
Combinatorial Flows as Bicolored Atomic Flows

Giti Omidvar and Lutz Straßburger

Inria Saclay and Ecole Polytechnique Paris, France

Abstract. We introduce combinatorial flows as a graphical representation of
proofs. They can be seen as a generalization of atomic flows on one side and
of combinatorial proofs on the other side. From atomic flows, introduced by
Guglielemi and Gundersen, they inherit the close correspondence with open de-
duction and the possibility of tracing the occurrences of atoms in a derivation.
From combinatorial proofs, introduced by Hughes, they inherit the correctness
criterion that allows to reconstruct the derivation from the flow. In fact, combina-
torial flows form a proof system in the sense of Cook and Reckhow. We show how
to translate between open deduction derivations and combinatorial flows, and we
show how they are related to combinatorial proofs with cuts.

Keywords: Proof identity · Proof invariants · Combinatorial flows · Open deduc-
tion.

1 Introduction

The question of when two proofs are the same is older than proof theory itself, as it
has been posed by Hilbert [31] as early as 1900. Nowadays there are essentially two ap-
proaches to the problem. The first is to find suitable proof transformations and postulate
that two proofs are the same if they can be transformed into each other using these trans-
formations. This can be achieved via proof normalization [24] or rule permutations [21].
The second way is to define suitable canonical proof representations. The most promi-
nent examples are λ-terms [10], proof nets [9], and combinatorial proofs [18].

A recurring theme in this second setting is the idea to trace the occurrences of
formulas or atoms inside the proofs. It has first been used by Kelly and Maclane in
[20] (via coherence graphs) to determine the identity of morphisms in a category. This
idea has then been rediscovered in Girard’s proof nets [7,9] and is also used now-
adays in string diagrams [27]. All these notions—proof nets, coherence graphs, string
diagrams—work remarkably well in the linear setting, where no contraction or weak-
ening is present. Indeed, proof nets form a canonical representation for multiplicative
linear logic (MLL) [9].

In a classical setting, where contraction and weakening are present, the idea of trac-
ing formulas in a derivation has first been used by Buss [3] in the form of logical flow
graphs, which have later been studied by Carbone [4,5] to investigate the relation be-
tween cuts and contractions and cycles in these flow graphs.

To get a more precise grip on these cycles—which do not exist in the linear setting—
and to eliminate them, Guglielmi and Gundersen developed atomic flows [11] as a re-
finement of logical flow graphs, by only tracing the atoms and by completely detaching
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the flow from the derivation. In this way, atomic flows are visually closer to coher-
ence graphs and string diagrams, they can be used as invariants for proofs and they can
be used to devise normalization procedures for deep inference derivations [11,13,32].
However, atomic flows have two major drawbacks:

1. We cannot read back a proof from an atomic flow. They lose too much information
about the proof. Not only do they not form a canonical proof representation, there
is also no polynomial correctness criterion.1 Therefore they do not form a proof
system in the sense of Cook and Reckhow [6].

2. Yanking is not possible in atomic flows. One of the main advantages of coherence
graphs or string diagrams is that they can abstract away from superfluous “bends”.
This is indicated on the left below, where we simply can “pull” the ends of the wire.
In MLL, this process corresponds to cut elimination [17].

= vs. , (1)

In atomic flows, this situation is represented as on the right above, where we can-
not straighten the edge. The reason lies in the interference of contraction with cut
elimination.

The purpose of this paper is to address these two problems. In fact, the first problem
has already been solved by combinatorial proofs [18], but for too high a price: a total
separation of the linear part and the resource management part of the proof. Performing
this separation is as expensive as cut elimination, and therefore leads to a size explosion.

Our idea here is to use two colors in the atomic flows, to distinguish between the
linear parts that can be yanked (blue) and the resource management parts that cannot be
yanked (purple). This is similar to what happens in combinatorial proofs, but is less re-
strictive, as the two parts can be mixed—there is no global separation between the linear
part and the resource management. In fact, what we present here can be seen as a merg-
ing of atomic flows and combinatorial proofs, and we use the term combinatorial flows2.

Special care has to be taken with respect to the units, as atomic flows and combina-
torial proofs are unit-free.3 However, in order to establish a proper correspondence with
the deep inference proof system, units are necessary.

This paper is organized as follows. In the next two sections we recall basic notions
of deep inference and show how derivations are translated into objects that we call
preflows, as the correctness criterion is not yet established. To present the correctness
criterion, we recall in Section 4 Retoré’s RB-cographs. Then, in Sections 5 and 6 we de-
fine the correctness for the linear parts and the resource management parts, respectively.
Finally, in Section 7 we define combinatorial flows as correct preflows. In Section 8, we
introduce purification which is a form of normalization via rewriting that simplifies the

1 Das has shown in [8] that no such criterion is possible, under the assumption that integer
factoring is hard for P/poly.

2 This term has already been used in [29] for compositions of combinatorial proofs. Here we are
more general: the components of our combinatorial flows are not combinatorial proofs.

