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Abstract can turn out to have identical denotations—and things are

the same, if not worse, for proofs.
By Boolean category we mean something which is to a We know that much information about a proof is kept
Boolean algebra what a category is to a poset. We pro- if we replace posets by categories. A celebrated example
pose an axiomatic system for Boolean categories, whichof this is Freyd’s proof [13] that higher order intuitionis-
is different in several respects from the ones proposed re-tic logic has the existence and disjunction properties (as a
cently. In particular everything is done from the start in constructive logic should) purely by observing the free el-
a *-autonomous category and not in a weakly distributive ementary topos, and using this very property of freeness.
one, which simplifies issues like the Mix rule. An important The free topos is a canonical object if there ever was one.
axiom, which is introduced later, is a “graphical” condi- The free elementary topos is one of the many, many ex-
tion, which is closely related to denotational semantics and amples of a “Heyting category”, which is to categories what
the Geometry of Interaction. Then we show that a previ- a Heyting algebra is to posets: a bicartesian closed category.
ously constructed category of proof nets is the free “graphi- Until very recently it was absolutely mysterious how one
cal” Boolean category in our sense. This validates our cat- could define “Boolean categories” in the same manner. For
egorical axiomatization with respect to a real-life example. a long time the only known natural definition of a Boolean
Another important aspect of this work is that we do not as- category collapsed to a poset. This was first corrected by
sume a-priori the existence of units in the *-autonomous following closely the approach to term systems for classical
categories we use. This has some retroactive interest for thelogic: in order to prevent collapse, introduce asymmetries,
semantics of linear logic, and is motivated by the properties which is what is done for example in Selinger’s control cat-
of our example with respect to units. egories [17] (which correspond to the—calculus [16]) or
the models of Girard’s LC and the closely related work of
Streicher and Reus on continuations [19], which introduce
1. Introduction restrictions by the means of polarities.
But then there appeared several approaches [6, 5, 12, 4]
Unlike other mathematicians, proof theorists have accessto Boolean categories that do keep the symmetry we asso-
to very few canonical objects. All mathematicians have the ciate with Booleanness: all these categories are self-dual,
integers, the reals, the rationals. Geometers have projectiveind except for the last one they all are *-autonomous. The
planes and spheres, algebraists have polynomial rings angiresent paper is concerned with the categoryBefiets
permutation groups. Indeed, algebraists have access to thef [12], which is a remarkably simple object, a candidate
concepbf a group and of a ring, which have been stable for for canonicity: a “beefed up” Boolean algebra. It is surpris-
more than a hundred years. In contrast, a proof theorist ising that it was not discovered before.
always ready to tweak a definition like that of the sequent In this paper we present a series of axioms for Boolean
calculus, to suit his needs. We sine sequent calculus but  categories, in order of increasing strenght. We then show
there is no such thing. that the category aB-nets of [12] is the free Boolean cat-
Logicians have Boolean and Heyting algebras, but they egory for the strongest axioms with the atomic formulas as
are of limited interest to proof theorists since they collapse generators. The axiom of “graphicality” gives it a marked
too many things: In a Boolean or Heyting algebra two for- semantical character and relates it to coherences spaces and
mulas, a seemigly complex one and a seemingly trivial one,the Geometry of Interaction.



Our axiomatic approach differs from that ofitirmann is a natural bijective correspondence betw&gX ) and the
and Pym [5, 6] in several respects. It is completely 1- set of natural transformatioig® — F.
categorical and does not use something like an order en2.1.1 Definition A category ¢ has tensorsif it is
richment. Also, we start with a *-autonomous category and equipped with a bifuncto ® — with the usual associa-
show how to extract (several) weakly distributive categories tivity and symmetry isomorphisms

it contains, while they start with a weakly distributive cate- assocapc: A®(BR®C) — (A® B)®C
gory and then complete it to a *-autonomous one by adding twista,p: A B— B® A
structure. that obey the usual “pentagon” and “hexagon” (see [15]).

Finally, we give a novel answer to the question of defin-
ing a *-autonomous category that does not have units, which
we need to interpret logics without constants. This retroac-
tively applies to multiplicative [1] and multiplicative-
additive [9] proof nets.

Note that we do not ask for a unit in that defini-
tion. Nonetheless the “coherence” theorem for symmet-
ric monoidal categories [14] does also hold in our case,
or more precisely everything in it that does not deal with
units. In particular, we can simply writd ® B® C ® D
for (A B)@ C)®@ DorA® ((B® C)® D), or even
2. The axioms (B® D) ® (A® C), because there is a uniquely defined
coherence isomorphism between any two of them.

