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Abstract. Hughes’ combinatorial proofs give canonical representations
for classical logic proofs. In this paper we characterize classical combi-
natorial proofs which also represent valid proofs for relevant logic with
and without the mingle axiom. Moreover, we extend our syntax in order
to represent combinatorial proofs for the more restrictive framework of
entailment logic.
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1 Introduction

Combinatorial proofs have been conceived by Hughes [11] as a way to write
proofs for classical propositional logic without syntax. Informally speaking, a
combinatorial proof consists of two parts: first, a purely linear part, and second,
a part that handles duplication and erasure. More formally, the first part is
a variant of a proof net of multiplicative linear logic (MLL), and the second
part is given by a skew fibration (or equivalently, a contraction-weakening map)
from the cograph of the conclusion of the MLL proof net to the cograph of the
conclusion of the whole proof. For the sake of a concise presentation, the MLL
proof net is given as a cograph together with a perfect matching on the vertices
of that graph. An important point is that in order to represent correct proofs,
the proof nets have to obey a connectedness- and an acyclicity-condition.

To give an example, we show here the combinatorial proof of Pierce’s law
ppaÑ bq Ñ aq Ñ a, which can be written in negation normal form (NNF) as
pā_ bq _ āq _ a:


 


 


pp ā _ b q ^ ā q _ a


 


 


ā
b ā a

(1)

On the left above, we have written the conclusion of the proof as formula, and
on the right as cograph, whose vertices are the atom occurrences of the formula,
and whose edges are depicted as regular (red) lines. The linear part of the proof
is given by the cograph determined by the four vertices and the regular (red)
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edge in the upper half of the diagram. The perfect matching is indicated by the
bold (blue) edges. Finally, the downward arrows describe the skew fibration. In
our example there is one atom in the conclusion (the a) that is the image of
two vertices, indicating that it is the subject of a contraction in the proof. Then
there is an atom (the b) that is not the image of any vertex above, indication
that it is coming from a weakening in the proof.

Relevance logics have been studied by philosophers [2,3] to investigate when
an implication is relevant, i.e., uses all its premises. In particular, in relevance
logic, the implication A Ñ pB Ñ Aq is rejected because the B is not used
to draw the conclusion A. In other words, we can no longer deduce A from
A^B. Put in proof theoretic terms, this corresponds to disallowing the weakening
rule in a proof system. Carrying this observation to our combinatorial proofs
mentioned above, this says that the skew fibration, that maps the linear part
to the conclusion, must be a relevant, i.e. surjective with respect of vertices and
edges of the cographs. The first contribution of this paper is to show that the
converse also holds. a classical combinatorial proof is a proof of relevance logic
if and only if its skew fibration is surjective.

The mingle axiom is in its original form A Ñ pA Ñ Aq [2, p.97]. In the
implication-negation fragment of relevant logic, it can be derived from the more
primitive form AÑ pB Ñ pB̄ Ñ Aqq (see also [2, p.148]), which is equivalent to
pA^Bq Ñ pA_Bq, which is known as mix in the linear logic community. When
mix is added to MLL, the connectedness-condition has to be dropped. This leads
to the second result of this paper: adding mingle to relevance logic corresponds
to dropping the connectedness condition from the combinatorial proofs.

Interestingly, Hughes’ original version of combinatorial proofs included mix
(i.e., there was no connectedness-condition). If weakening K Ñ A is present,
then mix is derivable, so that the presence or absence of mix does not have
an effect on provability. However, when weakening is absent, as it is the case
with many substructural logics, then mix/mingle has an impact on provability,
and for this reason, we present combinatorial proofs in their basic form without
mix, and follow the presentation in [17], using the notion of RB-cographs due to
Retoré [15].

Entailment logic is a further refinement of relevance logic, insisting not only
on the relevance of premises but also on their necessity (in the sense of the modal
logic S4)3. More precisely, the logic rejects the implication AÑ ppAÑ Aq Ñ Aq.
In terms of the sequent calculus, this means that the two sequents

Γ $ AÑ B and Γ,A $ B (2)

are only equivalent if all formulas in the context Γ are of shape C Ñ D for some
C and D. If we write AÑ B as Ā_B, then _ is not associative, as the rejected

3 We do not discuss the philosophical considerations leading to this logic. For this, the
reader is referred to the Book by Anderson and Belnap [2]. We take here the logic
as given and discuss its proofs.
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AÑ ppAÑ Aq Ñ Aq would be written as Ā_ ppA^ Āq _Aq, and the accepted
pAÑ Aq Ñ pAÑ Aq as pA^ Āq _ pĀ_ Aq. The consequence of this is that in
combinatorial proofs we can no longer use simple cographs to encode formulas,
as these identify formulas up to associativity and commutativity of ^ and _. We
solve this problem by putting weights on the edges in the graphs. This leads us
to our third contribution of this paper: combinatorial proofs for entailment logic.

