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Sur la théorie de la démonstration en calcul des
séquents emboités indexés pour les logiques

modales classiques et intuitionnistes
Résumé : Le calcul des séquents embôıtés indexés introduit par Fitting permet
de construire des systèmes de preuves pour certaines logiques modales n’ayant
pas de système en calcul des séquents embôıtés purs. Dans cet article, nous ex-
posons une preuve d’élimination des coupures pour le calcul des séquents indexés
en adaptant la preuve pour le calcul pur, et nous étudions comment trâıter de
logiques modales intuitionnistes en calcul des séquents embôıtés indexés.

Mots-clés : sequents embôıtés indexés, logique modale intuitionniste, élimination
des coupures
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1 Introduction

Modal logics were originally defined in terms of axioms in a Hilbert system,
and later in terms of their semantics in relational structures. Structural proof
theory for modal logics, however, was considered a difficult topic as traditional
(Gentzen) sequents did not provide fully satisfactory (i.e. analytic and modu-
lar) proof systems even for some common modal logics. Nonetheless, the proof
theory of modal logics has received more attention in the last decade, and some
extensions of traditional sequents were successfully proposed to handle modali-
ties. Two approaches can be distinguished: systems that incorporate relational
semantics in the formalism itself like labelled sequents systems, and systems that
use syntactical devices to handle the modalities like nested sequents (aka. tree-
hypersequents) or display calculus.

Labelled sequents (e.g., [Rus96,Vig00,Neg05]) are a versatile framework that
can give deductive systems for a large class of modal logics using sequents that
explicitly refer to the relational semantics: formulas are labelled with states and
relational atoms describe the accessibility relation.

Nested sequents are an extension of ordinary sequents to a structure of tree,
first introduced by Kashima [Kas94], and then independently rediscovered by
Brünnler [Brü09] and Poggiolesi [Pog09]. They can be translated into a subclass
of labelled sequents called in [GR12] labelled tree sequents, if the relational
structure is made explicit. However, compared to labelled deductive systems, the
tree structure restricts the expressivity of nested sequents. In particular, it seems
that nested sequents cannot give cut-free deductive systems for logics obeying
the Scott-Lemmon axioms, which correspond to a “confluence” condition on the
relational structure [LS77].

Fitting recently introduced indexed nested sequents [Fit15], an extension of
nested sequents which goes beyond the tree structure to give a cut-free system
for the classical modal logic K extended with an arbitrary set of Scott-Lemmon
axioms. In some sense indexed nested sequents are more similar to labelled sys-
tems than pure nested sequents—in fact, the translation between nested sequents
and labelled tree sequents mentioned above is naturally extended in [Ram16] to
a translation between indexed nested sequents and labelled tree sequents with
equality, where some nodes of the underlying tree can be identified. On the other
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4 Sonia Marin, Lutz Straßburger

hand, indexed nested sequents can still be seen as an internal formalism because
it does not need to make use of the relational semantics in the formulas syntax.
In this way, one could argue that indexed nested sequents bring together the
best of both worlds, nested sequents and labelled sequents systems.

In this paper we investigate some proof-theoretical properties of indexed
nested sequents. We are interested in transferring results from the nested se-
quents meta-theory to the indexed setting. The first and foremost one is the
cut-elimination theorem, that shows that the proof system is complete without
the cut-rule. As Fitting’s original system does not use a cut rule, this result is
actually entailed by his (semantical) completeness theorem. There exists also
a (indirect) syntactic proof of cut-elimination via the translation to labelled
tree sequents with equality reusing the existing cut-elimination for labelled sys-
tems [Ram16]. However, from the point of structural proof theory, it is advan-
tageous that a syntactic proof of cut-elimination can be carried out within the
considered proof formalism. For this reason we give in this paper an internal
proof of cut-elimination for indexed nested sequents in the traditional way of
a list of rewriting cases to directly show the admissibility of the cut-rule. We
achieve our result by making some subtle but crucial adjustments to the stan-
dard cut-elimination proof for pure nested sequents.

One of the main advantages is that this proof can be exported to the intu-
itionistic framework with basically no effort. Indeed, our second interest was to
extend Fitting’s system, that only considered classical modal logics, to the intu-
itionistic framework by using the techniques that had already been successfully
used for ordinary nested sequents [GS10,Str13,MS14]. In the second part of the
paper, we discuss the extension of our framework to the intuitionistic setting.
More precisely, we present the cut-free indexed nested sequents systems in a uni-
form manner for classical and intuitionistic modal logic. The deductive systems
are almost identical, the main difference being that an intuitionistic sequent has
only one “output” formula, in the same way as in ordinary sequent calculus an
intuitionistic sequent has only one formula on the right.

As there is no straightforward definition of the extension of intuitionistic
modal logic with Scott-Lemmon axioms, the indexed nested sequents system
can be seen as one way to define it. This point is examined in the last section
with a discussion on the various alternatives that exist in the literature and how
they relate to the proposed system.

2 Indexed nested sequents and the Scott-Lemmon axioms

We start by working with formulas in negation normal form, from the following
grammar, which extends the language of propositional classical logic with the
two modalities 2 and 3

A ::= a | ā | A ∧A | A ∨A | 2A | 3A (1)

where a is taken from a countable set of propositional atoms, ā is its negation,
and ¯̄a is equivalent to a. For every formula A, its negation Ā, is defined as usual
via the De Morgan laws. For now, we use A ⊃ B as abbreviation for Ā ∨B.

Inria



On the Proof Theory of Indexed Nested Sequents 5

Classical modal logic K is obtained from classical propositional logic by
adding the axiom k : 2(A ⊃ B) ⊃ (2A ⊃ 2B) and the necessitation rule that
allows to derive the formula 2A from any theorem A.

Stronger modal logics can be obtained by adding to K other axioms. In this
paper we are interested specifically in the family of Scott-Lemmon axioms of the
form

gk,l,m,n : 3k2lA ⊃ 2m3nA (2)

for a tuple 〈k, l,m, n〉 of natural numbers, where 2m stands for m boxes and 3n

for n diamonds.
Fitting [Fit15] introduced indexed nested sequents exactly to provide a struc-

tural proof system for classical modal logic K, that could be extended with rules
for the Scott-Lemmon axioms.

A (pure) nested sequent is a multiset of formulas and boxed sequents, accord-
ing to the following grammar Γ ::= ∅ | A,Γ | [Γ ], Γ where A is a modal for-
mula.We understand such a nested sequent through its interpretation as a modal
formula, written fm(·), given inductively by fm(∅) = ⊥; fm(A,Γ ) = A∨fm(Γ );
and fm([Γ1], Γ2) = 2fm(Γ1) ∨ fm(Γ2). A nested sequent can therefore be seen
as a tree of ordinary one-sided sequents, with each node representing the scope
of a modal �. It therefore is of the general form

A1, . . . , Ak, [Γ1], . . . , [Γn] (3)

An indexed nested sequent, as defined in [Fit15], is a nested sequent where
each sequent node (either the root or any interior node) carries an index, de-
noted by lowercase letters like u, v, w, x, . . ., and taken from a countable set (e.g.,
for simplicity, the set of natural numbers), so we write an indexed sequent by
extending (3) in the following way

A1, . . . , Ak, [
w1Γ1], . . . , [

wnΓn] (4)

where Γ1, . . . , Γn are now indexed sequents, and where the index of the root is
not explicitly shown (e.g., we can assume that it is 0). For an indexed nested
sequent Σ, we write IΣ to denote the set of indexes occurring in Σ.

Intuitively, once indexed, nested sequents are no longer trees, but any kind of
rooted directed graphs1 (possibly further constrained by some conditions on the
indexing), by identifying nodes carrying the same index. Indeed the structure of
a rooted directed graph is equivalent to that of a tree where certain nodes are
identified.

In nested sequent calculi, a rule can be applied at any depth in the structure,

that is, inside a certain nested sequent context. We write Γ
i1{ } · · · in{ } for an

n-ary context (i.e. one with n occurrences of the { }) where i1, . . . , in are the

1 A rooted graph is a graph where one node is distinguished as the root and every node
is reachable from it, i.e., the whole graph can be obtained as the minimal upward
closure of this root for the edge relation.

