
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

01
--

FR
+E

N
G

RESEARCH
REPORT
N° 9201
September 2018

Project-Team Parsifal

Proof nets for first-order
additive linear logic
Willem B. Heijltjes, Dominic J.D. Hughes, Lutz Straßburger

RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing
Campus de l’École Polytechnique
91120 Palaiseau

Proof nets for first-order additive linear logic

Willem B. Heijltjes, Dominic J.D. Hughes, Lutz Straßburger

Project-Team Parsifal

Research Report n° 9201 — September 2018 — 24 pages

Abstract: We present canonical proof nets for first-order additive linear logic, the fragment
of linear logic with sum, product, and first-order universal and existential quantification. We
present two versions of our proof nets. One, witness nets, retains explicit witnessing information
to existential quantification. For the other, unification nets, this information is absent but can be
reconstructed through unification. Unification nets embody a central contribution of the paper:
first-order witness information can be left implicit, and reconstructed as needed. Witness nets
are canonical for first-order additive sequent calculus. Unification nets in addition factor out any
inessential choice for existential witnesses. Both notions of proof net are defined through coalescence,
an additive counterpart to multiplicative contractibility, and for witness nets an additional geometric
correctness criterion is provided. Both capture sequent calculus cut-elimination as a one-step global
composition operation.

Key-words: proof nets, additive linear logic, first-order, unification

Reseaux de preuves pour la logique linéaire additive du
premier ordre

Résumé : Nous présentons des réseaux de preuve canoniques pour la logique linéaire additive
du premier ordre, le fragment de la logique linéaire avec somme, produit et quantificateurs du
premier ordre. Nous présentons deux versions de nos réseaux de preuves. Pour l’un, réseaux à
tmoin, conserve une information de témoin explicite à la quantification existentielle. Pour l’autre,
réseaux d’unification, cette information est absente mais peut être reconstruite par l’unification.
Les résaeux d’unification incarnent une contribution centrale de l’article: les informations sur les
témoins de premier ordre peuvent être implicites et reconstruites selon les besoins. Les réseaux
à témoin sont canoniques pour le calcul des séquents additifs de premier ordre. Les réseaux
dunification excluent en outre tout choix inessentiel pour les témoins existentiels. Les deux notions
de réseau de preuve sont définies par la coalescence, un complément additif à la contractibilité
multiplicative, et pour les réseaux de témoins, un critère supplémentaire de correction géométrique
est fourni. Tous deux capturent l’élimination des coupures comme une opération de composition
globale en une étape.

Mots-clés : reseaux de preuves, logique linéaire additive, premier ordre, unification

Proof nets for first-order additive linear logic 3

Proof nets for first-order additive linear logic

Willem B. Heijltjes
University of Bath, United Kingdom

http://willem.heijltj.es

Dominic J.D. Hughes
Logic Group, UC Berkeley, USA

http://boole.stanford.edu/~dominic

Lutz Straßburger
Inria Saclay & LIX/École Polytechnique, Palaiseau, France

http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger

1 Introduction

Additive linear logic (all) is the logic of sum, product, and their canonical morphisms: projections,
injections, and diagonals. Semantically, the logic represents parallel communication between two
parties (with sum and product as respectively the sending and receiving of a binary choice) [18, 3],
and as such is a core part of session types for process calculi [13, 2, 24].

A microcosm of parallellism, all already demonstrates the Blass problem of game semantics
[1], that sequential strategies do not in general have associative composition. This is resolved by
proof nets [6, 16], which are a canonical, true-concurrency presentation of all.

Here, we extend proof nets to first-order additive linear logic (all1). Beyond the solution to
the proof-net problem, a main contribution is the (further) development of the two techniques we
consider: explicit substitutions for witness assignment, and reconstruction of witness information
through unification, as pioneered for MLL by the second author [17]. We expect to apply these
to first-order logics more generally.

Additive proof nets

all proof nets [16, Section 4.10] represent a morphism A → B by a sequent `A,B plus a
linking, a relation between the propositional atoms of A (the dual of A) and those of B. They
are canonical : they factor out the permutations of sequent calculus, and correspond 1–1 to
morphisms of the free category with binary sums and products. Composition, of proof nets
over `A,B and `B,C to one over `A,C, is by the relational composition of their linkings along
the dual formulas B and B and captures sequent-calculus cut-elimination. Below are examples of

RR n° 9201

4 Heijltjes & Hughes & Straßburger

proof nets and their composition.

diagonal:

a

a× a
injection:

a

a+ b

symmetry:

a+ b

b× a
associativity:

a +(b + c)

(a × b)× c

composition:

b+ a

a× (b+ b)

a+ (b× b)

b× b

⇒

b+ a

b× b

We extend additive proof nets with first-order quantification. Our central challenge is to incorpo-
rate the essential content of first-order proof, the witness assignment to existential quantifiers.
Commonly, as in the sequent calculus rule below left, a witness to ∃x.B is given by an immediate
substitution B[t/x]. To assign different witnesses in different branches of a proof, the subformula
is duplicated first, giving B[s/x] and B[t/x], as below right.

`A,B[t/x]

`A,∃x.B
∃R,t

`P (s), P (s)

`∃x.P (x), P (s)
∃R,s

`P (t), P (t)

`∃x.P (x), P (t)
∃R,t

`∃x.P (x), P (s)× P (t)
×R

This is incompatible with a sequent + links proof net design, where the conclusion sequent
remains intact, and a subformula B cannot be the subject of substitution or duplication. Instead,
we propose two alternative treatments of witnessing terms, embodied in two notions of proof
net: witness nets and unification nets. Our solutions are based on the second author’s recent
unification nets for first-order multiplicative linear logic [17]. Their main feature is to omit
existential witnesses altogether, and reconstruct them by unification.

Witness nets record witness assignment in substitution maps attached to each link. The
example below left shows the proof net for the sequent proof earlier. (We will assume a different
variable for each quantifier, and we attach links to predicate letters, as the root connective of
an atomic proposition.) Witness nets are canonical for all1 sequent calculus permutations.
Composition is direct, where the witness assignments of links are composed through a simple
process of interaction + hiding similar to that of game semantics [22].

Unification nets omit any witness information, as illustrated below right. In addition to
canonicity, they embody a notion of generality : where more than one witness could be assigned,
unification nets do not require a definite choice, while witness nets do. Composition is direct, by
relational composition. We compare further properties in Figure 7 in the conclusion, where we
also discuss related work and Lambek’s notion of generality [19].

a witness net:

∃x.P (x)

P (s)× P (t)

[s/x] [t/x] a unification net:

∃x.P (x)

P (s)× P (t)

Background

Additive linear logic is combinatorially rich, yet well-behaved and tractable: proof search [5] and
proof net correctness [11] for a net over `A,B are linear in |A| × |B| (with |A| the size of the

Inria

Proof nets for first-order additive linear logic 5

syntax tree of A). Proof nets remain canonical and equally tractable when extended with the two
units [10, 11], and the first-order case is merely NP-complete [11].

all is of course part of mall (multiplicative-additive linear logic), and its lessons are clearly
visible in the second author’s canonical mall proof nets [16], as well as the first and second
author’s locally canonical conflict nets [15]. Its proof nets also appear in the third author’s
study of the medial rule for classical logic [23], and as the skew fibrations in the second author’s
combinatorial proofs for classical logic [14]. To prepare the ground for cut elimination in first-order
combinatorial proofs is a further motivation for the present work.

Proof identity

At the heart of a theory of proof nets is the question of proof identity : when are two proofs
equivalent? The answer determines which proofs should map onto the same proof net. The
introduction of quantifiers creates an interesting issue: if two proofs differ by an immaterial
choice of existential witness, should they be equivalent? For example, to prove the sequent
`∃x.P (x),∃y.P (y) both quantifiers must receive the same witness, as in the following two proofs,
but any witness will do.