3 Combinatorial proofs can be presented with units [18] but then the units are treated as atoms.
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flow by eliminating irrelevant parts. Finally, in Section 9, we establish the relation be-
tween our combinatorial flows and Hughes’ combinatorial proof with cuts, as they are
presented in [19].

2 Preliminaries on Open Deduction

Open deduction [12] is a deep inference formalism [14], allowing to write derivations
in a way such that the same operations that are used to build formulas from atoms are
also used to build derivations from inference rules.

We define the formulas of classical propositional logic, denoted by A, B, . . . to be
generated from a countable set of propositional variables {a, b, . . . } and their negations
{a, b, . . . } with the following grammar:

A, B := t | f | a | a | A ∨ B | A ∧ B

Negation can be also extended to all formulas via De Morgan laws:

t = f f = t a = a A ∧ B = A ∨ B A ∨ B = A ∧ B

We define the equivalence relation ≡ on formulas:

A ∧ B ≡ B ∧ A (A ∧ B) ∧C ≡ A ∧ (B ∧C) A ∧ t ≡ A t ∨ t ≡ t
A ∨ B ≡ B ∨ A (A ∨ B) ∨C ≡ A ∨ (B ∨C) A ∨ f ≡ A f ∧ f ≡ f (2)

A formula A is a unit if A = t or A = f. A formula A is unit-free if it does not con-
tain any units. A formula A is pure if either A ≡ t or A ≡ f or A ≡ A′ for some
unit-free formula A′. An atom is an element in A = {a, b, . . . } ∪ {a, b, . . . }, and a se-
quent Γ = A1, . . . , An is a finite non-empty multiset of formulas.

Figure 1 shows the inference rules of system SKS [2]. They have to be understood
as rule schemas, where a can stand for an arbitrary atom and A, B,C,D for arbitrary
formulas. We call an inference system any such set of inference rules. The rules can be
composed to derivations, which are defined inductively below, and which are denoted

as
A
D S

B
where A is the premise and B is the conclusion of the derivationD, and S is the

set of inference rules used inD.

1. A formula A is a derivation with premise A and conclusion A.

2. Every inference rule
A
ρ

B
in S, is a derivation with premise A and conclusion B.

3. If
A1

D1 S

B1

and
A2

D2 S

B2

are derivations, then the compositionsD1 ∧D2 andD1 ∨D2 are

derivations and denoted as
A1

D1 S

B1

∧

A2
D2 S

B2

and
A1

D1 S

B1

∨

A2
D2 S

B2

, respectively.
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t
ai↓

a ∨ a
→

t

a ∨ ā

(A ∨ B) ∧C
s

A ∨ (B ∧C)
→

(A ∨ B) ∧C

A ∨ (B ∧C)

a ∧ a
ai↑

f
→

ā ∧ a

f

a ∨ a
ac↓

a
→

a ∨ a

a

(A ∧C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)
→

(A ∧C) ∨ (B ∧ D)

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a
→

a

a ∧ a

f
aw↓

a
→

f

a

f
mix

t
→

f

t

a
aw↑

t
→

a

t

Fig. 1: Inference rules of system SKS and their translation into flowboxes

4. IfD1 is a derivation with premise A1 and conclusion B1, andD2 is a derivation with
premise A2 and conclusion B2, and A2 ≡ B1, we can compose D1 and D2 directly
toD1 ◦ D2 denoted as:

A1

D1 S

B1
≡

A2

D2 S

B2

or

A1

D1 S

A2

D2 S

B2

or

A1

D1 S

B1

D2 S

B2

(3)

Figure 2 shows on the left an example of an SKS derivation.

3 From Derivations to Flows

Definition 3.1 We say that a set X is A-labelled if it is equipped with a labelling
function `X : X → A, mapping each element x ∈ X to an atom. A binary relation
B ⊆ X × X on an A-labelled set X is well-matched if it is symmetric and we have that
xBy implies `X(x) = `X(y). We say that B is perfectly matched if it is well-matched and
for every x ∈ X there is exactly one y ∈ X with xBy.

Definition 3.2 Let R and S be binary relations on X ] Y and Y ] Z where X ∩ Z = ∅.
The composition of the two relations R and S (denoted as R ◦ S) is a binary relation on
X]Z where (a, c) ∈ R◦S if and only if there exists a sequence v1, v2, . . . , vn of elements
in X ] Y ] Z such that a = v1, c = vn, and for every i ∈ {1, . . . , n − 1}, we have viRvi+1
if i is odd and viSvi+1 if i is even.

For a formula A, we write bAc to denote the set of leaves of the formula tree of A. This
set is A-labelled, with the labelling function `bAc : bAc → A mapping each leaf of the
formula tree to the atom occurring in that position. Note that A ≡ A′ implies bAc = bA′c.
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a ∨ a
ac↓

a
aw↓

t
ai↓

ā ∨ a
∧ [a ∨ ā]

s

ā ∨

a ∧ [a ∨ ā]
s

a ∨

a ∧ ā
ai↑

f

∧

a ∧ a
ai↑

f
aw↓

a

s

a ∨

ā ∧ a
ai↑

f

→

a ∨ a

a

a ∨ āt

(ā ∨ a) ∧ (a ∨ ā)

ā

ā

a ∧ (a ∨ ā)

a ∧ ā

f

a

a

f

a

a ∧ ā

a ∨ (ā ∧ a)

a f

Fig. 2: A derivation from (a ∨ a) ∧ (a ∧ a) to a ∨ f and its translation to a preflow.