It Ik how t del itiol . If it exists, we denote the usual right adjoint to tensoring
IS very Well known how 1o model a mulliple-premise, o5y _, (_) and it defines the usual bivariant bifunctor.

single-conclusion linear calculus in a symmetric monoidal \yg |l denote the “internal representable functor” defined
category that has theo adjoint operator. Itis also well- by X asHX = X —o (—): ¢ — €. The following two
known how to have multiple premises, and/or a negation. natural isomorphisms are trivial but important, and they are
If we want zero premise, it is natural to think of the tensor natural in bothX andY:

unit as source as representing an empty family of premises: HXHY ~ gX®  and hXHY =~ pX®Y @

an empty context. But if. we have thg unit in the category, It is very well known that a functo¥’ — Set can be prof-
shouldn't we also have it in the logic? The standard ap- itably seen as a “generalized object” & we call such
proach to this question is found in [1], where the existence 3 thing avirtual objectof ¢ and we emphasize this fact
of a unitI is assumed in the category that is used for the by writing it as2*, which is a functor, and would be the
semantics, but its use is very restricted: it can only appearrepresentable functor associated to the objeittthe latter

as the source of a semantical map. There is a problem: foronly existed. GivenX € %, mapsA — X should morally
example, the category of ordinary multiplicative proof nets be in bijective correspondence with natural transformations
without units cannot be used to interpret itself as a theory! 2 — h*, and the latter are truly in bijective correspon-
We propose a solution to this problem: replace the unit with d€nce with elements df*(.X) and this allows us to write

a functor toSet, which would be the covariant functor rep- ans € h*(X) as A ->»X. In general a dotted arrow will
resented by the unit, if only there was a unit. This seems tomean that at least one of the source or target is virtual, and
be a very trivial change, but it has interesting consequencesit is to be interpreted as a reverse-direction natural transfor-

(An alternative approach to our proposal has been very re-mation between the correslgonding functors. For example,
cently presented in [8].) givenf: X — Y andt = (h*f)(s), we can write this as a

commutative diagram

2.1. *-autonomous categories without units LA
K T
We will define autonomous (SMC) and *-autonomous X—F Yy o,

categories not to have units by default. This spares us fromWhich justifies the notation — f o s, or simplyt — fs

having *-autonomous categories without units with units. But we have to be very careful on how to extend the—
From now on¢’ denotes a (small) category. We denote gi,crure to virtuals. At least one thing works: given a vir-

the composition of two map g by eithergf org o f, de- 5 gpjects and a real oneX we can define a virtual ob-
pending on readgblhty, the Qrder is the ;tandard (func_tlonal, jectA® X, by composing their “representables” (the reader
as opposed to diagrammatic) order. Givere ¢, we will should check that this makes perfect sense, by plugging an

write either X or 1x to represent the identity map on it, object of % in the functors) 728X = pAHFX |
according to readability. We use the standard notation for ‘go we can onlyeft- tensor a virtual object, and only to
the covariant representable functor associated Withe.,  get a virtual oné. This construction in natural in both vari-
h* = Home (X, —), andhx for the contravariant repre-  ables: givens: A --»>B andf: X — Y then there is an
sentabldlome (—, X). 1 . - "
. . . e More precisely: everything is a composition of functors, and there can

. The arguments in the .foIIowmg section need familiarity pe as many “internal representablég’— % as we want but exactly one

with Yoneda’s Lemma: given a functdf: ¥ — Set there ¢ — Set, which has to appear at leftmost end. But since we have a sym-




obviouss ® f: A® X --+»B ® Y. Suppose we have a 2.1.2 Definition A category% with tensors is arau-
“virtual left unit” I, if it were real we would have a natural tonomous categorif is has the structure in the previous
isomorphism\: I® (—) = (—); this translates, given areal  paragraphs: the adjoirto and the functorh! along with
f+ X — X', as a commuting square the natural isc:! (X — Y') = Home (X, Y'), which obeys

ht
O

hAXl: :lhkx

hEHX/ W hHHX

Since this is a diagram of functors we can plug any map

Equations (2) and (3). Th# is a*-autonomous category
if in addition it has a functor(—)‘: ¥°? — % which

is an involution (for simplicity we will later assume that
X++ = X, but it could also be a natural isomorphism),
and which obeyst — Y = (Y ® X)*.

2.1.3 Proposition Assume tha¥ is autonomous in the

Y — Y in there: itis then easy to see that having a “virtual S€NSe above. The#l is autonomous (SMC) in the usual
left unit law” isomorphism is equivalent to having an iso- S€Nse (with the usual units) if and only:ifis representable.
morphismHome (X, Y) = k(X — Y), natural in bothX In a *-autonomous category, we can define another bi-
andY'. This is the point of the whole exercise: a “proof” of functor— 2 — (calledcotensoror par) to be the de Morgan

an objectX can be seen as an elementi6fX ) because a
proof of X — Y will just be a mapX — Y.

