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ON NESTED SEQUENTS FOR CONSTRUCTIVE MODAL LOGICS

RYUTA ARISAKA, ANUPAM DAS, AND LUTZ STRASSBURGER

INRIA, 1 rue Honoré d’Estienne d’Orves,, Campus de l’École Polytechnique, Bâtiment Alan Turing,
91120 Palaiseau, France

Abstract. We present deductive systems for various modal logics that can be obtained
from the constructive variant of the normal modal logic CK by adding combinations of the
axioms d, t, b, 4, and 5. This includes the constructive variants of the standard modal
logics K4, S4, and S5. We use for our presentation the formalism of nested sequents and
give a syntactic proof of cut elimination.

1. Introduction

The modal logic K is obtained from classical propositional logic by incorporating two unary
operators, or modalities, � and ♦, and adding the k-axiom, �(A ⊃ B) ⊃ (�A ⊃ �B), to
dictate the interaction between the modalities and propositional connectives. The behavior
of the ♦ modality is then determined by enforcing that it is the De Morgan dual of �. Along
with this axiom there is the necessitation rule, saying that if A is a theorem of K then so
is �A. Informally, � is often interpreted as “necessarily” and ♦ as “possibly”. Notice that
interaction with other propositional connectives is determined by the adequacy of {⊃,⊥}
in classical logic.

In the intuitionistic setting, however, one must define the behavior of � and ♦ indepen-
dently, in the absence of De Morgan duality. Consequently, it is not enough to just add the
standard k-axiom, which makes no mention of the ♦-modality, and so some classical conse-
quences of k must be added to formulate an intuitionistic version of K. To this end there
seems to be no canonical choice, and many different intuitionistic versions of K have been
proposed, e.g., [Fit48, Pra65, Ser84, PS86, Sim94, BdP00, PD01] (for a survey see [Sim94]).
However, in the current literature, two variants prevail; the first, known as intuitionistic K,
adds the following five axioms, along with the necessitation rule, to intuitionistic proposi-
tional logic:

k1 : �(A⊃B)⊃ (�A⊃ �B)
k2 : �(A⊃B)⊃ (♦A⊃ ♦B)

k3 : ♦(A ∨B)⊃ (♦A ∨ ♦B)
k4 : (♦A⊃ �B)⊃ �(A⊃B)
k5 : ♦⊥⊃⊥

(1.1)
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It was originally proposed in [Ser84, PS86] and studied in detail in [Sim94]; more recent
work can be found in [GS10, Str13, MS14a].

The second variant, known as constructive K, includes only k1 and k2, not k3, k4, k5.
This choice of axioms dates back to [Pra65]1, and its proof theory was investigated, for
example, in [BdP00, HP07, MS11], while the semantics of it and some extensions was
studied in [FM97] and [Koj12].

To gain intuition about the difference between the two variants, let us have a look at
their standard Kripke semantics. A model of intuitionistic modal logic is described by a
4-tuple (W,≤, R, I) with

• a non-empty set of possible worlds W , preordered by ≤.
• an accessibility relation R ⊆ W ×W satisfying:

(i) For any w, v, v′ ∈ W , if wRv and v ≤ v′, there exists a w′ ∈ W such that w ≤ w′

and w′Rv′.
(ii) For any w,w′, v ∈ W , if w ≤ w′ and wRv, there exists a v′ ∈ W such that w′Rv′

and v ≤ v′.
• a function I : W → 2A, where A = {a, b, c, . . .} denotes the set of propositional letters,
such that for any w,w′ ∈ W , if w ≤ w′ then I(w) ⊆ I(w′).

Note that (i) and (ii) ensure a form of monotonicity of R over ≤. In contrast, a model of
constructive modal logic decouples the accessibility relation R from ≤. It assumes a set of
‘fallible’ worlds ⊥̇ as a subset of W ; such that ⊥̇ is closed under ≤ and R, i.e. whenever
w ∈ ⊥̇ and wRw1 or w ≤ w1 we also have w1 ∈ ⊥̇. This is much weaker a condition on R
than (i) and (ii). Also the definition of the forcing relation |= shows subtle differences. For
the atoms, the binary connectives and the �-modality, the intuitionistic and constructive
semantics definition coincide:

• w |= a iff a ∈ I(w).
• w |= A ∧B iff w |= A and w |= B.
• w |= A ∨B iff w |= A or w |= B.
• w |= A ⊃ B iff ∀w′ ∈ W. w ≤ w′ and w′ |= A imply w′ |= B.
• w |= 2A iff ∀w′, v′ ∈ W. w ≤ w′ and w′Rv′ imply v′ |= A.

In the intuitionistic case, forcing for ♦ and ⊥ is defined as follows:

• w |= 3A iff ∃v ∈ W. wRv and v |= A.
• w 6|= ⊥.

Whereas in the constructive case we have:

• w |= 3A iff ∀w′ ∈ W. if w ≤ w′ then ∃v′ ∈ W. w′Rv′ and v′ |= A.

• w |= ⊥ iff w ∈ ⊥̇.

• w |= A if w ∈ ⊥̇.

We can now see that there is a countermodel to each of k3, k4, k5 in the constructive setting:

• k3: W = {w0, w1, u0, v1}, w0 ≤ w1, w0Ru0, w1Rv1, I(w0) = I(w1) = ∅,
I(u0) = a1, I(v1) = a2. We have w0 |= ♦(a1 ∨ a2) and w0 6|= ♦a1 ∨ ♦a2.

• k4: W = {w0, w1, u0, u1}, w0 ≤ w1, u0 ≤ u1, w0Ru0, I(w0) = I(w1) = ∅, I(u0) = {a2}, I(u1) =
{a1, a2}. We have w0 |= ♦a1 ⊃ �a2 and w0 6|= �(a1 ⊃ a2).