Outline of the paper In this paper we study the implication-negation-fragment
of relevance logic. For this, we recall in Section 2 the corresponding sequent
calculi, following the presentation in [13] and [5]. Then, in Section 3 we introduce
another set of sequent calculi, working with formulas in NNF, and we show the
equivalence of the two presentations. The NNF presentation allows us to reuse
standard results from linear logic. In Sections 4 and 5, we introduce cographs and
skew fibrations, so that in section 6 we can finally define combinatorial proofs
for relevance logic with and without mingle. Then, in Sections 7–8 we extend
our construction to the logic of entailment.

2 Sequent Calculus, Part I

In this section we recall the sequent calculi for the implication-negation-fragment
of relevance logic (denoted by R)̃), of relevance logic with mingle (denoted by
RM)̃), of entailment logic (denoted by E)̃), and classical propositional logic
(denoted by CL)̃).

For this, we consider the class I of formulas (denoted by A,B, . . . ) generated
by a countable set A � ta, b, . . . u of propositional variables and the connectives
Ñ and p̄�q by the following grammar:

A,B ::� a | Ā | AÑ B (3)

A sequent Γ in I is a multiset of occurrence of formulas, written as list and
separated by commas: Γ � A1, . . . , An. We denote by Γ ) a sequent of formulas
in I of the form A1 Ñ B1, . . . , An Ñ Bn, and we write Γ for the sequent obtained
from Γ by negating all its formulas, i.e., if Γ � A1, . . . , An then Γ � Ā1, . . . , Ān.

In Figure 1 we give the standard sequent systems for the logics E)̃,R)̃,RM)̃,
and CL)̃ as given in [13,5].

Theorem 2.1 A formula is a theorem of the logic E)̃ (resp. R)̃,RM)̃, CL)̃)
iff it is derivable in the sequent calculus LE)̃, (resp. LR)̃, LRM)̃, LK)̃). [13]

Observe that the system LE)̃ in Figure 1 does contain the cut-rule, whereas
the other systems are cut-free. The reason is that due to the form of the EAX,
the cut cannot be eliminated.

In order to obtain cut-free systems for all four logics, we move to the negation
normal form in the next section.
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E)̃ LE)̃ AX,EAX,ÑE, ,C, cut

R)̃ LR)̃ AX,Ñ,Ñ, ,C

RM)̃ LRM)̃ AX,Ñ,Ñ, ,C,mAX

CL)̃ LK)̃ AX,Ñ,Ñ, ,C,W

����� AX
A, Ā

��������������� EAX
Ā, AÑ B,B

���� mAX
Γ, Γ̄

Γ,A
����  

Γ, ¯̄A

Γ,A B̄,∆
���������������Ñ
Γ,AÑ B,∆

Γ, Ā, B
�����������Ñ
Γ,AÑ B

Γ,A,A
�������� C
Γ,A

Γ ), Ā, B
�������������Ñ

E

Γ ), AÑ B

Γ
���� W
Γ,A

Γ,A Ā,∆
������������� cut

Γ,∆

Fig. 1. Rules for the standard sequent systems for the logics E)̃, R)̃, RM)̃, and CL)̃

3 Sequent Calculus, Part II

In this section we consider formulas in negation normal form (NNF), i.e., the
class L of formulas (also denoted by A,B, . . . ) generated by the countable set
A � ta, b, . . . u of propositional variables, their duals Ā � tā, b̄, . . . u, and the
binary connectives ^ and _, via the following grammar:

A,B ::� a | ā | A^B | A_B (4)

An atom is a formula a or ā with a P A. As before, a sequent Γ is a multiset of
formulas separated by comma. We define negation as a function on all formulas
in NNF via the De Morgan laws:

¯̄a � a A^B � Ā_ B̄ A_B � Ā^ B̄ (5)

There is a correspondence between the class I defined in the previous section
and the class L of formulas in NNF, defined via the two translations r�sL : I Ñ L
and r�sI : LÑ I:

rasL � a, rĀsL � rAsL, rAÑ BsL � rAsL _ rBsL (6)

and

rasI � a, rāsI � ā, rA_BsI � rAsI Ñ rBsI , rA^BsI � rAsI Ñ rBsI (7)

Proposition 3.1 If A is a formula in NNF, then rrAsIsL � A.

