(χ) = 3) for the marking inside ∆

I. Let n be the characteristic number of χ. For each of the n marked instances of
S{![Ri, Ti ]}

p↓•
S [!�Ri, ?�Ti ]

proceed as follows: Mark the contractum ![Ri, Ti ] as !� [Ri, Ti ]
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and continue the marking for all !-links of the (maximal) !-chain that has
!� [Ri, Ti ] as tail. There is always a unique choice how to continue the marking

(see Definition 7.3), except for one case: If the marking reaches a
S [?U,U ]

b↓
S{?U}

and the last marked !�-structure is inside the redex ?U . Then there are two
possibilities: either continue inside ?U (case (4.v) of Definition 7.3) or continue
inside U (case (4.vi) of Definition 7.3). Choose that side that already contains
a marked !�- or ?�-structure. Since the cycle χ is non-forked, it cannot happen
that both sides already contain a marked !�- or ?�-structure. If there is no
marked !�- or ?�-structure inside the contractum [?U,U ] of the b↓, then choose
either one.

Proceed dually for all marked
S(!�R′

i, ?
�T ′

i )
p↑•

S{?(R′
i, T

′
i )}

, i.e. mark the redex ?(R′
i, T

′
i )

as ?�(R′
i, T

′
i ) and mark also all links of the ?-chain that has ?�(R′

i, T
′
i ) as tail

(see Figure 14, third derivation).

II. Now consider all !-substructures and all ?-substructures that occur somewhere
in the derivation ∆. They can be divided into three groups:

(a) those which are marked with !� or ?�,

(b) those which are a substructure of a marked !�- or ?�-structure, and

(c) all the others.

In this step replace all substructures !R and ?T that fall in group (c) by R
and T respectively, i.e. remove the exponential. This rather drastic step will,
of course, yield a non-valid derivation because correct rule applications might
become incorrect. Observe that all instance of ai↓, ai↑ and s inside ∆ do not
suffer from this step, i.e. they remain valid. Let us now inspect more closely
what could happen to the instances of p↓, p↑, w↓, w↑, b↓ and b↑.

• Consider any instance of
S{![R,T ]}

p↓
S [!R, ?T ]

in ∆. Then the following cases

exhaust all possibilities.

(i) There are two contexts S′{ } and S′′{ } such that S{ } =
S′{!�S′′{ }} or S{ } = S′{?�S′′{ }}. Then redex and contractum
of the p↓ remain unchanged and the rule remains valid.

(ii) The p↓ is marked as
S{!� [R,T ]}

p↓•
S [!�R, ?�T ]

. Then it also remains unchanged.

(iii) The p↓ is marked as
S{!� [R,T ]}

p↓
S [!�R, ?T ]

. Then the exponentials inside ?T

are removed, and we obtain an instance
S{!� [R,T ]}

p̂↓
S [!�R,T ′ ]

. Observe that

T ′ and T might be different because inside T all exponentials remain
as they are inside !� [R,T ], whereas inside T ′ some or all exponentials
are removed.
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(iv) The p↓ is not marked and does not occur inside a marked structure.

Then it becomes
S [R′, T ′ ]

p↓′
S [R′, T ′ ]

, where R′ and T ′ are obtained from R

and T , respectively, by removing some (or all) exponentials.

There are no other cases because there are no other markings possible.
Observe that the rule p↓′ in case (iv) is vacuous and can therefore be
removed in the whole derivation. Hence, it only remains to remove all
instances of the rule p̂↓ (case (iii)). This will be done in Step V.

• The rule
S(!R, ?T )

p↑
S{?(R,T )} is dual to the rule p↓. Hence the only problem lies

in the new rule
S(R′, ?�T )

p̂↑
S{?�(R,T )}, where R′ is obtained from R by removing

the exponentials. This rule will also be removed in Step V.

• For the rule
S{⊥}

w↓
S{?T} only two cases are possible.

(i) There are two contexts S′{ } and S′′{ } such that S{ } =
S′{!�S′′{ }} or S{ } = S′{?�S′′{ }}. Then redex and contractum
of the w↓ remain unchanged and the rule remains valid.

(ii) The rule becomes
S{⊥}

ŵ↓
S{T ′}, where T ′ is obtained from T by removing

some or all exponentials.

Observe that the marking
S{⊥}

w↓
S{?�T} is not possible.

• For the rule
S{!R}

w↑
S{1} the situation is dual and we obtain

S{R′}
ŵ↑

S{1} , where

R′ is obtained from R by removing the exponentials. The two rules ŵ↓
and ŵ↑ will be removed in Step IV.

• For
S [?T, T ]

b↓
S{?T} the situation is more complex. The possible cases are

(i) There are two contexts S′{ } and S′′{ } such that S{ } =
S′{!�S′′{ }} or S{ } = S′{?�S′′{ }}. Then redex and contractum
of the b↓ remain unchanged and the rule remains valid.

(ii) The rule is marked as
S [?�T, T ]

b↓
S{?�T} . Then it becomes

S [?�T, T ′ ]
b↓′

S{?�T} ,

where T ′ is obtained from T by removing the exponentials.
(iii) Neither redex nor contractum of the rule contain any marked !�- or

?�-structure, nor are they contained in a marked structure. Then the

rule becomes
S [T ′, T ′ ]

b↓′′
S{T ′} , where T ′ is obtained form T by removing

the exponentials.
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(iv) There are marked !�- or ?�-structures inside the structure T in the
redex. Then all those markings reoccur in one of the two substruc-
tures T in the contractum whereas the other T does not contain any
marking (because the cycle χ is non-forked). Hence the rule becomes

S [T ′′, T ′ ]
b↓′′′

S{T ′′} , where in T ′ all exponentials are removed and in T ′′

some exponentials are removed and some remain.

Observe that all instances of b↓′, b↓′′ and b↓′′′ are instances of
S [T, T ′ ]

b̂↓
S{T} ,

where S{ } is a basic context, and T and T ′ are arbitrary structures.

• Dually, for
S{!R}

b↑
S(!R,R)

, we obtain
S{R}

b̂↑
S(R,R′)

, where S{ } is a basic con-

text. The new instances of b̂↓ and b̂↑ will be removed in the next step.

Let me summarize what is achieved after this step: The original derivation
P

Q
SELS∆ has been transformed into

P

Q
SELS∪{p↓•,p↑•,p̂↓,p̂↑,ŵ↓,ŵ↑,b̂↓,b̂↑}∆̂ , where the

cycle together with the extentions of its !- and ?-chains is marked. In the fol-
lowing steps, I will remove all rules (including p̂↓, p̂↑, ŵ↓, ŵ↑, b̂↓, b̂↑) that prevent
the cycle from being pure.

III. First, I will remove all instances of b̂↓ and b̂↑. Consider the bottommost occur-

rence of
S [T, T ′ ]

b̂↓
S{T} inside ∆̂. Replace

∆̂ =

P

S [T, T ′ ]
b̂↓

S{T}

∆1

Q
∆2

by

P

S [T, T ′ ]
∆1

[S{T}, T ′ ]
{s}∆3

[Q,T ′ ]
∆2

,

where ∆2 does not contain any b̂↓ and ∆3 exists by Lemma 7.15. Repeat
this until there are no more b̂↓ in the derivation. Then proceed dually to
remove all b̂↑, i.e. start with the topmost b̂↑. This gives us a derivation

P ′

Q′
SELS∪{p↓•,p↑•,p̂↓,p̂↑,ŵ↓,ŵ↑}∆̂′ . Observe that premise and conclusion of the deriva-

tion have changed now, but the cycle is still present.

IV. In this step, I will remove all instances of ŵ↓ and ŵ↑. For this, observe that the
proofs of Lemmata 6.4 and 6.9 (a) do also work for ŵ↓. Furthermore, observe

that it can never happen that the contractum ⊥ of
S{⊥}

ŵ↓
S{T} is inside an active
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structure of the redex of p↑, p̂↑, b↓, b↑ or w↓ because then the redex T would be
inside a marked !�- or ?�-structure, which is not possible by the construction
of ŵ↓ in Step II. Hence, the rule ŵ↓ permutes (by s) over all other rules in the
derivation ∆̂′. Dually, ŵ↑ permutes under all other rules in ∆̂′ (by s). This
means that ∆̂′ can easily be transformed into

P ′

P ′′
{ŵ↓}∆′

1

Q′′
SELS∪{p↓•,p↑•,p̂↓,p̂↑}∆̂′′

Q′
{ŵ↑}∆′

2

by permuting stepwise all ŵ↓ up and all ŵ↑ down. Let us now consider only
P ′′

Q′′
SELS∪{p↓•,p↑•,p̂↓,p̂↑}∆̂′′ in which the cycle χ is still untouched.

V. Inside ∆̂′′ mark all rules ρ whose redex is inside a marked !�-structure as ρ�.
Additionally, mark all instances of p̂↓ as p̂↓�. Dually, mark all rules p̂↑ as well
as all rules ρ whose contractum is inside a marked ?�-structure as ρ�. Now
mark all remaining, i.e. not yet marked, rules ρ as ρ◦. This means, we now have

a derivation
P ′′

Q′′
{p↓•,p↑•,ρ�,ρ�,ρ◦}∆̂′′ , which will in this step be decomposed into

P ′′

P ′′′
{ρ�}∆̂′′

1

P̃

{p↓•}∆̂′′
2

Q̃

{ρ◦}∆̃

Q′′′
{p↑•}∆̂′′

3

Q′′
{ρ�}∆̂′′

4

only by permutation of rules. In order to obtain this decomposition, we need
to show that

(a) all rules marked as ρ� permute over all other rules,

(b) all rules marked as ρ� permute under all other rules,

(c) all rules p↓• permute over all rules marked as ρ◦ or p↑•, and

(d) all rules p↑• permute under all rules marked as ρ◦ or p↓•.
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I will apply the scheme of 6.3 to show the four statements.