• k5: W = {w0, u0}, w0Ru0, I(w0) = ∅, u0 ∈ ⊥̇. We have w0 |= ♦⊥ and w0 6|= ⊥.

1We point out that some versions of K intermediate to these two variants have also been considered, for
example the variant with k1, k2, and k5 in [Wij90].
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Figure 1. The constructive “modal cube”

Notice that the countermodels for k3 and k4 could not exist in the presence of (i) and (ii)

above, and the countermodel for k5 relies on the availability of the set ⊥̇ of fallible worlds.
We refer the reader to [MS11] for a more thorough semantic analysis of the differences

between intuitionistic K and constructive K.
This work is concerned with the proof theory of constructive K, denoted CK and its

various extensions with other common modal axioms. As for the classical and intuitionistic
variants, we consider the five axioms below:

d : �A⊃ ♦A
t : (A⊃ ♦A) ∧ (�A⊃A)
b : (A⊃ �♦A) ∧ (♦ � A⊃A)

4 : (♦♦A⊃ ♦A) ∧ (�A⊃ � � A)
5 : (♦A⊃ �♦A) ∧ (♦ � A⊃ �A)

(1.2)

A priori, this gives us 32 different logics, but as in classical (or intuitionistic) modal logic
some of them coincide, so that we obtain only 15 distinct logics.2 These are depicted in
Figure 1, where we use the same names as those standard in the classical setting [Gar08],
prefixed by ‘C’.

While the proof theory of the intuitionistic version of this cube has been well-studied in
labeled systems [Sim94] and non-labeled systems [GS10, Str13, MS14a], there is surprisingly
little work on the constructive “modal cube”. In fact, to our knowledge, only the logics CK,
CT, CK4, and CS4 have received proof theoretic treatment so far, e.g. in [BdP00, HP07,
MS11].

In this work we attempt to give a unified cut-elimination procedure for all logics in
Figure 1, using the framework of nested sequents [Kas94, GPT09, Brü09, Str13, Fit14], a
generalization of Gentzen’s sequent calculus which allows sequents to occur within sequents.
This approach has previously been successful for the classical modal cube in [Brü09] and the
intuitionistic modal cube in [Str13] but, perhaps surprisingly, the step from intuitionistic
to constructive appears more involved than the one from classical to intuitionistic.

This is also the reason why, in this paper, we consider only the logics in the ‘cube’. We
would like to compare the intuitionistic and constructive cases from the point of view of
cut-elimination. Whenever possible, we aim to point out the differences to the arguments
for intuitionistic systems presented in [Str13].

2That there are at least 15 is inherited from the classical setting (or similarly the intuitionistic setting),
and verifying that the classical equivalences hold is by inspection of the classical proofs.
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While the cut-elimination proofs in [Brü09] and [Str13] are markedly similar, we seem
to require a different method in the constructive setting. The reasons for this are that
certain formulations of some logical rules are no longer sound, and that we need an explicit
contraction rule, along with other structural rules that further complicate the process of
cut-elimination.

Nonetheless we manage to obtain cut-elimination for the logics CK, CK4, CK45, CD,
CD4, CD45, CT, CS4, and CS5, and we conjecture that our systems admit cut for all logics
in the cube.

We are not aware of a similar uniform treatment of constructive modal logics within
other formalisms. However, in hindsight it is straightforward to translate our results into
prefixed tableaux, using [Fit12], or into a tree-labeled sequent calculus.

We point out an interesting observation that the b-axiom entails k3 and k5. While this
is likely already known to many in the community we could not find this result stated in
the literature, and so it is pertinent to raise it here. This arguably questions the “construc-
tiveness” of logics including b, and so the inclusion of such logics in the cube itself, but such
considerations are beyond the scope of this work.3

Several attempts to deal with the proof theory of constructive modal logic have appeared
previously. However, the fundamental data structures of such calculi all seem to be special
cases of nested sequents. For example, the 2-sequents of [Mas92, Mas93] are a form of nested
sequent where no tree-branching is allowed. It is not clear how the 2-sequent approach, while
successful for deontic logic, could be adapted for the various constructive logics, or even CK,
as pointed out by Wansing in [Wan94]. Also the sequents of [MS11, MS14b] can be seen as
a special case of nested sequents, also where no tree-branching is allowed, but constituting
a richer data structure than 2-sequents because of the inclusion of a ‘focus’.

Regarding applications of the family of the constructive modal logics, the extended
Curry-Howard correspondence (which, for modal logics, is a relatively recent investigation)
has been studied for CS4 [AMdPR01, MS14b]. The constructive 2 operator here captures
staged computation [DP96, aBMTS99], and such logics are also used for the study of con-
texts [MdP05, MS14b]. We also point out that there are many logics of interest that are
proper extensions of CK but not of intuitionistic K, e.g. CS4 and PLL; a more detailed
discussion of such logics can be found in [FM97].

2. Preliminaries on Nested Sequents

In order to present a nested sequent system for CK, we first need to define the notion of
a nested sequent structure. For this, we recall the basic notions from [Str13], with slight
modifications in notation, tailored to the current setting. Let a, b, c, . . . denote proposi-
tional variables and define formulas A,B,C, . . . of constructive modal logic by the following
grammar:

A ::= a | ⊥ | (A ∧A) | (A ∨A) | (A⊃A) | �A | ♦A

As shorthand we write ⊤ for ⊥⊃⊥ and we omit parentheses whenever it is not ambiguous.
A (nested) sequent is a tree whose nodes are multisets of formulas tagged with a po-

larity. There are two polarities, input (intuitively as if on the left of the turnstile in the
conventional sequent calculus), denoted by a • superscript, and output (intuitively as if on

3One might argue that this observation is the reason behind Prawitz’ statement [Pra65] on S5 being
inherently non-constructive. However, Prawitz does not explicitly mention k3 and k5.
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the right of the turnstile in the conventional sequent calculus), denoted by a ◦ superscript.
Formally we define LHS sequents, denoted Φ, and RHS sequents, denoted Ψ, as follows,

Φ ::= ∅ | A• | [Φ] | Φ,Φ Ψ ::= A◦ | [Φ,Ψ] (2.1)

and a full sequent is a structure of the form Φ,Ψ. We assume that associativity and com-
mutativity of the comma ‘,’ is implicit in our systems, and that ∅ acts as its unit.