Definition 3.3 A flowbox is a triple φ = 〈A, B,Bφ〉, where A and B are formulas and
Bφ is a well-matched relation on bAc ] bBc. For flowboxes φ = 〈A, B,Bφ〉 and ψ =

〈C,D,Bψ〉, we define φ∧ψ = 〈A∧C, B∧D,Bφ]Bψ〉 and φ∨ψ = 〈A∨C, B∨D,Bφ]Bψ〉,
which are also flowboxes. If φ = 〈A, B1,Bφ〉 and ψ = 〈B2,C,Bψ〉 are flowboxes with
B1 ≡ B2, then φ ◦ ψ = 〈A,C,Bφ ◦ Bψ〉 is also a flowbox.

Example 3.4 Here are some examples of flowboxes. We denote them by writing the
formulas on top of each other and indicating the relation B by edges between the atom
occurrences.

a ∧ ā

a ∨ (a ∧ ā) ∨ a

a ∨ (a ∧ ā) ∨ a

a ∧ f

a ∧ ā

a ∧ f

(a ∨ a) ∧ (a ∧ ā)

a ∨ f
(4)

The vertical composition of the first two flowboxes results in the third flowbox.

Observe for each formula there is an identity flowbox idA = 〈A, A,Bid〉, and that the
operation ◦ on flowboxes is associative with id as unit. In fact, flowboxes form a cate-
gory and are essentially the same as the B-nets of [22], and the operation ◦ corresponds
to the cut elimination of B-nets. As already observed in [22], the composition ◦ forgets
too much information. In general, we cannot recover a derivation from a flowbox. To
gain more control, we define a formal compostion that keeps the structure.

Definition 3.5 We define the set of preflows to be inductively constructed as follows:

1. A flowbox φ = 〈A, B,Bφ〉 is a preflow φ : A ` B with premise A and conclusion B.
2. If φ : A ` B and ψ : C ` D are preflows, Then their horizontal compositions

φ7 ψ : A ∧C ` B ∧ D and φ6 ψ : A ∨C ` B ∨ D are preflows.
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3. Let φ : A ` B1 and ψ : B2 ` C be preflows with B1 ≡ B2, then the vertical composi-
tion φ� ψ : A ` C is a preflow.

These compositions are depicted as follows:

A

B
φ ∧

C

D
ψ

A

B
φ ∨

C

D
ψ

A

B
φ

C
ψ

As suggested by this graphical notation, we consider preflows to be equivalent modulo

(φ7 ψ) 7 ξ = φ7 (ψ7 ξ) (φ7 ψ) � (ξ 7 π) = (φ� ξ) 7 (ψ� π)
(φ6 ψ) 6 ξ = φ6 (ψ6 ξ) (φ6 ψ) � (ξ 6 π) = (φ� ξ) 6 (ψ� π) (5)

We can now translate derivations into preflows by translating inference rules into
flowboxes as indicated in Figure 1—the colors and arows used in the figure will be
explained later—and then use the operations 7, 6, and � to compose them.

Definition 3.6 The translation T of a derivation D, denoted as T(D), is the preflow
inductively obtained as follows. If D is a formula A, then its translation is idA. If D
is a rule instance, then the translation is shown in Figure 1. Finally, T(D1 ∧ D2) =

T(D1)7 T(D2) and T(D1 ∨D2) = T(D1)6 T(D2) and T(D1 ◦ D2) = T(D1)� T(D2).

Definition 3.7 We define the collapse ~φ� of a preflow φ to be the flowbox inductively
obtained via ~φ7ψ� = ~φ�∧ ~ψ� and ~φ6ψ� = ~φ�∨ ~ψ� and ~φ�ψ� = ~φ� ◦ ~ψ�.

In other words, the collapse “executes” the operations that are used to define preflows.

Example 3.8 The collapse of the preflow in Figure 2 is the rightmost flowbox in (4)

Clearly, preflows contain too much information—essentially the same as the open
deduction derivation—and the collapse forgets too much of it. Atomic flows are some-
where in the middle. However they forget too much (we still cannot reconstruct the
derivation) and too little (we cannot yank) at the same time.

To better control the information that can be removed, we propose here a solution
that assigns colors (blue and purple) to flowboxes and only allows to collapse then if
they have the same color. The idea is that the blue flowboxes encode linear (or mul-
tiplicative) behaviour, and therefore blue wires can be yanked. The purple flowboxes
encode the resource management (or the additive behaviour) of the proof, and therefore
purple wires cannot be yanked. 4

Furthermore, both kinds of flowboxes obey different correctness criteria. To define
these, we need to recall Retoré’s RB-cographs [25,26].