(a) Consider

Q
π

S{W}
ρ�

S{Z}
, where π is not marked as π� and not trivial. Then

the cases are:

(1) The redex of π is inside the context S{ } of ρ�. Trivial.
(2) The contractum W of ρ� is inside a passive structure of the redex of

π. Trivial.
(3) The redex of π is inside a passive structure of the contractum W of

ρ�. Trivial.
(4) The redex of π is inside an active structure of the contractum W of

ρ�. Not possible because
(i) if the redex of ρ� is inside a !�-structure, then the contractum of

ρ� is also inside a !�-structure, and hence, the redex of π is inside
a !�-structure, and therefore π is π�;

(ii) if ρ� = p̂↓�, then the redex of π is also inside a !�-structure, and
therefore π is π�.

(5) The contractum W of ρ� is inside an active structure of the redex of
π but not inside a passive one. There are the following subcases:
(i) The redex of ρ� is inside a !�-structure. Not possible because then

the contractum of ρ� is also inside a !�-structure. Since it is also
inside an active structure of the redex of π, we have that either
this active structure is a !�-structure and therefore π = p̂↓�, or
the whole redex of π is inside a !�-structure and therefore π must
be marked as π�.

(ii) ρ� = p̂↓� and π = p̂↓. Not possible because then π is marked as
π�.

(iii) ρ� = p̂↓� and π = p↓. Then π = p↓• because there are no other p↓
that have a marked !�-structure in the redex, and we can replace

S′{!� [R,T1, T2 ]}
p↓•

S′ [!� [R,T1 ], ?�T2 ]
p̂↓� by

S′ [!�R,T ′
1, ?
�T2 ]

S′{!� [R,T1, T2 ]}
p̂↓�

S′ [!� [R,T2 ], T ′
1 ]

p↓• .
S′ [ [!�R, ?�T2 ], T ′

1 ]

(6) The contractum W of ρ◦ and the redex of π overlap. Not possible.

(b) Dual to (a).

(c) Consider

Q
π

S{!� [R,T ]}
p↓•

S [!�R, ?�T ]

, where π ∈ {ρ◦, p↑•} is not trivial.

(1) The redex of π is inside the context S{ } of p↓•. Trivial.
(2) The contractum of p↓• is inside a passive structure of the redex of π.

Trivial.
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(3) The redex of π is inside a passive structure of the contractum of p↓•.
Trivial.

(4) The redex of π is inside an active structure of the contractum of p↓•.
Not possible because then the redex of π is inside a !�-structure, and
therefore π is π�.

(5) The contractum !� [R,T ] of p↓• is inside an active structure of the
redex of π but not inside a passive one. Not possible because then π
were p̂↓� or p↓•.

(6) The contractum of p↓• and the redex of π overlap. Not possible.

(d) Dual to (c).

Now it only remains to show that the subderivation
P̃

Q̃

{ρ◦}∆̃ obtained in the last step

has indeed the desired properties (i.e. contains a pure cycle and consists only of the
rules ai↓, ai↑ and s). Observe that all rules ρ ∈ {p↓, p↑,w↓,w↑, b↓, b↑} in ∆

• either have been transformed into ρ̂ in Step II and then been removed in the
Steps III, IV and V,

• or remained unchanged in Step II (because they occurred inside a marked !�- or
?�-structure) and have then been marked as ρ� or ρ� and removed in Step V.

This means that only the rules ai↓, ai↑ and s are left inside ∆̃. Now consider the
premise P̃ of ∆̃. Since it is also the conclusion of ∆̂′′

2 which consists only of p↓•, it is
of the shape

S [!�R1, ?�T1 ] [!�R2, ?�T2 ] . . . [!�Rn, ?�Tn ]

for some structures R1, . . . , Rn, T1, . . . , Tn and some n-ary context S{ }{ } . . . { }.
Similarly, we have that

Q̃ = S′(!�R′
1, ?
�T ′

1)(!
�R′

2, ?
�T ′

2) . . . (!�R′
n, ?�T ′

n)

for some structures R′
1, . . . , R

′
n, T ′

1, . . . , T
′
n and some n-ary context S′{ }{ } . . . { }.

Since no transformation in Steps II–V destroyed the cycle, it must still be present in
∆̃. Since ∆̃ contains no rule that operates inside a !�- or ?�-structure, we have that
R′

1 = R2, R′
2 = R3, . . . , R′

n = R1 and T ′
1 = T1, T ′

2 = T2, . . . , T ′
n = Tn. This means

that ∆̃ does indeed contain a pure cycle. 	

7.18 Definition Let S be a structure and R and T be substructures of S. Then the
structures R and T are in par-relation in S if there are contexts S′{ }, S′′{ } and
S′′′{ } such that S = S′ [S′′{R}, S′′′{T}]. Similarly, R and T are in times-relation in
S if S = S′(S′′{R}, S′′′{T}) for some contexts S′{ }, S′′{ } and S′′′{ }.

7.19 Lemma If there is a derivation
P

Q
{ai↓,ai↑,s}∆ that contains a pure cycle χ, then
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there is a derivation

([!R1, ?T1 ], [!R2, ?T2 ], . . . [!Rn, ?Tn ])

[(!R2, ?T1), (!R3, ?T2), . . . (!R1, ?Tn)]
{s}∆̃

for some structures R1, . . . , Rn, T1, . . . , Tn, where n is the characteristic number of
χ.

Proof: By Lemma 6.6 and Lemma 6.7, the derivation ∆ can be decomposed into

P

P ′
{ai↓}∆1

Q′
{s}∆2

Q
{ai↑}∆3

.

This transformation does not destroy the cycle. Hence, the pure cycle is contained in
∆2. In other words, ∆2 has a subderivation

S [!�R1, ?�T1 ] [!�R2, ?�T2 ] . . . [!�Rn, ?�Tn ]

S′(!�R2, ?�T1)(!�R3, ?�T2) . . . (!�R1, ?�Tn)
{s}∆′

for some structures R1, . . . , Rn, T1, . . . , Tn and two n-ary contexts S{ } . . . { } and
S′{ } . . . { }. In the premise of ∆′, for every i = 1, . . . , n, the substructures !�Ri

and ?�Ti are in par-relation. The switch rule is not able (and also no other rule in
system SELS) to transform a par-relation into a times-relation while going down in a
derivation. Hence, for every i = 1, . . . , n, the substructures !�Ri and ?�Ti are also
in par-relation in the conclusion of ∆′. This means that the context S′{ } . . . { } =
S′

0 [S′
1{ }, . . . , S′

n{ }] for some contexts S′
0{ }, S′

1{ }, . . . , S′
n{ }. Dually, we have

that S{ } . . . { } = S0(S1{ }, . . . , Sn{ }) for some contexts S0{ }, S1{ }, . . . , Sn{ }.
Hence, the derivation ∆′ has the shape

S0(S1 [!�R1, ?�T1 ], S2 [!�R2, ?�T2 ], . . . , Sn [!�Rn, ?�Tn ])

S′
0 [S′

1(!
�R2, ?�T1), S′

2(!
�R3, ?�T2), . . . , S′

n(!�R1, ?�Tn)]
{s}∆′ .

Observe that the two contexts S0(S1{ }, . . . , Sn{ }) and S′
0 [S′

1{ }, . . . , S′
n{ }] must

contain the same atoms because ∆′ contains no rules that could create or destroy any
atoms. Hence, the derivation ∆′ remains valid if those atoms are removed from the
derivation, which gives us the derivation

([!�R1, ?�T1 ], [!�R2, ?�T2 ], . . . [!�Rn, ?�Tn ])

[(!�R2, ?�T1), (!�R3, ?�T2), . . . (!�R1, ?�Tn)]
{s}∆̃ .
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7.20 Lemma Let n � 1 and R1, . . . , Rn, T1, . . . , Tn be any structures. Then there is
no derivation

([!R1, ?T1 ], [!R2, ?T2 ], . . . [!Rn, ?Tn ])

[(!R2, ?T1), (!R3, ?T2), . . . (!R1, ?Tn)]
{s}∆ .

Proof: By induction on n.

• Base case: Let n = 1. Then it is easy to see that there is no derivation

[!R1, ?T1 ]

(!R1, ?T1)
{s}∆

because a times-relation can never become a par-relation while going up in a
derivation.

• Inductive case: By way of contradiction suppose there is a derivation

([!R1, ?T1 ], [!R2, ?T2 ], . . . [!Rn, ?Tn ])

[(!R2, ?T1), (!R3, ?T2), . . . (!R1, ?Tn)]
{s}∆ .

Now consider the bottommost instance of
S([R̃, T̃ ], Ũ )
s
S [(R̃, Ũ), T̃ ]

in ∆. Without loss of

generality we can assume that R̃ = !R2 and Ũ = ?T1. For matching T̃ , we have

T̃ = [(!Rk1+1, ?Tk1), (!Rk2+1, ?Tk2), . . . , (!Rkm+1, ?Tkm)] ,

for some m,k1, . . . , km. Hence, we get:

([!R1, ?T1 ], [!R2, ?T2 ], . . . [!Rn, ?Tn ])

[([!R2, (!Rk1+1, ?Tk1), . . . , (!Rkm+1, ?Tkm)], ?T1), . . . , (!R1, ?Tn)]
s .

[(!R2, ?T1), (!R3, ?T2), (!R4, ?T3), . . . (!R1, ?Tn)]

{s}∆′

Inside ∆′ the structures !R1, . . . , !Rn, ?T1, . . . , ?Tn occur only inside passive
structures of instances of s. Therefore, if we replace inside ∆′ any structure
!Rj or ?Tj by some other structure V , then the derivation ∆′ must remain
valid. Without loss of generality, assume that k1 < k2 < · · · < km and for every
i = 2, . . . , km replace inside ∆′ the structures !Ri by ⊥ and the structures ?Ti

by 1, which yields a derivation

([!R1, ?T1 ], [⊥, 1], . . . , [⊥, 1], [!Rkm+1, ?Tkm+1 ], . . . , [!Rn, ?Tn ])

[([⊥, (⊥, 1), . . . , (⊥, 1), (!Rkm+1, 1)], ?T1), . . . , (!R1, ?Tn)]
{s}∆′′ ,
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which is the same as

([!R1, ?T1 ], [!Rkm+1, ?Tkm+1 ], . . . [!Rn, ?Tn ])

[(!Rkm+1, ?T1), (!Rkm+2, ?Tkm+1), . . . , (!R1, ?Tn)]
{s}∆′′ ,

which cannot exist by induction hypothesis. 	