`P (s), P (s)

`∃x.P (x),∃y.P (y)

?≡ `P (t), P (t)

`∃x.P (x),∃y.P (y)

The issue is more pronounced where quantifiers are vacuous, ∃x.A with x not free in A. The
proofs below left can only be distinguished even syntactically because the ∃R rule makes the
instantiating witness explicit. Below right is an interesting intermediate variant: the witness s or
t can be observed without explicit annotation in the ∃R rule, but the choice is equally immaterial
to the content of the proof as when the quantifier were vacuous.

`P, P
`∃x.P, P

∃R,s
?≡ `P, P
`∃x.P, P

∃R,t

`P, P
`P +Q(s), P

+R,1

`∃x.P +Q(x), P
∃R,s

?≡
`P, P

`P +Q(t), P
+R,1

`∃x.P +Q(x), P
∃R,t

In this paper we will not attempt to settle the question of proof identity. Rather, our two notions
of proof net each represent a natural and coherent perspective, at either end of the spectrum.
Witness nets make all existential witnesses explicit, including those to vacuous quantifiers, rejecting
all three equivalences above. Unification nets leave all witnesses implicit, thus identifying all
proofs modulo witness assignment, and validating all three equivalences.

Correctness: coalescence and slicing

Additive proof nets have two natural correctness criteria. Coalescence [11, 15], a counterpart
to multiplicative contractibility [4, 8], provides efficient correctness and sequentialization via
local rewriting: it asks that the steps below left result in a single link, connecting both formulas.
Slicing [16] is a global, geometric criterion: it asks that each slice, a choice to remove one
subformula of each product along with all connected links, retains a single link.

A

B × C
→

A

B × C

A

B + C

→
A

B + C

A

B × CB

A

B × CC
coalescence slicing

RR n° 9201

6 Heijltjes & Hughes & Straßburger

We extend coalescence to both witness nets and unification nets, and slicing to witness nets. Here,
we illustrate the former, and leave a discussion of slicing to the conclusion of the paper.

We will distinguish strict coalescence (→) for witness nets and unifying coalescence ()
for unification nets. We first give an example of the former (writing Pxy for P (x, y) to conserve
space). In the initial witness net, below left, each link corresponds to a sequent calculus axiom
between both linked subformulas, with the substitutions applied.

∀x.∃y.Pxy

∃z.Pzs× Pzt
[x/z,s/y] [x/z,t/y] →

∀x.∃y.Pxy

∃z.Pzs× Pzt
[x/z] [x/z,t/y] →

∀x.∃y.Pxy

∃z.Pzs× Pzt
[x/z] [x/z] → · · ·

`Pxs, Pxs `Pxt, Pxt `Pxs, Pxs

`∃y.Pxy, Pxs
∃R,s

`Pxt, Pxt `Pxs, Pxs

`∃y.Pxy, Pxs
∃R,s

`Pxt, Pxt

`∃y.Pxy, Pxt
∃R,t

The first two steps (above middle and right) move both links from the subformula Pxy to ∃y.Pxy,
removing the substitutions [s/y] and [t/y] on y, and corresponding to sequent rules ∃R, s and
∃R, t. Observe that we maintain the domain of the substitutions on a link as the variables of
those existential quantifiers that either linked subformula is (strictly) in scope of.

The next step, from above right to below left, combines both links, and corresponds to an
additive conjunction rule. We require that both substitutions agree (their domains are the same
by the above observation); hence this step could not have been performed before the previous
two, corresponding to the non-permutability of the generated inference rules.

· · · →
∀x.∃y.Pxy

∃z.Pzs× Pzt
[x/z] →

∀x.∃y.Pxy

∃z.Pzs× Pzt
→

∀x.∃y.Pxy

∃z.Pzs× Pzt

`Pxs, Pxs

`∃y.Pxy, Pxs

`Pxt, Pxt

`∃y.Pxy, Pxt

`∃y.Pxy, Pxs× Pxt
×R

P

P

`Pxs, Pxs

`∃y.Pxy, Pxs

`Pxt, Pxt

`∃y.Pxy, Pxt

`∃y.Pxy, Pxs× Pxt

`∃y.Pxy, ∃z.Pzs× Pzt
∃R,x

P

`Pxs, Pxs

`∃y.Pxy, Pxs

`Pxt, Pxt

`∃y.Pxy, Pxt

`∃y.Pxy, Pxs× Pxt

`∃y.Pxy, ∃z.Pzs× Pzt

`∀x.∃y.Pxy, ∃z.Pzs× Pzt
∀R

The final steps introduce an inference ∃R, x and one ∀R. For the latter, we require that the
eigenvariable x of the universal quantification does not occur in the range of the substitution
of the link, as in [x/z] in the net above left—hence the two steps could not be interchanged. It
corresponds to the eigenvariable condition on the ∀R rule that x is not free in the context.

Unifying coalescence, for unification nets, is similar to strict coalescence; two differences allow
it to reconstruct witnesses by unification, which we illustrate. To initialize coalescence, the links
in the net below left are given, as a substitution map, the most general unifier of the two
propositions connected by the link. Both links now correspond to sequent axioms.

Pxx

Pys× Ptz

Pxx

Pys× Ptz
[s/y,s/x] [t/z,t/x]

Pxx

Pys× Ptz
[u/z,u/y,u/x]

`Pss, Pss `Ptt, P tt `Puu, Puu `Puu, Puu

`Puu, Puu× Puu
×R Inria

Proof nets for first-order additive linear logic 7

The second difference is the coalescence step for additive conjunction, above right. Where strict
coalescence requires both links to carry identical substitution maps, here we require both maps to
be unifyable, in the sense that both must have a common, more special (less general) substitution
map. This is then applied to the new link. In the example, the terms s and t are unified to u, i.e.
u is a most general term that specializes both s and t. Note that in the sequentialization, both
subproofs also need to be specialized, from s and t to u.

2 Proof nets for first-order additive linear logic

First-order terms and the formulas of first-order all are generated by the following grammars.

t ····= x | f(t1, . . . , tn)

a ····= P (t1, . . . , tn) | P (t1, . . . , tn)

A ····= a | A+A | A×A | ∃x.A | ∀x.A

Negation (·) is applied to predicate symbols, P as a matter of convenience. The dual A of an
arbitrary formula A is given by DeMorgan. We use the following notational conventions.

x, y, z ∈ var first-order variables
f, g, h ∈ Σf n-ary (n ≥ 0) function symbols from a fixed alphabet Σf
P,Q,R ∈ Σp n-ary (n ≥ 0) predicate symbols from a fixed alphabet Σp
s, t, u ∈ term first-order terms over var and Σf
a, b, c ∈ atom atomic propositions
A,B,C ∈ form all1 formulas

A sequent `A,B is a pair of formulas A and B. A sequent calculus for all1 is given in Figure 1,
where each rule has a symmetric counterpart for the first formula in the sequent. We write
π `A,B for a proof π with conclusion sequent `A,B. Two proofs are equivalent π ∼ π′ if one
is obtained from the other by rule permutations (Appendix A, Figure 9).

By a subformula we will mean a subformula occurrence. For instance, a formula A× A
has two subformulas A, one on the left and one on the right. The subformulas sub(A) of a
formula are defined as follows; we write B ≤ A if B is a subformula of A, i.e. if B ∈ sub(A).

sub(A) = {A} ∪

{
sub(B)] sub(C) if A = B + C or A = B × C
sub(B) if A = ∃x.B or A = ∀x.B

Since we will be working with a graphical representation, we will adopt Barendregt’s
convention, that bound variable names are globally unique identifiers, in the following form.
In a sequent `A,B we assume all quantifiers to have a unique binding variable, distinct from
any free variable. In a proof π over `A,B, a variable x that is universally quantified as ∀x.C in
`A,B is an eigenvariable. A ∀R rule on ∀x.C is considered to bind all free occurrences of the
eigenvariable x in its direct subproof. Accordingly, we assume that x does not occur free outside
these subproofs (which can be guaranteed by globally renaming x). We take variable names to
be persistent throughout a proof, in the sense that we don’t admit alpha-conversion between
proof rules. We thus have unique bound variable names in `A,B, but in π all ∀R rules on the
subformula ∀x.C share the same eigenvariable x.