4 To indicate the color in a flowbox with empty B (because of weakening), we sometimes draw
half arrows to the atoms, as done in Figure 1.
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4 Preliminaries on RB-cographs

An (undirected) graph G = 〈VG,RG〉 is a set of vertices VG accompanied with a binary
edge relation RG ⊆ VG ×VG which is irreflexive and symmetric. We omit the index G in
VG and RG when it is clear from the context. All graphs in this paper have anA-labelled
vertex set. For two graphs G and H we define their disjoint union as G ] H = 〈VG ∪
VH ,RG∪RH 〉 and their join as G ./ H = 〈VG∪VH ,RG∪RH ∪{(u, v), (v, u) | u ∈ VG, v ∈
VH }〉. The complement of G is G = 〈VG, {(v, u) | (v, u) < RG and v , u}〉. The labels are
preserved for G ]H and G ./ H and negated in G. A graph G is a cograph if and only
if it is constructed from single vertices using the operations ] and complement.

Definition 4.1 The graph of a formula A, denoted as G(A), is defined inductively via
G(t) = G(f) = 〈∅, ∅〉 (the empty graph), G(a) = 〈{•a}, ∅〉 (a single vertex graph whose
vertex is labelled by a), and G(B ∨C) = G(B) ] G(C), and G(B ∧C) = G(B) ./ G(C).

This means that for every formula A, we have that VG(A) = bAc, with the same
labelling function. We immediately have the following properties of this translation:

Proposition 4.2 A graph G is a cograph if and only if it is isomorphic to G(A) for
some pure formula A. And for all pure formulas A, we have G(A) = G(A).

Proposition 4.3 If A is a unit-free formula, then A ≡ B iff G(A) = G(B).

Definition 4.4 An RB-graph is a triple G = 〈VG,RG,BG〉 such that 〈VG,RG〉 is a la-
belled graph and BG is a perfectly matched binary relation on VG. An RB-cograph is
an RB-graph G where 〈VG,RG〉 is a cograph.

Definition 4.5 An alternating elementary cycle(æ-cycle) in a RB-graph is a sequence
of vertices x1, . . . , xn with n even, such that xi , x j for all i, j ∈ {1, . . . , n} with i ,
j, and we have x1Rx2Bx3Rx4 . . . xnBx1. A chord in an æ-cycle is an edge xiRx j for
i, j ∈ {1, . . . , n} that does not participate in the cycle. A chordless æ-cycle is an æ-cycle
without any chords. An RB-graph G is æ-acyclic if it has no chordless æ-cycle.

5 Multiplicative Flows

The basic idea of the correctness criterion for combinatorial flows is the distinction be-
tween multiplicative and additive behavior of flowboxes. We begin in this section with
the multiplicative part, which is based on Retoré’s work on handsome proof nets [26].

Let φ = 〈A, B,Bφ〉 be a flowbox, where Bφ is perfectly matched. Then we can as-
sociate to φ the RB-cograph G(φ) = 〈Vφ,Rφ,Bφ〉, where 〈Vφ,Rφ〉 is G(A ∨ B). Observe
that Vφ = V

G(A∨B) = bA ∨ Bc = bAc ] bBc, allowing us to use Bφ in the graph.

Definition 5.1 A flowbox φ = 〈A, B,Bφ〉 is pure if A and B are pure. A multiplicative
flow (or m-flow) is a pure flowbox φ = 〈A, B,Bφ〉, where Bφ is perfectly matched and
G(φ) is æ-acyclic, and we do not have both A ≡ t and B ≡ f.5

5 Observe that we do allow A ≡ t or B ≡ f, just not both at the same time.
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Remark 5.2 Note that for each flowbox φ with Bφ being perfectly matched, the graph
G(φ) is uniquely determined. However, the converse is not true. In particular, if A and
B are unit-free formulas and φ = 〈A, B,Bφ〉 and φ′ = 〈t, A ∨ B,Bφ〉, then G(φ) = G(φ′).

Proposition 5.3 Let A and B be unit-free formulas. Then φ = 〈A, B,Bφ〉 is an m-flow
iff φ′ = 〈t, A ∨ B,Bφ〉 is an m-flow.

Example 5.4 Below on the left are two flowboxes that are m-flows and that have the
same RB-cograph which is shown on the right below.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

When we compose two flowboxes φ and ψ with the operations ∧, ∨, ◦ defined in
Definition 3.3, then it is clear that the result is perfectly matched if φ and ψ are. From
the work of Retoré [26] it follows that also the property of being æ-acyclic is preserved.
However, the result does not need to be pure even if φ and ψ are (see Example 5.7
below). In particular, if we have m-flows φ = 〈t, B,Bφ〉 and ψ = 〈C,D,Bψ〉, where C is
unit-free, then φ ∨ ψ is not an m-flow because t ∨ C is not pure. However, we have the
following result:

Theorem 5.5 Let
A
D {ai↓,ai↑,s,mix}

B
be a derivation. If A and B are pure, then ~T(D)� is

an m-flow.