7.21 Theorem There exists no derivation containing a non-forked promotion cycle.

Proof: Suppose there is a derivation ∆ containing a non-forked promotion cycle χ.
By Proposition 7.17, Lemma 7.19 and Lemma 7.20, this is impossible. 	

7.22 Corollary There exists no derivation containing a non-forked cycle.

Proof: Any (non-forked) cycle can easily be transformed into a (non-forked) pro-
motion cycle by adding instances of p↓ and p↑. 	


8 Decomposition of Derivations

In this section, I will use the results of the previous two sections in order to state and
prove a decomposition theorem for derivations in system SELS. The theorem states

that any derivation
T

R
can be decomposed into five parts:

T

T ′
non-core

T ′′
interaction

R′′
core

R′
interaction

R

non-core

,

where interaction stands for the rules ai↓ and ai↑. The core contains that part of the
system that is needed to reduce the general interaction rules i↓ (identity) and i↑ (cut)
to their atomic versions. In system SELS, the core contains the rules s, p↓ and p↑ (see
Definition 4.7). The remaining rules w↓, w↑, b↓ and b↑ are in the non-core part.

This decomposition is not restricted to system SELS. The same theorem has also
been proved for other systems in the calculus of structures, namely for system SBV in
[14] and for a conservative extension of SELS and SBV in [17]. In [7] it is conjectured
for a system for classical logic.

It seems to me that there is a very strong connection between this decomposition
and cut elimination, in the sense that both are consequences of the same underlying
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top-down reading bottom-up reading

T

T ′
creation

��

R′
merging

��

R

destruction
��

T

T ′

��

destruction

R′

��

merging

R

��

creation

Figure 15: Reading of the decomposition theorem

properties of the logical system. However, the exact nature of these properties is still
a mystery.

There is a second reading of the decomposition theorem, namely the decomposition
of a derivation into three parts, as already mentioned in the introduction. The three
parts can be called creation, merging and destruction. The merging part is in the
middle of the derivation, and (depending on your preferred reading of a derivation)
the creation and destruction are at the top and at the bottom, as depicted in Figure 15.
In system SELS the merging part contains only the rules s, p↓ and p↑, which do not
change the size of the structure. In the top-down reading of a derivation, the creation
part (where the size of the structure is increased) contains the rules b↑, w↓ and ai↓,
and the destruction part (where the size of the structure decreases) consists of b↓, w↑
and ai↑. In the bottom-up reading, creation and destruction are exchanged.

This decomposition is endorsed by the fact that in the calculus of structures deriva-
tions are symmetric objects in the vertical perspective. The statement of the theorem
is as follows:

8.1 Theorem For every derivation
T

R
SELS∆ there are derivation ∆1, . . . ,∆7, such
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that
T

T1

{b↑}∆1

T2

{w↓}∆2

T3

{ai↓}∆3

R3

{s,p↓,p↑}∆4

R2

{ai↑}∆5

R1

{w↑}∆6

R
{b↓}∆7

for some structures T1, T2, T3, R1, R2 and R3.

Proof: The decomposition is done in three steps:

T

R
SELS∆

1
�

T

T1

{b↑}∆1

R1

{ai↓,ai↑,s,p↓,p↑,w↓,w↑}∆′

R
{b↓}∆7

2
�

T

T1

{b↑}∆1

T2

{w↓}∆2

R2

{ai↓,ai↑,s,p↓,p↑}∆′′

R1

{w↑}∆6

R
{b↓}∆7

3
�

T

T1

{b↑}∆1

T2

{w↓}∆2

T3

{ai↓}∆3

R3

{s,p↓,p↑}∆4

R2

{ai↑}∆5

R1

{w↑}∆6

R
{b↓}∆7

.

The first step is done by Proposition 8.8, whose proof is postponed until the end of
this section. For the second step, we can repeatedly apply Lemma 6.4, Lemma 6.5 and
Lemma 6.9 (a) and (b). For the last step use Lemma 6.6, Lemma 6.7 and Lemma 6.9
(c) and (d). 	


Before I complete the proof (i.e. state and prove Proposition 8.8), let me make one
more remark about the theorem.

8.2 Remark In the formulation of Theorem 8.1 it is enforced that the instances of b↑
and b↓ are at the top and the bottom of the derivation. But it is possible to exchange
the positions of w↓ and ai↓ in the derivation (see Section 6). By duality, the same
is true for w↑ and ai↑. It should also be mentioned that it is not possible to further
decompose the core-part of the derivation. The rules s, p↓ and p↑ are entangled in
such a way that they cannot be separated.

The remainder of this section is devoted to the proof of Proposition 8.8, which states
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I. If there are no subderivations of the shape

Q
π

U
b↑

P

, where π �= b↑, or of the shape

Q
b↓

V
ρ

P

, where ρ �= b↓, then terminate.

II. Permute all instances of b↑ up by applying b↑up (shown in Figure 18).

III. Permute all instances of b↓ down by applying b↓down (shown in Figure 19).

IV. Go to step I.

Figure 16: The algorithm b↑↓split for separating b↑ and b↓

T

R

SELS

b↑
up
�

T

T1

{b↑}

R

SELS\{b↑}

b↓
down
�

T

T1

{b↑}

R1

SELS\{b↓}

R

{b↓}

b↑
up
�

T

T2

{b↑}

R1

SELS\{b↑}

R

{b↓}

b↓
down
�

T

T2

{b↑}

R2

SELS\{b↓}

R

{b↓}

b↑
up
� . . .�

T

Tk

{b↑}

Rh

SELS\{b↓,b↑}

R

{b↓}

Figure 17: Permuting b↑ up and b↓ down

that for every derivation
T

R
SELS∆ there is a derivation

T

T ′
{b↑}∆1

R′
SELS\{b↓,b↑}∆′

R
{b↓}∆2

. The idea of

the proof is to permute all instances of b↑ up and all instances of b↓ down, according
to the scheme of 6.3. The problem that occurs is that while permuting the rule b↑
over the rule p↓, it can happen that new instances of b↓ are introduced. Dually, while
permuting b↓ under p↑, new instances of b↑ are introduced. The algorithm b↑↓split,
shown in Figure 16, is used to obtain the desired decomposition. Figure 17 shows its
working principle.

The task of the proof is now to show that the process of permuting b↑ up and b↓
down does terminate. For this, the non-existence of a non-forked promotion cycle
plays a crucial role.

The process of permuting up all instances of b↑ in a given derivation
T

R
SELS∆ is

realized by the procedure b↑up shown in Figure 18. It is easy to see that if this
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terminates, the resulting derivation has the shape

T

T ′
{b↑}

R
SELS\{b↑}

. However, it is not

obvious that this procedure does indeed terminate, because while permuting the rule
b↑ up, it might happen that new instances of b↑ as well as new instances of b↓ are
introduced.

8.3 Lemma For an input derivation

T

S{!R}
b↑ ,

S(!R,R)

SELS\{b↑}

the b↑up procedure does terminate.

Proof: The problem of showing termination is that the number of instances of b↑
might increase during the process of permuting up b↑. This always happens when
an upmoving b↑ meets a b↓ as in case (5.iii) in Figure 18. Furthermore, the number
of instances of b↓ inside ∆ is not fixed. The number of b↓ might increase when an
upmoving b↑ meets an instance of p↓ as in case (5.i) in Figure 18 or an instance of b↓
as in case (4). For showing the termination, I will now mark inside ∆ all !-chains that
have the contractum !R of the b↑ instance as tail. But I will mark the links not with
!�, but with !n for some n � 1. Start with the contractum !R of the b↑ by marking
it with !1R. Now continue the marking as indicated in Figure 7 by propagating the
number n from conclusion to premise in each rule, with one exception: If in case (2)
of Definition 7.3 the rule ρ = p↓ and the situation is

S′{!U, V {!R′}}
p↓ ,

S′ [!U, ?V {!nR′}]
then continue the marking as follows

S′{!U, V {!2nR′}}
p↓ ,

S′ [!U, ?V {!nR′}]
where the marking number is duplicated. For example, the derivation

![b, (b̄, ![([!a, ?b], [c, c̄]), a])]
p↓

![b, (b̄, [?([!a, ?b], [c, c̄]), !a])]
ai↓

![b, (b̄, [?([!a, ?b], [c, c̄]), (!a, [c, c̄])])]
w↓

![b, (b̄, [?([!a, ?b], [c, c̄]), ([!a, ?b], [c, c̄])])]
p↓

[!b, ?(b̄, [?([!a, ?b], [c, c̄]), ([!a, ?b], [c, c̄])])]
b↓

[!b, ?(b̄, ?([!a, ?b], [c, c̄]))]
s

[!b, ?(b̄, ?[!a, (?b, [c, c̄])])]
b↑

[!b, ?(b̄, ?[(!a, a), (?b, [c, c̄])])]
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is marked as
![b, (b̄, !2 [([!4a, ?b], [c, c̄]), a])]

p↓
![b, (b̄, [?([!2a, ?b], [c, c̄]), !2a])]

ai↓
![b, (b̄, [?([!2a, ?b], [c, c̄]), (!2a, [c, c̄])])]

w↓
![b, (b̄, [?([!2a, ?b], [c, c̄]), ([!2a, ?b], [c, c̄])])]

p↓
[!b, ?(b̄, [?([!1a, ?b], [c, c̄]), ([!1a, ?b], [c, c̄])])]

b↓
[!b, ?(b̄, ?([!1a, ?b], [c, c̄]))]
s

[!b, ?(b̄, ?[!1a, (?b, [c, c̄])])]
b↑ .