A link (C,D) on a sequent `A,B is a pair of subformulas C ≤ A and D ≤ B. A linking λ
on the sequent `A,B is a set of links on it.

Definition 1. A pre-net λ . A,B is a sequent `A,B with a linking λ on it.

RR n° 9201

8 Heijltjes & Hughes & Straßburger

`a, a
ax

`A,Bi
`A,B1 +B2

+R,i
`A,B `A,C
`A,B × C

×R
`A,B[t/x]

`A,∃x.B
∃R,t

`A,B
`A,∀x.B

∀R (x /∈ fv(A))

Figure 1: A sequent calculus for all1

Witness maps

We will record the witnessing terms to existential quantifiers as (explicit) substitutions at each
link. A witness map σ : var ⇀ term is a substitution map which assigns terms to variables,
given as a (finite) partial function σ = [t1/x1, . . . , tn/xn]. Its domain dom(σ) is {x1, . . . , xn}.
We abbreviate by y ∈ σ that a variable y occurs free in the range of σ (y ∈ fv(ti) for some i ≤ n).
The map σ//x is undefined on x and as σ otherwise; σ|V is the restriction of σ to a set of variables
V , and ∅ is the empty witness map. We write Aσ for the application of the substitutions in σ to
the formula A, and στ is the composition of two maps, where A(στ) = (Aσ)τ . We apply σ to
a proof π, written πσ, by applying it to each formula in the proof and to each existential witness
t recorded with a rule ∃R, t.

A witness linking λΣ is a linking λ with a witness labelling Σ: λ → var ⇀ term that
assigns each link (C,D) a witness map. We may use and define λΣ as a set of witness links
(C,D)σ where (C,D) ∈ λ and Σ(C,D) = σ. A witness link (a, b)σ on atomic formulas is an
axiom link if aσ = bσ. An axiom witness linking is one consisting of axiom links.

Definition 2. A witness pre-net λΣ . A,B is a sequent `A,B with a witness linking λΣ.

Definition 3. The de-sequentialization [π] of a sequent proof π `A,B is the witness pre-net

[π]A,B∅ . A,B where the function [−]A,Bσ is defined inductively as follows.[
`a, a

ax
]b , c
σ

= {(b, c)σ}

 π
`A,Bi

`A,B1 +B2
+R,i

A
′ , B′1+B′2

σ

=

[
π

`A,Bi

]A′ , B′i
σ

 π
`A,B

π′

`A,C
`A,B × C

×R

A
′ , B′×C′

σ

=

[
π

`A,B

]A′ , B′
σ

∪
[

π′

`A,C

]A′ , C′
σ

 π
`A,B[t/x]

`A,∃x.B
∃R,t

A
′ , ∃x.B′

σ

=

[
π

`A,B[t/x]

]A′ , B′
σ[t/x]

 π
`A,B
`A,∀x.B ∀R

A
′ , ∀x.B′

σ

=

[
π

`A,B

]A′ , B′
σ

A function call [π `A,B]A
′,B′

σ expects that A = A′σ and B = B′σ: the translation separates a
sequent `A,B into subformulas A′, B′ of the ultimate conclusion of the proof, and the accumulated
existential witnesses σ. For an example, we refer to the introduction.

Inria

Proof nets for first-order additive linear logic 9

Correctness and sequentialization by coalescence

For sequentialization, the links in a pre-net will be labelled with a sequent proof. An axiom link
will carry an axiom, and each coalescence step introduces one proof rule. Formalizing this, a
proof linking λΠ

Σ is a witness linking λΣ with a proof labelling Π: λ → proof assigning a
sequent proof to each link. We will use and define λΠ

Σ as a set of proof links (C,D)πσ, where
we require that π ` Cσ,Dσ, i.e. that π proves the conclusion `Cσ,Dσ. A labelled pre-net
λΠ

Σ .A,B is a witness pre-net λΣ .A,B with a proof labelling Π on λΣ. If λΣ is an axiom linking,
we assign an initial proof labelling λ?Σ as follows.

λ?Σ = { (a, b)πσ | (a, b)σ ∈ λΣ , π = `aσ, bσ }

For correctness we may coalesce a pre-net directly, without constructing a proof. Then to recap,
we have accumulated the following further notational conventions.

π, φ, ψ ∈ proof all1 sequent proofs
κ, λ ⊂ form× form linkings (sets of pairs of formulas)
ρ, σ, τ : var ⇀ term witness maps
Σ,Θ : λ→ var ⇀ term witness labellings on a linking λ
Π,Φ,Ψ : λ→ proof proof labellings on a linking λ

Definition 4. Strict sequentialization (→) is the rewrite relation on labelled pre-nets gener-
ated by the following rules, that replace one or two links by another in a pre-net λΠ

Σ .A,B (where
B has a subformula D1+D2, D1×D2, ∃x.D, and ∀x.D respectively).

(C,Di)
π
σ → (C,D1+D2)ψσ ψ =

π
`Cσ,Diσ

`Cσ,D1σ+D2σ
+R,i

(+S, i)

(C,D1)πσ
(C,D2)φσ

}
→ (C,D1×D2)ψσ ψ =

π
`Cσ,D1σ

φ
`Cσ,D2σ

`Cσ,D1σ×D2σ
×R

(×S)

(C,D)πσ → (C, ∃x.D)ψσ//x (x∈ dom(σ)) ψ =

π
`Cσ,Dσ

`C(σ//x),∃x.D(σ//x)
∃R,σ(x)

(∃S)

(C,D)πσ → (C, ∀x.D)ψσ (x /∈σ) ψ =

π
`Cσ,Dσ
`Cσ,∀x.Dσ ∀R

(∀S)

Strict coalescence is the same relation on witness pre-nets, ignoring proof labels, illustrated
in Figure 2. A witness pre-net λΣ . A,B strict-coalesces if it reduces to {(A,B)∅} . A,B. It
strongly strict-coalesces if any coalescence path terminates at {(A,B)∅} . A,B.

For an example of coalescence, see the introduction.

Definition 5. An all1 witness proof net or witness net is a witness pre-net λΣ .A,B with
λΣ an axiom linking, that strict-coalesces. It sequentializes to a proof π if its initial labelling
λ?Σ . A,B reduces in (→) to {(A,B)π∅} . A,B.

We conclude this section by establishing that sequentialization and de-sequentialization for
witness nets are inverses, and that witness nets are canonical.

RR n° 9201

10 Heijltjes & Hughes & Straßburger

C

D1+D2

σ →
C

D1+D2

σ

C

∃x.D
σ

x∈ dom(σ)→
C

∃x.D
σ//x

C

D1×D2

σ σ →
C

D1×D2

σ

C

∀x.D
σ

x /∈σ→
C

∀x.D
σ

Figure 2: Coalescence rules

Theorem 6. For any all1 proof π, the witness net [π] sequentializes to π.

Proof. It follows by induction on π that if λΣ = [π `A,B]A
′,B′

σ where A′σ = A and B′σ = B,
then λ?Σ . A,B reduces in (→) to {(A′, B′)πσ} . A,B. The statement is the case σ = ∅.

Theorem 7. If λΣ . A,B sequentializes to π, then [π] is λΣ . A,B.

Proof. By induction on the sequentialization path λ?Σ . A,B →∗ {(A,B)π∅} . A,B it follows that
in every pre-net κΦ

Θ . A,B on this path, λΣ is equal to the union over the de-sequentialization of
all proof labels φ in Φ:

λΣ =
⋃
{ [φ]C,Dσ | (C,D)φσ ∈ κΦ

Θ } .

The statement is then the case κΦ
Θ = {(A,B)π∅}.

Theorem 8. Witness nets are canonical: [π] = [φ] if and only if π ∼ φ.