The unit isomorphism in a monoidal category has to in-

dual of — ® —, i.e, X 9Y = (Y1 ® X1)L.2 Then we
haveX - Y 2 X+ oY.
If € is *-autonomous we also have a “virtual bottom”,

teract well with the associativity iso [15, p.159]; for this to  that we writeh  , given byhy (X) = RY(X1), and as for

happen the following is needed
hX®Y é hXHY
hb@yll’ Elh)\x oY 2)

REX®Y —— JIgX Y

along with one last axiom: we have to express that the unit

laws holdwith the unit itself the two ways of going from

I®Itol have to coincide. We cannot construct this directly;
the equivalent condition for us is to require that for every

s: I+ X andt: I--+Y, the following diagram of (mostly)
virtual maps commutes:

= t®R®X
L X e I®X e Y @ X

I: ; Je 3)

t
PIRY XY

When all the above hold we have a uniquely defireg
t: [---» X ®Y. One can then show that the operatioh —
s®t: h(X) x h(Y) — AY(X ® Y) agrees well with
associativity and twist; in other words, givéfi Y, Z with
s € hi(X),t € Bi(Y)andr € h'(Z) thatt®s = twistx yo
(s@t)and(s ®t) @ r = assocx,y,z o (s ® (t @ r)).
This allows us to simply writs @ t @ r: I-- > X Y ®
Z. In technical parlancé! would be a monoidal functor
(¢,®) — (Set, x) if € had a unit (wher¢” does have a
unit I thennh! is always monoidal).

Notice that it is perfectly natural to write® Y or s ® 1y
for the (real) horizontal map™ — X ® Y at the bottom of

Rl thinking of it as an objectL of % allows us to write

XSl

for an elements € h, (X). As before, we also get
upvRw: XY 9T 3 L foru € hy(X) andv €
hl(Y) andw € hl(Z).B'

Given mapsf: A — B C andg: A® Bt — C
where ¢ is the curryfication off, we say thatf and
g are transposesof each other. More generally, for
any objectsA;, ..., A,, amapf: Af ® -+ ® A —
Agy179 -9 A, uniquely determines a mag: Aiu) ®
--~®A}f(l) — Apas1) 88 Appy, Wherel < k1 <n
andp: {1,...,n} — {1,...,n} is an arbitrary permuta-
tion. Obviouslyf determines in this way a whole family of
maps, and we will call such a family aguivariant family
overAy,..., A, [18, 11]. A member of such a family is
called arepresentativeand it determines the whole family.
Given Ay, ..., A, andf as above we writdf] to denote
the equivariant family determined bf If we let! = 0 in
the situation above, we gg?t I-3vA;%---9A,, thatwe
call thename of the equivariant familyFor/ = n, we get
its conamef: A} ® --- ® A+ L. Important examples
are the name and the coname of the identity:

A %A and AeAl L

If we transpose the identitypoc: B9 C — B2 C,
we get the evaluation mapal: (B2 C) ® C*+ — B. Tak-
ing the tensor of thiswith 4 : A — A and transposing back
gives us a mapwitch: A® (B C) — (A® B) s C, that

diagram (3). In the same wa¥ ® t or 1x ® t can stand
for the mapX — X ® Y which is the top horizontal map
followed by the twist.

2Most of the times we will invert the order when taking the negation,
but not always.

3Strictly speaking we should use different arrows shape to denote these
virtual maps, because they deal with contravariant functoS:toand not
covariant ones, and the two kinds cannot be mixed at all. But there is no
risk of such a thing happening here, given the quite conservative use we
make of this notation.

metry we can play notational tricks; if the logic were non-commutative,
we would have access to two implications, which would allow us to attain
similar effects.



is natural in all three arguments, and that we callgivich askF' to preserve both the object and the idempoterit igf
map (like [7, 2] and unlike [4, 3]). For the sake of sim- areal unite is just thely).

plicity (and since we are working in the symmetric world), . )

we will also useswitches that are obtained by composing 2-3- Going Classical

with the twistmap (for® as well as forg). In a simi- Let now% be *-autonomous. We will change the nota-
lar way we obtain the mapens: (A% B) ® (C’® D) —  tjon, and use- A— for the tensor ane-\ — for the cotensor.
Aw(B®C)®Dandcotens: A® (B®C)®D — (A®  The virtual unit and virtual bottom will be denoted byand
B)3(C ® D). Note that they are dual to each other and ¢ cajledvirtual truth andvirtual falsehoodrespectively. In
that they both can be obtained by composing two switches.case there are actual objects in the category playing the roles
Switch is self-dual. of the units (or weak units), they are denotedttandf, re-
2.2 \Weak units spe_ctively. Notige _that both; A= and— Vv —, come with

their own associativity and twist isos (see Definition 2.1.1);
2.2.1 Definition Let ¥ be autonomous in the sense butwe willin both cases simply writassoc andtwist. The

above. Aweak unitin ¥ is a pair(I,e) wheree: I — I dual of an objectd will be denotedA.

is an itempotent map such that splittihg in Set® gives Unsurprisingly,A-comonoids and/-monoids are going

Rl to be important. But since we do not have real unitsfov,
pl—spt—pt (4) we need to adapt the standard definitions of (co)monoid. In

order to define the counit to/acomonoidX’, which should
be a mapX — t we (unsurprisingly) replace it by a natural
transformationlI® : At — hX, which we call anX-pre-
projection Supposed € €. We can construct

It is well-known that composing with an idempotent is a
process of normalization. LeY,Y ands: I — X — Y
be given. We can always normalizédy takingse, and we
can say that is in normal form ifs = se. The definition
above says that there is a natural bijective correspondence 4 = oA OXHA x4 = XAA
between the map& — Y and the map§ — X — Y that h h'H h™H *h :
are in normal form. For an)X we can transform the virtual ~ where the first iso comes from Definition 2.1.2 and the sec-
maps into real ones, in the following way: ond iso is (1). By Yoneda we getamélgi : X A A — A