[!b, ?(b̄, ?[(!a, a), (?b, [c, c̄])])]
Observe that is might happen that one marking is inside another. But this can only
happen if one marking “is pulled inside” another by an instance of p↓. In this case the
marking that is pulled inside is duplicated. As a consequence we have that whenever
there is a marked structure !nR which has other markings inside, then those markings
are even. For notational convenience, let in the following R∗ denote the structure R
where all markings inside R are divided by two and let R⊕ denote the structure
R where all markings inside R are multiplied by two. During the run of b↑up, the
markings are now removed as follows:

• In cases (1) and (2) replace

S′{!nR}
π

S{!nR}
b↑ by

S(!R∗, R∗)

S′{!nR}
b↑

S′(!R∗, R∗)
π .

S(!R∗, R∗)

• In case (4) replace

S{!nR′}
π

S{!nR}
b↑ by

S(!R∗, R∗)

S{!nR′}
b↑

S(!R′∗, R′∗)
π

S(!R′∗, R∗)
π .

S(!R∗, R∗)

• In case (5.i) replace

S′{!n [R,T⊕ ]}
p↓

S′ [!nR, ?T ]
b↑ by

S′ [(!R∗, R∗), ?T ]

S′{!n [R,T⊕ ]}
b↑

S′(![R∗, T ], [R∗, T ])
p↓

S′([!R∗, ?T ], [R∗, T ])
s
S′ [([!R∗, ?T ], R∗), T ]
s

S′ [(!R∗, R∗), ?T, T ]
b↓ .

S′ [(!R∗, R∗), ?T ]

• In case (5.ii) replace

S′{⊥}
w↓

S′{?S′′{!nR}}
b↑ by

S′{?S′′(!R∗, R∗)}
S′{⊥}

w↓ .
S′{?S′′(!R∗, R∗)}
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• In case (5.iii) replace

S′ [?S′′{!nR}, S′′{!nR}]
b↓

S′{?S′′{!nR}}
b↑ by

S′{?S′′(!R∗, R∗)}

S′ [?S′′{!nR}, S′′{!nR}]
b↑

S′ [?S′′(!R∗, R∗), S′′{!nR}]
b↑

S′ [?S′′(!R∗, R∗), S′′(!R∗, R∗)]
b↓ .

S′{?S′′(!R∗, R∗)}

All instances of b↑ travel up along a !-chain that has been marked in the begin-
ning. Since in the beginning there was only one instance of b↑, each marked !-chain
can be used only once (and is used exactly once) by an instance of b↑, an then
the marking is removed. But it might happen that new markings are introduced
during the process because the length of the derivation can increase. For a given
structure S let σ(S) denote the sum of the markings inside S. (For example for
S =![b, (b̄, !2 [([!4a, ?b], [c, c̄]), a])] we have σ(S) = 6.) Then for any two structures
S and S′ occurring in ∆, such that S′ occurs above S, we have σ(S′) � σ(S). Fur-
thermore, during the process of permuting up b↑, the value σ(S) never increases for
a structure S occurring in ∆. When a new structure S′ is inserted (in cases (4), (5.i)
and (5.iii)), we have σ(S′) = σ(S) for some structure S occurring below S′. With this
observation we can show termination by assigning to ∆ a pair 〈n∆,m∆〉 ∈ N ×N,
where N×N is endowed with the lexicographic ordering

〈n,m〉 < 〈n′,m′〉 ⇐⇒ n < n′ or
n = n′ and m < m′ .

and the values of n∆ and m∆ are defined as follows: During the process of permuting
up b↑, the derivation has always the shape

T

T ′
∆1 {b↑}

S{!nR}
b↑ ,

S(!R,R)

∆2 SELS\{b↑}

U

∆3 SELS

,

where ∆1 contains the instances of b↑ that already have reached the top and ∆2 is
not trivial and the instance of b↑ between ∆2 and ∆3 is the topmost to be permuted
up. Now let n∆ = σ(T ′) and m∆ is the length of ∆2 (i.e. the number of rule instances
in ∆2). Then we have that 〈n∆,m∆〉 strictly decreases in each permutation step and
we have 〈n∆,m∆〉 = 〈0, 0〉 when all instances of b↑ have reached the top. 	


8.4 Lemma The b↑up algorithm terminates for any input derivation
T

R
SELS∆ .

Proof: Apply Lemma 8.3 to every instance of b↑ in ∆. 	
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The dual procedure to b↑up is b↓down, shown in Figure 19, in which all instances
of b↓ are moved down in the derivation.

8.5 Lemma The b↓down procedure terminates for every input derivation
T

R
SELS∆

and yields a derivation

T

R′
SELS\{b↓}∆′

R
{b↓}∆′′

.

Proof: Dual to Lemma 8.4. 	

Lemma 8.4 and Lemma 8.5 ensure that each step of the procedure depicted in

Figure 17 does terminate. It remains to show that the whole algorithm b↑↓split does
terminate eventually.

8.6 Lemma Let ∆ be a derivation that does not contain a promotion cycle. Then
the algorithm b↑↓split does terminate for ∆.

Proof: Without loss of generality, let ∆ be the outcome of a run of b↓down, i.e.
there are no instances of b↓ to consider. Since ∆ is finite, it contains only finitely
many instances of b↑. Hence, there are only finitely many chains, say χ1, . . . , χn, that
have the contractum !R of a b↑ as tail. Mark all those chains with !� and ?� as in the
previous section, and let li = l(χi) be the length of χi (see Definition 7.9) for each
i = 1, . . . , n. Now run b↑up and remove the markings !� as in the proof of Lemma 8.3
while the instances of b↑ are permuted up. In case (5.i) replace

S′{!� [R,T ]}
p↓

S′ [!�R, ?�T ]
b↑ by

S′ [(!R,R), ?�T ]

S′{!� [R,T ]}
b↑

S′(![R,T ], [R,T ])
p↓

S′([!R, ?T ], [R,T ])
s
S′ [([!R, ?T ], R), T ]
s

S′ [(!R,R), ?T, T ]
b↓ .

S′ [(!R,R), ?�T ]

After this, all chains χi with length li = 1 are no longer marked. If l(χi) � 1, then
after the run of b↑up only a subchain χ′

i of χi with length l′i = l(χ′
i) = l(χi) − 1

remains marked because it is not possible to add links to a chain at the head. (Each
of the chains χ1, . . . , χn has a head since there is no promotion cycle inside ∆.) It is
only possible to duplicate chains (case (4) of in Figure 18). The situation for b↓down
is dual. Hence the number lmax = max{l(χi)} is reduced at each run of b↑up and
b↓down. This ensures the termination. 	

8.7 Lemma Let ∆ be a derivation that is obtained by a consecutive run of b↑up and
b↓down. Then ∆ does not contain a promotion cycle.

Proof: By way of contradiction, assume ∆ contains a promotion cycle χ. Since
∆ is the outcome of a run of b↓down, all instances of b↓ are at the bottom of ∆.
Hence, the cycle χ can only be forked by instances of b↑, more precisely, χ is forked
by kχ different instances of b↑. If ∆ contains more than one promotion cycle, we can,
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without loss of generality, assume that χ is the one for which kχ is minimal. I will
now proceed by induction on kχ to show a contradiction.

Base case: If kχ = 0, then we have an immediate contradiction to Theorem 7.21.

Inductive case: Now let kχ � 1 and consider the bottommost instance of b↑ that
forkes χ and mark it as b↑�. It has been introduced during the run of b↓down,
when

S′(!R, [?T, T ])
b↓

S′(!R, ?T )
p↑ was replaced by

S′{?(R,T )}

S′(!R, [?T, T ])
b↑�

S′(!R1, R2, [?T, T ])
s
S′([(!R1, R2), ?T ], T )
s
S′ [(!R1, ?T ), (R2, T )]

p↑
S′ [?(R1, T ), (R2, T )]

b↓�
S′{?(R,T )}

(see case (5.i) in Algorithm b↓down). Here, I have marked the down moving b↓
as b↓� and the two copies of R as R1 and R2. By inspecting the cases of b↓down
(see Algorithm b↓down), it is easy to see that while b↓� travels further down,
the two copies R1 and R2 are treated equally, i.e. whenever a rule ρ modifies R1,
then there is another instance of ρ that modifies R2 in same way. Furthermore,
if another b↓ is moved down in the same run of b↓down and meets the new b↑�
as in case (5.iii) in Algorithm b↓down, then it is duplicated into both copies
R1 and R2. Hence, after finishing the run of b↓down, every !-chain with head
in R1 has a counterpart !-chain with head in R2, and vice versa. Similarly, all
?-chains with tail in R1 and R2 correspond to each other. This means that we
can construct from χ a new promotion cycle χ′ by replacing each subchain of χ
with head or tail inside R1 by the corresponding chain with head or tail in R2.
Then the new cycle is not forked by b↑� since there are no more links inside
R1. Hence, the cycle χ′ is forked by kχ′ = kχ − 1 instances of b↑, which is a
contradiction to the induction hypothesis. 	


8.8 Proposition For every
T

R
SELS∆ there is a derivation

T

T ′
{b↑}∆1

R′
{ai↓,ai↑,s,p↓,p↑,w↓,w↑}∆′

R
{b↓}∆2

.

Proof: Apply the algorithm b↑↓split, which terminates by Lemma 8.7 and Lemma 8.6.
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Consider the topmost occurrence of a subderivation

Q
π

S{!R}
b↑

S(!R, R)
, where π �= b↑. Accord-

ing to 6.3 there are the following cases (cases (3) and (6) are not possible):

(1) If the redex of π is inside S{ }, or

(2) if the contractum !R of b↑ is inside a passive structure of the redex of π, then
replace

S′{!R}
π

S{!R}
b↑ by

S(!R, R)

S′{!R}
b↑

S′(!R, R)
π .