Proof. From left to right is by inspection of the critical pairs of sequentialization (→). From right
to left is by inspection of the rule permutations in Figure 9 in Appendix A.

3 Geometric correctness

We will first identify two aspects of sequent proofs, arising from the local nature of the rules, that
need to be enforced explicitly in a geometric correctness condition.

Local eigenvariables The side-condition on the ∀R-rule, that the eigenvariable is not free in the
context, means that eigenvariables are local to the subproof of the ∀R-rule. Correspondingly,
a link (C,D)σ on `A,B has local eigenvariables if for any variable x ∈ σ, if x is an
eigenvariable quantified as ∀x.X in `A,B, then C ≤ X or D ≤ X. A witness linking or
pre-net has local eigenvariables if all its links do.

Exact coverage The local witness substitution [t/x] in a rule instance ∃R, t will have been
applied exactly to the axioms `a, a in the subproof of that rule. Correspondingly, for a link
(C,D)σ on `A,B we expect the domain of σ to be exactly the existential variables in A and
B that (could) occur free in C and D. For a subformula C of A, let the free existential
variables of C in A be the set evA(C) = {x | C < ∃x.X ≤ A }. A link (C,D)σ on `A,B
then has exact coverage if dom(σ) = evA(C) ∪ evB(D). If it does, σ consists of two
components, σ|evA(C) and σ|evB(D), which we abbreviate as σC and σD respectively. A
witness linking or pre-net has exact coverage if all its links do.

Both conditions are captured naturally by coalescence, as can be observed from the rules.

Inria

Proof nets for first-order additive linear logic 11

Slices

A slice is the fraction of a proof that depends on a given choice of one branch (or projection) on
each product formula A×B. Important to additive proof theory is that many operations can
be performed on a per-slice basis, such as normalization, or proof net correctness. We will here
use slices for the latter purpose. As in the propositional case [16], we define a slice of a sequent
`A,B as a set of potential links, of which exactly one must be realized in a proof net λΣ . A,B.
We extend the propositional criterion in two ways:

Expansion When defining slices, we interpret an existential quantification ∃x.A as a sum over
all witnesses ti to x that occur in the pre-net, A[t1/x] + . . .+A[tn/x]. This captures the
non-permutability of a product rule over distinct instantiations, as below left. (Technically,
a slice of ∃x.A will correspond to an infinite sum over A[t/x] for every term t, but only the
actually occurring terms ti will ever be relevant.)

Dependency We define a dependency relation between a universal quantification ∀x.A and an
instantiation B[t/y] of ∃y.B where the eigenvariable x occurs free in t (a standard approach
to first-order quantification [21, 7, 9, 22]). For each link, we will require this dependency
relation to be acyclic, which amounts to slice-wise first-order correctness. It captures
the non-permutability of universal and existential sequent rules due to the eigenvariable
condition of the former, as below right.

`A[s/x], B

`∃x.A,B
∃R,s

`A[t/x], C

`∃x.A,C
∃R,t

`∃x.A,B × C
×R

`A,B[t/y]

`A,∃y.B
∃R,t

`∀x.A,∃y.B
∀R

where x ∈ fv(t)

Definition 9 (Slice). A slice S of a formula A and a witness map σ is a set of pairs (A′, σ′),
where A′ ≤ A and σ′ ⊇ σ, given by S = {(A, σ)} ∪ S′ where:

� If A = a then S′ = ∅.

� If A = B + C then S′ = SB] SC with SB a slice of B and σ, and SC one of C and σ.

� If A = B × C then S′ is a slice of B and σ or a slice of C and σ.

� If A = ∃x.B then S′ =]t∈ termSt where each St is a slice of B and σ[t/x].

� If A = ∀x.B then S′ is a slice of B and σ.

A slice of a sequent `A,B is a set of links

{ (C,D)σ∪τ | (C, σ) ∈ SA , (D, τ) ∈ SB }

where SA is a slice of A and ∅, and SB a slice of B and ∅. A slice of a witness pre-net λΣ .A,B
is the intersection λΣ ∩ S of λΣ with a slice S of `A,B.

As in the propositional case, for correctness we will require that each slice is a singleton. We
will further define a dependency condition to ensure that the order in which quantifiers are
instantiated is sound, corresponding to the eigenvariable condition on the ∀R-rule of sequent
calculus. For simplicity, we define the condition on individual links rather than slices.

Definition 10. In a pre-net λΣ . A,B, let the column of a link (C,D)σ be the set of pairs

{ (X,σ|evA(X)) | C ≤ X ≤ A } ∪ { (Y, σ|evB(Y)) | D ≤ Y ≤ B } ,

with a dependency relation (4): (X, ρ) 4 (Y, τ) if X ≤ Y or Y occurs as ∀x.Y and x ∈ ρ.

RR n° 9201

12 Heijltjes & Hughes & Straßburger

Definition 11. A witness pre-net is correct if:

� it has local eigenvariables and exact coverage,

� it is slice-correct : every slice is a singleton, and

� it is dependency-correct : every column is a partial order (i.e. is acyclic/antisymmetric).

In the remainder of this section we will establish that the two correctness conditions, by
coalescence and by slicing, are equivalent. The geometric condition further gives strong coalescence:
since it is preserved, no coalescence step yields an incorrect, and thus non-coalescing, pre-net.
Finally, canonicity follows by inspecting the critical pairs of sequentialization.

Lemma 12. Strict coalescence preserves and reflects correctness.

Proof. For a strict coalescence step L→ R, we will show that the witness pre-net L is correct if
and only if R is. Let L = λΣ . A,B and R = κΘ . A,B. In each case, exact coverage and local
eigenvariables are immediately preserved and reflected. For slice-correctness, we will demonstrate
that the left-hand side and right-hand side of each rule belong to the same slice of `A,B, or in
the case of ∃S, naturally corresponding slices. For dependency-correctness, we will briefly show
how acyclicity of the columns of the involved links is preserved.

� (C,Di)σ → (C,D1+D2)σ
A slice SB of B and ∅ containing one of (D1, τ), (D2, τ), and (D1 + D2, τ) must also
contain the other two. A slice S of `A,B then contains all three of (C,D1)σ, (C,D2)σ, and
(C,D1+D2)σ, or none. It follows that S ∩ λΣ is a singleton if and only if S ∩ κΘ is. Since
other slices are unaffected, L is slice-correct if and only if R is.

For dependency-correctness, the column of (C,Di)σ is that of (C,D1+D2)σ plus the pair
(Di, σ|evB(Di)) itself, which is minimal in the order 4.

� (C,D1)σ, (C,D2)σ → (C,D1×D2)σ
A slice S of `A,B contains (C,D1×D2)σ if and only if it contains either of (C,D1)σ or
(C,D2)σ, and cannot contain both. Then S ∩ λΣ is a singleton if and only if S ∩ κΘ is.

Dependency-correctness is immediate, as above.

� (C,D)σ → (C, ∃x.D)σ//x
A slice S of `A,B contains (C,∃x.D)τ if and only if it contains all links (C,D)τ [t/x] for any
term t. Letting τ [t/x] = σ, then S ∩ λΣ is the singleton {(C,D)σ} if and only if S ∩ κΘ is
{(C, ∃x.D)σ//x}.
For dependency-correctness, the column of (C,D)σ is that of (C, ∃x.D)σ//x plus a pair
(D, τ), which is minimal in (4).

� (C,D)σ → (C, ∀x.D)σ
A slice S of `A,B contains (C,D)σ if and only if it contains also (C, ∀x.D)σ, and hence
S ∩ λΣ is a singleton if and only if S ∩ κΘ is.

For dependency-correctness, the column of (C,D)σ is that of (C, ∀x.D)σ plus a pair (D, τ).
The side-condition of the coalescence step is that x /∈ σ; then x does not occur free in any
(X, ρ), and (D, τ) is minimal in (4).

Lemma 13. To a correct witness pre-net λΣ . A,B a coalescence step applies, unless it is fully
coalesced already, λΣ = {(A,B)∅}.