This definition entails that exactly one formula in a full sequent has output polarity, and
all others have input polarity. We use capital Greek letters Γ, ∆,Σ, . . . to denote arbitrary
sequents, LHS, RHS or full, and may decorate them with a • or ◦ superscript to indicate
that they are LHS or RHS, respectively.

The corresponding formula of a sequent is defined inductively as follows,

fm(A•) = fm(A◦) = A , fm([Φ]) = ♦fm(Φ) , fm([Φ,Ψ]) = �(fm(Φ,Ψ))

fm(∅) = ⊤ , fm(Φ1,Φ2) = fm(Φ1) ∧ fm(Φ2) , fm(Φ,Ψ) = fm(Φ)⊃ fm(Ψ)

A context, denoted by Γ{ }, is a sequent with a hole { } taking the place of a subsequent
(or, equivalently, a formula); Γ{∆} is the sequent obtained from Γ{ } by replacing the
occurrence of { } by ∆. Note that, for this to form a full sequent, Γ{ } and ∆ must have
the correct format. We distinguish two kinds of contexts: an output context is one that
results in a full sequent when its hole is filled with a RHS sequent, and an input context
analogously for a LHS sequent. This is clarified by the following example, taken from [Str13].

Example 2.1. Let Γ1{ } = C•, [{ }, [B•, C• ] ] and Γ2{ } = C•, [{ }, [B•, C◦ ] ]. Now
let ∆1 = A•, [B◦ ] and ∆2 = A•, [B• ]. Then Γ1{∆2} and Γ2{∆1} are not well-formed full
sequents, because the former would contain no output formula, and the latter would contain
two. However, we can form the full sequents,

Γ1{∆1} = C•, [A•, [B◦ ], [B•, C• ] ] and Γ2{∆2} = C•, [A•, [B• ], [B•, C◦ ] ]

whose corresponding formulas, respectively, are:

C ⊃ �(A ∧ ♦(B ∧ C)⊃ �B) and C ⊃ �(A ∧ ♦B ⊃ �(B ⊃ C))

Observation 2.2. Every output context Γ{ } is of the shape,

Γ•
1, [Γ

•
2, [. . . , [Γ

•
n, { }] . . .] ] (2.2)

for some n ≥ 0. Filling the hole of an output context with a RHS or full sequent yields a
full sequent, and filling it with a LHS sequent yields a LHS sequent. Every input context
Γ{ } is of the shape,

Γ′{Λ{ },Π◦} (2.3)

where Γ′{ } and Λ{ } are output contexts (i.e., are of the shape (2.2) above). Note that
Γ′{ } and Λ{ } and Π are uniquely determined by the position of the hole { } in Γ{ }.

We can choose to fill the hole of a context Γ{ } with nothing, denoted by Γ{∅},
which means we simply remove the occurrence of { }. In Example 2.1 above, Γ1{∅} =
C•, [ [B•, C• ] ] is a LHS sequent and Γ2{∅} = C•, [ [B•, C◦ ] ] is a full sequent. More gener-
ally, whenever Γ{∅} is a full sequent, then Γ{ } is an input context.

Definition 2.3. For every input context Γ{ } = Γ′{Λ{ },Π◦}, we define its output pruning
Γ⇓{ } to be the context Γ′{Λ{ }}, i.e., the same context with the subtree containing the
unique output formula and sharing the same root as { } removed. Thus, Γ⇓{ } is an output
context.
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⊥• −−−−−−−−−−−−
Γ{⊥•,Π◦}

id −−−−−−−−−−−
Γ{a•, a◦}

Γ{A•, B•}
∧• −−−−−−−−−−−−−

Γ{A ∧B•}

Γ{A◦} Γ{B◦}
∧◦ −−−−−−−−−−−−−−−−−−−−−

Γ{A ∧B◦}

Γ{A•,Π◦} Γ{B•,Π◦}
∨• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{A ∨B•,Π◦}

Γ{A◦}
∨◦ −−−−−−−−−−−−−

Γ{A ∨B◦}

Γ{B◦}
∨◦ −−−−−−−−−−−−−

Γ{A ∨B◦}

Γ⇓{A◦} Γ{B•}
⊃• −−−−−−−−−−−−−−−−−−−−−−

Γ{A⊃B•}

Γ{A•, B◦}
⊃◦ −−−−−−−−−−−−−

Γ{A⊃B◦}

Γ{[A•,∆]}
�• −−−−−−−−−−−−−−−

Γ{�A•, [∆]}

Γ{[A◦ ]}
�◦ −−−−−−−−−

Γ{�A◦}

Γ{[A• ]}
♦• −−−−−−−−−

Γ{♦A•}

Γ{∆•,∆•}
c −−−−−−−−−−−−

Γ{∆•}

Γ{[A◦,∆]}
♦◦ −−−−−−−−−−−−−−−

Γ{♦A◦, [∆]}

Figure 2. System NCK

If Γ{ } is already an output context then Γ⇓{ } = Γ{ }. For every full sequent ∆ =
Λ•,Π◦, we define ∆⇓ to be its LHS-sequent Λ. For a LHS sequent ∆, we define ∆⇓ = ∆.