S(!R, R)

(4) If the redex of π is inside the contractum !R of b↑, then replace

S{!R′}
π

S{!R}
b↑ by

S(!R, R)

S{!R′}
b↑

S(!R′, R′)
π

S(!R′, R)
π .

S(!R, R)

(5) If the contractum !R of b↑ is inside an active structure of the redex of π but not
inside a passive one, then there are three subcases:

(i) If π = p↓ and S{!R} = S′ [!R, ?T ], then replace

S′{![R, T ]}
p↓

S′ [!R, ?T ]
b↑ by

S′ [(!R, R), ?T ]

S′{![R, T ]}
b↑

S′(![R, T ], [R, T ])
p↓

S′([!R, ?T ], [R, T ])
s
S′ [([!R, ?T ], R), T ]
s

S′ [(!R, R), ?T, T ]
b↓ .

S′ [(!R, R), ?T ]

(ii) If π = w↓ and S{!R} = S′{?S′′{!R}}, then replace

S′{⊥}
w↓

S′{?S′′{!R}}
b↑ by

S′{?S′′(!R, R)}
S′{⊥}

w↓ .
S′{?S′′(!R, R)}

(iii) If π = b↓ and S{!R} = S′{?S′′{!R}}, then replace

S′ [?S′′{!R}, S′′{!R}]
b↓

S′{?S′′{!R}}
b↑ by

S′{?S′′(!R, R)}

S′ [?S′′{!R}, S′′{!R}]
b↑

S′ [?S′′(!R, R), S′′{!R}]
b↑

S′ [?S′′(!R, R), S′′(!R, R)]
b↓ .

S′{?S′′(!R, R)}

Repeat until all instances of b↑ are at the top of the derivation.

Figure 18: The b↑up procedure
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Consider the bottommost occurrence of a subderivation

S [?T, T ]
b↓

S{?T }
ρ

P

, where ρ �= b↓, until

all instances of b↓ are at the bottom of the derivation. The possible cases are:

(1) The contractum of ρ is inside S{ }, or

(2) the redex ?T of b↓ is inside a passive structure of the contractum of ρ. Then replace

S [?T, T ]
b↓

S{?T }
ρ by

S′{?T }

S [?T, T ]
ρ

S′ [?T, T ]
b↓ .

S′{?T }

(4) The contractum of ρ is inside the redex ?T of b↓ Then replace

S [?T, T ]
b↓

S{?T }
ρ by

S{?T ′}

S [?T, T ]
ρ

S [?T, T ′ ]
ρ

S [?T ′, T ′ ]
b↓ .

S{?T ′}

(5) The redex ?T of b↓ is inside an active structure of the contractum of ρ but not
inside a passive one. Then there are three cases:

(i) If ρ = p↑ and S{?T } = S′(!R, ?T ), then replace

S′(!R, [?T, T ])
b↓

S′(!R, ?T )
p↑ by

S′{?(R, T )}

S′(!R, [?T, T ])
b↑

S′(!R, R, [?T, T ])
s
S′([(!R, R), ?T ], T )
s
S′ [(!R, ?T ), (R, T )]

p↑
S′ [?(R, T ), (R, T )]

b↓ .
S′{?(R, T )}

(ii) If ρ = w↑ and S{?T } = S′{!S′′{?T }}, then replace

S′{!S′′ [?T, T ]}
b↓

S′{!S′′{?T }}
w↑ by

S′{1}
S′{!S′′ [?T, T ]}

w↑ .
S′{1}

(iii) If ρ = b↑ and S{?T } = S′{!S′′{?T }}, then replace

S′{!S′′ [?T, T ]}
b↓

S′{!S′′{?T }}
b↑ by

S′(!S′′{?T }, S′′{?T })

S′{!S′′ [?T, T ]}
b↑

S′(!S′′ [?T, T ], S′′ [?T, T ])
b↓

S′(!S′′ [?T, T ], S′′{?T })
b↓ .

S′(!S′′{?T }, S′′{?T })

Remark: Cases (3) and (6) are not possible.

Figure 19: The b↓down procedure

56



9 Cut Elimination in the Calculus of Structures

In Section 5, I already presented a proof of cut elimination for system ELS. That proof
made use of the cut elimination argument in the sequent calculus. In this section, I
will give a new proof of the same theorem which will be very different. This proof
will be carried out inside the calculus of structures directly, without the detour of
using the sequent calculus presentation of MELL.

There are several reasons to study cut elimination inside the calculus of structures.
The first is that we want to investigate systems in the calculus of structures for which
no system in the sequent calculus is known or for which it is impossible to give a system
in the sequent calculus [14, 16, 30]. This means that we need new methodologies and
techniques to prove cut elimination for those systems. One purpose of this paper is
to investigate such methodologies. They might be easier to understand if they are
first studied for logics that are well-known.

A second important reason to study cut elimination inside the calculus of structures
is to obtain new insights on the question why cut elimination works in general, i.e.
what are the properties that a logical system must have in order to get cut elimination.

Before I give an overview of what I will do in this section, let me explain why
cut elimination in the calculus of structures is much different from cut elimination in
the sequent calculus. In the cut elimination proof in the sequent calculus the cut is
permuted up and its rank (the size of the cut formula) is reduced by decomposing the
cut formula along its main connective. For example, we can replace the derivation

� A,B,Φ
� � A � B,Φ

� A⊥,Ψ1 � B⊥,Ψ2
� � A⊥

� B⊥,Ψ1,Ψ2
cut � Φ,Ψ1,Ψ2

by the derivation
� A,B,Φ � A⊥,Ψ1

cut � B,Φ,Ψ1 � B⊥,Ψ2
cut � Φ,Ψ1,Ψ2

because we know that if a rule modifies the cut formula, then that rule deals with
the main connective of the cut formula. I will not go into further details here. The
important point is (as already observed in [14]) that this method cannot be applied
in the calculus of structures, for the following reason. If in a derivation

Q
ρ

S(R, R̄)
i↑

S{⊥}

the rule ρ has its redex inside R, we do not know how deep inside R the rule is
applied. Furthermore, there is no reason to assume that any rule ρ′ above ρ does the
exact dual of ρ inside the structure R̄.
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However, in the calculus of structures, we are able to perform a very different
procedure: We can reduce the generic cut rule to an atomic version. Showing that
the generic cut rule i↑ is admissible is equivalent to showing that the whole up-
fragment (except for the switch) is admissible (see Theorem 4.10). For classical logic,
this considerably simplifies the cut elimination argument [4]. In [7] Brünnler and Tiu
use a semantic argument. In [15], Guglielmi develops a very general techique, called
splitting, which has also been used in [17] and would therefore also work for system
ELS. However, in this paper, I will use the classical technique of permuting rules.

The whole procedure will be carried out in several small steps. The first step uses
a version of the decomposition theorem to show that the rules b↑ and w↑ (i.e. the
non-core rules) are admissible. In the second step, I will eliminate the rule p↑ (i.e. the
up-fragment of the core), and in the last step, I will eliminate the rule ai↑. The rules
p↑ and ai↑ are eliminated by using the technique that has already been employed by
Gentzen [10]: For both rules, I will give a super-rule that is more general and that
helps in the book-keeping of the context. The super-rules are permuted over all other
rules until they reach the top of the proof where they disappear.

This permutability is distributed over several lemmata. If new rules are added to
the system then those lemmata remain valid: If rule ρ permutes over rule π, then the
introduction of a rule σ does not change this fact. This kind of modularity cannot be
explored in the sequent calculus.

Let me now start with the first step, which is a corollary of the decomposition
theorem.

9.1 Corollary For every proof
R

��
SELS∪{1↓}Π , there is a proof

1↓
1

R4

{w↓}

R3

{ai↓}

R2

{s,p↓,p↑}

R1

{ai↑}

R
{b↓}

for some structures R1, R2, R3 and R4.

Proof: By Propositions 4.4 and 4.6, every occurrence of the rule w↑ can be replaced
by a derivation containing only the rules w↓, ai↓, ai↑, s, p↓ and p↑. Apply Theorem 8.1

to the derivation
1

R
SELS\{w↑} which is obtained from Π by removing the axiom. Now
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every application of b↑ in
1

T1

{b↑}∆1 must be trivial, i.e. of the shape
(!1, 1)

b↑
!1

. Hence

T1 = 1. 	

This shows that the non-core rules w↑ and b↑ are admissible. In order to show that

the rule p↑ is admissible, we need to add the following two rules to system SELS:

S{?[R,T ]}
r↓

S [?R, ?T ]
and

S(!R, !T )
r↑

S{!(R,T )} .

It is easy to see that both rules are sound.

For technical reasons, I was not able to simply eliminate the rule p↑. Instead, I
will eliminate the rules p↑ and r↑ simultaneously, with the result that instances of r↓
might be introduced. Those instances will be eliminated afterwards. Finally, the rule
ai↑ will also be eliminated.

All three rules p↑, r↑ and ai↑ are removed by a method that has already been used
in [14] for proving the cut elimination for system BV . Namely, for all three rules p↑,
r↑ and ai↑, there are super-rules sp↑, sr↑ and sai↑, respectively:

S([?R,U ], [!T, V ])
sp↑

S [?(R,T ), U, V ]
,

S([!R,U ], [!T, V ])
sr↑

S [!(R,T ), U, V ]
and

S([a,U ], [ā, V ])
sai↑

S [U, V ]
.

The rules p↑, r↑ and ai↑ are instances of the super-rules sp↑, sr↑ and sai↑, respec-
tively. I will now show that every super-rule can be permuted up in the proof until
it disappears or its application becomes trivial.

Before we can start, a few more definitions are necessary.

9.2 Definition A structure R is called a proper par if there are two structures R′

and R′′ with R = [R′, R′′ ] and R′ �= ⊥ �= R′′. Similarly, a structure R is a proper
times, if there are two structures R′ and R′′ with R = (R′, R′′) and R′ �= 1 �= R′′.