The proof is straightforward, but in general we do not have rrBsLsI � B for

formulas in I, since we can have arbitrary nestings of negation and r ¯̄BsL � rBsL.
For this reason, we use here the NNF notation, as it is more concise and carries
less redundancy.

We can use this correspondence to translate the sequent systems in Figure 1
into the NNF notation. We go one step further and give cut-free systems LE1,
LR1, LRM1, and LK. They are given in Figure 2, where we denote by Γ^ a sequent
of the form A1 ^ B1, . . . , An ^ Bn (i.e., all formulas in Γ^ are conjunctions).
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MLL ax,_,^

MLLmix ax,_,^,mix

MLLE ax,^,_E

LE1 ax,^,_E,C

LR1 ax,_,^,C

LRM1 ax,_,^,C,mix

LK ax,_,^,C,W

���� ax
a, ā

Γ^, A,B
�������������� _E
Γ^, A_B

Γ,A,B
����������� _
Γ,A_B

Γ,A,A
��������� C
Γ,A

Γ,A ∆,B
��������������� ^
Γ,∆,A^B

Γ
����� W
Γ,A

Γ ∆
������� mix
Γ,∆

Fig. 2. The cut-free sequent systems for formulas in NNF

Γ tpA_Bq ^ pC _Dqu
������������������������������ mÓ

Γ tpA_ Cq _ pB _Dqu

Γ tA_Au
������������� CÓ
Γ tAu

Γ ta_ au
����������� acÓ
Γ tau

Γ tBu
������������� WÓ

Γ tB _Au

Fig. 3. The deep rules for medial, contraction, atomic contraction and weakening.

That figure also defines the linear logic systems MLLE and MLL that we will need
in the course of this paper.

We make also use of the deep inference rules in Figure 3 (see also [10,6]),
where a context Γ t u is a sequent or a formula, where a hole t u takes the place
of an atom. We write Γ tAu when we replace the hole with a formula A.

If S is a sequent system and Γ a sequent, we write
S

Γ if Γ is derivable
in S. Moreover, if S is a set of inference rules with exactly one premise, we write

Γ 1
S
Γ whenever there is a derivation from Γ 1 to Γ using only rules in S.

Theorem 3.2 If Γ is a sequent in L, then

LE1Ytcutu
Γ ðñ

LE )̃
rΓ sI

Proof The proof follows the definitions of the two translations r�sI and r�sL.
In fact, C- and cut-rules are the same in the two systems and and Ñ-rule is

equivalent to _E-rule. Moreover, it s trivial to prove by induction that
LE1

A, Ā.
Finally:

���������������� EAX
Ā, AÑ B,B

ù

�

LE1
∥∥∥∥∥∥∥

rĀsL, rAsL

�

LE1
∥∥∥∥∥∥∥

rB̄sL, rBsL
���������������������������������� ^E
rĀsL, prAsL ^ rB̄sLq, rBsL

and

�

LE1
∥∥∥∥∥∥∥

Γ,A

�

LE1
∥∥∥∥∥∥∥

B,∆
��������������� ^E
Γ,A^B,∆

ù

�������������������������������� EAX
rAsI , rAsI Ñ rBsI , rBsI

�∥∥∥∥∥∥∥LE )̃
rAsI , rΓ sI

������������������������������������������������������� cut
rΓ sI , rAsI Ñ rBsI , rBsI

�∥∥∥∥∥∥∥LE )̃
rBsI , r∆sI

������������������������������������������������������������������ cut
rΓ sI , rAsI Ñ rBsI , r∆sI

[\
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One important property of the systems in Figure 2 is cut admissibility.