In Example 2.1 above, Γ⇓
1{ } = C•, [{ }, [B•, C• ] ] and Γ⇓

2{ } = C•, [{ }], whereas

(Γ1{∅})
⇓ = C•, [ [B•, C• ] ] and (Γ2{∅})

⇓ = C•. In particular, Γ⇓
1{A

◦} = C•, [A◦, [B•, C• ] ],
which is not the same as (Γ1{A

◦})⇓ = C•.

3. Nested Sequent Systems for CK and its Variants

We use the standard notions of inference rule and derivation (or proof ) from usual sequent
calculi; all that changes is the notion of sequent, as introduced in the previous section. We
insist that every sequent in a derivation is a full sequent.4 A proof of a formula A is then
a derivation whose conclusion is the (full) sequent A◦. We also use the standard notions of
admissibility and derivability of inference rules (see, e.g., [Bus98] or [TS00]).

Let us now consider the set of inference rules shown in Figure 2, which we call the
system NCK for CK. These rules are similar to the corresponding rules for intuitionistic
modal logic in [Str13] and classical modal logic in [Brü09], although there are some subtle
yet crucial differences:

• In [Str13] and [Brü09] additive versions of ⊃• and �• were given rather than incorporating
an explicit contraction rule in the system. While these were essentially design choices in
the previous works, here it is necessary to make contraction explicit since our treatment
of the b-axiom does not allow us to show the admissibility of contraction; this is explained
further below. Consequently, our cut-elimination proof differs significantly from the ones
in [Str13] and [Brü09].

4In fact all the inference rules that we discuss in this paper, are such that it is enough to demand that the
conclusion of a derivation is a full sequent. It then will follow that every sequent occurring in the derivation
is full.
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Γ{[A◦ ]}
d
◦
−−−−−−−−−
Γ{♦A◦}

Γ{A◦}
t
◦
−−−−−−−−−
Γ{♦A◦}

Γ{[♦A◦,∆]}
4
◦
−−−−−−−−−−−−−−−
Γ{♦A◦, [∆]}

Γ{[A• ]}
d
•
−−−−−−−−−
Γ{�A•}

Γ{A•}
t
•
−−−−−−−−−
Γ{�A•}

Γ{[�A•,∆]}
4
•
−−−−−−−−−−−−−−−
Γ{�A•, [∆]}

Figure 3. Constructive ♦◦- and �•-rules for the axioms d, t, and 4.

• The ⊥•-rule and the ∨•-rule have a restriction on where the output formula occurs in the
context: it must be in the same subtree of the sequent as the principal formula of the
rule. The reason for this is the lack of k3 (for the ∨•-rule) and k5 (for the ⊥•-rule).

• In the ⊃•-rule (and also in the cut-rule described below), the ‘output pruning’ is defined
differently from [Str13]. There only the unique output formula is removed, whereas here
the whole subtree containing the output formula is removed. The reason for this is the
lack of the k4-axiom.

• In [Str13] the structural rule
Γ{[∆1 ], [∆2 ]}

m[ ] −−−−−−−−−−−−−−−−

Γ{[∆1,∆2 ]}
is heavily used. However, in the constructive

setting, this rule is not available as it is no longer sound: it corresponds to the k4-axiom
when the output formula occurs in ∆1 or ∆2.

Note that the id-rule applies only to atomic formulas but, as usual with sequent-style sys-
tems, the general form is derivable and this can be shown by a straightforward induction:

Proposition 3.1. The rule id −−−−−−−−−−−−

Γ{A•, A◦}
is derivable in NCK.

In the course of this paper we make use of the following structural rules:

Γ
nec[ ] −−−

[Γ]

Γ{∅}
w −−−−−−−
Γ{∆•}

Γ⇓{A◦} Γ{A•}
cut −−−−−−−−−−−−−−−−−−−−−−

Γ{∅}
(3.1)

called necessitation, weakening, and cut, respectively. These rules are not part of the system,
but we will later see that they are all admissible. Note that in the weakening rule ∆ must
be a LHS sequent, as is the case for the contraction rule c, as one might expect in an
intuitionistic setting. The cut rule makes use of the output pruning in the same way as the
⊃•-rule.

We now turn to the rules for the axioms in (1.2). For d, t and 4, the corresponding
rules are shown in Figure 3, and they coincide with those in [Str13].

For the b and 5 axioms, the rules given in [Str13] (themselves adapted from the classical
setting [Brü09]) are not sound in the constructive setting, again due to the lack of k4. For
b, one could restrict the rules of [Str13] in the following way,

Γ{[∆], A◦}
b
◦

int
−−−−−−−−−−−−−−−
Γ{[∆,♦A◦ ]}

;
Γ{A◦}

b
◦

con
−−−−−−−−−−−−−−−−
Γ{[∆•,♦A◦ ]}

(3.2)

Γ{[∆], A•}
b
•

int
−−−−−−−−−−−−−−−
Γ{[∆,�A• ]}

;
Γ{A•}

b
•

con
−−−−−−−−−−−−−−−−
Γ{[∆•,�A• ]}

(3.3)

in order to regain soundness. However such a system is not yet complete as, for example,
the formula ♦(�A ∨ ⊥)⊃A is no longer provable in the cut-free system.