Inria

Proof nets for first-order additive linear logic 13

Proof. Let the depth of a link (C,D)σ be a pair of integers (n,m), where n is the distance
from C to the root of A, and m that from D to B. We order link depth in the product order:
(i, j) ≤ (n,m) if and only if i ≤ n and j ≤ m. We will demonstrate that a link at maximal depth
may always be coalesced, unless it is the unique link (A,B)∅ at (0, 0).

To see that a maximally deep link coalesces, first note that a link (C,Di)σ where Di occurs
in D0+D1 may always coalesce, as may a link (C,D)σ where D occurs in ∃x.D. This leaves the
following cases:

� (A,Di)σ with Di occurring in D = D1 ×D2.
Without loss of generality, let i = 1. A slice S1 of `A,B containing (A,D1)σ has a
counterpart S2 containing (A,D2)σ. The depth of (A,D2)σ is the same as that of (A,D1)σ.
By correctness S2 ∩ λΣ is a singleton; by the assumption of maximality it may not contain
a deeper link than (A,D2)σ; and it may not contain a shallower one since that would be
shared with S1 ∩ λΣ. Then λΣ . A,B contains both (A,D1)σ and (A,D2)σ, and these
contract to (A,D)σ.

� (A,D)σ with D in ∀x.D.
The step (A,D)σ → (A,∀x.D)σ applies if x /∈ σ. By way of contradiction, assume x ∈ σ.
The column of (A,D)σ contains (D,σD) and (∀x.D, τ) where τ = σ|evB(∀x.D). By the exact
coverage condition, σ = σA ∪ σD, and since the free existential variables in D and ∀x.D
are the same, evB(D) = evB(∀x.D), so that τ = σD. (Note that since σA = ∅, we get
σ = σD = τ , but this is not essential to the argument.) Since x ∈ σ we have x ∈ τ , and in
the column of (A,D)σ we have (∀x.D, τ) 4 (D, τ) since D occurs as ∀x.D. But we already
have (D, τ) 4 (∀x.D, τ) because D ≤ ∀x.D, contradicting antisymmetry of (4). Then
x /∈ σ, and the step (A,D)σ → (A,∀x.D)σ applies.

� (Ci, Dj)σ in C = C1 × C2 and D = D1 ×D2.
Without loss of generality, let i = j = 1. By minimal depth and using similar reasoning to
the first case above, the pre-net must contain one of the following three configurations.

1. (C1, D1)σ, (C1, D2)σ, (C2, D1)σ, (C2, D2)σ
2. (C1, D1)σ, (C1, D2)σ, (C2, D)σ
3. (C1, D1)σ, (C2, D1)σ, (C,D2)σ

1:

C1×C2

D1×D2

2:

C1×C2

D1×D2

3:

C1×C2

D1×D2

In the second case, the step (C1, D1)σ, (C1, D2)σ → (C1, D)σ applies; in the third case,
(C1, D1)σ, (C2, D1)σ → (C,D1)σ; and in the first case, both.

� (Ci, D)σ in C = C1 × C2 and ∀x.D.
Without loss of generality let i = 1. If x /∈ σ the rewrite step (C1, D)σ → (C1,∀x.D)σ
applies. Otherwise, let x ∈ σ. The slice S1 of `A,B containing (C1, D)σ has a counterpart
S2 containing (C2, D)σ, which must include exactly one link of λΣ. By the assumption
of minimal depth, it cannot have greater depth than (C2, D)σ. It cannot be (C,D)σ or
any shallower link, since that would be shared with the slice S1 which already contains
(C1, D)σ. It cannot be (C2,∀x.D)σ or any shallower link (C2, X)τ (i.e. with ∀x.D ≤ X)
because x ∈ σ. This would mean either x ∈ τ which contradicts the eigenvariables not free
convention, or x ∈ fv(σ(y)) where ∀x.D < ∃y.Y ≤ X which creates a cyclic column, as
in the second case above. It follows that S2 ∩ λΣ = {(C2, D)σ}, so that the rewrite step
(C1, D)σ, (C2, D)σ → (C,D)σ applies.

� (C,D)σ in ∀x.C and ∀y.D.
A rewrite step (C,D)σ → (∀x.C,D)σ or (C,D)σ → (C, ∀y.D)σ applies unless x, y ∈ σ. But
that would generate a cycle in the column of (C,D)σ, in one of three ways. If x ∈ σC or

RR n° 9201

14 Heijltjes & Hughes & Straßburger

y ∈ σD then, since σC = σ∀x.C and σD = σ∀y.D, respectively:

(C, σC) 4 (∀x.C, σC) 4 (C, σC) (D,σD) 4 (∀y.D, σD) 4 (D,σD) .

Otherwise, if x ∈ σD and y ∈ σC then

(C, σC) 4 (∀x.C, σC) 4 (D,σD) 4 (∀x.D, σD) 4 (C, σC) .

Theorem 14. A witness pre-net that strict-coalesces is correct, and a correct witness pre-net
strongly strict-coalesces.

Proof. For the first statement, we proceed by induction on the coalescence path from λΣ . A,B
to {(A,B)∅} . A,B, with the end result as the base case. It is slice-correct: every slice of
`A,B contains (A,B)∅, so every slice of {(A,B)∅} . A,B is the singleton {(A,B)∅}. It is
also dependency-correct: the column of (A,B)∅ is the set {(A,∅), (B,∅)}, where A and B are
unrelated in (4). For the inductive step, by Lemma 12 coalescence reflects correctness, so that
any pre-net along the coalescence path is correct, in particular λΣ . A,B.

For the second statement, let λΣ .A,B be correct. By Lemma 13 either the net has coalesced,
or a coalescence step applies. By Lemma 12 the result of any coalescence step is again correct.
Since links strictly move towards the roots of both formula trees, it follows that this process
terminates, and the pre-net λΣ . A,B strongly strict-coalesces.

Corollary 15. A correct witness pre-net with axiom linking is a witness proof net.

4 Composition

We will describe the composition of two witness nets by a
global operation. It consists of the relational composition
of both linkings, as in the propositional case, where for
each pair of links that are being connected, their witness
maps are composed. As links correspond to slices, the
operation is effectively first-order composition [22] applied
slice-wise.

Cut-elimination rules for all1 are given in Figure 3;
the needed permutations are in Appendix A, Figure 8.

∃v.P

∀x.∃y.∀z. P

[f(x)/y,z/v]

∃x.∀y.∃z. P

P

[t/x,g(y)/z]

∃v.P

P

⇒ [g(f(t))/v]

We use the example on the right to illustrate the composition of links. To eliminate the
central cut, on ∀x.∃y.∀z.P and ∃x.∀y.∃z.P , the explicit substitutions for both formulas must be
effectuated. An inductive procedure, as in sequent calculus, could apply them from outside in:
first [t/x], then [f(t)/y] (previously [f(x)/y]), then [g(f(t))/z] (previously [g(y)/z]).

For a direct definition, to compose two links (a, b)σ and (b, c)τ , the substitutions into the
cut-formula σb and τb must be applied as often as needed, up to the depth of quantifiers above b,
to the terms in the range of the remaining substitutions, σa and τc. To formalize this, we will use
the following notions:

� The domain-preserving composition of two witness maps σ · τ is the map (στ)|dom(σ).

� The least fixed point σ of a witness map σ is the least map ρ satisfying ρ = ρσ.

The latter is the shortest sequence σ = σσ . . . σ such that no variable is both in the domain and
range of σ. This is not necessarily finite; in our composition operations, finiteness is ensured by
the correctness conditions on proof nets (see Theorem 17).