RR n° 9061



6 Sonia Marin, Lutz Straßburger

id −−−−−−−−−
Γ{a, ā}

Γ{A,B}
∨ −−−−−−−−−−−−
Γ{A ∨B}

Γ{A} Γ{B}
∧ −−−−−−−−−−−−−−−−−

Γ{A ∧B}
Γ{3A, [uA,∆]}

3 −−−−−−−−−−−−−−−−−−−
Γ{3A, [u∆]}

Γ{[vA]}
2 −−−−−−−−−− v is fresh
Γ{2A}

Γ
w{∅}w{A}

tp −−−−−−−−−−−−−−−
Γ
w{A}w{∅}

Γ
w{[u∆]}w{[u∅]}

bc1 −−−−−−−−−−−−−−−−−−−−−
Γ
w{[u∆]}w{∅}

Γ
w{[u∆w{[u∅]}]}

bc2 −−−−−−−−−−−−−−−−−−−−−
Γ
w{[u∆w{∅}]}

Fig. 1. System iNK

Γ
u0{[u1∆1, . . . [

uk∆k, [
v1 . . . [

vl ] . . .]] . . .], [
w1Σ1, . . . [

wmΣm, [
x1 . . . [

xn ] . . .]] . . .]}
gk,l,m,n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ
u0{[u1∆1, . . . [

uk∆k] . . .], [
w1Σ1, . . . [

wmΣm] . . .]}

Fig. 2. Inference rule gk,l,m,n (where l + n 6= 0, and cl = dn)

indexes of the sequent nodes that contain the { }, in the order of their appearance
in the sequent. A hole in a context can be replaced by a formula or sequent.

More precisely, we write Γ
i1{∆1} · · ·

in{∆n} for the sequent that is obtained

from Γ
i1{ } · · · in{ } by replacing the k-th hole by ∆k, for each k ∈ {1, . . . , n}

(if ∆k = ∅ it simply amounts to removing the { }). We might omit the index at
the context-braces when this information is clear or not relevant.

Example 2.1 For example,A, [
1
B, [

2
C, { }]], [3D, [1{ }, A]], [

2
D, { }] is a ternary

context that we can write as Γ
2{ } 1{ } 2{ }. If we substitute the sequents ∆1 =

D, [
4
E]; ∆2 = F ; and ∆3 = [

5
G] into its holes, we get: Γ

2{∆1}
1{∆2}

2{∆3} =

A, [
1
B, [

2
C,D, [

4
E]]], [

3
D, [

1
F,A]], [

2
D, [

5
G]]

In Figure 1, the classical system that we call iNK is an adaptation of the
system described by Fitting in [Fit15] to our notations and to the one-sided
setting. It can also be seen as Brünnler’s system [Brü09] extended with indexes.
From now on, a formal proof is defined as a derivation tree constructed according
to the rules of the calculus iNK. By derivation tree, we mean a rooted tree in
which: every leaf is labeled by an axiom rule, every node is labeled by a rule of
the calculus iNK, every edge is labeled by a sequent.

What is different from the pure nested sequent system is the addition of the
two structural rules tp and bc, called teleportation and bracket-copy, respectively,
which are variants of the formula-contraction FC and the sequent-contraction SC
of [Fit15]. Note that we need two versions of bc to take care of every possible
context where the rule my be applied. They are needed to adapt the system to
the indexed sequents, namely to maintain the intended semantics by allowing
two brackets with the same index to be identified. Another peculiarity is that
in the rules for 2 we demand that the index of the new bracket in the premiss
does not occur in the conclusion.

Finally, for a tuple 〈k, l,m, n〉 with l + n 6= 0, the rule gk,l,m,n in Figure 2 is
defined as in [Fit15]. It must satisfy that v1 . . . vk and x1 . . . xn are fresh indexes

Inria



On the Proof Theory of Indexed Nested Sequents 7

σΓ
u0{[u1∆1, . . . [

σ(uk)∆k], . . .], [
w1Σ1, . . . [

σ(wm)
Σm], . . .]}

gk,0,m,0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
u0{[u1∆1, . . . [

uk∆k], . . .], [
w1Σ1, . . . [

wmΣm], . . .]}

Fig. 3. Special case for gk,0,m,0

Γ{A} Γ{Ā}
cut −−−−−−−−−−−−−−−−−

Γ{∅}
Γ{∅}

w −−−−−−−
Γ{∆}

Γ{∆,∆}
c −−−−−−−−−−−

Γ{∆}
Γ

nec −−−
[Γ ]

Γ
isub −−−

σΓ

Fig. 4. Left: The one-sided cut-rule – Right: Additional structural rules

which are pairwise distinct, except for the confluence condition: we always have
vl = xn. When one or more elements of the tuple 〈k, l,m, n〉 are equal to 0, there
are special cases:

– if k = 0 (or m = 0) then u1 to uk (resp. w1 to wm) all collapse to u0.
– if l = 0 then w1 to wl all collapse to uk, and similarly, if n = 0 then x1 to xn

all collapse to vm. In particular, if k = 0 and l = 0, we must have xn = u0,
and similarly, if m = 0 and n = 0, we demand that vl = u0.

The case where l = 0 and n = 0 was not handled by Fitting in [Fit15]; we give
a corresponding rule in Figure 3. In that case, not only do we identify uk and
wm, but it is also necessary to apply a substitution σ : IΓ → IΓ to the indexes in
the context Γ

u0{ }, giving the new context σΓ
u0{ }, such that σ(uk) = σ(wm)

in the whole sequent (and σ(y) = y for any other y ∈ IΓ ).
For a given set G ⊆ N4, we write G to be the set of rules obtained from G

according to Figures 2 and 3. We write iNK + G for the system obtained from
iNK by adding the rules in G. System iNK + G is sound and complete wrt. the
corresponding IK+G logic. Soundness is proven by Fitting wrt. relational frames;
and completeness via a translation to set-prefixed tableaux system for which in
turn he gives a semantic completeness proof [Fit15].

3 Cut-elimination

In this section, we present a cut-elimination proof for the indexed nested sequent
system iNK that relies on a standard double-induction on the height of the
derivation above a given cut-rule (Figure 4), and on the depth of the formula A
introduced by the cut-rule.

Definition 3.1 The height of a derivation tree π, denoted by ht(π), is the
length of the longest path in the tree from its root to one of its leaves.

The depth of a formula A, denoted by dp(A), is defined inductively as follows:

dp(a) = 1 dp(A ∧B) = max(dp(A), dp(B)) + 1 dp(2A) = dp(A) + 1
dp(ā) = 1 dp(A ∨B) = max(dp(A), dp(B)) + 1 dp(3A) = dp(A) + 1

The rank of an instance of cut is the depth of the formula introduced by the
cut (read bottom-up). We also write cutr to denote an instance of cut with rank

RR n° 9061



8 Sonia Marin, Lutz Straßburger

at most r. The cut-rank of a derivation π, denoted by rk(π), is the maximal rank
of a cut in π.

To facilitate the overall argument, we consider a variant of system iNK, that
we call system iN̈K, that is obtained from iNK by removing the teleportation rule
tp (but keeping the bc-rules), and by replacing the id- and 3-rules by

ı̈d −−−−−−−−−−−−−
Γ
u{a} u{ā}

and
Γ
u{3A} u{[A,∆]}

3̈ −−−−−−−−−−−−−−−−−−−−−
Γ
u{3A} u{[∆]}

(5)

respectively. The reason behind this is that iNK and iN̈K are equivalent (with
and without cut, as shown below in Lemma 3.5), but the tp-rule is admissible
in the new system, so that we do not need to consider it in the cut-elimination
argument.

In the course of the cut-elimination proof we will need some additional struc-
tural rules called weakening, contraction, necessitation, and index substitution
respectively, which are shown in Figure 4. The rules for weakening and contrac-
tion are similar to the standard sequent ones except that they can apply deeply
inside a context. The rules nec and isub on the other hand cannot be applied
deep inside a context; they always work on the whole sequent. In isub, the se-
quent σΓ is obtained from Γ by applying the substitution σ : IΓ → IΓ on the
indexes occurring in Γ , here σ can be an arbitrary renaming.

Definition 3.2 For a given system S, a rule r /∈ S with n premisses is admissi-
ble in S, if for any proofs π1, . . . , πn of its premisses in S, there is a proof π′ of its
conclusion in S. Similarly, a rule r is invertible in a system S, if for every deriva-
tion of the conclusion of r there are derivations for each of its premisses. We say,
furthermore, that r is height (or cut-rank) preserving admissible/invertible, if
the obtained derivations have at most the same height (resp. at most the same
cut-rank) as the original ones.

Lemma 3.3 Let G ⊆ N4 and G the corresponding set of rules.