To address this problem, we introduce the structural rules in Figure 4 which were used
during the cut-elimination proofs of [Brü09] and [Str13]. These rules are identical to the
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Γ{[∅]}
d[ ] −−−−−−−−

Γ{∅}

Γ{[Σ]}
t[ ] −−−−−−−−

Γ{Σ}

Γ{[ [Σ],∆]}
b[ ] −−−−−−−−−−−−−−

Γ{Σ, [∆]}

Γ{[Σ]}
4[ ] −−−−−−−−−−

Γ{[ [Σ] ]}

Γ{[ [Σ],∆]}
5[ ] −−−−−−−−−−−−−−

Γ{[Σ], [∆]}

Figure 4. Structural rules for the axioms d, t, b, 4, and 5

ones in [Brü09] and [Str13] for d, t, and b. For 4, our rule is slightly weaker than the one
in [Str13], again due to the lack of k4. Finally, for 5, the situation is more subtle: again,
the general versions of the logical rules 5• and 5◦ from [Str13] are no longer sound due to
the lack of k4. These 5• and 5◦ rules can each be decomposed into three rules performing
‘simpler’ inference steps, but unfortunately all three of these are unsound. The first can be
made sound by incorporating weakening, as shown for b◦ and b• in (3.2) and (3.3) above,
but, as expected, the resulting system is again incomplete.

Perhaps surprisingly, the structural rule 5[ ] used in [Brü09] and [Str13] is also no longer
sound in the constructive setting due to the lack of k4. However, that rule (shown on the left
below5) can also be decomposed into three rules (shown on the right below), of which the
first (shown in Figure 4) is sound in the constructive setting, i.e. with respect to HCK+5 in
the next section. This ‘decomposition’ is similar to the cases of the rules 5• and 5◦ discussed
in [Str13] and [MS14a].

Γ{[Σ]}{∅}
−−−−−−−−−−−−
Γ{∅}{[Σ]}

≡
Γ{[ [Σ],∆]}
−−−−−−−−−−−−−−
Γ{[Σ], [∆]}

+
Γ{[∆, [Σ] ], [Θ]}
−−−−−−−−−−−−−−−−−−−
Γ{[∆], [ [Σ],Θ]}

+
Γ{[∆, [Σ], [Θ] ]}
−−−−−−−−−−−−−−−−−−−
Γ{[∆, [ [Σ],Θ]]}

In the remainder of this paper we show soundness and completeness of our systems.
For this let us introduce the following notation. We use X and Y for sets of axioms, i.e.,
X,Y ⊆ {d, t, b, 4, 5}, and we write X[ ] (or Y[ ]) to denote the set of corresponding structural
rules shown in Figure 4. If X ⊆ {d, t, 4}, we write XG# for the set of corresponding �•- and
♦◦-rules shown in Figure 3. Then, we may write NCK+XG# +Y[ ] to denote NCK augmented
with the rules XG# and Y[ ]; in such cases no assumptions on X or Y further to those stated
are assumed. In particular, their intersection does not need to be empty, nor does one need
to be a subset of the other.

4. Soundness

To our knowledge there are no standard Kripke semantics for all the various constructive
modal logics and consideration of this issue is beyond the scope of this work. Therefore we
show soundness of our rules with respect to the Hilbert system.

For this we define HCK to be some complete set of axioms for intuitionistic propositional
logic extended by the axioms k1 and k2, shown in (1.1), together with the rules mp for modus
ponens and nec for necessitation:

A A⊃B
mp −−−−−−−−−−−−

B

A
nec −−−−

�A
(4.1)

For a set X ⊆ {d, t, b, 4, 5} we then write HCK + X for the system obtained from HCK by
adding the axioms in X. If X is a singleton {x}, we just write HCK+ x. Soundness can now
be stated in the following theorem:

5In this rule the depth of Γ{ }{∅} has to be > 0. For further details we refer the reader to [Brü09, Str13,
MS14a].
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Theorem 4.1 (Soundness). Let X ⊆ {d, t, 4}, let Y ⊆ {d, t, b, 4, 5}, and let
Γ1 . . . Γn

r −−−−−−−−−−−−−−

Γ

(for n ∈ {0, 1, 2}) be an instance of a rule in NCK+ w + cut+ XG# + Y[ ]. Then:

(i) the formula fm(Γ1) ∧ · · · ∧ fm(Γn)⊃ fm(Γ) is provable in HCK+ X+ Y, and
(ii) whenever a sequent Γ is provable in NCK+w+ cut+XG# +Y[ ], then fm(Γ) is provable

in HCK+ X+ Y.

Clearly, (ii) follows immediately from (i) using an induction on the size of the derivation.
To prove (i), we start with the axioms:

Lemma 4.2. Let X ⊆ {d, t, b, 4, 5}, let Γ{ } be an output context, and Π◦ be an RHS-
sequent. Then fm(Γ{a•, a◦}) and fm(Γ{⊥•,Π◦}) are provable in HCK+ X.

Proof. By induction on the structure of Γ{ }.

For showing soundness of the inference rules with one premise, we first have to verify
that the deep inference reasoning remains valid in the constructive setting. This is shown
in the following three lemmas.

Lemma 4.3. Let X ⊆ {d, t, b, 4, 5}, and let A, B, and C be formulas.

(i) If A⊃B is provable in HCK+ X, then so is (C ⊃A)⊃ (C ⊃B).
(ii) If A⊃B is provable in HCK+ X, then so is (B ⊃ C)⊃ (A⊃ C).
(iii) If A⊃B is provable in HCK+ X, then so is (C ∧A)⊃ (C ∧B).
(iv) If A⊃B is provable in HCK+ X, then so is �A⊃ �B.
(v) If A⊃B is provable in HCK+ X, then so is ♦A⊃ ♦B.

Proof. (i), (ii) and (iii) follow by completeness of HCK over intuitionistic logic. (iv) and (v)
follow by necessitation and k1 or k2, respectively.

Lemma 4.4. Let X ⊆ {d, t, b, 4, 5}, let ∆ and Σ be full sequents, and let Γ{ } be an output
context. If fm(∆)⊃ fm(Σ) is provable in HCK+ X, then so is fm(Γ{∆}) ⊃ fm(Γ{Σ}).