I@X s I@X 1@ X which is natural in4, i.e., forf: A — B,

A i
" % XAA—5A
X X/\fl lf (5)

thus getting two map¥x, (% wﬁth Ixls = _1X and XA B 5
Uilx = e ® X. These are obviously natural iK. The ny

virtual mapI: I.--»I induced by (4) is called theanonical commutes, and thus ati-pre-projection can be seen as nat-

proof of thel. , _ ural transformatiodl™® : X A (=) — (—).
Weak units can be used to give “elementary” axioma-

tization of the ideas of the previous section; we can even

define the concept of a “weakly monoidal category”, where

the unit isomorphism would be replaced by an embedding-

retraction pair; it is easy to tweak the standard axioms for (X A Ax)oAx = assocx x,x o (Ax A X) o Ax ©)

that purpose. But they are highly non-canonical: as soon Ax =twistx x 0 Ax

as we haV(_a a weak un_it we can construct many other vv_eakand such thaflX : ht — hX obeys

units from it. Also, having weak units is the same as saying <

that splitting the idempotents i [13] would give us an IIxoAx = 1lx: X —>X. ™

ordinary symmetrical monoidal closed category. 2.3.2 Definition A pre-K-autonomous categorig a *-
Notice that an autonomous category can have weak unitsautonomous category?’, in which every objectX is

as well as real ones at the same time. What matters is whictequipped with a cocommutative.-comonoid structure

2.3.1 Definition A cocommutative\-comonoidin & is
atriple(X, Ay, II*) suchthatAx : X — X A X is coas-
sociative and cocommutative, i.e.,

one is denoted b¥. (X, Ax,I1%) such that for all4, B, X, Y, we have
A functor between autonomous categories should pre- XAY
serve everything on the nose; this cannot entirely achieved AxAAy Axay
here because of the' functor. So givens and 2 au- (®)
tonomous categories we define an autonomous functor XA X AY AY TN XAY AXAY
¢ — 2 to be a pairF, o) whereF': ¥ — & is a functor
that preserve®, — on the nose and is a natural isomor- nd
phismhl, o F — hL. If a (weak) unit(I, e) is defined, we X Alp = 115, 53: XAAAB = AAB. (9)



and such thaall isos preserve this-comonoid structure Given two objectsd and X, we defineA : ANA — X
We call Ax andIT¥ thediagonalandprojectionon X. DY transpos!nglg(” tA— X VA andVi: X — AV A

By duality we also have mapgx: X VX — X, calledco- Py transposingLi® : AN X — A.

diagonal and a natural transformatid® : (—) — (—) Vv 2.3.5 Proposition For any A, B, X, the mapVy o

X, which we call thecoprojection and they give an associa- A% : AA A — BV Bis independent fronX .

tive, commutative/-monoid structure ofX, in an obvious Proof: Look at the following;

sense, slightly different from the standard definition, obey-

ing the dual of equations (8) and (9)
A word on notation: we writél'}* for the mapAA X — ey TH@X

A obtained by precomposind} Wlth the twistmap. In the ANA——2 S X AY —> BV B

same line of thought1%" is justII¥, and more generally, “XDJ
an expression likél’l ;3 '# is the uniquely defined compos-

ite projectionX A A A Y ANBAZ — AN B. Uniqueness

follows from the commutativity of Taking their transposes, we see that the left triangles com-
AN (X AB) assoc (AANX)AB mute because projgctiqns are quasientropies;_ an.d right tri-

(10) angles because projections commute with projectionsl

AAHX",A 4&3 7 By doing a double transposition 8y o Ag: BA B —

A A A we get themix mapmixa p: AAB — AV B.
which is an immediate consequence of (9). By duality, for 5 3 g Proposition The following is equal tenix 4 g

every A, X there ard1’¥: A — Av X andIT§': A — ann! e Hlx

X v A which are natural im. WewnteHXforH . AAB%AA(XVB)*}(A/\X)\/B*)A\/B
2.3.3 Definition In a preK-autonomous category amap Proof: Transposé/ 4 o Ap twice and use the definition of
f: X — Y is calledcloneablgif switch. 0
(fANfloAx =Ayof and foVx =Vyo(fVf). From this we get immediately:

2.3.7 Proposition The mapmixa z: ANB — AV B

The mapf is aquasientropyf ‘e matural in A and B

XNA 4> YAA A It is also very easy to see thatix agrees with the
\ / and Hi{/ &‘X twistmap, i.e.,
AVX — o AVY ANBZEB AV B
both commute for every. twis{ thist (11)
2.3.4 Definition BANA—>BVA

¢ A K’-autonomous categoig a preK-autonomous cat-
egory in whichA, TI, andswitch are quasientropies,
and quasientropies are closed undendv.

e It is a Ki-autonomous categorif the usual units are
present and the comonoid structuretds the standard  2.3.8 Proposition Lef: AAB — Candf’': A’AB" —
degenerate one, obtained from the coherence isos.  C' be given, andley: B — Av Candg': B — A" v ('

o We speak of &*-autonomous categoifthe units are  be their transposes, respectively. Thewg': B A B’ —
weak; we change the preceding condition with the re- AVC'V A’V (C’ is atranspose of f': ANBANA'AB" —
quirement thatx = T4 : t A X — X andAg ot = cvc.

t At: t-- >t A t, wheret is thecanonical proof ot. We also have the following:

e If pis any ofb, f, #, we defined &KP-functor to be an
autonomous functor that also preserves negation on th
nose, and the obvious monoid and comonoid structures.