Theorem 3.3 (Cut admissibility) Let Γ be a sequent in L, and let S be one
of the systems MLL,MLLmix,MLLE, LE

1, LR1, LRM1, LK. Then

SYtcutu
Γ ðñ

S
Γ

Proof The proof is a standard cut permutation argument. For LK it can already
be found in [9] and for all other systems it is the same proof, observing that no
reduction step introduces a rule that is not present in the system. [\

The following lemma relates the mix-rule from linear logic to the mingle
axiom rule mAX:

Lemma 3.4 Let S be a sequent system, if Γ is a sequent in L then

SYtmAXu
F ðñ

SYtmixu
F

Proof First, mAX can be derived using mix:

��������������������������� mAX
A1, . . . , An, Ā1, . . . , Ān

ù

�
S
∥∥∥∥∥

A1, Ā1

�
S
∥∥∥∥∥

A2, Ā2
������������������ mix
A1, Ā1, A2, Ā2∥∥∥∥∥SYtmixu

A1, Ā1, . . . , An�1, Ān�1

�
S
∥∥∥∥∥

An, Ān
���������������������������������������� mix

A1, Ā1, . . . , An, Ān

Conversely, if Γ,∆ is the conclusion of a mix inference,

������ ax
a1, ā1

. . . ������� ax
an, ān

S

Γ

������������� ax
an�1, ān�1

. . . �������������� ax
an�m, ān�m

S

∆
������������������������������������������ mix

Γ,∆

it suffices to replace one axiom of the derivation of Γ and one axiom of the
derivation of ∆ by a single mAX, that is

������ ax
a2, ā2

. . . �������������������� ax
an�m�1, ān�m�1

���������������������� mAX
a1, ā1, an�m, ān�m

S

Γ,∆

[\

This is enough to show the equivalence between the systems in Figures 1
and 2.
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Theorem 3.5 If Γ is a sequent in L, then

LE1

Γ ðñ
LE )̃

rΓ sI
LR1

Γ ðñ
LR )̃

rΓ sI
LRM1

Γ ðñ
LRM )̃

rΓ sI
LK

Γ ðñ
LK )̃

rΓ sI

Proof This follows from Theorems 3.2 and 3.3 and Lemma 3.4, using the defi-
nitions of r�sI and r�sL. [\

Finally, the most important reason to use the systems in Figure 2 instead of
the ones in Figure 1 is the following decomposition theorem:

Theorem 3.6 If Γ is a sequent in L, then

LE1

Γ ðñ
MLLE

Γ 1
CÓ

Γ
LR1

Γ ðñ
MLL

Γ 1
CÓ

Γ
LRM1

Γ ðñ
MLLmix

Γ 1
CÓ

Γ
LK

Γ ðñ
MLL

Γ 1
CÓ,WÓ

Γ

Proof The proof is given by rules permutation. It suffices to consider all W- and
C-rules as their deep counterpart and move their instance as down as possible in
the derivation. Conversely, it suffices to move up all occurrences of CÓ and WÓ

until the context is shallow and then replace them by C and W instances. [\

4 Cographs

A graph G � xVG ,
G
"y is a set VG vertices and a set

G
" of edges, which are two-

element subsets of VG . We write v
G
"w for tv, wu P

G
", and we write v

G
�"w if

tv, wu R
G
". We omit the index/superscript G when it is clear from the context.

When drawing a graph we use v w for v"w. If v �"w and v � w we either
draw no edge or use v w.

A cograph G is a P4-free graph, i.e. a graph G with no u, v, y, z P V such that
their induced subgraph has the following shape:4

u v

y z

For two disjoint graphs G and H, we define their (disjoint) union G _ H and
their join G ^H as follows:

G _H � xVG Y VH ,
G
" Y

H
"y

G ^H � xVG Y VH ,
G
" Y

H
" Y ttu, vu | u P VG , v P VHuy

(8)

4 In the literature, this condition is also called Z-free or N-free.
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which can be visualized as follows:

G


...



H


...



G


...



H


...



We say that a graph is A-labeled if each vertex is marked with an atom in AYĀ.
We can associate to each formula F in L an A-labeled cograph JF K inductively:

JaK � 
a, JāK � 
ā, JA_BK � JAK_ JBK, JA^BK � JAK^ JBK

If Γ � A1, . . . , An is a sequent of formulas in L, we define JΓ K � JA1K_� � �_JAnK.
The interest in cographs comes from the following two well-known theorems

(see, e.g., [8,14]).

Theorem 4.1 A A-labeled graphs G is a cograph iff there is a formula F P L
such that G � JF K.

Theorem 4.2 JF K � JF 1K iff F and F 1 are equivalent modulo associativity and
commutativity of ^ and _.

5 Skew fibrations

Definition 5.1 Let G and H be graphs. A skew fibration f : G Ñ H is a map-
ping from VG to VH that preserves ":

– if u
G
"v then fpuq

H
"fpvq,

and that has the skew lifting property:

– if w
H
"fpvq then there is u P VG such that u

G
"v and w

H
�"fpuq.