9.3 Definition Let deep switch be the rule
S([R,T ], U)

ds↓
S [(R,U), T ]

, where the structure

R is not a proper times. The rule
S([(R,R′), T ], U)

ns↑
S [(R,R′, U), T ]

, where R �= 1 �= R′, will be

called non-deep switch.

Both rules are instances of the switch-rule, and every instance of the switch-rule is
either an instance of deep switch or an instance of non-deep switch.

9.4 This is sufficient to outline the scheme (shown in Figure 20) of the full cut
elimination proof. We start with a proof obtained by Corollary 9.1. Then, in the first
step, all instances of the rule s are replaced by ds↓ or ns↑, and all instances of p↑ and
ai↑ are replaced by their super rules. While permuting the rules ns↑ and sp↑ over ds↓
and p↓ in Step 2, the rules r↓ and sr↑ are introduced. In Step 3, the rules ns↑, sp↑ and
sr↑ are eliminated. Then, the rule r↓ is eliminated in Step 4. Finally, the rule sai↑ is
eliminated.

9.5 Lemma The rule ns↑ permutes over the rules ds↓, p↓ and r↓ by the rule ds↓.
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1↓
1

R4

{w↓}

R3

{ai↓}

R2

{s,p↓,p↑}

R1

{ai↑}

R

{b↓}

1=

1↓
1

R4

{w↓}

R3

{ai↓}

R2

{ds↓,ns↑,p↓,sp↑}

R1

{sai↑}

R

{b↓}

2
�

1↓
1

R4

{w↓}

R3

{ai↓}

R′
3

{ns↑,sp↑,sr↑}

R2

{ds↓,p↓,r↓}

R1

{sai↑}

R

{b↓}

3
�

1↓
1

R′
4

{w↓}

R′
3

{ai↓}

R2

{ds↓,p↓,r↓}

R1

{sai↑}

R

{b↓}

4
�

1↓
1

R′′
4

{w↓}

R′′
3

{ai↓}

R2

{ds↓,p↓}

R1

{sai↑}

R

{b↓}

5
�

1↓
1

R′′′
4

{w↓}

R′′′
3

{ai↓}

R1

{ds↓,p↓}

R

{b↓}

Figure 20: Cut elimination for system SELS∪ {1↓}

Proof: Following the scheme of 6.3, let us consider a derivation

Q
π

S([(R,R′), T ], U)
ns↑

S [(R,R′, U), T ]

,

where the application of π ∈ {ds↓, p↓, r↓} is not trivial. Without loss of generality we
can assume that R is not a proper times. The cases are:

(1) The redex of π is inside S{ }. Trivial.

(2) The contractum ([(R,R′), T ], U) of ns↑ is inside a passive structure in the redex
of π. Trivial.

(3) The redex of π is inside one of the passive structures R,R′, T or U of the
contractum of ns↑. Trivial.

(4) The redex of π is inside the contractum ([(R,R′), T ], U) of ns↑, but not inside
R,R′, T or U . Only one case is possible (π = ds↓):

S([R,T ], R′, U)
ds↓

S([(R,R′), T ], U)
ns↑ yields

S [(R,R′, U), T ]

S([R,T ], R′, U)
ds↓ .

S [(R,R′, U), T ]

(5) The contractum ([(R,R′), T ], U) of ns↑ is inside an active structure of the redex
of π but not inside a passive one. Then π = ds↓ and S([(R,R′), T ], U) =
S′ [([(R,R′), T ], U, V ),W ]. There are two possibilities:

S′([(R,R′), T,W ], U, V )
ds↓

S′ [([(R,R′), T ], U, V ),W ]
ns↑ yields

S′ [([(R,R′, U), T ], V ),W ]

S′([(R,R′), T,W ], U, V )
ns↑

S′([(R,R′, U), T,W ], V )
ds↓ and

S′ [([(R,R′, U), T ], V ),W ]
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S′([(R,R′), T ], [U,W ], V )
ds↓

S′ [([(R,R′), T ], U, V ),W ]
ns↑ yields

S′ [([(R,R′, U), T ], V ),W ]

S′([(R,R′), T ], [U,W ], V )
ns↑

S′([(R,R′, [U,W ]), T ], V )
ds↓

S′([(R,R′, U), T,W ], V )
ds↓ .

S′ [([(R,R′, U), T ], V ),W ]

Note: The second case is only possible if U is not a proper times.

(6) The redex of π and the contractum ([(R,R′), T ], U) of ns↑ overlap. Not possible,
because the redex of π is always a par-structure which cannot properly overlap
with a times-structure. 	


9.6 Lemma The rules sai↑, sp↑ and sr↑ permute over the rule ds↓.

Proof: All three rules are of the shape
S([P,U ], [P ′, V ])

sx↑
S [P ′′, U, V ]

, where neither P nor P ′

is a proper par or a proper times. Now consider the derivation

Q
ds↓

S([P,U ], [P ′, V ])
sx↑

S [P ′′, U, V ]

,

where the application of ds↓ is not trivial.

(1) The redex of ds↓ is inside S{ }. Trivial.

(2) The contractum ([P,U ], [P ′, V ]) of sx↑ is inside a passive structure of the redex
of ds↓. Trivial.

(3) The redex of ds↓ is inside a passive structure of the contractum of sx↑. Trivial.
(Remark: If sx↑ is sai↑, then the passive structures are U and V . If sx↑ is sp↑ or
sr↑, then U , V , R and T are passive structures.)

(4) The redex of ds↓ is inside the contractum ([P,U ], [P ′, V ]) of sx↑, but not inside
a passive structure. Observe that the redex of ds↓ cannot be inside P or P ′

because they are neither a proper par nor a proper times. Therefore, there are
only two remaining cases.

(i) U = (U ′, U ′′). Without loss of generality assume that U ′ is not a proper
times. Then

S([P,U ′ ], [P ′, V ], U ′′)
ds↓

S([P, (U ′, U ′′)], [P ′, V ])
sx↑ yields

S [P ′′, (U ′, U ′′), V ]

S([P,U ′ ], [P ′, V ], U ′′)
sx↑

S([P ′′, U ′, V ], U ′′)
ds↓ .

S [P ′′, (U ′, U ′′), V ]

(ii) V = (V ′, V ′′). Similar.

(5) The contractum ([P,U ], [P ′, V ]) of sx↑ is inside an active structure of the re-
dex of ds↓ but not inside a passive one. In the most general case we have
that S([P,U ], [P ′, V ]) = S′ [([P,U ], [P ′, V ],W ), Z ] for some context S′{ } and
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some structures W and Z. Then

S([P,U,Z ], [P ′, V ],W )
ds↓

S′ [([P,U ], [P ′, V ],W ), Z ]
sx↑ yields

S′ [([P ′′, U, V ],W ), Z ]

S([P,U,Z ], [P ′, V ],W )
sx↑

S′([P ′′, U, V, Z ],W )
ds↓ and

S′ [([P ′′, U, V ],W ), Z ]

S([P,U ], [P ′, V, Z ],W )
ds↓

S′ [([P,U ], [P ′, V ],W ), Z ]
sx↑ yields

S′ [([P ′′, U, V ],W ), Z ]

S([P,U ], [P ′, V, Z ],W )
sx↑

S′([P ′′, U, V, Z ],W )
ds↓ .

S′ [([P ′′, U, V ],W ), Z ]

(6) The redex of ds↓ and the contractum ([P,U ], [P ′, V ]) of sx↑ overlap. Not pos-
sible. 	


Observe that the rules sai↑, sp↑ and sr↑ do not permute over the rule s. For example
in the derivation

S([a,U ], [([ā, V ],W ), Z ])
s

S [([a,U ], [ā, V ],W ), Z ]
sai↑

S [([U, V ],W ), Z ]

the rule sai↑ cannot be permuted over the switch. This is the reason why the deep
switch has been introduced in [14] in the first place.

9.7 Lemma For every derivation

Q
π

Z
ρ

P

with ρ ∈ {sp↑, sr↑} and π ∈ {p↓, r↓}, there

is either a derivation

Q
ρ

Z ′
π

P

for some structure Z ′ or a derivation

Q
ρ′

Z ′
s
Z ′′

π′
P

for some

structures Z ′ and Z ′′ and rules ρ′ ∈ {sp↑, sr↑} and π′ ∈ {p↓, r↓}.

Proof: Consider the derivation

Q
π

S([∗R,U ], [!T, V ])
ρ

S [∗(R,T ), U, V ]

, where ρ ∈ {sp↑, sr↑}, ∗ ∈ {?, !}

and the application of π ∈ {p↓, r↓} is not trivial. The cases are:

(1) The redex of π is inside S{ }. Trivial.

(2) The contractum ([∗R,U ], [!T, V ]) of ρ is inside a passive structure of the redex
of π. Trivial.

(3) The redex of π is inside a passive structure R,U, T or V of the contractum of
ρ. Trivial.