This gives us a unique mafixg : ANB — CV D,
which we call thedisjoint sumof f andg. This operation is
obviously stable under transposes:

2.3.9 Proposition In a K-autonomous category, the
apmixy4, g is a quasientropy for everyt and B.

2.3.10 Proposition GivenA, B, andC, then the follow-
We simply sayK-autonomous category if the discussion jng commutes

is independent from the units. Thus iKeautonomous cat- mix 4. By o

egory.# , the subcategor@.# of quasientropies (withthe =~ A/ (BAC) TS AN BV O) TS Av (B Y C)
same objects) inherits the two monoidal structusestch, asso{ J/switch lassoc
and also the involution. It is not *-autonomous in general,

but it is weakly distributive [3]. (AAB)AC maxMB,é (AAB)vC mixA,Bvé (AvB)vC



For the aficionados, this means thaix would furnish

2.4.1 Proposition The map4 g is a quasientropy. For

the necessary structure for identity to be a monoidal functorevery mapf: A — B, we havef + 04 5 = f. And for

(U, N) — (£, V)—if we had units, naturally. A conse-

every quasientropy: B — C, we havélc p o f = 0p.p

guence of this is that there is a unique way to define a naturaland f c 04,5 = 04 .

n-ary mix map
mixa,,.. A, = 1a,X...XLa,:
Al/\"'/\An—>A1\/"'\/An.

Let f,g: A — B be given. We define
f+9=Vpo(fg)oAs: A— B

It is easy to show, using (co)-associativity and (co)-

commutativity of A and 'V, along with naturality ofmix,

that the operatior- on maps is associative and commuta-

tive. Thus everyHom¢ (A, B) has a commutative semi-

group structure. In the view of Proposition 2.3.8 this semi-

group structure is also present fdf(X). Forh, k: t--»X
defineh + k = Vx o (hwk): t --» X, wherehk =
mixx x o (b A k). It immediately follows thatf + ¢ =
f+g:t-—->AV B, wheref,g: A — B.

2.3.11 Proposition Let f,g: A — B andh,k: B —

C. If his cloneable, theth o (f + g) = hf + hg, and if f
is cloneable therih + k) o f = hf + kf.

Proof: Immediately from the definitions. O

Note that it doesotfollow that.”# is enriched over com-
mutative semigroups.

2.3.12 Proposition Letf: A — C andg: B — D be
given. Thenfxg = (I o f o TI'B) + (LIG o g o TIAY).

2.4. Going graphical

Let .# be aK-autonomous category. We defigg®
to be the category obtained fro” by formally inverting
the mix maps.
A, B we add a mapnix,';: AV B — A A B such that

mixAvB o miXZ_lB = 1lavB andmixZ}B o mixA,B = 1arB-

In other words, for every pair of objects

2.4.2 Proposition In ¢ ® the diagram

s Al

A B
A<_TA@B<74A>B (13)
1_IA HB

obeys the standard biproduct equations, i.e.,

lacn e + ng'ng
1a = nPu’p
1p = Tma'g!

Proof: The first equation is a direct consequence of Propo-
sition 2.3.12. The other two equations are trickier:

1a = H%AOAA

= TP o(A®0a5)0As

= NfoAenihoAanlP)oA,

= ONfom¥eB)oAall’P)oA,

= HysoﬂygoﬂkéoAA
H%SOH%BOIA

= H%30H%3

The first equation is (7), the second one uses @hag is
a quasientropy, the third one is the definitionOof 5, the

fourth one is (10), the fifth one is naturality B Z, and the
sixth is again (7). O
Notice that this doesot mean that# ® has biproducts;
the semigroup enrichment would be necessary for this.
If we transposé) 4 g and compose with the projection,
we get a (virtual) map

t Py Ae B2 LB (14)
that we denote byg. Clearly this is independent from.

Looking at the diagram in Proposition 2.3.10 we get a new By duality we getB- - »ff, which we also denote byz.
diagram whose horizontal arrows now go in the reverse di-2 4.3 Definition The category# ® is said to becon-
rection. This new diagram also commutes for trivial rea- tractible if the following commute for allX, Y, and A:

son; thus it identifies the two associativities and switch. In
the same way, the horizontal arrows in (11) can be inverted.

The outcome of this is that not only are the bifunctarand
Vv identified in.#"®, but that this new bifuncto® inherits
a singlesymmetric monoidal structure from its two parents:
they are identified too.
For trivial reasons the following diagram commutes:

H%} A® B Hﬁ
A ltwist B (12)
ui' "Bo A np

This uniquely determinesamép z: A — B, thatwe call
thezero map The following is almost trivial.