Inria

Proof nets for first-order additive linear logic 15

π1

`A,B1

π2

`A,B2

`A,B1 ×B2

×R

φ

`Bi, C
`B1 +B2, C

+R,i

`A,C
cut

⇒
πi
`A,Bi

φ

`Bi, C
`A,C

cut

π
`A,B[t/x]

`A,∃x.B
∃R,t

φ

`B,C
`∀x.B,C

∀R

`A,C
cut

⇒
π

`A,B[t/x]

φ[t/x]

`B[t/x], C

`A,C
cut

Figure 3: all1 cut-elimination steps

Definition 16. The composition (A,B)πσ ; (B,C)φτ of two proof links is (A,C)ψρ where

ρ = σAτC · σBτB and ψ =

(
π

`Aσ,Bσ

)
σBτB

(
φ

`Bτ,Cτ

)
σBτB

`Aρ,Cρ cut
.

The composition λΠ
Σ ; κΦ

Θ of two linkings is the linking

{ (X,Y)πσ ; (Y , Z)φτ | (X,Y)πσ ∈ λΠ
Σ , (Y , Z)φτ ∈ κΦ

Θ }

The composition (λΠ
Σ . A,B) ; (κΦ

Θ . B,C) of two pre-nets is the pre-net (λΠ
Σ ; κΦ

Θ) . A,C. These
compositions may omit proof annotations and witness annotations.

The composition of two links is strongly related to composition of strategies in game semantics.
There, two strategies on `A,B and `B,C are composed by interaction on the interface of B and
B, and subsequently hiding that interaction.

In the following we will demonstrate that composition gives the desired result: if a net L
sequentializes to π and R to φ, then L ;R sequentializes to a normal form of the composition of π
and φ with a cut. To this end we will explore how composition and sequentialization interact. We
will consider the critical pairs of sequentialization (→) with composition (⇒) given in Figures 4–6,
and demonstrate how they are resolved.

� `A,B1×B2 ; `B1+B2, C (Figure 4)
Since the free existential variables of B and B1 are the same, σBτB = σB1

τB1
and ρ = ρ′.

It then follows that ψ′ cut-eliminates in one step to ψ.

� `A,∃x.B ; `∀x.B,C (Figure 5)
Since x is not free in the range of τ , nor in the range of σ (by Barendregt’s convention), we
have that σBτB is (σB//x)τB plus the substitution [σ(x)/x]. Then ρ = ρ′ (as x does not
occur in the range of σAτC) and ψ′ reduces to ψ in a single cut-elimination step.

� `A,B ; `B, ∃x.C (Figure 6)
Observe that since x occurs in C but not B, it is not in the domain of τB , so that τB//x is
just τB . Then ρ′ = ρ//x, and the diagram is closed by a sequentialization step (from left to
right) that extends ψ with an existential introduction rule, to a proof equivalent to ψ′:

ψ
`Aρ,Cρ
`Aρ′,∃x.Cρ′

∃R,ρ(x)

RR n° 9201

16 Heijltjes & Hughes & Straßburger

A

B1 ×B2

π,σ π′,σ

B1 +B2

C

φ,τ

→

→

A

B1 ×B2

π′′,σ

B1 +B2

C

φ′,τ

⇓ ⇓

A

C

ψ,ρ

A

C

ψ′,ρ′

ρ = σAτC · σBτB

ρ′ = σAτC · σB1τB1

ψ =

(
π

`Aσ,B1σ

)
σB1

τB1

(
φ

`B1τ, Cτ

)
σB1

τB1

`Aρ,Cρ cut

ψ′=

 π

`Aσ,B1σ

π′

`Aσ,B2σ

`Aσ,B1σ ×B2σ

 σBτB

 φ

`B1τ, Cτ

`B1τ +B2τ, Cτ

 σBτB

`Aρ′, Cρ′
cut

Figure 4: The critical pair `A,B1×B2 ; `B1+B2, C

A

∃x.B
π,σ

∀x.B

C

φ,τ

→

x /∈ τ→

A

∃x.B
π′,σ//x

∀x.B

C

φ′,τ

⇓ ⇓

A

C

ψ,ρ

A

C

ψ′,ρ′

ρ = σAτC · σBτB

ρ′ = σAτC · (σB//x)τB

ψ =

(
π

`Aσ,Bσ

)
σBτB

(
φ

`Bτ,Cτ

)
σBτB

`Aρ,Cρ cut

ψ′=

 π

`Aσ,Bσ
`Aσ, ∃x.Bσ//x

 (σB//x)τB

 φ

`Bτ,Cτ
`∀x.Bτ,Cτ

 (σB//x)τB

`Aρ′, Cρ′
cut

Figure 5: The critical pair `A,∃x.B ; `∀x.B,C

Inria

Proof nets for first-order additive linear logic 17

A

B

π,σ

B

∃x.C
φ,τ →

A

B

π,σ

B

∃x.C
φ′,τ//x

⇓ ⇓

A

∃x.C
ψ,ρ

A

∃x.C
ψ′,ρ′

ρ = σAτC · σBτB

ρ′ = σA(τC//x) · σBτB

ψ =

(
π

`Aσ,Bσ

)
σBτB

(
φ

`Bτ,Cτ

)
σBτB

`Aρ,Cρ cut

ψ′=

(
π

`Aσ,Bσ

)
σBτB

 φ

`Bτ,Cτ
`Bτ,∃x.C(τ//x)

 σBτB

`Aρ′, Cρ′
cut

Figure 6: The critical pair `A,B ; `B, ∃x.C

There are three further critical pairs, for a proof net on `A,B composed with one on `B,C1+C2,
one on `B,C1×C2, and one on `B, ∀x.C. These converge as the one above.

Resolving these critical pairs gives the soundness of the composition operation, per the
following theorem. We abbreviate a cut on proofs π `A,B and φ `B,C by π ; φ.

Theorem 17. If proof nets λΣ . A,B and κΘ . B,C sequentialize to π and φ respectively, then
their composition (λΣ . A,B) ; (κΘ . B,C) is well-defined (i.e. all fixed points are finite) and
sequentializes to a normal form ψ of π ; φ.

Proof. By Corollary 14 the proof nets L = λΣ . A,B and R = κΘ . B,C strongly coalesce. We
may then interleave their coalescence sequences as follows: if a synchronized step in L and R on
the interface B and B is available, apply it; otherwise perform steps in L on A and in R on C
until it is. This gives the following combined sequence.

L = L1 →? L2 →? . . . →? Ln
R = R1 →? R2 →? . . . →? Rn

⇓ ⇓ ⇓ ⇓
L ;R = L1 ;R1 → L2 ;R2 → . . . → Ln ;Rn

(Here, (→?) is the relation (→) ∪ (=), but we assume that at least Li → Li+1 or Ri → Ri+1.)
The path along the top and right of this diagram sequentializes L to π′ and R to φ′ (equivalent

to π and φ respectively), and then composes to Ln ;Rn = {(A,C)π
′;φ′

∅ } . A,C.

Each square of the diagram converges as one of the critical pairs of sequentialization and
composition discussed above. Then each path along the diagram from top left (L and R) to
bottom right (Ln ;Rn) gives a sequentialization, with cuts, of Ln ;Rn. Let the path taking the
vertical step from Li and Ri to Li ; Ri sequentialize to ψi, so that ψn = ψ′. By the way each
square converges, we have that ψi is reached from ψi+1 by a cut-elimination or permutation step.

Finally, in L and R every link is an axiom link. Any link in L ;R is composed from two links
(a, b)σ in L and (b, c)τ in R, which yields (a, c)ρ where ρ = σaτc · σbτb. This sequentializes to the

axiom `aρ, cρ, which is in normal form. Then L ;R is a proof net (it has an axiom linking and it
coalesces), and it sequentializes to a normal form of ψ.

RR n° 9201

18 Heijltjes & Hughes & Straßburger

5 Unification nets

In this final section we explore a second notion of all1 proof net: unification nets omit any
witness information, which is then reconstructed by coalescence. This yields a natural notion
of most general proof net, where every other proof net is obtained by introducing more witness
information. Conversely, every witness net has an underlying unification net, that sequentializes
to a most general proof.