(4) The redex of π is inside the contractum ([∗R,U ], [!T, V ]) of ρ but not inside
R,U, T or V . There are the following five subcases:

62



(i) ρ = sp↑, ∗ = ?, π = p↓ and U = [!U ′, U ′′ ]. Then

S([![R,U ′ ], U ′′ ], [!T, V ])
p↓

S([?R, !U ′, U ′′ ], [!T, V ])
sp↑ yields

S [?(R,T ), !U ′, U ′′, V ]

S([![R,U ′ ], U ′′ ], [!T, V ])
sr↑

S [!([R,U ′ ], T ), U ′′, V ]
s
S [![(R,T ), U ′ ], U ′′, V ]

p↓ .
S [?(R,T ), !U ′, U ′′, V ]

(ii) ρ = sp↑, ∗ = ?, π = p↓ and V = [?V ′, V ′′ ]. Then

S([?R,U ], [![T, V ′ ], V ′′ ])
p↓

S([?R,U ], [!T, ?V ′, V ′′ ])
sp↑ yields

S [?(R,T ), U, ?V ′, V ′′ ]

S([?R,U ], [![T, V ′ ], V ′′ ])
sp↑

S [?(R, [T, V ′ ]), U, V ′′ ]
s
S [?[(R,T ), V ′ ], U, V ′′ ]

r↓ .
S [?(R,T ), U, ?V ′, V ′′ ]

(iii) ρ = sp↑, ∗ = ?, π = r↓ and U = [?U ′, U ′′ ]. Then

S([?[R,U ′ ], U ′′ ], [!T, V ])
r↓

S([?R, ?U ′, U ′′ ], [!T, V ])
sp↑ yields

S [?(R,T ), ?U ′, U ′′, V ]

S([?[R,U ′ ], U ′′ ], [!T, V ])
sp↑

S [?([R,U ′ ], T ), U ′′, V ]
s
S [?[(R,T ), U ′ ], U ′′, V ]

r↓ .
S [?(R,T ), ?U ′, U ′′, V ]

(iv) ρ = sr↑, ∗ = !, π = p↓ and U = [?U ′, U ′′ ]. Then

S([![R,U ′ ], U ′′ ], [!T, V ])
p↓

S([!R, ?U ′, U ′′ ], [!T, V ])
sr↑ yields

S [!(R,T ), ?U ′, U ′′, V ]

S([![R,U ′ ], U ′′ ], [!T, V ])
sr↑

S [!([R,U ′ ], T ), U ′′, V ]
s
S [![(R,T ), U ′ ], U ′′, V ]

p↓ .
S [!(R,T ), ?U ′, U ′′, V ]

(v) ρ = sr↑, ∗ = !, π = p↓ and V = [?V ′, V ′′ ]. Then

S([!R,U ], [![T, V ′ ], V ′′ ])
p↓

S([!R,U ], [!T, ?V ′, V ′′ ])
sr↑ yields

S [!(R,T ), U, ?V ′, V ′′ ]

S([!R,U ], [![T, V ′ ], V ′′ ])
sr↑

S [!(R, [T, V ′ ]), U, V ′′ ]
s
S [![(R,T ), V ′ ], U, V ′′ ]

p↓ .
S [!(R,T ), U, ?V ′, V ′′ ]

(5) The contractum ([∗R,U ], [!T, V ]) of ρ is inside an active structure of the redex
of π, but not inside a passive one. Not possible.

(6) The redex of π and the contractum ([∗R,U ], [!T, V ]) of ρ overlap. Not possible.
	


9.8 Lemma For every derivation
R3

R2

{s,p↓,p↑} there is a derivation

R3

R′
3

{ns↑,sp↑,sr↑}

R2

{ds↓,p↓,r↓}
.
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Proof: All occurrences of the rules p↑ and r↑ are instances of the rules sp↑ and
sr↑, respectively; and all occurrences of the rule s are either instances of ds↓ or of ns↑.
Now apply the following algorithm:

I. If there is no occurrence of a rule ns↑, sp↑ or sr↑ below a rule ds↓, p↓ or r↓ in the
derivation, then terminate.

II. Otherwise, let ρ be the topmost occurrence of a rule ns↑, sp↑ or sr↑ that is below
a ds↓, p↓ or r↓.
(1) If ρ is ns↑, then (by Lemma 9.5) this occurrence can be permuted up (by

possibly introducing new instances of ds↓).
(2) If ρ is sp↑ or sr↑, then (by Lemmata 9.6 and 9.7) it can be permuted over

all occurrences of the rules ds↓, p↓ and r↓ (by possibly introducing new
instances of ds↓ and ns↑).

Go to step I.

It is easy to see that this does indeed terminate. 	

9.9 Lemma The rules ns↑, sp↑ and sr↑ permute over the rule ai↓.

Proof: Consider the derivation

Q
ai↓

S{W}
ρ

S{Z}
, where the application of ρ ∈ {ns↑, sr↑, sp↑}

is not trivial. The cases are:

(1) The redex of ai↓ is inside the context S{ } of ρ. Trivial.

(2) The contractum of ρ is inside a passive structure of the redex of ai↓. Trivial.

(3) The redex of ai↓ is inside a passive structure of the contractum W of ρ. Trivial.

(4) The redex of ai↓ is inside an active structure of the contractum W of ρ but not
inside a passive one. Not possible.

(5) The contractum W of ρ is inside an active structure of the redex of ai↓. Not
possible because the application of ρ is not trivial.

(6) The contractum W of ρ and the redex of π overlap. Not possible. 	


9.10 Lemma For every derivation

1

P ′
ρ

P

{w↓}
, where ρ ∈ {ns↑, sp↑, sr↑}, there is a

derivation
1

P

{w↓} .
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Proof: Let me introduce the rule
S(U, [!T, V ])

spw↑
S [?(R,T ), U, V ]

, which is a combination of

sp↑ and w↓. Now consider a derivation

Q
w↓

S{W}
ρ

S{Z}
, where ρ ∈ {ns↑, sp↑, sr↑, spw↑} and

permute ρ over w↓ by applying the scheme of 6.3:

(1) The redex of w↓ is inside the context S{ } of ρ. Trivial.

(2) The contractum of ρ is inside a passive structure of the redex of w↓. Trivial.

(3) The redex of w↓ is inside a passive structure of the contractum W of ρ. Trivial.

(4) The redex of w↓ is inside an active structure of the contractum W of ρ but not
inside a passive one. Then W = ([?R,U ], [!T, V ]) and

S([⊥, U ], [!T, V ])
w↓

S([?R,U ], [!T, V ])
sp↑ yields

S [?(R,T ), U, V ]

S(U, [!T, V ])
spw↑ .

S [?(R,T ), U, V ]

(5) The contractum W of ρ is inside an active structure of the redex of w↓. Then
S{ } = S′{?S′′{ }} and

S′{⊥}
w↓

S′{?S′′{W}}
ρ yields

S′{?S′′{Z}}
S′{⊥}

w↓ .
S′{?S′′{Z}}

(6) The contractum W of ρ and the redex of π overlap. Not possible.

Then, the instance of ρ either disappears, which gives us a derivation
1

P

{w↓} , or it

reaches the top of the derivation, which yields

1
ρ′

P ′′

P
{w↓}

with ρ′ ∈ {ns↑, sp↑, sr↑, spw↑}.

In the former case the proof is finished. In the latter, there are two possibilities.

(1) ρ′ ∈ {ns↑, sp↑, sr↑}. Then the application of ρ′ must be trivial, because its
premise is 1. Hence its conclusion P ′′ = 1 and we have the desired derivation
by leaving out ρ′.

(2) ρ′ = spw↑. Then the application of ρ′ must be an instance of w↓ because its
premise is 1. Hence, it can be replaced by an application of w↓. 	
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9.11 Lemma For every derivation

1

R′
4

{w↓}

R′
3

{ai↓}

R2

{ds↓,p↓,r↓}

there is a derivation

1

R′′
4

{w↓}

R′′
3

{ai↓}

R2

{ds↓,p↓}

.

Proof: Instead of eliminating the rule r↓, I will eliminate the rule
S{?U}

sr↓
S [?R, ?T ]

,

where U is any structure such that there is a derivation
U

[R,T ]
{w↓,ai↓,ds↓,p↓}∆ . Note that

r↓ is an instance of sr↓. Now consider the topmost instance of sr↓ and permute it

up by applying the scheme in 6.3, i.e. consider a derivation

Q
π

S{?U}
sr↓

S [?R, ?T ]

, where

π ∈ {w↓, ai↓, ds↓, p↓} is not trivial. The cases are:

(1) The redex of π is inside S{ }. Trivial.

(2) The contractum ?U of sr↓ is inside a passive structure of the redex of π. Trivial.

(3) The redex of π is inside a passive structure of the contractum of sr↓. Not
possible because there is no passive structure.

(4) The redex of π is inside the contractum ?U of sr↓. Then replace

S{?U ′}
π

S{?U}
sr↓ by

S [?R, ?T ]

S{?U ′}
sr↓ .

S [?R, ?T ]

(5) The contractum ?U of sr↓ is inside an active structure of the redex of π but not
inside a passive one. Then the following subcases are possible:

(i) π = p↓ and S{?U} = S′ [!V, ?U ]. Then replace

S{![V,U ]}
p↓

S [!V, ?U ]
sr↓ by

S [!V, ?R, ?T ]

S{![V,U ]}

S{![V,R, T ]}
∆

p↓
S [![V,R], ?T ]

p↓ ,
S [!V, ?R, ?T ]

where ∆ is the derivation that exists by definition of sr↓.
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(ii) π = w↓ and ?U is the redex. Then replace

S{⊥}
w↓

S{?U}
sr↓ by

S [?R, ?T ]

S{⊥}
w↓

S{?R}
w↓ .

S [?R, ?T ]

(iii) π = w↓ and S{?U} = S′{?S′′{?U}}. Then replace

S′{⊥}
w↓

S′{?S′′{?U}}
sr↓ by

S′{?S′′ [?R, ?T ]}
S′{⊥}

w↓ .
S′{?S′′ [?R, ?T ]}

(6) The redex of π and the contractum ?U of sr↓ overlap. Not possible.

Now there are two possibilities. Either the instance of sr↓ disappeared during the
process of permuting up, or it has reached the top of the derivation. Then we have
that S{?U} = 1. This is only possible if U = ⊥, i.e. S{?U} = S{⊥}. Then

S{⊥}
sr↓ can be replaced by

S [?R, ?T ]

S{⊥}
w↓

S{?R}
w↓ .

S [?R, ?T ]

Repeat this procedure for all instances of sr↓ in the derivation. 	