Proof. Induction on the structure of Γ{ } (see Observation 2.2), using Lemma 4.3.(i) and (iv).

Lemma 4.5. Let X ⊆ {d, t, b, 4, 5}, let ∆ and Σ be LHS-sequents, and Γ{ } an input
context. If fm(Σ)⊃ fm(∆) is provable in HCK+ X, then so is fm(Γ{∆}) ⊃ fm(Γ{Σ}).

Proof. As in [Str13]. By Observation 2.2, Γ{ } = Γ′{Λ{ },Π} for some Γ′{ } and Λ{ } and
Π. By induction on Λ{ }, using Lemma 4.3.(iii) and (v), we get fm(Λ{Σ}) ⊃ fm(Λ{∆}),
and from Lemma 4.3.(ii) it then follows that (fm(Λ{∆}) ⊃ fm(Π)) ⊃ (fm(Λ{Σ}) ⊃ fm(Π)).
Now the statement follows from Lemma 4.4.

We can now prove the soundness of rules with one premiss.

Lemma 4.6. Let X ⊆ {d, t, b, 4, 5}, and let
Γ1

r −−

Γ2

be an instance of w, c, ∨◦, �◦, ♦◦, ⊃◦, ∧•,

♦•, or �•. Then fm(Γ1)⊃ fm(Γ2) is provable in HCK+ X.

Proof. For the rules ∨◦, �◦, ♦◦, ⊃◦ this follows immediately from Lemma 4.4, where for
♦◦ we need the k2-axiom. For the other rules we apply Lemma 4.5. Note that for the
�•-rule we need a case distinction: If the output formula occurs inside ∆, then we use k1
and Lemma 4.4. If the output formula occurs inside the context Γ{ }, then we use k2 and
Lemma 4.5.
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Let us now turn to showing the soundness of the branching rules ∧◦, ∨•, ⊃•, and cut.
For this, we develop appropriate versions of Lemmas 4.3 and 4.4 that deal with branching
behavior. Note that, contrary to the intuitionistic case in [Str13], we do not have such a
version of Lemma 4.5 in the constructive setting. This is due to the lack of axiom k3.

Lemma 4.7. Let X ⊆ {d, t, b, 4, 5}, and let A, B, C, and D be formulas.

(i) If (A ∧B)⊃ C is provable in HCK+ X, then so is ((D ⊃A) ∧ (D ⊃B))⊃ (D ⊃ C).
(ii) If (A ∧B)⊃ C is provable in HCK+ X, then so is ((D ⊃A) ∧ (D ∧B))⊃ (D ∧ C).
(iii) If (A ∧B)⊃ C is provable in HCK+ X, then so is (�A ∧ �B)⊃ �C.
(iv) If (A ∧B)⊃ C is provable in HCK+ X, then so is (�A ∧ ♦B)⊃ ♦C.

Proof. (i) and (ii) follow by completeness of HCK over intuitionistic logic. (iii) and (iv)
follow by necessitation, distributivity of � over ∧, and k1 or k2 respectively.

Lemma 4.8. Let X ⊆ {d, t, b, 4, 5}, let ∆1, ∆2, and Σ be full sequents, and let Γ{ } be
an output context. If (fm(∆1) ∧ fm(∆2)) ⊃ fm(Σ) is provable in HCK + X, then so is
(fm(Γ{∆1}) ∧ fm(Γ{∆2}))⊃ fm(Γ{Σ}).

Proof. Induction on the structure of Γ{ }, using Lemma 4.7.(i) and (iii).

Lemma 4.9. Let X ⊆ {d, t, b, 4, 5}, and let
Γ1 Γ2

r −−−−−−−−

Γ3

be an instance of ∧◦, ∨•, ⊃•, or cut.

Then (fm(Γ1) ∧ fm(Γ2))⊃ fm(Γ3) is provable in HCK+ X.

Proof. For the ∧◦- and ∨•-rules, this follows immediately from Lemma 4.8 and provable
formulas (A∧B)⊃ (A∧B) and ((A⊃C)∧ (B⊃C))⊃ ((A∨B)⊃C), respectively. For ⊃•,
note that by Observation 2.2 and Definition 2.3, the rule is of shape

Γ′{Λ{A◦}} Γ′{Λ{B•},Π◦}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ′{Λ{A ⊃B•},Π◦}

where Γ′{ }, Λ{ }, and Π{ } are output contexts. In particular, let

Λ{ } = Λ0, [Λ1, [. . . , [Λn, { }] . . .] ] .

Now let P = fm(Π◦) and Li = fm(Λi) for i = 0 . . . n, and let

LX = fm(Λ{A◦}) = L0 ⊃ �(L1 ⊃ �(L2 ⊃ �(· · · ⊃ �(Ln ⊃A) · · · )))

LY = fm(Λ{B•}) = L0 ∧ ♦(L1 ∧ ♦(L2 ∧ ♦(· · · ∧ ♦(Ln ∧B) · · · )))

LZ = fm(Λ{A ⊃B•}) = L0 ∧ ♦(L1 ∧ ♦(L2 ∧ ♦(· · · ∧ ♦(Ln ∧ (A⊃B)) · · · )))

To be able to apply Lemma 4.8, we need to show that (LX ∧ (LY ⊃ P )) ⊃ (LZ ⊃ P ) is
provable in HCK+X. But this follows from (LX ∧LZ)⊃LY , which can be shown provable
in HCK+X using an induction on n together with Lemma 4.7.(ii) and (iv). For the cut-rule
we additionally observe that A⊃A is always provable.

Remark 4.10. From the lemmas presented so far, we now have that NCK+w+cut is sound
with respect to HCK, i.e. we have proved already Theorem 4.1 in the case of X = Y = ∅.
This means that if we have a proof of a formula A in NCK + w + cut in which we allow
X ⊆ {d, t, b, 4, 5} to occur as proper axioms, then we have that

∧
X⊃A is provable in HCK,

by purely propositional logic, and therefore A is provable in HCK+ X.