We consider a proof π `A,B more general than π′ `A,B, written π ≤ π′, if there is a
substitution map ρ such that πρ = π′. Unlike for proof nets, this notion is not so natural for
sequent proofs: in the permutation of existential and product rules below, from left to right u
must be generated as the least term more general than s and t; from right to left, s and t cannot
be reconstructed from u, and must be retrieved from their respective subproofs.

`A,C
`A,∃x.C

∃R,s
`B,C
`B, ∃x.C

∃R,t

`A×B, ∃x.C
×R

∼
`A,C `B,C
`A×B, ∃x.C

×R

`A×B,C
∃R,u

To reconstruct witnesses by unification, we define the following operations.
σ ≤ τ : A witness map σ is more general than τ if there is a map ρ such that σρ = τ .
σ a τ : Two witness maps σ and τ are coherent if there is a map ρ such that σρ = τρ.
σ ∨ τ : The join of coherent witness maps is the least map ρ such that σ ≤ ρ and τ ≤ ρ.

A link (a, b) on two atomic formulas is an axiom link if there exists a witness map σ such
that aσ = bσ. To an axiom link (a, b) over `A,B we assign an initial witness map, which is
the least witness map σ over the domain evA(a) ∪ evB(b) such that aσ = bσ. In other words, σ
is the most general unifier of a and b, over the given domain, written mgu(a, b). For an axiom
linking λ over `A,B the initial witness pre-net λ? . A,B is given by

λ? = { (a, b)σ | (a, b) ∈ λ , σ = mgu(a, b) } .

An initial witness pre-net has exact coverage, while coalescence will give local eigenvariables. Note
that eigenvariables are constants for the purpose of unification (they are not substituted into),
and substitution maps of different links use different variables.

Definition 18. Unifying sequentialization () is the rewrite relation on labelled pre-nets
generated by the rules (+U, i), (∃U), (∀U), which are respectively as (+S, i), (∃S), and (∀S), and
the rule

(C,D1)πσ
(C,D2)φτ

}
 (C,D1×D2)ψσ∨τ =σρ= τρ (σaτ) ψ =

(
π

`Aσ,Bσ

)
ρ

(
φ

`Aτ,Cτ

)
ρ

`A(σ∨τ), Bσρ×Cτρ
(×U)

Unifying coalescence is the relation () on witness pre-nets, ignoring proof labels. A witness
pre-net λΣ . A,B unifying-coalesces if it reduces to {(A,B)∅} . A,B and strongly unifying-
coalesces if any coalescence path terminates at {(A,B)∅} . A,B.

Definition 19. An all1 unification proof net or unification net is a pre-net λ . A,B with
axiom linking λ such that the initial witness pre-net λ?.A,B unifying-coalesces. It sequentializes
to π if λ?? . A,B reduces in () to {(A,B)π∅} . A,B.

In the above definition, note that λ?? = (λ?)
? is the initial proof labelling of λ?, which assigns

an axiom rule to each axiom link. For a minimal example, see the introduction. Observe also
that unifying coalescence includes strict coalescence, (→) ⊆ (). The following two lemmata
relate sequentialization for witness nets and unification nets.

Inria

Proof nets for first-order additive linear logic 19

Monomial nets Witness nets Unification nets
Canonicity ? 3 3
Generality 7 7 3
Direct composition 7 3 3
Coalescence ? 3 3
Slicing 3 3 ?

Figure 7: Comparison of different notions of proof nets for quantifiers and additive connectives

Lemma 20. In (), if λΣ . A,B sequentializes to π then λ? . A,B sequentializes to π′ ≤ π.

Proof. The sequentialization path λ?Σ . A,B = L1 L2 . . . Ln = (A,B)π∅ . A,B has a

corresponding path λ?? . A,B = R1 R2 . . . Rn = (A,B)π
′

∅ . A,B where the same links
(but with potentially different witness maps) are coalesced. It follows by induction on this path
(where the base case is L1 and R1) that for every corresponding pair of links (C,D)φσ in Li and
(C,D)ψτ in Ri we have τ ≤ σ and ψ ≤ φ.

Lemma 21. If λ? . A,B unifying-sequentializes to π then there exists a witness assignment Σ
and substitution ρ such that λΣ . A,B strict-sequentializes to π and λΣ = λ?ρ.

Proof. By induction on the sequentialization path λ? . A,B ∗ (A,B)π∅ . A,B. For the end
result, the statement holds with ρ = ∅. For the inductive step, consider a step L R. We show
the case (×U); the other cases are immediate.

� (C,D1)σ, (C,D2)τ (C,D1×D2)σ∨τ
By the inductive hypothesis, Rρ′ strict-sequentializes to π. Let σ ∨ τ = σρ′′ = τρ′′ and let
ρ = ρ′′ρ′. Then Lρ strict-sequentializes to π by

(C,D1)σρ, (C,D2)τρ → (C,D1×D2)(σ∨τ)ρ′ .

We can then show that sequentialization and de-sequentialization for unification nets are
inverses up to generality, and that composition is sound.

Theorem 22. If [π `A,B] is λΣ . A,B then λ . A,B unifying-sequentializes to π′ ≤ π.

Proof. By Theorem 6, λΣ . A,B sequentializes to π in (→), and hence also in (). Then by
Lemma 20 λ? . A,B sequentializes to π′ ≤ π.

Theorem 23. If λ . A,B sequentializes to π, then [π] = λΣ . A,B for some Σ.

Proof. By Lemma 21, since λ.A,B sequentializes to π there is a net λΣ .A,B that sequentializes
to π. By Theorem 7, [π] = λΣ . A,B.

Theorem 24. If λ .A,B sequentializes to π and κ .B,C to φ then their composition λ ;κ .A,C
sequentializes to a proof ψ′ ≤ ψ where ψ is a normal form of π ; φ.

Proof. By Lemma 21 there are witness labellings Σ and Θ such that λΣ .A,B strict-sequentializes
to π and κΘ . B,C to φ. By Theorem 17 their composition (λΣ ; κΘ) . A,C strict-sequentializes
to a normal form ψ of π ; φ. By Lemma 20 the net (λ ; κ)? . A,C unifying-sequentializes to
ψ′ ≤ ψ.

RR n° 9201

20 Heijltjes & Hughes & Straßburger

6 Conclusion and related work

We have presented two notions of first-order additive proof net, witness nets and unification nets,
to canonically capture the two natural notions of proof identity for first-order additive linear
logic. Figure 7 summarizes our results, along with some observations we make below.

Proof nets with additives and quantifiers existed before as monomial nets [7]. These are not
generally canonical: they admit the permutation (and duplication) of proof rules past implicit
contractions (that is, the shared context of the additive conjunction rule). However, it might
possible that additive monomial nets could be restricted to some notion of canonical form.
Likewise, coalescence (or contractibility) has not been studied for first-order monomial nets,
though it has been extended to a related form of MALL proof nets [20].

Our slicing condition is loosely related to a number of approaches to first-order classical logic.
A formula ∃x.A is interpreted as the sum (or classically, the disjunction) over a fixed number of
instantiations A[t1/x] + . . .+A[tn/x]. This can be traced to Herbrand’s Theorem [12]: ∃x.A is
equivalent to the infinite sum over A[t/x] for all terms t in the language, but for any given proof
a finite set of terms suffices. Expansion tree proofs [21, 9] are a graphical proof formalism based
on this idea. In our slicing condition, the interpretation of ∃x.A is an infinite sum of which only
a finite part A[t1/x] + . . . + A[tn/x] is relevant, over the witnesses t1, . . . , tn actually assigned
to x in the proof net. An interesting alternative approach to additive proof nets, which we may
explore in future work, could be to take the expansion of ∃x.A to A[t1/x] + . . . + A[tn/x] as
primary, and record it explicitly in the syntax, as expansion tree proofs do for classical logic. It is
expected, however, that this would sacrifice generality and direct composition.