Adlg _
A— A A A

lVA@A

A A

J/AA@A

A A A A
APl p

X\Vif
Ap A

Y/ﬁ

2.4.4 Definition Let ¢ be aK-autonomous category.
We say that#” is graphicalif .#"® is contractible and the
canonical functoG , : ¢ — #¥ is faithful. We say that
¢ is purely graphicalif additionally G is full.

Graphicality is quite a powerful property. One can easily
show that in a graphicaf-autonomous category, the maps

and 14



IT, I1, andswitch are cloneable, and that the cloneable maps
are closed undex andV.* But note that it does not follow
that A and V are cloneablé&. Full graphicality is an even
more powerful property, since it enters the realm of degen-
eracy: it obviously identifies\, Vv in 2¢". But it is useful
technically.

2.4.5 Definition A K-autonomous category” is called
A-V-strongif A andV are cloneable.

2.4.6 Remark In a graphicalK-autonomous category
which is A-V-strong, the subcatego§Q.# of cloneable
quasientropies behaves quite nicely: not only is it weakly
distributive, in addition, since every object is equipped with
both a monoid and comonoid structusich is preserved
by every mapthe category has binary products and coprod-
ucts, and the semigroup structure on the hom-sef€¥”

Note that this proof does not make any use of the pro-
jections nor the notion of quasientropy, i.e., is independent
from the treatment of the units.

2.4.8 Corollary In a graphical Kﬂ-gutqnon]ous cate-
gory which isA-V-strong, we have that+ t = t.

2.4.9 Definition A K-autonomous category idempo-
tentif f + f = f for every mapf.

In such a category every Hom has a semilattice structure.
Note that Theorem 2.4.7 do@®t imply that a graphi-
cal andA-V-strongK-autonomous category is idempotent.
However by an inductive argument, which is implicitely
contained in the construction of the next section, one can
show that théreegraphicalA-V-strongK-autonomous cat-
egory is idempotent.

is an enrichment, in the usual sense. This works in reverse'g_ Proof nets

the properties just stated suffice to shawV-strength and
graphicality [4].

The action of inverting the mix maps introduces some
amount of degeneracy, which creates a “meeting ground”
for the “higher-order” (*-autonomous) and the “structural”
(monoids and comonoids) structures. Given the right addi-
tional axioms (likeA-V-strength) this meeting ground turns
out to be g@amiliar place
2.4.7 Theorem In a graphicalK-autonomous category
which isA-V-strong, we have thaty + 14 = 14.

Proof: We show the statement fo¥ ®. By graphicality it
follows for 7.

1a (A@iA)O(AA@A)O(VA@A)O(A@iA)
(ADTa)o(VaB VAP A) o (ADtwist® AD A)
o(Aa®As® A)o(Adis)
(APIa®ia)o(AD A twist d A)
o(VADABADAZ) o (ADtwist® AD A)
c(ALBGABABVy )
c(ApAatwist® A)o (A iz ®is)

(AP 1a)o (VA AP A) o (A twist P A)
c(AA®A®A)o(Ad1y)
lgoVao(la®la)oAgoly

la+14a

The first equation is just Definition 2.4.3. The second one
is A-V-strength together with (8). The third equation uses
that A andV are dual. The fourth equation uses again the
right diagram in Definition 2.4.3, and the fifth equation is a
twisted form of1 4 = (14 V A) o switch o (A A 1,4) which
holds in every *-autonomous category. O

4In fact, for showing these facts, a much weaker property than graph-
icality (the presence of medial map2]) is sufficient. But since graphi-
cality implies medial and is needed anyway, we do not deal with medial in
this paper.

5We do not need this fact here and a proof of it would go beyond the
scope of this paper.

We will recall the notion of proof nets that has been in-
troduced in [12]. We consider only the casdidhets.

3.1. Cut-free prenets

For a given setZ = {a,b,c,...} of propositional vari-
ables the set oK-formulasover.«Z is generated from the
seto/ U .o/ U {t,f} via the binary connectives (conjunc-
tion) and v (disjunction. Here«Z = {a,b,c,...} is the
set ofnegated propositional variablesndt andf are the
constantgepresenting “true” and “false”, respectively. The
elements of the se¥’ U &/ U {t, f} are calledatoms The
formulas in which the constants do not appear are called
K’-formulas A finite list of formulasl’ = A4;, Ao, ..., A,
is called asequent We will consider formulas as binary

trees (and sequents as forests), whose leaves are decorated

by atoms, and whose inner nodes are decorated by the con-
nectives. Given a formulad or a sequenf’, we write
Z(A) or Z(I), respectively, to denote its set of leaves.
For simplicity, we will suppose, that this is actually the set
{1,...,n} if there aren leaves. We can accomplish this
by agreeing that for example ¥ (A) = {1,...,n} and
Z(B)={1,...,m}, then¥(AAB)={1,...,n+m}
with .Z(A) and.Z(B) embedded as complementary sub-
sets{1,...,n}and{n +1,...,n + m}. We will write a,
to say that the leaf is decorated by the atom If no ambi-
guity is possible, we will omit the index or the decoration,
i.e., just writea or u for a,,.