Proof Every flowbox occurring in T(D) is an m-flow, because D only contains in-
stances of ai↓, ai↑, s,mix. By construction, B~T(D)� is perfectly matched, and as already
observed above, no ae-cycle is introduced in G(~T(D)�). Since A and B are pure, it
follows that ~T(D)� is an m-flow. ut

We also have the converse, which is a consequence of sequentialization of linear
logic proof nets.

Theorem 5.6 Let φ = 〈A, B,Bφ〉 be an m-flow. Then there is a derivation
A
D {ai↓,ai↑,s,mix}

Bwith ~T(D)� = φ.

Proof The simplest way to prove this is using the sequentialization result of Retoré [26]
together with the correspondence between sequent calculus and deep inference [14].
A direct sequentialization from proof nets to deep inference derivations can be found
in [30]. ut

Example 5.7 Below we show on the left a derivation, whose translation to combina-
torial flows is shown in the middle. We can naively compose the lower half, but then
would obtain flowboxes that are not pure, as shown on the upper right below. Nonethe-
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less, the complete composition is pure and an m-flow (shown on the lower right).

(a ∧ ā) ∨
a ∧ a

ai↑
f

mix
t

 ∧ a

≡ a ∧ ā
ai↑

f
∨

t
ai↓

a ∨ ā

 ∧ a

s

a ∨

a ∧ ā
ai↑

f

aa ∧ ā

f

a ∧ ā

a

a

t

a ∨ ā

a ∧ ā

f

a ∨ (ā ∧ a)

a f

aa ∧ āa ∧ ā

((a ∧ ā) ∨ t) ∧ a

a ∨ f

y
(a ∧ ā) ∨ (a ∧ ā) ∧ a

a ∨ f

This example also shows a case of yanking.

6 Additive Flows

In the previous section we looked at flows generated by the rules ai↓, ai↑, s, mix. Now
we investigate the flows generated by the rules ac↓, ac↑, aw↓, aw↑, m. The main dif-
ference is that we do no longer demand that the relation of the flowbox is perfectly
matched, but that it is a function with certain properties.

A flowbox φ = 〈A, B,Bφ〉 is function-like if xBφy implies that either x ∈ bAc and
y ∈ bBc or x ∈ bBc and y ∈ bAc, and for every x ∈ bAc, there is a unique y with xBφy.
Then Bφ defines a function f ↓φ : bAc → bBc, and we write φ as 〈A, B, f ↓φ 〉.

Similarly, we say that φ is cofunction-like if if xBφy implies that either x ∈ bAc and
y ∈ bBc or x ∈ bBc and y ∈ bAc, and for every y ∈ bBc there is exactly one x ∈ bAc
with xBφy. In this case we interpret the function bBc → bAc defined by Bφ as function
f ↑φ : bBc → bAc, and we write φ as 〈A, B, f ↑φ 〉.

For specifying the desired properties of those functions, let us recall the notion of
skew fibration [18].

Definition 6.1 Let G and H be graphs. A graph homomorphism f : G → H is a
mapping f : VG → VH such that for every v,w ∈ VG, if vRGw then f (v)RH f (w), and for
every v ∈ VG we have `G(v) = `H ( f (v)). A skew fibration is a graph homomorphism
f : G � H where H is non-empty, and for every v ∈ VG and w ∈ VH with f (v)RHw,
there exists a vertex z in G with vRGz and ( f (z),w) < RH .

For graph homomorphisms f1 : G1 → H1 and f2 : G2 → H2 we can define their
horizontal compositions f1+ f2 : G1]G2 → H1]H2 and f1× f2 : G1 ./ G2 → H1 ./ H2,
acting componentwise on the vertex set VG1 ] VG2 .

Lemma 6.2 If f : G� H and g : I� J are skew fibrations, then so is f + g : G ]
H � I ] J . Furthermore, if either G1 , ∅ , G2 or G1 = ∅ = G2 then f × g : G ./
H � I ./ J is also a skew fibration.

Proof Immediate from the definition. ut
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Lemma 6.3 Let f : G � H1 ] H2 be a skew fibration. Then f = f1 + f2 for skew
fibrations f1 : G1 � H1 and f2 : G2 � H2 with G = G1 ] G2.

Proof Immediate from the definition. ut

Lemma 6.4 If f : G � H and g : H � I are skew fibrations and G, H , I are
cographs, then the composition f ◦ g : G� I is a skew fibration.

Proof See [19] or [28]. ut

Definition 6.5 An a↓-flow is a function-like flowbox φ = 〈A, B, f ↓φ 〉 where A and B are
pure and A 6≡ t and f ↓φ is a skew fibration f ↓φ : G(A) → G(B). Similarly, an a↑-flow is a
cofunction-like flowbox φ = 〈C,D, f ↑φ 〉 where C and D are pure and D 6≡ f and f ↑φ is a
skew fibration f ↑φ : G(D)→ G(C). We call a↓-flows and a↑-flows also additive flows.