We use the observation in the above remark to prove the following lemma.

Lemma 4.11. Let S and D be arbitrary formulas. Then we have the following:
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(i) (S ∧ ♦D)⊃ ♦(♦S ∧D) is a theorem of HCK+ b.
(ii) �(D ⊃ �S)⊃ (♦D ⊃ S) is a theorem of HCK+ b.
(iii) �(♦S ⊃D)⊃ (S ⊃ �D) is a theorem of HCK+ b.
(iv) (♦S ∧ ♦D)⊃ ♦(♦S ∧D) is a theorem of HCK+ 5.
(v) �(D ⊃ �S)⊃ (♦D ⊃ �S) is a theorem of HCK+ 5.
(vi) �(♦S ⊃D)⊃ (♦S ⊃ �D) is a theorem of HCK+ 5.

Proof. In the following we show that the formulas in (i)–(vi) can be proved in NCK + cut

extended by b or 5, as appropriate, as a proper axiom. Our lemma then follows from
Remark 4.10.

(i)

b −−−−−−−−−−−−

S ⊃ �♦S◦

w −−−−−−−−−−−−−−−−

S•, S ⊃ �♦S◦

id −−−−−−−

S•, S◦

id −−−−−−−−−−−−−−−−−−−−−−

S•, [♦S•, D•,♦S◦ ]
�• −−−−−−−−−−−−−−−−−−−−−−−−

�♦S•, S•, [D•,♦S◦ ]
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S ⊃ �♦S•, S•, [D•,♦S◦ ]
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S•, [♦S◦ ]
w −−−−−−−−−−−−−−−−

S•, [D•,♦S◦ ]
id −−−−−−−−−−−−−−

S•, [D•, D◦ ]
∧◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S•, [D•,♦S ∧D◦ ]
♦◦ −−−−−−−−−−−−−−−−−−−−−−−−−

S•, [D• ],♦(♦S ∧D)◦
♦• −−−−−−−−−−−−−−−−−−−−−−−−−

S•,♦D•,♦(♦S ∧D)◦
∧• −−−−−−−−−−−−−−−−−−−−−−−−−

S ∧ ♦D•,♦(♦S ∧D)◦
⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−

(S ∧ ♦D)⊃ ♦(♦S ∧D)◦

(ii)
id −−−−−−−−−−

[D•, D◦ ]

b −−−−−−−−−−−−−

♦ � S ⊃ S◦

w −−−−−−−−−−−−−−−−−−−−−−

[�S• ],♦ � S ⊃ S◦

id −−−−−−−−−−−−−

[�S•,�S◦ ]
♦◦ −−−−−−−−−−−−−−−−

[�S• ],♦ � S◦
id −−−−−−−−−−−−−−−−

[�S• ], S•, S◦

⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[�S• ],♦ � S ⊃ S•, S◦

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[�S• ], S◦

w −−−−−−−−−−−−−−−−

[�S•, D• ], S◦

⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[D ⊃ �S•, D• ], S◦

�• −−−−−−−−−−−−−−−−−−−−−−−−−−

�(D ⊃ �S)•, [D• ], S◦

♦• −−−−−−−−−−−−−−−−−−−−−−−−−−

�(D ⊃ �S)•,♦D•, S◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−

�(D ⊃ �S)•,♦D ⊃ S◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(D ⊃ �S)⊃ (♦D ⊃ S)◦

(iii)

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

S•, [♦S◦ ]
id −−−−−−−−−−−−−−

S•, [D•, D◦ ]
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S•, [♦S ⊃D•, D◦ ]
�• −−−−−−−−−−−−−−−−−−−−−−−−−−

�(♦S ⊃D)•, S•, [D◦ ]
�◦ −−−−−−−−−−−−−−−−−−−−−−−−−−

�(♦S ⊃D)•, S•,�D◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−

�(♦S ⊃D)•, S ⊃ �D◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(♦S ⊃D)⊃ (S ⊃ �D)◦

(iv)

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

♦S•, [♦S◦ ]
w −−−−−−−−−−−−−−−−−−

♦S•, [D•,♦S◦ ]
id −−−−−−−−−−−−−−−−

♦S•, [D•, D◦ ]
∧◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

♦S•, [D•,♦S ∧D◦ ]
♦◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−

♦S•, [D• ],♦(♦S ∧D)◦
♦• −−−−−−−−−−−−−−−−−−−−−−−−−−−

♦S•,♦D•,♦(♦S ∧D)◦
∧• −−−−−−−−−−−−−−−−−−−−−−−−−−−

♦S ∧ ♦D•,♦(♦S ∧D)◦
⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(♦S ∧ ♦D)⊃ ♦(♦S ∧D)◦
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(v)

id −−−−−−−−−−

[D◦, D• ]

⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

[�S• ],�S◦

w −−−−−−−−−−−−−−−−−−

[�S•, D• ],�S◦

⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[D ⊃ �S•, D• ],�S◦

�• −−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(D ⊃ �S)•, [D• ],�S◦

♦• −−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(D ⊃ �S)•,♦D•,�S◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(D ⊃ �S)•,♦D ⊃ �S◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(D ⊃ �S)⊃ (♦D ⊃ �S)◦

(vi)

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

♦S•, [♦S◦ ]
id −−−−−−−−−−−−−−−−

♦S•, [D•, D◦ ]
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

♦S•, [♦S ⊃D•, D◦ ]
�• −−−−−−−−−−−−−−−−−−−−−−−−−−−

�(♦S ⊃D)•,♦S•, [D◦ ]
�◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−

�(♦S ⊃D)•,♦S•,�D◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(♦S ⊃D)•,♦S ⊃ �D◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

�(♦S ⊃D)⊃ (♦S ⊃ �D)◦

where D1 is a subderivation of (i), D2 is the same as D1, except that we use 5 instead of b,
and D3 is a variant of a subderivation of (ii), using 5 instead of b.