We define the negatioA of a formulaA as follows:
t=f
f=t (AvB)=BAA
Herea ranges over the se¥, and there is a slight abuse of
notation. However, from now on we will useto denote
an arbitrary atom (including constants), antb denote its
negation according to (15). Note that (15) impliés= A
for all A.

a=a (ANB)=BVA (15)

a=a



3.1.1 Definition A linking for a sequent” is an undi- 3.2.1 Theorem The cut reduction relation on prenets is
rected graphP whose set of vertices i&”(T") and whose  confluent and terminating.

set of edges obeys the following condition: whenever there p, ¢ gee [12]. 0
is an edge between two leavesy € Z(I"), denoted as
W v, then one of the following two cases holds: 3.3. Prenet categories

e either,u is decorated by an atomandv by its duala,

-] An important consequence of Theorem 3.2.1 is that we
e or,u = v and it is decorated by. b d

) - . can construct a category of prenets: The objects are the for-
A.prene? consists of a sequeitand a linking” for it. It mulas and the arrows are the two-conclusion prenets. More
will be denoted byP > T'. . -
i A ) o ) o precisely, any preneP > A, B is an arrow fromA to B.
Since no ambiguity is possible, we will identify a linking  The composition of two arrow® > A, B andQ > B, C'is

with its set of edges. Here is an example: defined by eliminating the cut fro® & Q> A, B ¢ B, C.
T Vi T VN ~_ Identity maps are given by the obvious prenets.
by bs, by bg, by b5, by bg, az az, ag a -
{01 b5 b s, b bs v + bs a2 @3, g Gr } (16) We denote this category Byre’ (<), resp.Pref (),
by A ag, @3 A D, bs A ag, @7 A bs if the objects are th&’-, resp. theK?-formulas, generated

One can draw it in the proof net tradition as from <. Pre’(«7) is a full subcategory oPre*(«/).

3.3.1 Proposition For every., the categoryPre’ (<)
~ TN ~ . is a K’-autonomous category, anfre’(«) is a K-

b a @ b b a a b autonomous category.
\ 7/ \ 7/ \ 7/ \ 7/
A A A A Proof: The mapsassoc, twist, A, V, II, andIl are given
as it has been done in [12]. by the obvious prenets. If we léff(A) to be the set of all

On the set of prenets we define the following two oper- prenetsP > A, we have all necessary structure. Checking
ations: LetP > T andQ > I and R > © be given. Then that all the needed properties hold (in particular thiatthe
(P + Q) > T is obtained by taking the union of the two weak unit), is a trivial computation on prenets. O
graphsP and(Q (the set of vertices does not change), and 3.3.2 Proposition Pre’(</) and Pref(<7) are purely
(P @ R)>T,0O is obtained by taking the disjoint union of graphical andA-V-strong.
the two graphs (i.e., they are simply put next to each Other)'Proof: In both categories\ and\ are isomorphic.A-V-

LetPr-T be aprenetand C Z(T) an arbi_trary Subset strength and the equations in Definition 2.4.3 can be shown
of leaves. TherP|;, denotes the subgraph #finduced by by performing cut elimination on prenets. 0

L. We also have a subforebt = T'|;, of ', whose set of
leaves is precisely, and such that an inner nod®f I is in 3.4. Prenets and equivariant families
T'|., if one or twoof its children is inl'| . We will say that
P| >T"is asub-prenebf P > T'. Since this sub-prenet is
entirely determined b¥’, we can also write it a®|r, > I
without mentioningL any further.

Purely graphicaK-autonomous categories are pretty ab-
surd creatures, since they implement the same structure
twice under the different names ofandv. But they are
useful for us.

3.2. Cuts and cut elimination Let ¥ be a purely graphical and\-V-strong K-

A cutis a formula of the shapd ¢ A, where( is called ~ autonomous category, aii& : .«/ — Obj(.%") a map that
the cut connective. It is allowed only at the root of a for- chooses an objeet® of ¢ for every atoma € <. Itis

mula tree. Aprenet with cutss a prenetP > I, wherel’ obvious how to extend this map to every formula of the
may contain cuts. On these, the cut reduction relatiors logic, since we want things to be preserved on the nose.
defined by We can now give a construction that assigns to every prenet
P> (AAB)O (BVA),IT — P>AQGABOBT P>Twithl = A,y,..., A, an equivariant family over
e ’ ’ Aq,..., A, in 2, and this in a unique way. We will start

h Pray¢a,l' — (Plr+Q)>T with the cut-free case and then extend the construction to
where - PR the prenets with cuts.