1. The rules nec, w, isub and c are cut-rank and height preserving admissible
for iN̈K + G.

2. All rules of iN̈K + G (except for the axiom ı̈d) are cut-rank and height-
preserving invertible.

Proof This proof is analogous to that for the pure nested sequent systems in
[Brü09]. The admissibility of nec, w• and isub can be shown via induction on
the height of the derivation. We can proceed similarly for showing invertibility
of the ∧•, ∨• and 3•-rules. The inverses of the other rules are just weakenings.

For the admissibility of contraction, we also proceed by induction on the
height of the derivation, but we have to make a case analysis on the last rule of
this derivation. The cases for gk,l,m,n and bc only use the induction hypothesis. For
the propositional rules, the 2◦- and the 3•-rules, we use invertibility of the rules
when the active formula is part of the contracted sequent. And in particular, for
the 3̈

◦
-rule (resp. 2̈

•
), we need to distinguish whether the formula 3◦A (resp.

Inria



On the Proof Theory of Indexed Nested Sequents 9

2•) or the sequent [
w
∆] are part of the contraction, and in some cases, use the

height-preserving admissibility of weakening to conclude. ut

Lemma 3.4 Let G ⊆ N4 and G the corresponding set of rules. The rule tp is
admissible for iN̈K + G (and for iN̈K + G + cut).

Proof The proof uses an induction on the number of instances of tp in a proof,
eliminating topmost instances first, by an induction on the height of the proof
above it and a case analysis of the rule r applied just before tp.

If r = ı̈d, whether tp applies on the specific atoms or elsewhere in the context,
its conclusion has to be itself an axiom, so the stack of ı̈d and tp can be replaced
by a single instance of ı̈d.

ı̈d −−−−−−−−−−−−−−−−−
Γ
u{a} u{ā} u{}

tp −−−−−−−−−−−−−−−−−
Γ
u{a} u{} u{ā}

; ı̈d −−−−−−−−−−−−−−−−−
Γ
u{a} u{} u{ā}

ı̈d −−−−−−−−−−−−−
Γ
u{a} u{ā}

tp −−−−−−−−−−−−−−
Γ ′

u{a} u{ā}
; ı̈d −−−−−−−−−−−−−−

Γ ′
u{a} u{ā}

If r does not affect the teleported formula, in particular if r is a cut, then
the two rules can simply be permuted and we can conclude by applying the
induction hypothesis (potentially twice). The same also works if the principal
formula is teleported but r is 3̈, or gk,l,m,n, or bc.

Γ ′
u{} u{A}

r −−−−−−−−−−−−−
Γ
u{} u{A}

tp −−−−−−−−−−−−
Γ
u{A} u{}

;

Γ
u{} u{A}

tp −−−−−−−−−−−−−
Γ ′

u{A} u{}
r −−−−−−−−−−−−−
Γ
u{A} u{}

If r = ∧ or ∨, we just need to use the induction hypothesis twice, either in
series or in parallel.

Γ
u{A} u{} Γ

u{B} u{}
∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ
u{A ∧B} u{}

tp −−−−−−−−−−−−−−−−−
Γ
u{} u{A ∧B}

;

Γ
u{A} u{}

tp −−−−−−−−−−−−
Γ
u{} u{A}

Γ
u{B} u{}

tp −−−−−−−−−−−−
Γ
u{} u{B}

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
u{} u{A ∧B}

Γ
u{A,B} u{}

∨ −−−−−−−−−−−−−−−−−
Γ
u{A ∨B} u{}

tp −−−−−−−−−−−−−−−−−
Γ
u{} u{A ∨B}

;

Γ
u{A,B} u{}

tp −−−−−−−−−−−−−−−
Γ
u{A} u{B}

tp −−−−−−−−−−−−−−−
Γ
u{} u{A,B}

∨ −−−−−−−−−−−−−−−−−
Γ
u{} u{A ∨B}

RR n° 9061



10 Sonia Marin, Lutz Straßburger

If r = 2, we transform the derivation as follows and then use the admissibility
of weakening (Lemma 3.3) and the induction hypothesis to conclude.

Γ
u{[vA]} u{}

2 −−−−−−−−−−−−−−−
Γ
u{2A} u{}

tp −−−−−−−−−−−−−−
Γ
u{} u{2A}

;

Γ
u{[vA]} u{}

w −−−−−−−−−−−−−−−−−−−
Γ
u{[vA]} u{[v ]}

tp −−−−−−−−−−−−−−−−−−−
Γ
u{[v ]} u{[vA]}

bc −−−−−−−−−−−−−−−−−−−
Γ
u{} u{[vA]}

2 −−−−−−−−−−−−−−−
Γ
u{} u{2A}

ut

Lemma 3.5 Let G ⊆ N4 and G the corresponding set of rules. A sequent ∆ is
provable in iNK+G (or in iNK+G+ cut) if and only if it is provable in iN̈K+G
(resp. in iN̈K + G + cut).

Proof Given a proof of ∆ in iNK + G, we can observe that the rules id and 3

are just special cases of the rules ı̈d and 3̈, respectively. Thus, we obtain a proof
of ∆ in iN̈K + G from admissibility of tp (Lemma 3.4). Conversely, if we have a
proof of ∆ in iN̈K + G, we can obtain a proof of ∆ in iNK + G by replacing all
instance of ı̈d and 3̈ by the following derivations:

id −−−−−−−−−−−−−−−
Γ
u{∅} u{a, ā}

tp −−−−−−−−−−−−−−−
Γ
u{a} u{ā}

and

Γ
u{3A} u{[A,∆]}

tp −−−−−−−−−−−−−−−−−−−−−−−−
Γ
u{∅} u{3A, [A,∆]}

3 −−−−−−−−−−−−−−−−−−−−−−−−
Γ
u{∅} u{3A, [∆]}

tp −−−−−−−−−−−−−−−−−−−−−
Γ
u{3A} u{[∆]}

respectively. The same proof goes for the system with cut. ut

Finally we can prove the main lemma of this section which will correspond
to the induction step of the cut-elimination proof.

Lemma 3.6 If there is a proof π of shape

π1

Γ{A}

π2

Γ{Ā}
cutr+1 −−−−−−−−−−−−−−−−−−−

Γ{∅}

in iN̈K + G such that rk(π1) ≤ r and rk(π2) ≤ r, then there is proof π′ of Γ{∅}
in iN̈K + G such that rk(π′) ≤ r.

Proof We proceed by induction on ht(π1) + ht(π2), making a case analysis on
the bottommost rules in π1 and π2.

1. If π1 is just an ı̈d, there are two sub-cases:

Inria
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– The cut-formula A is one of the atoms in the identity. Then we have

ı̈d −−−−−−−−−−−−−
Γ
u{a} u{ā}

π2

Γ
u{ā} u{ā}

cut1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
u{∅} u{ā}

;

π2

Γ
u{ā} u{ā}

tp −−−−−−−−−−−−−−−
Γ
u{∅} u{ā, ā}

c −−−−−−−−−−−−−−−
Γ
u{∅} u{ā}

where we apply the admissibility of tp (Lemma 3.4) and c (Lemma 3.3).
– If the cut-formula A is not one of the atoms in the identity then we can

apply the ı̈d-rule directly to Γ{∅}.
2. If the bottommost rule r of π1 is bc or gk,l,m,n then we have

π′1

Γ ′{A}
r −−−−−−−
Γ{A}

π2

Γ{Ā}
cutr+1 −−−−−−−−−−−−−−−−−−−

Γ{∅}

;
π′1

Γ ′{A}

π2

Γ{Ā}
w −−−−−−−
Γ ′{Ā}

cutr+1 −−−−−−−−−−−−−−−−−−−−−
Γ ′{∅}

r −−−−−−
Γ{∅}

and we proceed by induction hypothesis and height-preserving admissibility
of weakening (Lemma 3.3).