Example 6.6 When drawing flowboxes that are a↓-flows or a↑-flows, we use purple
arrows to indicate the direction of the functions. Below are three examples. The first one
is an a↑-flow. The second one is an a↓-flow. The third example is not a skew fibration
because in the lower graph there is an edge between the b and the c, violating the skew
lifting.

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

When composing flowboxes that are additive flows, we are in a similar situation
as for multiplicative flows in the previous section. In the general case, the horizontal
composition of skew fibrations is not a skew fibration (see side condition in Lemma 6.2).
However, we have an analoguous result as for m-flows:

Theorem 6.7 Let
A
D {aw↓,ac↓,m}

B
be a derivation. If A and B are pure, then ~T(D)� is an

a↓-flow. Dually, if A and B are pure in
A
D {aw↑,ac↑,m}

B
then ~T(D)� is an a↑-flow.

Proof Every flowbox occurring in T(D) is an a↓-flow (resp. a↑-flow). We can conclude
by a similar argument as for Theorem 5.5. ut

As before, we also have the converse.

Theorem 6.8 Let φ = 〈A, B, f ↓φ 〉 be an a↓-flow. Then there is a derivation
A
D {aw↓,ac↓,m}

B
with ~T(D)� = φ. Dually, for every a↑-flow ψ we have

A
D {aw↑,ac↑,m}

B
with ~T(D)� = ψ.

Proof This follows from [19] together with [2], or more directly from [28]. ut
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a ∨ a a ∧ ā

a ∨ ā
f

(ā ∨ a) ∧ a

a ∨ f

(a ∨ a) ∧ (a ∧ ā)

a ∧ ā

f

(ā ∨ a) ∧ a

a ∨ f

Fig. 3: A simplification of the combinatorial flow in Figure 2 and its purification

7 Combinatorial Flows

Definition 7.1 A combinatorial flow is a preflow φ : A ` B where every flowbox that
occurs in φ is either a multiplicative flow or an additive flow.

We immediately have the following:

Theorem 7.2 LetD be a derivation in SKS. Then T(D) is a combinatorial flow.

We can simplify combinatorial flows by “executing” the operations in Definition 3.5.
More precisecly, a combinatorial flow φ : A ` B is a simplification of a ψ : A ` B if φ
is obtained from ψ by collapsing subflows in which all flowboxes have the same type
(m-flow, a↓-flow, or a↑-flow).

Note that the difference between the collapse (which is uniquely determined) and
a simplification (which is not uniquely determined) is that in the former everything is
simplified, wheras in the latter the property of being a combinatorial flow is preserved.
With this, we can state the converse of Theorem 7.2

Theorem 7.3 Let φ : A ` B be a combinatorial flow. Then there is a derivation
A
D SKS

Bsuch that φ is a simplification of T(D).

Proof This follows immediately from Theorems 5.6 and 6.8. ut

The combinatorial flow on the left in Figure 3 is a simplification of the one in Figure 2.

Corollary 7.4 Combinatorial flows are sound and complete for classical logic.

Corollary 7.5 Combinatorial flows form a proof system in the sense of Cook and
Reckhow [6].

Proof It can be checked in polynomial time if a preflow is a combinatorial flow. ut

Example 7.6 Figure 4 shows a series of combinatorial flows, where we apply “Cur-
rying”: flipping some premises to the conclusion or vice versa. Because blue wires can
be yanked, this is easily possible, and by Theorem 7.3 there is always a corresponding
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(b̄ ∨ a) ∧ (ā ∨ b̄)

b̄ ∨ b̄

(b̄ ∧ b̄) ∨ (b̄ ∧ b̄)

b̄ ∧ b̄

(b̄ ∧ a) ∨ (ā ∧ b̄)

→

b̄ ∨ a

(b̄ ∨ b̄) ∨ (b ∧ a)

(b̄ ∧ b̄) ∨ (b̄ ∧ b̄)

b̄ ∧ b̄

(b̄ ∧ a) ∨ (ā ∧ b̄) b ∧ a

→

b̄ ∨ a

(b̄ ∨ (b̄ ∧ b̄)) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄ (b̄ ∧ b̄) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄

(b̄ ∧ a) ∨ (ā ∧ b̄) b a

→

b̄ ∨ a

(b̄ ∨ (b̄ ∧ b̄)) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄ (b̄ ∧ b̄) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄

b a

ā ∨ b

ā ∨ b

ā ∨ b

ā ∧ b̄

→

b̄ā ∨ b

ā ∨ (b ∧ b)

((b̄ ∧ b̄) ∨ (b̄ ∧ b̄)) ∨ ((b ∨ b) ∧ a)

((b̄ ∨ b̄) ∧ b̄) ∨ (b ∧ a)

a

(ā ∧ b̄) ∨ (b ∧ a)

Fig. 4: Example of applying “Currying” to a combinatorial flow.

derivation. However, in the last combinatorial flow in that figure, there are two blue
bends that are connected by a purple edge, and that therefore cannot be yanked:

, vs. =

8 Purification

We introduced the notion of pure because the correctness criteria for additive and mul-
tiplicative flows do not work if the formulas are not pure. In the multiplicative case,
we do no longer have a canonical representation of an m-flow (see e.g. [1,17,23]) and
checking equivalence is PSPACE-complete [15]. In the additive case, the horizontal
composition can break the skew fibration property, when units are involved. This is the
reason for the side condition in Lemma 6.2. With the equivalence ≡, some units occur-
ring in formulas can be removed, but not all. And the presence of these units can block
further simplification in combinatorial flows.
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We have A ∧ f 6≡ f and A ∨ t 6≡ t because otherwise ≡ would change the number
of atoms in a formula, and therefore break Propositions 4.2 and 4.3. However, we have
the logical equivalences A ∧ f⇐⇒ f and A ∨ t⇐⇒ t. Using these equivalences, we can
remove all units from a combinatiorial flow, and we call this process purification.

Definition 8.1 The purification of a formula A, denoted as p(A) is defined to be the
normal form of the rewriting relation below:

A ∧ t A t ∧ A A A ∨ t t t ∨ A t
A ∨ f A f ∨ A A A ∧ f f f ∧ A f (6)

It is easy to see that this rewriting relation is terminating and confluent, and therefore
the purification of a formula is well-defined. The interesting observation is that this
rewriting relation can be extended from formulas to combinatorial flows.

Definition 8.2 A slice of a combinatorial flow φ : A ` B is a formula C such that
φ = φ1�φ2 for some combinatorial flows φ1 : A ` C1 and φ2 : C2 ` B with C1 ≡ C ≡ C2.
A combinatorial flow φ is pure if every slice of φ is pure.

Theorem 8.3 For every combinatorial flow φ : A ` B, there is a pure combinatorial
flow p(φ) : p(A) ` p(B).

Proof First, observe that every flowbox occurring in φ is pure, i.e., premise and con-
clusion can be written as a unit-free formula or a unit. If a slice (recall the eqivalences
in (5)) is not pure, then it must have a subformula of the shape A ∧ f or A ∨ t, which is
the consequence of the horizontal compositions of flowboxes. We can list all possible
cases and design a rewrite system that extends (6) to combinatorial flows. A list of these
cases can be found in Figure 5. Below are two representative cases:

f

C

ϕ 7
B

D

ψ  

f

C ∧ D

A

C

ϕ 7
B

f

ψ  

A ∧ B

B

f

ψ

(7)

Each step reduces the number of flowboxes in φ that have a unit as premise or conclu-
sion. Therefore the rewriting is terminating. Furthermore, the result is pure. ut

The combinatorial flow on the right in Figure 3 is a purification of the one on the left.

9 Combinatorial Flows and Combinatorial Proofs

Definition 9.1 A combinatorial proof [18] of a pure formula A is a skew fibration
f : H → G(A) from an æ-acyclic RB-cographH to the graph of A.6

6 In [18], the units t and f are treated like atoms in the translation to graphs, so that the restriction
to pure formulas was not needed. However, this would make composition difficult to define,
and for this reason in [19] combinatorial proofs have been restricted to the unit-free setting.
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f

C

ϕ 7
B

D

ψ  

f

C ∧ D

f

C

ϕ 7
t

D

ψ  

f

C ∧ D

f

C

ϕ 7
B

t

ψ  

f

C

f

C

ϕ 7
t

t

ψ  

f

C

f

t

ϕ 7
B

D

ψ  

f

D

f

t

ϕ 7
t

D

ψ  

f

D

A

C

ϕ 7
B

f

ψ  

A ∧ B

B

f

ψ

f

C

ϕ 7
B

f

ψ  

f

f

f

C

ϕ 7
t

f

ψ
not

possible

f

C

ϕ 7
f

f

ψ  

f

f

t

C

ϕ 7
B

f

ψ  

B

f

ψ

t

C

ϕ 7
t

f

ψ
not

possible

A

t

ϕ 7
B

f

ψ  

A ∧ B

B

f

ψ

f

t

ϕ 7
B

f

ψ  

f

f

f

t

ϕ 7
f

f

ψ  

f

f

t

t

ϕ 7
B

f

ψ  

B

f

ψ

f

t

ϕ 7
t

f

ψ
not

possible

t

t

ϕ 7
t

f

ψ
not

possible

A

f

ϕ 7
B

D

ψ  

A ∧ B

A

f

ϕ

A

f

ϕ 7
B

t

ψ  

A ∧ B

A

f

ϕ

f

t

ϕ 7
B

t

ψ  

f

t

∅

f

f

ϕ 7
B

D

ψ  

f

f

f

f

ϕ 7
B

f

ψ  

f

f

f

f

ϕ 7
B

t

ψ  

f

f

t

f

ϕ 7
B

D

ψ
not

possible

t

f

ϕ 7
B

t

ψ
not

possible

f

f

ϕ 7
f

D

ψ  

f

f

f

f

ϕ 7
f

t

ψ  

f

f

f

t

ϕ 7
t

t

ψ  

f

t

f

f

ϕ 7
t

D

ψ  

f

f

f

f

ϕ 7
t

f

ψ
not

possible

f

f

ϕ 7
t

t

ψ  

f

f

t

f

ϕ 7
t

D

ψ
not

possible

t

f

ϕ 7
t

f

ψ
not

possible

t

f

ϕ 7
t

t

ψ
not

possible

Fig. 5: Purification cases for conjunction. The cases for disjunction are dual.