A skew fibration f : G Ñ H is relevant if it is surjective on vertices and on ":

– for every w P VH there is a u P VG such that fpuq � w, and

– if w
H
"t then there are u, v P VG such that fpuq � w and fpvq � t and u

G
"v.

The purpose of skew fibrations in this setting is to give a combinatorial charac-
terization of derivations containing only contractions and weakenings.

Theorem 5.2 If Γ, Γ 1 are sequents in L then

1. Γ 1
CÓ,WÓ

Γ iff there is a skew fibration f : JΓ 1K Ñ JΓ K.

2. Γ 1
CÓ

Γ iff there is a relevant skew fibration f : JΓ 1K Ñ JΓ K.



On Combinatorial Proofs for Logics of Relevance and Entailment 9

Proof The first statement has been proved independently in [12] and in [16].
The proof of the second statement is similar, but relevant condition rules

out weakening. Let Γ 1 � Γ0, Γ1, . . . , Γn � Γ such that
ΓitAi _Aiu

����������������� CÓ
Γi�1 � ΓitAiu

. By

induction over the size of Ai, there is a relevant skew fibration fi : Γi Ñ Γi�1

for each i P t0, . . . n� 1u and the composition of such fi is still a relevant skew
fibration. Conversely, in case of f a relevant skew fibration, the lifting property
becomes the following:

– if w
H
"fpvq then there is u P VG such that u

G
"v and fpuq � w.

which, by induction over Γ , allows to prove that:

– if JΓ K � 
a then JΓ 1K � 
a _ � � � _ 
a;
– if JΓ K � G _H then JΓ 1K � G1 _H1 with fpG1q � G and fpH1q � H;
– if JΓ K � G ^H then either JΓ 1K � G1 ^H1 with fpG1q � G and fpH1q � H,

or JΓ 1K � pG11 ^H1
1q _ � � � _ pG1n ^H1

nq with fpG1iq � G and fpH1
iq � H for

each i P t1, . . . , nu.

These decompositions guide the definition of a derivation Γ 1
CÓ

Γ . [\

6 RB-cographs and combinatorial proofs

In this section we finally define combinatorial proofs. For this we use Retoré’s
RB-cographs [15]:

Definition 6.1 ([15]) An RB-cograph is a tuple G � xVG ,
G
",

G
Oy where GR �

xVG ,
G
"y is a cograph and

G
O a irreflexive, symmetric binary relation such that

for every v P VG there is a unique w P VG with v
G
Ow.

As done in (1) in the introduction, we use v w for v"w, and v w for vOw
when drawing an RB-cograph.

Definition 6.2 ([15]) If u and v are two vertices of a RB-cograph, an al-
ternating elementary path (æ-path) from x0 to xn is a sequence of pairwise
disjoint vertices x0, . . . , xn P V such that either x0"x1Ox2"x3Ox4 � � �xn or
x0Ox1"x2Ox3"x4 � � �xn. An æ-cycle is an æ-path of even length with x0 �
xn. A chord of æ-path x0, . . . , xn is an edge xi"xj with i� 1   j. The æ-path
is chordless if it has no chord. A RB-cograph is æ-connected if there is a chord-
less æ-path between each pair of vertices G and it is æ-acyclic if there are no
chordless æ-cycle.

Theorem 6.3 ([15]) If Γ is a sequent over L then

1.
MLL

Γ ðñ there is an æ-connected, æ-acyclic RB-cograph G with GR � JΓ K

2.
MLLmix

Γ ðñ there is an æ-acyclic RB-cograph G with GR � JΓ K
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We say that a map f from an RB-cograph C to a A-labeled cograph is axiom

preserving if for all u, v with u
C
Ov we have that fpuq and fpvq are labeled by

two dual atoms.

Definition 6.4 Let Γ be a sequent over L.

1. A combinatorial LK-proof of Γ is an axiom-preserving skew fibration f : C Ñ
JΓ K where C is an æ-connected, æ-acyclic RB-cograph.

2. A combinatorial LR1-proof of Γ is an is an axiom-preserving relevant skew
fibration f : C Ñ JΓ K where C is an æ-connected, æ-acyclic RB-cograph.

3. Finally, a combinatorial LRM1-proof of Γ is an is an axiom-preserving rele-
vant skew fibration f : C Ñ JΓ K where C is an æ-acyclic RB-cograph.

Theorem 6.5 Let Γ be a sequent over L, and let S P tLR1, LRM1, LKu. Then

S
Γ ðñ there is a combinatorial S-proof of Γ .