3. If the bottommost rule r of π1 is gk,0,m,0 then we have

π′1

σw→uΓ{Γk−1{[
u
∆]}, Γm−1{[

u
Σ]}}{A}

gk,0,m,0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{Γk−1{[

u
∆]}, Γm−1{[

w
Σ]}}{A}

π2

Γ{Γk−1{[
u
∆]}, Γm−1{[

w
Σ]}}{Ā}

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{Γk−1{[

u
∆]}, Γm−1{[

w
Σ]}}{∅}

which can be replaced by

π′1

σw→uΓ{Γk−1{[
u
∆]}, Γm−1{[

w
Σ]}}{A}

π2

Γ{Γk−1{[
u
∆]}, Γm−1{[

w
Σ]}}{Ā}

isub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
σw→uΓ{Γk−1{[

u
∆]}, Γm−1{[

u
Σ]}}{Ā}

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
σw→uΓ{Γk−1{[

u
∆]}, Γm−1{[

u
Σ]}}{∅}

gk,0,m,0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{Γk−1{[

u
∆]}, Γm−1{[

w
Σ]}}{∅}

where Γk−1{ } and Γm−1{ } correspond to contexts of the form [
u1∆1, . . . [

uk−1∆k−1, { }]]
and [

w1Σ1, . . . [
wmΣm, { }]] respectively, and we can proceed by induction

hypothesis.
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12 Sonia Marin, Lutz Straßburger

4. If the bottommost rule r of π1 is one of ∧, ∨, 2, or 3̈, such that the principal
formula of r is not the cut-formula A, then we proceed as in the previous
case; we apply the height-preserving invertibility (Lemma 3.3) of the rules
∧, ∨, 2, or 3̈ (and apply it twice in the case of the ∧-rule as illustrated
below) and proceed by induction hypothesis. (We write r−1 to denote the
admissible inverse of the rule r.)

π′1

Γ{A}{C}
π′′1

Γ{B}{C}
∧ −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{A ∧B}{C}
π2

Γ{A ∧B}{C̄}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{A ∧B}{∅}

is reduced to

π′1

Γ{A}{C}

π2

Γ{A ∧B}{C̄}
∧̄ −−−−−−−−−−−−−−−−−

Γ{A}{C̄}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{A}{∅}

π′′1

Γ{B}{C}

π2

Γ{A ∧B}{C̄}
∧−1 −−−−−−−−−−−−−−−−−

Γ{B}{C̄}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{B}{∅}
∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{A ∧B}{∅}

The cases 1-3 are similar for the bottommost rule of π2. Let us now consider the
non-axiomatic key cases:

5. The bottommost rules r1 of π1 and r2 of π2 are among ∧, ∨, 2, or 3̈, and
for both the cut-formula is principal. Then we have the following cases:

– A = B ∨ C: Then we have

π′1

Γ{B,C}
∨ −−−−−−−−−−−−
Γ{B ∨ C}

π′2

Γ{B̄}
π′′2

Γ{C̄}
∧ −−−−−−−−−−−−−−−−−−−

Γ{B̄ ∧ C̄}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

which is reduced to
π′1

Γ{B,C}

π′2

Γ{B̄}
w −−−−−−−−−−
Γ{B̄, C}

cutr −−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{C}

π′′2

Γ{C̄}
cutr −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}
where we can apply the height-preserving admissibility of weakening.

– A = B ∧ C: Similar.
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– A = 3B. Then we have

π′1

Γ
w{3B}w{[uB,∆]}

3̈ −−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{3B}w{[u∆]}

π′2

Γ
w{[vB̄]}w{[u∆]}

2 −−−−−−−−−−−−−−−−−−−−−
Γ
w{2B̄}w{[u∆]}

cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{∅}w{[u∆]}

;

which can be reduced to

π′1

Γ
w{3B}w{[uB,∆]}

π′2

Γ
w{[vB̄]}w{[u∆]}

w −−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{[vB̄]}w{[uB,∆]}

2 −−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{2B̄}w{[uB,∆]}

cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{∅}w{[uB,∆]}

π′2

Γ
w{[vB̄]}w{[u∆]}

isub −−−−−−−−−−−−−−−−−−−−−
Γ
w{[uB̄]}w{[u∆]}

tp −−−−−−−−−−−−−−−−−−−−−−−
Γ
w{[u ]}w{[uB̄,∆]}

bc −−−−−−−−−−−−−−−−−−−−−−−
Γ
w{∅}w{[uB̄,∆]}

cutr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{∅}w{[u∆]}

where on the left branch we use height-preserving admissibility of weak-
ening and proceed by induction hypothesis, and on the right branch we
use admissibility of the isub- and tp-rules (Lemmas 3.3 and 3.4).

– A = 2B. Similar.

ut

Theorem 3.7 If a sequent Γ is derivable in iN̈K + G + cut then it is also
derivable in iN̈K + G.

Proof We show that if there exists a proof π of Γ in iN̈K+G+cut then Γ is also
derivable in iN̈K + G, by an induction on the cut rank of π. The induction step
uses also an induction on the number of occurrences of cut with the maximal
rank as well as Lemma 3.6 to eliminate each time the topmost occurrence in the
proof. ut

Corollary 3.8 If a sequent Γ is derivable in iNK + G + cut then it is also
derivable in iNK + G.

Proof Following Theorem 3.7 and Lemma 3.5. ut

4 From classical to intuitionistic

Starting from the proof system for classical modal logic discussed in the previous
section, we will show now how to obtain an intuitionistic variant. This will be
done in a similar way as Gentzen did in his original work for the ordinary sequent
calculus [Gen34].
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14 Sonia Marin, Lutz Straßburger

The first step is to enrich the language of formulas with a negation, such
that they are no longer restricted to negative normal form. Since we want to get
an intuitionistic system as well, we also include implication, bottom, and top as
primitives here:

A,B . . . ::= a | ⊥ | > | ¬A | A ∧B | A ∨B | A ⊃ B | 2A | 3A (6)

Intuitionistic modal logic IK is obtained from intuitionistic propositional logic
by adding the axioms

k1 : 2(A ⊃ B) ⊃ (2A ⊃ 2B)
k2 : 2(A ⊃ B) ⊃ (3A ⊃ 3B)

k3 : 3(A ∨B) ⊃ (3A ∨3B)
k4 : (3A ⊃ 2B) ⊃ 2(A ⊃ B)
k5 : 3⊥ ⊃ ⊥

(7)

and the rule nec, similarly to Section 2. These axioms are logical consequences
of k in the classical case but not in the intuitionistic case.2

We will consider the following schema as the intuitionistic equivalent to Scott-
Lemmon axioms:

gk,l,m,n : (3k2lA ⊃ 2m3nA) ∧ (3m2nA ⊃ 2k3lA) (8)

The two conjuncts correspond to the classical gk,l,m,n and gm,n,k,l which are equiv-
alent via De Morgan dualities in classical logic, but not in intuitionistic modal
logic.

In the following, we will first present a two-sided version of the classical one-
sided system iNK that was given in Figure 1. For this, the first step is to include
the distinction between input and output formulas into the data structure. (sim-
ilarly to the distinction between“left of the turnstile” and “right of the turnstile”
in Gentzen sequent calculi). However, since we have no “turnstile” in nested se-
quents, we cannot simply write formulas on the left or on the right of it. To that
purpose we use here the notion of polarity, as studied by Lamarche in [Lam01].
We assign to every formula in the nested sequent a unique polarity: either input,
denoted by a •-superscript and analogous to “left of the turnstile if there was a
turnstile”, or output, denoted by a ◦-superscript and analogous to “right of the
turnstile if there was a turnstile”. A two-sided indexed nested sequent therefore
is of the following form, denoted by Γ ◦ if it contains at least one input formula
and by Λ• otherwise:

Γ ◦ ::= Λ• | Γ ◦, A◦ | Γ ◦, [wΓ ◦]
Λ• ::= ∅ | Λ•, B• | Λ•, [uΛ•] (9)

We are now ready to see the inference rules. The two-sided version of iNK2

is shown in Figure 5. As expected, the rules for output formulas are the same as

2 This is the variant of IK first mentioned in [FS84] and [PS86] and studied in
detail in [Sim94]. There are many more variants of intuitionistic modal logic,
e.g. [Fit48,Pra65,BdP00,PD01]. Another popular variant is constructive modal
logic (e.g. [MS11]), which rejects axioms k3-k5 in (7) and only allows k1 and k2.
It has a different cut-elimination proof in nested sequents [ADS15]. For this reason
we concentrate in this paper on IK which allows all of k1-k5.
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⊥• −−−−−−−−
Γ{⊥•}