Tranlated to the setting of this paper, a combinatorial proof is the composition φ�ψ
of an m-flow φ = 〈t,H,Bφ〉 and an a↓-flow ψ = 〈H, A, f ↓ψ 〉. In other words, combinatorial
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t

φ

HA ∨ HB

A ∨ B ∨ (C1 ∧C1) ∨ · · · ∨ (Cn ∧Cn)

ψ↓A 6 ψ↓BC

→

A

ψ↑A

HA

φ′

HB

ψ↓BC

B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (C
n
∧ C̄

n
)

B

Fig. 6: Translating combinatorial proofs with cuts into combinatorial flows.

proofs are a special case of combinatorial flows that make a global separation between
the multiplicative and the additive parts of a cut-free proof. In order to deal with cuts,
the notion of combinatorial proof has been extended to sequents in [19].

Definition 9.2 A combinatorial proof with cuts of a sequent Γ = A1, . . . , An of unit-
free formulas is a skew fibration f : H → G(A1∨· · ·∨An∨(C1∧C1)∨· · ·∨(Ck∧Ck)) from
an ae-acyclic RB-cographH to the graph of Γ,C1 ∧C1, . . . ,Ck ∧Ck, where C1, . . . ,Ck

are arbitrary unit-free formulas and are called the cut formulas of the proof.

These cuts can be simulated by an m-flow in combinatorial flows. More precisely,
assume we have a combinatorial proof with cuts for a sequent Γ = A, B, as shown
on the left in Figure 6. We have that H = HA ∨ HB and ψ = ψA 6 ψBC because of
Lemma 6.3. We can translate this into a combinatorial flow φ : A ` B, as shown on the
right in Figure 6. There, the m-flow φ′ exists by Proposition 5.3.

We are now going to show the converse, i.e., we will give a polynomial translation
from combinatorial flows to combinatorial proofs with cuts. For this, we have to be a bit
more careful with the units, as combinatorial proofs with cuts are only defined for unit-
free formulas. We let z0 be a fresh propositional variable, and we define the function
(·)o on pure formulas as follows: If A ≡ B for some unit-free formula B, then Ao = B. If
A ≡ t, then Ao = z0 ∨ z0. If A ≡ f, then Ao = z0 ∧ z0.

Now assume we have a combinatorial flow φ : A ` B, We can translate this induc-
tively into a combinatorial proof with cuts of the sequent Γ = Ao, Bo.

1. First, every m-flow, a↓-flow, and a↑-flow can be immediately translated into a com-
binatorial proof. For the cases 〈A, B,Bφ〉 and 〈A, B, f ↓ψ 〉 and 〈A, t, f ↑ψ 〉 these are
shown below. The others are similar.

Ā ∨ B

Ā ∨ B

t

Ā ∨ A

Ā ∨ B

t

z̄0 ∨ z0

z̄0 ∨ z0 ∨ Ā

t

2. If φ = φ1 7 φ2 with φ1 : A1 ` B1 and φ2 : A2 ` B2 then we have by induction
hypothesis combinatorial proofs with cuts of Γ1 = Ao

1, B
o
1 and Γ2 = Ao

2, B
o
2. By

the construction in [19], we get one with conclusion Γ = Ao
1, A

o
2, B

o
1 ∧ Bo

2 which is
equivalent to (A1 ∨ A2)o, (B1 ∧ B2)o. The case for φ = φ1 6 φ2 is similar.
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3. If φ = φ1�φ2 with φ1 : A ` D1 and φ2 : D2 ` B with D1 ≡ D2, we proceed similarly,
with the difference that we add a new cut formula Do

1. Note that G(Do
1) = G(Do

2)
and Do

1 ∧ Do
1 is added to the conclusion sequent.

10 Conclusion and Future Work

We have defined combinatorial flows as a graphical representation of classical proofs,
merging features from atomic flows and combinatorial proofs. Unlike atomic flows,
they allow to reconstruct a proof, and unlike combinatorial proofs they allow a more
flexible mixture of additive and multiplicative parts of a proof.

In future work, we would like to use combinatorial flows to define more flexible
normalization procedures. Observe that atomic flows allow local reductions [11] that
have to be proceeded by a global cycle removing step [13,32], and that combinatorial
proofs perform global cut reductions [16,19] similar to the sequent calculus. We hope
that with combinatorial flows we can merge the advantages of both, via a “semi-local”
normalization procedure that works on the level of flowboxes, similar to the purification
procedure that we presented in Section 8. In fact, note that this purification can be seen
as a normalization for weakening, and what remains to be done is a similar procedure
for contraction.
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