9.12 Lemma (Atomic Cut Elimination) The rule sai↑ permutes over the rules
w↓, ai↓, ds↓ and p↓ by the rule ds↓.

Proof: Consider the derivation

Q
π

S([a,U ], [ā, V ])
sai↑

S [U, V ]

. If π = ds↓, then Lemma 9.6

applies. Now let π ∈ {w↓, ai↓, p↓} be not trivial. The cases are:

(1) The redex of π is inside S{ }. Trivial.

(2) The contractum ([a,U ], [ā, V ]) of sai↑ is inside a passive structure of the redex
of π. Trivial.

(3) The redex of π is inside a passive structure U or V of the contractum of sai↑.
Trivial.

(4) The redex of π is inside the contractum ([a,U ], [ā, V ]) of sai↑ but not inside U
or V .

(i) π = ai↓ and U = [ā, U ′ ]. Then

S([1, U ′ ], [ā, V ])
ai↓

S([a, ā, U ′ ], [ā, V ])
sai↑ yields

S [ā, U ′, V ]

S([1, U ′ ], [ā, V ])
ds↓ .

S [(1, [ā, V ]), U ′ ]
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(ii) π = ai↓ and V = [a, V ′ ]. Similar.

(5) The contractum ([a,U ], [ā, V ]) of sai↑ is inside an active structure of the redex
of π but not inside a passive one. The only possible case is π = w↓ and
S([a,U ], [ā, V ]) = S′{?S′′([a,U ], [ā, V ])}. Then

S′{⊥}
w↓

S′{?S′′([a,U ], [ā, V ])}
sai↑ yields

S′{?S′′ [U, V ]}
S′{⊥}

w↓ .
S′{?S′′ [U, V ]}

(6) The redex of π and the contractum of sai↑ overlap. Not possible. 	

9.13 Theorem (Cut Elimination) The systems SELS∪ {1↓} and ELS are equiva-
lent.

Proof: The proof follows the scheme of 9.4 and Figure 20, where Step 2 is realized
by Lemma 9.8, Step 3 by Lemmata 9.9 and 9.10, and Steps 4 and 5 by Lemma 9.11
and Lemma 9.12, respectively. 	

9.14 Remark Because of case (4) in the proof of Lemma 9.12, it might happen that

after the whole cut elimination process, the obtained proof
R

��
ELSΠ , is not of the shape

1↓
1

R′′′
4

{w↓}

R′′′
3

{ai↓}

R1

{ds↓,p↓}

R

{b↓}

as shown in Figure 20. But it can easily be transformed into such a one by Lemma 6.6.

9.15 Remark The decomposition theorem (Theorem 8.1) is of great value for the
proof of cut elimination. First, it shows that the non-core part of the up-fragment
is admissible. And second, the rule b↓ is moved below the remaining rules of the
up-fragment (namely, the rules p↑ and ai↑). This means that in the cut elimination
process we do not have to deal with contraction nor absorption, which are known to
be most problematic in cut elimination proofs.

10 Conclusions and Future Work

In this paper, I used a new proof theoretical formalism, the calculus of structures, in
order to study a known logic, the multiplicative exponential fragment of linear logic
(MELL).
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The calculus of structures has originally been developed by Guglielmi for describing
system BV [14, 15]. The logic of system BV consists of the multiplicative fragment of
linear logic (MLL) plus mix plus one self-dual non-commutative connective. A similar
logic, pomset logic [26], defied any sequent calculus presentation so far (it is still open
whether both logics are the same or not). Recently it has been shown by Tiu [30] that
there is no system in the sequent calculus which is equivalent to BV , by exploring the
fact that deep inference is crucial for a deductive system for BV .

This justifies the existence of the calculus of structures. But can we also justify
the study of logics, inside the calculus of structures, that have a sequent calculus
presentation? I believe that we can answer positively for the following reasons:

Simplicity Although the calculus of structures is more general than the sequent
calculus, it is not more complicated. System ELS is simple and elegant, but
deeply different from system MELL in the sequent calculus.

Power The calculus of structures unveils new properties, like decomposition, that
are not available in the sequent calculus.

Modularity There are two ways in which the calculus of structures presents a new
modularity. First, the decomposition theorem allows for a decomposition of
a big system into smaller “modules” that can be studied independently. This
is important from the viewpoint of denotational semantics. Second, the proof
of the cut elimination result becomes modular because the general cut rule is
decomposed into several up rules that are shown to be admissible independent
from each other. Furthermore, the cut elimination proof is not one big nested
induction, but is based on permutation results, which remain valid if new rules
are added to the system.

Symmetry In the calculus of structures derivations are not trees as in the sequent
calculus but superpositions of trees that can also be flipped upside-down. This
gives the calculus of structures a new top-down symmetry. This symmetry is
responsible for the power of stating certain properties or conjectures that are
unavailable in other proof theoretical formalisms.

There are two main reasons behind these results. The first is that rules can be
applied deep inside structures, and the second is the dropping of the main connective.
For example, the times rule in the sequent calculus must make an early choice in
splitting its context, which is not the case with the switch rule in the calculus of
structures. For the promotion rule the situation is similar. In the sequent calculus
the rule is global, whereas in the calculus of structures it is local: pieces of context
can be brought inside the scope of an of-course one by one.

These two main reasons for the advantages of the calculus of structures do at the
same time cause a possible problem, namely proof search can become more non-
deterministic. There is research in progress to focus proofs based on the logical
relations along the lines of [2] and [21] as well as based on the depth of structures.

There are two immediate possibilities of extending system ELS. First, bringing the
self-dual non-commutative connective of system BV to system ELS. In order to do this
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we have to add the equation 1 = ⊥, which gives us the unit ◦ of BV . In the language
of the sequent calculus this is equivalent to adding the rules mix and nullary mix
[1, 9, 25]. Then we have to add the rule seq of BV :

S〈[R,U ]; [T, V ]〉
q↓

S [〈R;T 〉, 〈U ;V 〉] ,

where 〈R1; . . . ;Rh〉 is the composition of the structures R1, . . . , Rh by the new self-
dual non-commutative connective. In [17] the new system, called NEL, is discussed and
and cut elimination is shown. Because of its self-duality the new non-commutative
connective corresponds quite well to the notion of sequentiality in many process al-
gebras. In [8] Bruscoli shows the correspondence to prefixing in CCS [23]. Moreover,
recent research has shown that system NEL is Turing-complete [29]. If MELL turns
out to be decidable (the problem is still open), the edge is crossed by the self-dual
non-commutative connective of system BV , in the sense that we get a very simple
propositional system that is undecidable without the use of additives.

The second immediate possibility of extending system ELS is, of course, by the
additives of linear logic. I already have two different systems for full propositional
linear logic in the calculus of structures. The first is simply system ELS extended by
a few rules. The main ingredient is the rule

S(• [R,T ], [U, V ])•
d↓

S [(•R,U)•, [•T, V ]•]
,

where the structures [•R1, . . . , Rh ]• and (•R1, . . . , Rh)• stand for the additive disjunction
and additive conjunction, respectively. I will not go into further details here. I just
want to draw attention to the similarity of that rule and the rule

S{![R,T ]}
p↓

S [!R, ?T ]
.

This maybe unveils a general pattern of philosophical interest.

The second system I have for full linear logic is more complex, because it consists
of many more rules, but it has the advantage that all rules are local, in the same
sense as in [7], where a local system for classical logic in the calculus of structures
is presented. Particularly contraction (as well as absorption) can be reduced to an
atomic version in the same way as it has been done for identity and cut in this paper.
Both systems for full linear logic can be found in [28].

The calculus of structures is not only suitable for propositional logics, but also for
first order logic. In [7, 5] the rules for first order predicative classical logic are shown.
The rules for the first order predicative quantifiers in linear logic are very similar:

S{∀x.[R,T ]}
u↓

S [∀x.R,∃x.T ]
and

S{R{x← t}}
n↓

S{∃x.R} ,

where the De Morgan laws and the equations

∀x.R = R = ∃x.R if x is not free in R
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are added. Again, observe the similarity between the rule u↓ and the promotion rule
p↓. The two advantages over the sequent calculus rules that already occur in the
classical case are also there in linear logic: First, there is no need for a proviso saying
that the variable x is not free in the conclusion of the rule, and second, in both rules
the premise implies the conclusion, without any further quantifications. This pattern
can also be ported to the second order propositional quantifiers, where the rules are
similar.
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[9] Arnaud Fleury and Christian Retoré. The mix rule. Mathematical Structures in
Computer Science, 4(2):273–285, 1994.

[10] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39:176–210, 1934.

[11] Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Mathematis-
che Zeitschrift, 39:405–431, 1935.

[12] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[13] Jean-Yves Girard. Proof Theory and Logical Complexity, Volume I, volume 1 of
Studies in Proof Theory. Bibliopolis, edizioni di filosofia e scienze, 1987.

[14] Alessio Guglielmi. A calculus of order and interaction. Technical Report WV-
99-04, Technische Universität Dresden, 1999. Now obsolete and replaced by [15].

[15] Alessio Guglielmi. A system of interaction and structure. Technical Report
WV-02-10, Technische Universität Dresden, 2002. Submitted. On the web at:
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/Gug/Gug.pdf.

[16] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. In Laurent Fribourg, editor, Computer Science Logic, CSL
2001, volume 2142 of LNCS, pages 54–68. Springer-Verlag, 2001.

[17] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL.
In Matthias Baaz and Andrei Voronkov, editors, Logic for Programming, Arti-
ficial Intelligence, and Reasoning, LPAR 2002, volume 2514 of LNAI, pages
231–246. Springer-Verlag, 2002.

[18] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuition-
istic linear logic. Information and Computation, 110(2):327–365, May 1994.

[19] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490. Academic Press, 1980.

[20] Joachim Lambek. The mathematics of sentence structure. American Mathemat-
ical Monthly, 65:154–169, 1958.

72



[21] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical Com-
puter Science, 165:201–232, 1996.

[22] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[23] Robin Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[24] Dag Prawitz. Natural Deduction, A Proof-Theoretical Study. Almquist and
Wiksell, 1965.
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