id −−−−−−−−−−−−
Γ{a•, a◦}

>◦ −−−−−−−−
Γ{>◦}

Γ{A•, B•}
∧• −−−−−−−−−−−−−−

Γ{A ∧B•}
Γ{A◦} Γ{B◦}

∧◦ −−−−−−−−−−−−−−−−−−−−
Γ{A ∧B◦}

Γ{A•} Γ{B•}
∨• −−−−−−−−−−−−−−−−−−−−

Γ{A ∨B•}
Γ{A◦, B◦}

∨◦c −−−−−−−−−−−−−−
Γ{A ∨B◦}

Γ{A◦}
¬•c −−−−−−−−−−

Γ{¬A•}
Γ{A•}

¬◦c −−−−−−−−−−
Γ{¬A◦}

Γ{A◦} Γ{B•}
⊃•c −−−−−−−−−−−−−−−−−−−−

Γ{A ⊃ B•}
Γ{A•, B◦}

⊃◦ −−−−−−−−−−−−−−
Γ{A ⊃ B◦}

Γ{2A•, [wA•,∆]}
2• −−−−−−−−−−−−−−−−−−−−−−

Γ{2A•, [w∆]}
Γ{[vA◦]}

2◦ −−−−−−−−−−−
Γ{2A◦}

Γ{[vA•]}
3• −−−−−−−−−−−

Γ{3A•}
Γ{3A◦, [wA◦,∆]}

3◦c −−−−−−−−−−−−−−−−−−−−−−
Γ{3A◦, [w∆]}

Γ
w{∅}w{A}

tp −−−−−−−−−−−−−−−
Γ
w{A}w{∅}

Γ
w{[u∆]}w{[u∅]}

bc1 −−−−−−−−−−−−−−−−−−−−−
Γ
w{[u∆]}w{∅}

Γ
w{[u∆w{[u∅]}]}

bc2 −−−−−−−−−−−−−−−−−−−−−
Γ
w{[u∆w{∅}]}

Fig. 5. System iNK2

in the one-sided case, and the rules for input formulas show dual behavior. The
negation rules flip the polarity, which is similar to ordinary sequent calculus,
where the negation rules move a formula to the other side of the turnstile.

Finally, the step from classical to intuitionistic simply consists in restricting
the number of output formulas in the sequent to one. Again, this is as in ordinary
Gentzen sequent calculus [Gen34], but it is crucial to observe that we count the
whole sequent, and not every bracket separately [Str13]. So an intuitionistic
indexed nested sequent is of the form:

Γ ◦ ::= Λ•, A◦ | Λ•, [vΓ ◦] (10)

where Λ• is defined as in (9).
Since we do not have an explicit contraction rule, but have contraction in-

corporated into inference rules (e.g., 2•), some of the inference rules have to be
slightly changed, namely ∨◦, ⊃• and 3◦ in order to maintain the property that
each sequent in a proof contains exactly one output formula. In particular, to
ensure that both premisses of the ⊃•-rule are intuitionistic sequents, the nota-
tion Γ ↓{ } stands for the context obtained from Γ{ } by removing the output
formula. The intuitionistic system is shown in Figure 6. Observe that the struc-
tural rules in the bottom line of each figure are identical for all three systems
(one-sided classical, two-sided classical, and two-sided intuitionistic).

Finally, the cut-elimination proof conducted in iNK + G can be reproduced
in a similar fashion in the classical and the intuitionistic two-sided systems, the

two-sided cut-rule being of the form
Γ{A◦} Γ{A•}

cutc −−−−−−−−−−−−−−−−−−
Γ{∅}

in the classical case,

and
Γ ↓{A◦} Γ{A•}

cuti −−−−−−−−−−−−−−−−−−−−
Γ{∅}

in the intuitionistic case, as there a unique output

formula needs to be maintained in the left branch.
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⊥• −−−−−−−−
Γ{⊥•}

id −−−−−−−−−−−−
Γ{a•, a◦}

>◦ −−−−−−−−
Γ{>◦}

Γ{A•, B•}
∧• −−−−−−−−−−−−−−

Γ{A ∧B•}
Γ{A◦} Γ{B◦}

∧◦ −−−−−−−−−−−−−−−−−−−−
Γ{A ∧B◦}

Γ{A•} Γ{B•}
∨• −−−−−−−−−−−−−−−−−−−−

Γ{A ∨B•}
Γ{A◦}

∨◦1 −−−−−−−−−−−−−−
Γ{A ∨B◦}

Γ{B◦}
∨◦2 −−−−−−−−−−−−−−

Γ{A ∨B◦}

Γ ↓{¬A•, A◦}
¬• −−−−−−−−−−−−−−−−

Γ{¬A•}
Γ{A•,⊥◦}

¬◦ −−−−−−−−−−−−−
Γ{¬A◦}

Γ ↓{A ⊃ B•, A◦} Γ{B•}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{A ⊃ B•}
Γ{A•, B◦}

⊃◦ −−−−−−−−−−−−−−
Γ{A ⊃ B◦}

Γ{2A•, [wA•,∆]}
2• −−−−−−−−−−−−−−−−−−−−−−

Γ{2A•, [w∆]}
Γ{[vA◦]}

2◦ −−−−−−−−−−−
Γ{2A◦}

Γ{[vA•]}
3• −−−−−−−−−−−

Γ{3A•}
Γ{[wA◦,∆]}

3◦i −−−−−−−−−−−−−−−−−
Γ{3A◦, [w∆]}

Γ
w{∅}w{A}

tp −−−−−−−−−−−−−−−
Γ
w{A}w{∅}

Γ
w{[u∆]}w{[u∅]}

bc1 −−−−−−−−−−−−−−−−−−−−−
Γ
w{[u∆]}w{∅}

Γ
w{[u∆w{[u∅]}]}

bc2 −−−−−−−−−−−−−−−−−−−−−
Γ
w{[u∆w{∅}]}

Fig. 6. System iNIK

Theorem 4.1 Let G ⊆ N4 and G be the corresponding set of rules. If a sequent
Γ is derivable in iNK2 +G+ cutc (resp. iNIK+G+ cuti) then it is also derivable
in iNK2 + G (resp. iNIK + G).

Proof The proof works similarly to the one of Theorem 3. We need to transform
the two-sided systems in a similar fashion as we did with iN̈K, removing the tp-
rule and changing the rules id, 2•, 3◦c and 3◦ for respectively

ı̈d −−−−−−−−−−−−−−−
Γ
u{a◦} u{a•}

Γ
u{2A•} u{[A•, ∆]}

2̈
•
−−−−−−−−−−−−−−−−−−−−−−−−
Γ
u{2A•} u{[∆]}

Γ
u{3A◦} u{[A◦, ∆]}

3̈
◦
c −−−−−−−−−−−−−−−−−−−−−−−−

Γ
u{3A◦} u{[∆]}

Γ
u{∅} u{[A◦, ∆]}

3̈
◦
−−−−−−−−−−−−−−−−−−−−
Γ
u{3A◦} u{[∆]}

Then, we can easily extend Lemma 3.3 and 3.4 to the two-sided setting. And so,
we can prove a reduction lemma like Lemma 3.6 for the two-sided classical and
intuitionistic systems. That is, for a derivation π of the form

π1

Γ{A◦}

π2

Γ{A•}
cutr+1 −−−−−−−−−−−−−−−−−−−−−

Γ{∅}

or
π1

Γ ↓{A◦}

π2

Γ{A•}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

such that rk(π1) ≤ r and rk(π2) ≤ r, there is derivation π′ of Γ{∅} such that
rk(π′) ≤ r. The proof is almost identical, except that the reduction cases now
occur between the left and the right rule for each connective. We proceed by
induction on ht(π1) + ht(π2), making a case analysis on the bottommost rules
in π1 and π2. If the cut-formula is not active in the bottommost rules in π1 and
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π2 (this includes the case of the gk,l,m,n rules), then we use height-preserving
invertibility and proceed by the induction hypothesis. For the cases in which
the cut-formulas are active in both branches, we only show two examples, as
other cases are simpler or just similar to those for the pure nested sequent
systems [Brü09,Str13].

– If we have an ı̈d on one side, there are two cases:

id −−−−−−−−−−−−−−−−−
Γ ↓

v{a•} v{a◦}

π2

Γ
v{a•} v{a•}

cut1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
v{a•} v{∅}

;

π2

Γ
v{a•} v{a•}

tp −−−−−−−−−−−−−−−−−−−
Γ
v{a•, a•} v{∅}

c −−−−−−−−−−−−−−−−−−−
Γ
v{a•} v{∅}

and π1

Γ
v{a◦} v{∅}

id −−−−−−−−−−−−−−−−
Γ
v{a•} v{a◦}

cut1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
v{∅} v{a◦}

;
π1

Γ
v{a◦} v{∅}

tp −−−−−−−−−−−−−−−
Γ
v{∅} v{a◦}

where we use the cut-rank preserving admissibility of tp and c.
– The 2◦-2̈

•
case is reduced as follows

π1

Γ
w{[vB◦]}w{[u∆]}

2◦ −−−−−−−−−−−−−−−−−−−−−−−
Γ
w{2B◦}w{[u∆]}

π2

Γ
w{2•B}w{[uB•,∆]}

2̈
•
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{2•B}w{[u∆]}

cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{∅}w{[u∆]}

;

π1

Γ ↓
w{[vB◦]}w{[u∆]}

isub −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ↓

w{[uB◦]}w{[u∆]}
tp −−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ↓

w{[u ]}w{[uB◦,∆]}
bc −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ↓
w{∅}w{[uB◦,∆]}

π1

Γ ↓
w{[vB◦]}w{[u∆]}

w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ↓

w{[vB◦]}w{[uB•,∆]}
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ↓

w{2B◦}w{[uB•,∆]}

π2

Γ
w{2B•}w{[uB•,∆]}

cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{∅}w{[uB•,∆]}

cutr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ
w{∅}w{[u∆]}

and we use the cut-rank and height preserving admissibility of w and the
cut-rank preserving admissibility of tp and isub.