Proof This follows from Theorems 3.6, 5.2 and 6.3. For LK this has already been
shown in [11,12,16,17]. [\

Below are a combinatorial LR1-proof (on the left) and a combinatorial LRM1-
proof (on the right):


 


 



 


ppp ā ^ b̄ q _ b q ^ ā q _ a


 


 



 


pp ā _ b _ b̄ q ^ ā q _ a

Theorem 6.6 Let Γ be a sequent and G a graph together with a perfect match-
ing, and let f be a map from G to JΓ K. It can be decided in polynomial time in
|VG |�|Γ | whether f : G Ñ JΓ K is a combinatorial LR1-proof (resp. a combinatorial
LRM1-proof).

Proof All necessary properties can be checked in polynomial time. [\

7 Sequent Calculus, Part III

In the remainder of the paper, we extend our results to the entailment logic E)̃.
The reason why we need a separate treatment is due to some intrinsic technical
drawbacks occurring in the LE1 sequent calculus. The first is that commas used
to separate formulas in a sequent can not be interpreted as disjunction, as we
usually do in classical logic. Using the display calculi [4] terminology, in LE1 the
comma is extensional while _ and ^ are intensional. Moreover, ^ and _ are not
associative and this give birth to unusual behaviors. For example pA_Aq_pĀ^Āq
is provable in LE1 while A_ pA_ pĀ^ Āqq is not.
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MLL
E ax,^

E,_



E

LE
 ax,^

E,_



E,C



E

���� ax
a, ā

Γ,An Bm,∆
������������������ ^



EΓ,An ^Bm,∆

Γ^, An, Bm
����������������� _



EΓ^, An _Bm

Γ,An
������ C
EΓ,A

Fig. 4. The cut-free systems MLL
E and LE


We first introduce the class of entailed formulas E which are generated by a
countable set A � ta, b, . . . u of propositional variables and the following gram-
mar:

A,B ::� a | ā | A^B | A_B |An (9)

where n ¡ 0. Moreover, we consider the sequents Γ tAn�1u and Γ tA,Anu to be
equal. In other words, An has to be thought of as an abbreviation for the sequent
A, . . . , A (n copies of A) that is allowed to occur as a subformula in a formula.
We define the sequent systems MLL
E and LE
 on entailed formulas given by the
rules in Figure 4.

Theorem 7.1 If Γ is a sequent over L then

LE1

Γ ðñ
LE


Γ

Proof It suffices to remark that LE
 rules behave as LE1 rules on standard NNF-
formulas. [\

Let CÓE be the deep inference rule
F tAnu
�������� CÓEF tAu

. Then we have a result similar
to Theorem 3.6.

Theorem 7.2 If F is a formula in E then

LE


F ðñ
MLL
E

F 1
CÓ

E

Γ

Proof By rule permutations, similarly to the proof of Theorem 3.6. [\

8 Weighted cographs and fibrations

Definition 8.1 A weighted graph G � xVG ,
G
", δy is a given by graph xVG ,

G
"y

together with a weight function δ : VG�VG Ñ N such that if u
G
"v then δpu, vq ¡ 0

and δpu, uq � 0.

We use the following notations: we write u
G
"kv iff u

G
"v and δpu, vq � k, and

we write u
G
!kv iff u

G
�"v and δpu, vq � k. When drawing a graph we use v wk

for v"kw and we use v wk for v!kw. If v!0w we often draw no edges.

Definition 8.2 A weighted cograph is a weighted graph such that:

1. the graphs xVG ,
G
"iy and xVG ,

G
!iy are Z-free for all i � 0;
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2. for all u, v, w P VG , and any n,m, k, l, h P N, with n,m, k being pairwise
distinct and h ¡ 0, the following configurations are forbidden:

w

u v
n n
n

w

u v
n m

k

w

u v
n m

l

w

u v
n m

l

w

u v
n m

k

w

u v
h h
h

3. for all u, v, w P VG with

w

u v
n n
m

or
w

u v
n n
m

or
w

u v
n n
m

or
w

u v
n n
m

either n � 0 or m � 0 or n ¡ m.

Remark 8.3 A cograph is a weighted cograph G with δ : VG � VG Ñ t0, 1u.