Q = {ivjli,jeZT)andi u,v j € P}U

3.4.1 Definition Let P >T be given and let: € .Z(T")
{i i]ieZT)andi u,v v € P}U and.(u) = {v e Z([) | ¥ v € P}. We callu celibate

—_ o~ if |7 (u)] = 0, we sayu is monogamou# |.77(u)| = 1,
_ {7 J7ljeZ2l) gndu u, v J e P_} _andpolygamousf |.#(u)| > 2. Thesizeof P 1> T is the
If we think of graphs as matrices, this definition is a version g, of

of the execution formula in the Geometry of Interaction.  the number of\-nodes and/-nodes in"

6What we callprenetis sometimes also calledpoof structure. e the number of polygamous and celibate leaves,in




e the number of edges iR.
Note that the monogamous leaves are not counted.

3.4.2 Equivariant family construction (cut-free case)
The unique family[¢] that we are going to construct will
be denoted b P > I']*. We proceed by induction on the
size of P > I'. We have the following cases:
0. Ifthere are no edges i, then[Pr>T"]* is the all-zero-
maps equivariant family.

. lfP>Tis{a a}ra,afor some atom, then[ P>T7°
is determined by the identity am That this is indeed
the unique choice follows from Theorem 2.4.7.

CIfitis {t t} >t then[P > I']* has only one mem-
ber: t € ht(t) (see Section 2.2 and Definition 2.3.4).
Uniqueness follows from Corollary 2.4.8.

. Ifone of the4; is aVv-formula, sayd; = B Vv C, then
by induction hypothesis we have already A ... A
A® — B*V C".

. Ifone of theA; is aA-formula, the situation is the same
(here we make crucial use of the fact thagndV are
isomorphic in%").

. If P> T falls into two disjoint subnet$’ > IV and
P">T", we can apply the induction hypothesis to them
and take the disjoint surfixg, wheref andg are rep-
resentatives of P’ > I"]* and[P" > I'"']°.

. If there is a formula if", whose leaves are all celibate,
say it isA;, then we apply the induction hypothesis to
the prenet with4; removed and compose witfi*7 .’

. If one of theA; is a polygamous atom, say; = a,
then we obtairP’ > I" by replacing: with k& = |.7(a)|
copies ofa and the obvious modification iff. We can
apply the induction hypothesis and constrdgta . . . A
A —a®V...Va® —a®.

3.4.3 Equivariant family construction (with cuts)

ConsiderP>T'withT' = Ay,...,A,,B1 0 B1,..., B0

B,, (for somen > 1,m > 0), whereA,, ..., A, are not

cuts. We construdtP o> I']* by first applying our construc-

tion to the prenef > IV in which all cuts are replaced by

A-formulas. Then we get

AN NASL(BYABY)V ...V (B ABS) -
which representfPr>T"]*. Here,g represent§Pr>I"]* and
his theV of the family(iB;), the conames of the identities
for B} in .

The important fact about this construction is that it is
preserved by cut elimination:

3.4.4 Lemma LetP>T be a prenet, and® > I" be
the result of applying the cut elimination procedure to it.
Then[Pr>T]°* and[ P’ >T"]* are same equivariant family.

Proof (Sketch): The basic idea is the same as in [18, 11].
There are two cases to consider:

“Note that here this case is redundant. But it becomes important when

If a compound cut has been reduced, we use the follow-
ing commuting diagram igZ":
A*ANB*A(B°V A®)
A danase
° Jcotens ) % ff
I

T e Alge

(A* A A%)V (B* A B%)

A© (18)

The upper path represerfts]® and the lower patfir']®.
For the reduction of an atomic cut, look at the prenets

a a T~

a a a

a

C_L/\/\[—a
a a

\/
¢

a

Ql

a N\
a a
\/

¢

All three of them yield the same equivariant family. For the
left and the middle ones use the contractible property, and
for the middle and the right ones ugeV-strength. Ifa is

a unit, the situation is similar. O

An immediate consequence of the equivariant-family-
construction is

3.4.5 Theorem Pre’(«7), resp. Pref(«), is the free
purely graphical and\-V-strongK®-autonomous category,
resp.Kf-autonomous category, generated frozh

._/a

[‘a

Ql

3.5. From prenets to proof nets

In this section we will consider those prenets, that come
from actual proofs—the proof nets.

3.5.1 Definition A conjunctive pruningof a prenetPr>

I is a sub-preneP|r > IV whereI” has been obtained by
deleting one child subformula for every conjunction node
and every cut node df (i.e., in P|r > I everyA-node and
every{-node is unary).

3.5.2 Definition A prenetP > I'is said to becorrectif
for every one of its conjunctive pruningyr I the graph
P|r: has at least one edge.phoof netis a correct prenet.

The examples in (16) and in the proof of Lemma 3.4.4
are proof nets.

3.5.3 Theorem The cut reduction relatior~ preserves
correctness.

Observe that the identity nets, as well as the nets defin-
ing A, TI, assoc, twist, andswitch are all correct. The only
net that is not correct is the one representirig—. There-
fore we immediately have that also the two conclusion proof
nets form a graphicak-autonomous category, which 4s-
V-strong. But it is no longer purely graphical. We call this
categoryNet’(<7), resp.Net (7). It is a wide subcate-
gory of Pre”(«7), resp.Pre*(<7). We now have:

we deal with proof nets instead of prenets (see proof of Theorem 3.5.4).

8What is called “pruning” here, has been called “resolution” in [9, 12].
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