Finally, we can prove a similar result as Lemma 3.5 in the two-sided setting to
complete the proof. ut

The cut-elimination theorem can be used to show that every theorem of K+G
(resp. IK + G) is a theorem of iNK2 + G (resp. iNIK + G).

Theorem 4.2 Let G ⊆ N4 and G denote at the same time the correponding
set of axioms and of nested sequent rules. If A is provable in the Hilbert system
IK + G, then the sequent A◦ is provable in the indexed nested sequent system
iNIK + G.

Proof The axioms of intuitionistic propositional logic as well as the axioms k1-k5
can be derived in iNIK, in the same way as in the usual nested sequent system
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presented in [Str13]. The inference rule nec can be simulated by the structural
rule nec, which is admissible in iNIK + G (Lemma 3.3), and modus ponens mp
can be simulated by the cut-rule, which is also admissible (Theorem 4.1). Thus,
it remains to show that any gk,l,m,n axiom can derived, using the corresponding
gk,l,m,n-rule:

id −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u1 . . . [

uk2lp•, [
v1
2l−1p•, . . . [

vl−12p•, [
vl ]] . . .]] . . .],

[
w1 . . . [

wm [
x1 . . . [

xn−1 [
xnp•, p◦]] . . .]] . . .]

tp −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cl = dn
[
u1 . . . [

uk2lp•, [
v1
2l−1p•, . . . [

vl−12p•, [
vlp•]] . . .]] . . .],

[
w1 . . . [

wm [
x1 . . . [

xn−1 [
xnp◦]] . . .]] . . .]

l·2•, n·3◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u1 . . . [

uk 2lp•, [
v1 . . . [

vl ] . . .]] . . .], [
w1 . . . [

wm
3np◦, [

x1 . . . [
xn ] . . .]] . . .]

gk,l,m,n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u1 . . . [

uk 2lp•] . . .], [
w1 . . . [

wm
3np◦] . . .]

k·3•,m·2◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3k2lp•,2m3np◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−
3k2lp ⊃ 2m3np◦

ut

Note that, in the classical case, a similar proof can be conducted, and provides
an alternative to the completeness of indexed nested sequents wrt. set prefixed
tableaux in [Fit15].

Theorem 4.3 Let G ⊆ N4 and G denote at the same time the correponding set
of axioms and of nested sequent rules. Let A be a modal formula. If A is provable
in the Hilbert system K+G, then the sequent A◦ is provable in the indexed nested
sequent system iNK2 + G.

However, there are examples of theorems of iNIK+G that are not theorems of
IK+G, that is, the indexed nested sequent system is not sound with respect to the
Hilbert axiomatisation using what we gave above as the intuitionistic alternative
to Scott-Lemmon axioms. There is already a simple counter-example when one
considers G to be composed with only the axiom g1,1,1,1 : 32A ⊃ 23A. Then,
the formula

F = (3(2(a ∨ b) ∧3a) ∧3(2(a ∨ b) ∧3b)) ⊃ 3(3a ∧3b) (11)

is derivable in iNIK + g1,1,1,1 (see Figure 7), but is not a theorem of IK + g1,1,1,1
(as mentioned in [Sim94]). Thus, the logic given by the Hilbert axiomatisation
IK+G and the one given by the indexed nested sequent system iNIK+G actually
differ in the intuitionistic case. We will address this issue in more details in the
next section.

5 Semantics of the Scott-Lemmon axioms

In the classical case, the indexed nested sequent system is not only equivalent to
the Hilbert axiomatisation using Scott-Lemmon axioms, it is actually sound and
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π1

[
u
2(a ∨ b)•, [xa•], [za•]], [v2(a ∨ b)•, [yb•], [z]],3(3a ∧3b)◦

π2

[
u
2(a ∨ b)•, [xa•], [zb•]], [v2(a ∨ b)•, [yb•], [z]],3(3a ∧3b)◦

2•,∨• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [z]], [v2(a ∨ b)•, [yb•], [z]],3(3a ∧3b)◦

g1,1,1,1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•]], [v2(a ∨ b)•, [yb•]],3(3a ∧3b)◦

3•,∧•,3• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3(2(a ∨ b) ∧3a)•,3(2(a ∨ b) ∧3b)•,3(3a ∧3b)◦

⊃◦,∧• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(3(2(a ∨ b) ∧3a) ∧3(2(a ∨ b) ∧3b)) ⊃ 3(3a ∧3b)◦

π1 =

id −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [z]], [v2(a ∨ b)•, [yb•], [za•, a◦]]

3◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [z]], [v2(a ∨ b)•, [yb•], [za•],3a◦]

id −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [z]], [v2(a ∨ b)•, [yb•, b◦], [za•]]

3◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [z]], [v2(a ∨ b)•, [yb•], [za•],3b◦]

∧◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [z]], [v2(a ∨ b)•, [yb•], [za•],3a ∧3b◦]

3◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [z]], [v2(a ∨ b)•, [yb•], [za•]],3(3a ∧3b)◦

tp −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [za•]], [v2(a ∨ b)•, [yb•], [z]],3(3a ∧3b)◦

π2 =

id −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•, a◦], [zb•]], [v2(a ∨ b)•, [yb•], [z]]

3◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [zb•],3a◦], [v2(a ∨ b)•, [yb•], [z]]

id −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [zb•, b◦]], [v2(a ∨ b)•, [yb•], [z]]

3◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [zb•],3b◦], [v2(a ∨ b)•, [yb•], [z]]

∧◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [zb•],3a ∧3b◦], [

v
2(a ∨ b)•, [yb•], [z]]

3◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[
u
2(a ∨ b)•, [xa•], [zb•]], [v2(a ∨ b)•, [yb•], [z]],3(3a ∧3b)◦

Fig. 7. Derivation of F in iNIK + g1,1,1,1

complete wrt. the corresponding Kripke semantics. In this section, we investigate
the behavior of system iNIK, and its extension, regarding the Kripke semantics
for intuitionistic modal logics.

Let us therefore briefly recall the standard Kripke semantics of classical and
intuitionistic modal logics. A classical frame 〈W,R〉 is defined as a non-empty set
W of worlds and a binary relation R ⊆W ×W , called the accessibility relation.
An intuitionistic frame 〈W,R,≤〉 is additionally equipped with a preorder ≤ on
W , such that:

(F1) For all u, v, v′ ∈W , if uRv and v ≤ v′, there exists u′ ∈W such that u ≤ u′
and u′Rv′.

(F2) For all u′, u, v ∈W , if u ≤ u′ and uRv, there exists v′ ∈W such that u′Rv′

and v ≤ v′.
A classical model M = 〈W,R, V 〉 is a classical frame together with a valu-

ation function V : W → 2A mapping each world w to the set of propositional

RR n° 9061



20 Sonia Marin, Lutz Straßburger

variables which are true in w. In an intuitionistic model 〈W,R,≤, V 〉, the func-
tion V must be monotone with respect to ≤, i.e. w ≤ v implies V (w) ⊆ V (v).