We define the juxtaposition, graded union and graded join operations:

G �H � xVG Y VH ,
G
" Y

H
" , δG Y δH Y δ0y

G _H � xVG Y VH ,
G
" Y

H
" , δG Y δH Y δ!y

G ^H � xVG Y VH ,
G
" Y

H
" Y ttu, vu | u P G, v P Hu , δG Y δH Y δ"y

where δ0 is the weight function which assigns to each pu, vq P VG�VHYVH�VG
the weight 0, while δ" (resp. δ!) is the weight function which assigns to each

pu, vq P VG�VHYVH�VG the weight k � 1�maxtδpw, zq | w
G
"z or w

H
"zu (re-

spectively k � 1�maxtδpw, zq | w
G
�"z or w

H
�"zu). We represent these operations

as follows:

G


...



H


...



0

0
0

0

0
00

0
0

G


...



H


...



k

k
k

k

k
kk

k
k

G


...



H


...



k

k
k

k

k
kk

k
k

We associate to each entailed formula F (sequent Γ ) a graded relation web:

JJaKK � 
a, JJāKK � 
ā, JJA_BKK � JJAKK_ JJBKK,

JJA^BKK � JJAKK^ JJBKK, JJA,BKK � JJAKK � JJBKK

Two weighted graphs G and H are isomorphic (denoted G � H) if there is
a bijection φ between VG and VH which preserves edges and weights order, that

is u
G
"v iff φpuq

H
"φpvq, and δpu, vq ¡ δpu1, v1q iff δpφpuq, φpvqq ¡ δpφpu1q, φpv1qq.

Then Theorem 4.1 can be extended to the following:

Theorem 8.4 A A-labeled weighted graph G is a weighted cograph iff there is
a sequent Γ of entailed formulas such that G � JJΓ KK.
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Proof The proof is similar to the one of Theorem 4.1. However, the condition
G � JJΓ KK (instead of G � JJΓ KK) is due to the existence of weighted cographs not
of the form JJΓ KK. By means of example take a b2 � JJa^ bKK � a b1 . [\

Definition 8.5 A weighted skew fibration f : G Ñ H is a skew fibration between
weighted graphs that preserves the weights.

Note that this means in particular that fpuq � fpvq implies that δpu, vq � 0.

Theorem 8.6 Let Γ and Γ 1 be sequents over E. Then Γ 1
CÓ

E

Γ iff there is a
weighted relevant skew fibration f : JJΓ 1KK Ñ JJΓ KK.

Proof The proof is similar to the one for (non-weighted) relevant skew fibrations.
First, let Γ 1 � Γ0, Γ1, . . . , Γn � Γ be a sequence of sequents such that

ΓitAi, Aiu
����������������� CÓEΓi�1 � ΓitAiu

.

By definition of juxtaposition, join and union cograph operations we have that
fi : JJΓiKK � JJΓi�1KK is a relevant skew fibration and preserves " and weights.
Then also f � fn�1 � � � � � f0 is a weighted relevant skew fibration.

The converse follows by remarking that fpuq � fpvq iff u!0v. [\

9 Weighted RB-cographs

Definition 9.1 A weighted RB-cograph is a tuple G � xVG ,
G
", δG ,

G
Oy where:

– GRδ � xVG ,
G
", δGy is a weighted cograph;

–
G
O is a perfect matching on VG ;

A weighted RB-cograph G � xVG ,
G
", δG ,

G
Oy is æ-connected (æ-acyclic) if the

RB-cograph GRB � xVG ,
G
",

G
Oy is an æ-connected (æ-acyclic) RB-cograph. A

weighted RB-cograph is entailed if it is æ-connected, æ-acyclic, and satisfies the
following condition:

– if a, b, c P V such that a!mb for m ¡ 0, and c!na and c!nb, with n ¡ m
or n � 0, then there is d P V such that

a b

c dk

n nn n

m

Theorem 9.2 If Γ is a sequent of entailed formulas then

MLL
E
Γ ðñ there is an entailed weighted RB-cograph G with GRδ � JJΓ KK

Proof The proof piggybacks on Retoré’s sequentialization proof [15]. Each proof
in MLLE induces the construction of an entailed weighted cograph G by the
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���������������������������������� JJaxKK
xJJaKK � JJāKK | O � tta, āuuy

xJJΓ^KK � JJAKK � JJBKK | Oy
����������������������������������� JJ_


EKK
xJJΓ^KK � pJJAKK_ JJBKKq | Oy

xJJΓ KK � JJAKK |
Γ,A
O y xJJBKK � JJ∆KK |

B,∆
O y

���������������������������������������������������� JJ^

EKK

xJJΓ KK � pJJAKK^ JJBKKq � JJ∆KK |
Γ,A
O Y

B,∆
O y

Fig. 5. Construction rules for entailed weighted RB-cographs.

operations shown in Figure 5. In fact, each of these operations preserves æ-
connectedness, æ-acyclicity and entailment conditions.