Lambek observed that the two canonical proofs of `A+A,A can be distinguished by casting
each as a specialization (by substituting into propositional variables) of the more general proofs
of ` a+b, a and ` a+b, b (corresponding to the two injections of a sum). He proposed to use this
idea of generality as the basis for a notion of proof identity : two proofs are equivalent if their most
general forms are isomorphic [19]. How this extends to first order is not obvious. The natural
first-order analogue of `A+A,A would be `∃x.A,A where the quantifier is vacuous, as ∃x.A
represents the infinite sum over A (for all terms t). Where Lambek’s generality distinguishes the
two proofs of `A+A,A, ours identifies the proofs of `∃x.A,A: the sequent has one unification
net, but infinitely many witness nets (one for each term t). If existential quantification is indeed
analogous to a sum, Lambek’s notion of generality is more faithfully captured by witness nets
than unification nets.

Acknowledgements

We would like to thank the anonymous referees for their constructive feedback. Dominic would
like to thank his host, Wes Holliday, at the UC Berkeley Logic Group.

References

[1] Samson Abramsky. Sequentiality vs. concurrency in games and logic. Mathematical Structures
in Computer Science, 13(4):531–565, 2003.

[2] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, volume 6269 of LNCS, pages 222–236, 2010.

[3] Robin Cockett and Luigi Santocanale. On the word problem for ΣΠ-categories, and the
properties of two-way communication. In Computer Science Logic (CSL), 18th Annual
Conference of the EACSL, pages 194–208, 2009.

Inria

Proof nets for first-order additive linear logic 21

[4] Vincent Danos. La Logique Linéaire appliquée à l’étude de divers processus de normalisation
(principalement du Lambda-calcul). PhD thesis, Université Paris 7, 1990.

[5] Didier Galmiche and Jean-Yves Marion. Semantic Proof Search Methods for ALL – a first
approach –. Short paper in Theorem Proving with Analytic Tableaux, 4th International
Workshop (TABLEAUX’95). Available from the first author’s webpage, 1995.

[6] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[7] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. Logic and Algebra, pages
97–124, 1996.

[8] Stefano Guerrini and Andrea Masini. Parsing MELL proof nets. Theoretical Computer
Science, 254(1-2):317–335, 2001.

[9] Willem Heijltjes. Classical proof forestry. Annals of Pure and Applied Logic, 161(11):1346–
1366, 2010.

[10] Willem Heijltjes. Proof nets for additive linear logic with units. In 26th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages 207–216, 2011.

[11] Willem Heijltjes and Dominic Hughes. Complexity bounds for sum–product logic via additive
proof nets and Petri nets. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 80–91, 2015.

[12] Jacques Herbrand. Investigations in proof theory: The properties of true propositions. In
Jean van Heijenoort, editor, From Frege to Gödel: A source book in mathematical logic,
1879–1931, pages 525–581. Harvard University Press, 1967.

[13] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type disciplines
for structured communication-based programming. In European Symposium on Programming,
pages 122–138, 1998.

[14] Dominic Hughes. Proofs without syntax. Annals of Mathematics, 164(3):1065–1076, 2006.

[15] Dominic Hughes and Willem Heijltjes. Conflict nets: efficient locally canonical mall proof
nets. In 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2016.

[16] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free multiplicative-additive
linear logic. Transactions on Computational Logic, 6(4):784–842, 2005.

[17] Dominic J.D. Hughes. Unification nets: canonical proof net quantifiers. In 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), 2018.

[18] Andre Joyal. Free lattices, communication and money games. Proc. 10th Int. Cong. of Logic,
Methodology and Philosophy of Science, 1995.

[19] Joachim Lambek. Deductive systems and categories I, II, III. Theory of Computing Systems
(I), Lecture Notes in Mathematics (II, III), 1968–1972.

[20] Roberto Maieli. Retractile proof nets of the purely multiplicative and additive fragment of
linear logic. In 14th International Conference on Logic for Programming Artificial Intelligence
and Reasoning, pages 363–377, 2007.

[21] Dale A Miller. A compact representation of proofs. Studia Logica, 46(4):347–370, 1987.

RR n° 9201

22 Heijltjes & Hughes & Straßburger

[22] Samuel Mimram. The structure of first-order causality. Mathematical Structures in Computer
Science, 21(1):65–110, 2011.

[23] Lutz Straßburger. A characterisation of medial as rewriting rule. In Franz Baader, editor,
Term Rewriting and Applications, RTA’07, volume 4533 of LNCS, pages 344–358, 2007.

[24] Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–418,
2014.

Inria

Proof nets for first-order additive linear logic 23

A Permutations

`A,B
`∀x.A,B

∀R
`B,C

`∀x.A,C
cut

`A[t/x], B

`∃x.A,B
∃R,t

`B,C
`∃x.A,C

cut

∼ ∼
`A,B `B,C
`A,C

cut

`∀x.A,C
∀R

`A[t/x], B `B,C
`A[t/x], C

cut

`∃x.A,C
∃R,t

`Ai, B
`A1+A2, B

+R,i
`B,C

`A1+A2, C
cut

`A1, B `A2, B

`A1×A2, B
×R

`B,C
`A1×A2, C

cut

∼ ∼
`Ai, B `B,C
`Ai, C

cut

`A1+A2, C
+R,i

`A1, B `B,C
`A1, C

cut
`A2, B `B,C
`A2, C

cut

`A1×A2, C
×R

`A,B `B,C
`A,C

cut
`C,D

`A,D
cut

∼

`A,B
`B,C `C,D
`B,D

cut

`A,D
cut

Figure 8: Cut-permutations

RR n° 9201

24 Heijltjes & Hughes & Straßburger

`A,B
`A,∀y.B

∀R

`∀x.A,∀y.B
∀R

`A,B[t/y]

`A,∃y.B
∃R,t

`∀x.A, ∃y.B
∀R

`A,Bi
`A,B1+B2

+R,i

`∀x.A,B1+B2
∀R

`A,B `A,C
`A,B×C

×R

`∀x.A,B×C
∀R

∼ ∼ ∼ ∼
`A,B
`∀x.A,B

∀R

`∀x.A,∀y.B
∀R

`A,B[t/y]

`∀x.A,B[t/y]
∀R

`∀x.A,∃y.B
∃R,t

`A,Bi
`∀x.A,Bi

∀R

`∀x.A,B1+B2

+R,i

`A,B
`∀x.A,B

∀R
`A,C
`∀x.A,C

∀R

`∀x.A,B×C
×R

`A[s/x], B[t/y]

`A[s/x],∃y.B
∃R,t

`∃x.A,∃y.B
∃R,s

`A[t/x], Bi

`A[t/x], B1+B2

+R,i

`∃x.A,B1+B2

∃R,t

`A[t/x], B `A[t/x], C

`A[t/x], B×C
×R

`∃x.A,B×C
∃R,t

∼ ∼ ∼
`A[s/x], B[t/y]

`∃x.A,B[t/y]
∃R,s

`∃x.A,∃y.B
∃R,t

`A[t/x], Bi

`∃x.A,Bi
∃R,t

`∃x.A,B1+B2

+R,i

`A[t/x], B

`∃x.A,B
∃R,t

`A[t/x], C

`∃x.A,C
∃R,t

`∃x.A,B×C
×R

`Ai, Bj
`Ai, B1+B2

+R,j

`A1+A2, B1+B2

+R,i

`Ai, B `Ai, C
`Ai, B×C

×R

`A1+A2, B×C
+R,i

∼ ∼
`Ai, Bj

`A1+A2, Bj
+R,i

`A1+A2, B1+B2

+R,j

`Ai, B
`A1+A2, B

+R,i
`Ai, C

`A1+A2, C
+R,i

`A1+A2, B×C
×R

`A,C `A,D
`A,C×D

×R
`B,C `B,D
`B,C×D

×R

`A×B,C×D
×R

∼
`A,C `B,C
`A×B,C

×R
`A,D `B,D
`A×B,D

×R

`A×B,C×D
×R

Figure 9: Cut-free rule permutations

Inria

RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing
Campus de l’École Polytechnique
91120 Palaiseau

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