We write w 
 a if a ∈ V (w). From there, the relation 
 is extended to
all formulas in a parallel way in the classical and intuitionistic case, that is,
considering a classical model to be a special case of an intuitionistic model,
where w ≤ v iff w = v, we give below the definition for both at the same time.
We write w 1 A if w does not force A, i.e. it is not the case that w 
 A.

w 1 ⊥
w 
 >
w 
 ¬A iff for all w′ with w ≤ w′, we have w′ 1 A
w 
 A ∧B iff w 
 A and w 
 B
w 
 A ∨B iff w 
 A or w 
 B
w 
 A ⊃ B iff for all w′ with w ≤ w′, if w′ 
 A then also w′ 
 B
w 
 2A iff for all w′ and u with w ≤ w′ and w′Ru, we have u 
 A
w 
 3A iff there is a u ∈W such that wRu and u 
 A

It follows that 
 also satisfies monotonicity, i.e. if w ≤ v and w 
 A then v 
 A.
Note that we always have w 
 ¬A iff w 
 A ⊃ ⊥. In the classical case we also
have w 
 ¬A iff w 1 A which implies the de Morgan dualities, in particular,
w 
 2(¬A) iff w 
 ¬(3A).

We say that a formula A is valid in a model M, if for all w ∈ W we have
w 
 A. Finally, we say a formula is classically (or intuitionistically) valid, if it
is valid in all classical (resp. intuitionistic) models.

For proving the soundness of our system, we must also define what is the
validity of a sequent in a model. For this, we adapt here the method of Fit-
ting [Fit15] to the intuitionistic setting. The first step is to put intuitionistic
indexed nested sequent in correspondence with intuitionistic models.

Definition 5.1 Let Σ be an indexed nested sequent. We write IΣ to denote
the set of indexes occurring in Σ. We write RΣ for the accessibility relation
induced by Σ, that is, the binary relation RΣ ⊆ IΣ × IΣ defined as: wRΣv iff
Σ = Γ

w{[v∆]} for some Γ{ } and ∆, i.e. v is the index of a child of w.

Example 5.2 If we consider the sequent Σ obtained in the Example 2.1, we
have that IΣ = {0, 1, 2, 3, 4, 5} with 0 being the index of the root, so RΣ =
{(0, 1), (0, 2), (0, 3), (1, 2), (2, 4), (2, 5), (3, 1)}

Definition 5.3 Let Σ be an indexed nested sequent and letM = 〈W,R,≤, V 〉
be an intuitionistic Kripke model. A homomorphism 3 h : Σ →M is a mapping
h : IΣ →W , such that wRΣv implies h(w)Rh(v) for all w, v ∈ IΣ .

A preorder relation between homomorphisms can be obtained from the pre-
order in an intuitionistic model: For h, h′ : Σ → M two homomorphisms, we
write h ≤ h′ if h(w) ≤ h′(w) in M for all w ∈ IΣ .

3 This definition corresponds to the notion of structural mapping in [Fit15].
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The notion of validity can then be defined by induction on the subsequents
of a given sequent. However, the correspondence between indexes in a sequent
and worlds in a model brings us to consider the particular class of exhaustive
subsequents.

Definition 5.4 Let Σ and ∆ be indexed nested sequents, and w ∈ IΣ . We say
that 〈∆,w〉 is an exhaustive subsequent of Σ if either ∆ = Σ and w = 0, or
Σ = Γ{[w∆]} for some context Γ{ }.

Note that for a given index v of Σ, there might be more than one ∆ such
that 〈∆, v〉 is an exhaustive subsequent of Σ, simply because v occurs more than
once in Σ. For this reason we will write v̇ to denote a particular occurrence of v
in Σ and Σ|v̇ for the subsequent of Σ rooted at the node v̇. 〈Σ|v̇, v〉 stands then
for a uniquely defined exhaustive subsequent of Σ.

Definition 5.5 Let h : Σ → M be a homomorphism from a sequent Σ to a
modelM. Let w ∈ IΣ and let 〈∆,w〉 be an exhaustive subsequent of Σ. From (9)
and (10), ∆ has one of the following forms:

– ∆ = B•1 , . . . , B
•
l , [

v1Λ•1], . . . , [
vnΛ•n]. Then we define 〈h,w〉 
i ∆ if h(w) 1 Bi

for some i ≤ l or 〈h, vj〉 
i Λ
•
j for some j ≤ n

– ∆ = B•1 , . . . , B
•
l , [

v1Λ•1], . . . , [
vnΛ•n], A◦. Then we define 〈h,w〉 
i ∆ if either

h(w) 1 Bi for some i ≤ l or 〈h, vj〉 
i Λ
•
j for some j ≤ n or h(w) 
 A.

– ∆ = B•1 , . . . , B
•
l , [

v1Λ•1], . . . , [
vnΛ•n], [

u
Π◦]. Then we define 〈h,w〉 
i ∆ if

either h(w) 1 Bi for some i ≤ l or 〈h, vj〉 
i Λ
•
j for some j ≤ n or for all

homomorphisms h′ ≥ h, we have that 〈h′, u〉 
i Π
◦.

If, for all h′ ≥ h, 〈h′, w〉 
i ∆, we say that 〈∆,w〉 is intuitionistically valid in
M under h. Then, a sequent Σ is valid in a model M, if 〈Σ, 0〉 is valid in M
under every h : Σ →M.

Informally, an indexed nested sequent is valid if it contains anywhere in the
sequent tree a valid output formula or an invalid input formula . The following
lemma formalises this idea.

Lemma 5.6 Let Σ be an indexed nested sequent. Let 〈∆, v〉 be a exhaustive
subsequent of Σ. Suppose ∆ = Γ

w{A} for some context Γ
w{ } and some for-

mula A. Let M be a Kripke model and h : Σ →M a homomorphism.

– If A = A◦ and h(w) 
 A, then 〈h, v〉 
i ∆.
– If A = A• and h(w) 1 A, then 〈h, v〉 
i ∆.

Proof We prove this result by induction on the tree rooted at the considered
occurrence of v. In the first case, there are the two following possibilities:

– either ∆ = A◦, Θ, then 〈h, v〉 
i ∆ iff 〈h, v〉 
i Θ or h(v) 
 A, but as here
v = w and we have h(w) 
 A, it is trivially true;

– or ∆ = Θ, [
u
Π

w{A◦}], and then 〈h, v〉 
i ∆ iff 〈h, v〉 
i Θ or for all h′ ≥ h,

〈h′, u〉 
i Π
w{A◦}, which is true by the induction hypothesis.

In the second case, there are the three following possibilities:
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– either ∆ = A•, Θ, then 〈h, v〉 
i ∆ iff 〈h, v〉 
i Θ or h(v) 1 A, but as here
v = w and we have h(w) 1 A, it is trivially true;

– or∆ = Θ, [
u
Π

w{A•}] whereΠ contains an output formula, and then 〈h, v〉 
i

∆ iff 〈h, v〉 
i Θ or for all h′ ≥ h, 〈h′, u〉 
i Π
w{A•}, which is true by the

induction hypothesis;
– or ∆ = Θ, [

u
Λ
w{A•}] where Λ does not contain any outout formula, and

then 〈h, v〉 
i ∆ iff 〈h, v〉 
i Θ or 〈h, u〉 
i Λ
w{A•}, which is true by the

induction hypothesis. ut

We now make explicit the class of model that we are going to consider in
order to interpret system iNIK+G. We are going to consider the notion of graph-
consistency introduced by Simpson [Sim94] because we think it helps to glimpse
the intricacies of the formalism.

Definition 5.7 Let M = 〈W,R,≤, V 〉 be a be an intuitionistic model and let
〈k, l,m, n〉 ∈ N4. We say that M is a g(k, l,m, n)-model if for all w, u, v ∈ W
with wRku and wRmv there is a z ∈W such that uRlz and vRnz.4 For a set G
of N4-tuples, we say thatM is a G-model, if for all 〈k, l,m, n〉 ∈ G we have that
M is a g(k, l,m, n)-model.

Definition 5.8 A intuitionistic model M is called graph-consistent if for any
sequent Γ , given any homomorphism h : Γ 7→ M, any w ∈ IΓ , and any w′ ≥
h(w), there exists h′ ≥ h such that h′(w) = w′.

We finally prove that any theorem of iNIK + G is valid in every graph-
consistent G-model by showing that each rule of iNIK + G is sound when in-
terpreted in these models.

Lemma 5.9 Let G ⊆ N4, and let
Σ1 · · · Σn

r −−−−−−−−−−−−−−−−−
Σ

be an instance of an inference

rule in iNIK + G for n = 0, 1, 2. If all of Σ1, . . . , Σn are valid in every graph-
consistent G-model, then so is Σ.