Conversely, let Γ be the sequent such that JJΓ KK � GRδ and let FΓ be the
formula in L obtained by substituting each comma occurring in Γ by a _. By
Theorem 6.3 we have derivation πMLL of FΓ in MLL. We construct a derivation
πLE of Γ in MLL
E by induction over the rules in πMLL:

– If the last rule in πL is an ax-rule, then the last rule in π
LE is a ax-rule;

– If the last rule in πL is an _-rule of the form
Γ,A,B
���������� _
Γ,A_B

, then δpa, bq �

δpa1, b1q for all a, a1 P VJJAKK and b, b1 P VJJBKK. If δpu, vq � 0 we skip this rule
inference in the construction of πLE (the _ introduced by this rule in FΓ is
a comma in Γ ). Otherwise, the last rule in π
LE is a _


E-rule. In fact, for each
c P VJJΓ KK by entailment condition there are d P VJJΓ KK such that c"d; that is
Γ � Γ^.

– If the last rule in πL is an ^-rule, then the last rule in π
LE is a ^

E-rule. [\

Definition 9.3 A combinatorial LE1-proof of a sequent Γ in L is given by an
axiom-preserving weighted relevant skew fibration f : CRδ Ñ JJΓ KK where C is an
entailed weighted RB-cograph.

Theorem 9.4 Let Γ be a sequent in L then
LE1

Γ ðñ there is a combinatorial LE1-proof f : CRδ Ñ JJΓ KK

Proof This follows from Theorems 7.1, 7.2, 8.6 and 9.2. [\

Below is an example of a combinatorial LE1-proof. On the left the conclusion
is shown as sequent, and on the right as weighted cograph.


 


 



 
 
 


a _ c , c̄ ^ b̄ , p ā ^ ā q ^ b

1
1

0 1

1

2
2


 


 



 
 
 


a b̄ ā b
c c̄ ā

1
1

0 1

1

2
2

1 1 1
2

2

Theorem 9.5 Let Γ be a sequent and G a graph together with a perfect match-
ing and a weight function on its edges, and let f be a map from G to JJΓ KK.
It can be decided in polynomial time in |VG | � |Γ | whether f : G Ñ JJΓ KK is a
combinatorial LE1-proof.
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Proof All necessary properties (forbidden edges configurations for G being a
weighted cograph, æ-connectedness and æ-acyclicity, and f being a weighted
relevant skew fibration can be checked in polynomial time. [\

10 Conclusion

In this paper we presented combinatorial proofs for entailment logic E)̃, classical
relevant logics R)̃ and classical relevant logic with mingle RM)̃. In some sense,
combinatorial proof for entailment logic can be considered as a case study for
logics with commutative but not associative connectives.

In fact, this paper can be seen as a small step in a larger research project
showing that combinatorial proofs are a uniform, modular and bureaucratic-
free way of representing proofs for a large class of logics. Apart from the logics
studied in this paper, this goal has been achieved for multiplicative linear logic
with and without mix in [15], for classical propositional logic in [11,12,17], and
for intuitionistic propositional logic in [?]. For first-order logic, modal logics, and
larger fragments of linear logic, this is work in progress.

A necessary condition for a logic to have combinatorial proofs seems to be the
ability to separate the multiplicative (linear) fragment from the additive (con-
traction+weakening) fragment. This can happen inside some form of deep infer-
ence proof system [6,10], and is realized in this paper in Theorems 3.6 and 7.2.

A crucial condition that combinatorial proofs should obey, in order to be
called combinatorial proofs for a chosen logic, is that all combinatorial properties
needed for correctness of a given proof object can be checked in polynomial time
with respect to its size. Then combinatorial proofs form a proof system (in the
sense of Cook and Reckhow [7]) for the chosen logic. The combinatorial proofs
we give in this paper have this property.

Thanks to their combinatorial (or bureaucracy-free) nature, combinatorial
proofs allow us to capture a less coarser notion of proof identity with respect to
the one given by syntactic formalisms like sequent calculus and analytic tableaux.
Following the work in [12,1,?] we put forward the following notion of proof
identity:

Two proofs are the same iff they have the same combinatorial proof.
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