Proof First, assume that r is
Φ

gk,l,m,n −−−
Ψ

, for some 〈k, l,m, n〉 ∈ G such that

k, l,m, n > 0 (similar proof when one parameter is 0). By way of contradiction,
suppose that Φ is valid in every graph-consistent G-model and that there is a
G-modelM = 〈W,R,≤, V 〉, a homomorphism h : Ψ →M such that 〈Ψ, 0〉 is not
valid in M under h. Recall that Ψ is of form

Ψ = Γ
u0{[u1∆1, . . . [

uk∆k] . . .], [
w1Σ1, . . . [

wmΣm] . . .]}

Therefore, there exist u0, uk, wm in W such that u0 = h(u0), uk = h(uk), wm =
h(wm), and u0R

kuk, and u0R
mwm (Definitions 5.1 and 5.3). Hence, as M is

in particular a g(k, l,m, n)-model, there exists y ∈ W with ukR
ly and wmR

ny

4 We define the composition of two relations R,S on a set W as usual: R◦S = {(w, v) |
∃u. (wRu ∧ uSv)}. Rn stands for R composed n times with itself.
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(Definition 5.7). Namely, there are worlds v1, . . . , vl, x1, . . . , xn in W such that
ukRv1 . . . vl−1Rvl, wmRx1 . . . xn−1Rxn, and vl = y = xn. By noting that

Φ = Γ
u0{[u1∆1, ...[

uk∆k, [
v1 ...[

vl ]...]]...], [
w1Σ1, ...[

wmΣm, [
x1 ...[

xn ]...]]...]}

we can define a homomorphism h′ : Φ → M with h′(z) = h(z) for all z ∈ IΨ ,
h′(vi) = vi for 1 ≤ i ≤ l and h′(xj) = xj for 1 ≤ j ≤ n.

We are now going to show that for every h : Ψ →M, and every occurrence
ż of an index z ∈ IΨ , we have 〈h, z〉 
i Ψ |ż iff 〈h′, z〉 
i Φ|ż. We proceed by
induction on the height of the tree rooted at ż.

1. The node of ż is a leaf node of Ψ , and z 6= uk and z 6= wm. Then we have
Ψ |ż = Φ|ż and the claim holds trivially.

2. The node of ż is an inner node of Ψ , and z 6= uk and z 6= wm. By the
induction hypothesis, for every t ∈ IΨ with zRΨ t, every occurrence ṫ of t
in Ψ |ż, and every h : Ψ → M, 〈h, t〉 
i Ψ |ṫ iff 〈h′, t〉 
i Φ|ṫ. The statement
follows then by unravelling the definition of 
i (Definition 5.5).

3. z = uk. For any occurrence ż in the context Γ
z0{ }, the proof is simi-

lar to one of the previous cases. Otherwise, we know that Ψ |ż = ∆k and
Φ|ż = ∆k, [

v1 ...[
vl ]...]. Furthermore, for all i ≤ l and h′′ ≥ h we have

〈h′′, vi〉 1i [
vi+1 ...[

vl ]...], and therefore 〈h, z〉 
i Ψ |ż iff 〈h′, z〉 
i Φ|ż.
4. v = wm. This case is similar to the previous one.

Since we assumed that 〈Ψ, 0〉 is not valid in M under h, we can conclude that
〈Φ, 0〉 is not valid in M under h′, contradicting the validity of Φ.

The proof for bc, tp, and the other cases of gk,l,m,n when one of the parameters
is 0, is similar. For the logical rules, we will consider in details the case for 2◦, the
others are similar (the cases for ⊃◦ and ¬◦ also make use of the graph-consistency
property).

Suppose that Φ = Γ
w{[vA◦]} is valid in every graph-consistent G-model.

For Ψ = Γ
w{2A◦}, suppose that there exists a graph-consistent G-model M =

〈W,R,≤, V 〉 and a homomorphism h : Ψ 7→ M such that 〈Ψ, 0〉 is not valid inM
under h. Therefore, there exists h′ ≥ h such that 〈h′, 0〉 1i Ψ , in particular by
Lemma 5.6, h′(w) 1 2A. So there exists w and v such that wRv, h′(w) ≤ w and
v 1 A. As M is graph-consistent, there exists h′′ such that w = h′′(w). Thus,
we can extend h′′ by setting h′′(v) = v to obtain a homomorphism h′′ : Φ 7→ M,
indeed Φ and Ψ have the same set of indexes related by the same underlying
structure, but for the fresh index v that does not appear in Ψ . Finally, as h′′(v) 1
A, we have by Lemma 5.6 that 〈Φ, 0〉 is not valid inM under h′′ which contradicts
the assumption of validity of Φ. ut

We recall that the height of a derivation tree π, denoted by ht(π), is the
length of the longest path in the tree from its root to one of its leaves.

Theorem 5.10 Let G ⊆ N4 and G be the corresponding set of rules. If a sequent
Σ is provable in iNIK+G then it is valid in every graph-consistent intuitionistic
G-model.

Proof By induction on the height of the derivation, using Lemma 5.9. ut
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The soundness result in [Fit15] can of course be obtained as a corollary of this
theorem, as this proof method extended Fitting’s technique to the intuitionistic
framework.

Corollary 5.11 Let G ⊆ N4 and G be the corresponding set of rules. If a
sequent Σ is provable in iNK2 + G then it is valid in every classical G-model.

6 Discussion

In the classical case, for a given G ⊆ N4, and G be the corresponding set of rules,
the logic given by iNK2 + G (equivalent to Fitting’s system [Fit15]) corresponds
exactly to the logic axiomatised by the extension of the Hilbert system K with
the corresponding Scott-Lemmon axioms G. This follows from what we presented
in the two previous sections. Theorem 4.3 ensures that every theorem of K + G
is a theorem of iNK2 + G (as a corollary of cut-elimination in iNK2 + G). Then,
Theorem 5.11 shows that every theorem of iNK2 + G is valid in any classical G-
model. In the end, the cornerstone that allows one to conclude that iNK2 + G is
indeed sound and complete wrt. K+G, is that the Hilbert system K+G actually
completely axiomatises classical G-models.

Theorem 6.1 (Lemmon and Scott [LS77]) Let G ⊆ N4. A formula is deriv-
able in K + G, iff it is valid in all classical G-models.

This means that in the classical case, we have a complete triangle between
Kripke models, Hilbert axiomatisation and nested sequents systems via The-
orems 4.2, 5.11 and 6.1.

In the intuitionistic case, the correspondence theory is much more tedious,
and a lot of questions are still open. We do have Theorems 5.10 giving that every
theorem of IK + G is a theorem of iNIK + G, and Theorem 4.2 giving that every
theorem of iNIK+G is valid in graph-consistent G-models, but there is no proper
equivalent to Theorem 6.1 to “link” the two theorems into an actual soundness
and completeness result for iNIK + G. As we have seen in Section 4, the first
inclusion is strict, since the formula in (11) is provable in iNIK + G, but not in
IK + G. However, the strictness of the second inclusion is open. The question is:
Is there a certain set G ⊆ N4 such that there exists a formula that is valid in
every directed graph-consistent G-models, but that is not a theorem of iNIK+G,
for G the set of rules corresponding to G?

On the other hand, Theorems 6.2.1 and 8.1.4 of [Sim94] entail a parallel
result to Theorem 6.1 for a restricted family of the intuitionistic Scott-Lemmon
axioms, those for which l = 1 and n = 0 (or equivalently l = 0 and n = 1), that
is, of the form: (3k2A ⊃ 2mA)∧ (3kA ⊃ 2m3A). Therefore, in this restricted
case, the inclusions collapse too. The reason why this result holds seems to be
that in a derivation of a theorem of such a logic, the steps referring to non-
tree graphs can be eliminated via appealing to the closure of the accessibility
relation (see [Sim94]). This is very similar to what happens when going from
indexed to pure nested sequents calculi, and suggests that a pure nested sequent
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calculus could be provided for these logics in the intuitionistic case too. Indeed,
these axioms are exactly the intuitionistic variants of the ones called path axioms
in [GPT11], for which a pure nested sequent calculus is given; but for the general
case, this paper only provides a display calculus.

To conclude, we can say that for intuitionistic modal logics the accurate
definition might actually come from structural proof-theoretical studies rather
than Hilbert axiomatisations or semantical considerations. For Simpson [Sim94]
there are two different (but equivalent) ways to define intuitionistic modal logics,
either the natural deduction systems he proposes, or the extension of the stan-
dard translation for intuitionistic modal logics into first-order intuitionistic logic.
Equivalence between the natural deduction systems and the Hilbert axiomatisa-
tions, or direct interpretation of the natural deduction systems in intuitionistic
(birelational) structures are just side-results. He therefore sees their failure for
the majority of logics not as a problem, but rather as another justification of the
validity of the proof-theoretic approach.
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