Now we can show soundness of the rules in Figures 3 and 4, which we need to complete
the proof of Theorem 4.1.

Lemma 4.12. Let X ⊆ {d, t, 4}, let Y ⊆ {d, t, b, 4, 5}, let x ∈ X, let y ∈ Y, and let
Γ1

r −−
Γ2

be
an instance of x◦ or x• or y[ ]. Then fm(Γ1)⊃ fm(Γ2) is provable in HCK+ X+ Y.

Proof. For d• , d◦ , t• , t◦ , t[ ], and 4[ ] this follows immediately from Lemmas 4.4 and 4.5 and
the corresponding axioms, shown in (1.2). For 4• and 4◦ , observe that these two rules can
be derived using the rules ♦• and ♦◦, respectively, and

Γ{� � A•}
4′

•
−−−−−−−−−−−−−
Γ{�A•}

and
Γ{♦♦A◦}

4′
◦

−−−−−−−−−−−
Γ{♦A◦}

(4.2)

respectively. The soundness of the two rules in (4.2) follows immediately from Lemmas
4.4 and 4.5 and the 4-axiom. For d[ ] we need to show that ⊤ ⊃ ♦⊤ is provable, which
follows from ⊤ ⊃ �⊤ and the d-axiom. For b[ ], we have to make a case analysis on where
the output formula is. If it is in Γ{ }, soundness of the rule follows from Lemma 4.11.(i)
and Lemma 4.5. If it is in Σ, we use Lemma 4.11.(ii) and Lemma 4.4, and if it is in
∆, we use Lemma 4.11.(iii) and Lemma 4.4. For the rule 5[ ] we proceed similarly, using
Lemma 4.11.(iv)–(vi) instead.

Now we can put everything together to prove Theorem 4.1.

Proof of Theorem 4.1. Point (i) is just Lemmas 4.2, 4.6, 4.9, and 4.12. Point (ii) follows
immediately from (i) by induction on the size of the derivation.

Having established the soundness of our system, we can use it to make some interesting
observations. Surprisingly, the b-axiom entails the axioms k3 and k5 (shown in (1.1) in the
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d axiom: t axiom: b axiom:

id −−−−−−−−−

[A•, A◦ ]
�• −−−−−−−−−−−−

�A•, [A◦ ]
d◦ −−−−−−−−−−−−

�A•,♦A◦

⊃◦ −−−−−−−−−−−−

�A⊃ ♦A◦

id −−−−−−−

A•, A◦

t◦ −−−−−−−−−

A•,♦A◦

⊃◦ −−−−−−−−−−

A⊃ ♦A◦

id −−−−−−−

A•, A◦

t• −−−−−−−−−

�A•, A◦

⊃◦ −−−−−−−−−−

�A⊃A◦

∧◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−

(A⊃ ♦A) ∧ (�A⊃A)◦

id −−−−−−−−−−−−

[ [A•, A◦ ] ]
�• −−−−−−−−−−−−−−

[�A•, [A◦ ] ]
b[ ] −−−−−−−−−−−−−−

[�A• ], A◦

♦̂• −−−−−−−−−−−−−

♦ � A•, A◦

⊃◦ −−−−−−−−−−−−−

♦ � A⊃A◦

id −−−−−−−−−−−−

[ [A•, A◦ ] ]
♦◦ −−−−−−−−−−−−−

[ [A• ],♦A◦ ]
b[ ] −−−−−−−−−−−−−

[�A• ], A◦

�◦ −−−−−−−−−−−−

A•,�♦A◦

⊃◦ −−−−−−−−−−−

A⊃ �♦A
∧◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(♦ � A⊃A) ∧ (A⊃ �♦A)◦

4 axiom: 5 axiom:

id −−−−−−−−−−−−−−

[�A•,�A◦ ]
4• −−−−−−−−−−−−−−

�A•, [�A◦ ]
�◦ −−−−−−−−−−−−−−−

�A•,� � A◦

⊃◦ −−−−−−−−−−−−−−−−

�A⊃ � � A◦

id −−−−−−−−−−−−−

[♦A•,♦A◦ ]
4◦ −−−−−−−−−−−−−

[♦A• ],♦A◦

♦̂• −−−−−−−−−−−−−

♦♦A•,♦A◦

⊃◦ −−−−−−−−−−−−−−

♦♦A ⊃ ♦A◦

∧◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(�A⊃ � � A) ∧ (♦♦A ⊃ ♦A)◦

id −−−−−−−−−−−−

[ [A•, A◦ ] ]
�• −−−−−−−−−−−−−−

[�A•, [A◦ ] ]
5[ ] −−−−−−−−−−−−−−

[�A• ], [A◦ ]
�◦ −−−−−−−−−−−−−−

[�A• ],�A◦

♦̂• −−−−−−−−−−−−−−−

♦ � A•,�A◦

⊃◦ −−−−−−−−−−−−−−−−

♦ � A⊃ �A◦

id −−−−−−−−−−−−

[ [A•, A◦ ] ]
♦◦ −−−−−−−−−−−−−

[ [A• ],♦A◦ ]
5[ ] −−−−−−−−−−−−−

[A• ], [♦A◦ ]
�◦ −−−−−−−−−−−−−

[A• ],�♦A◦

♦̂• −−−−−−−−−−−−−

♦A•,�♦A◦

⊃◦ −−−−−−−−−−−−−−

♦A⊃ �♦A◦

∧◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(♦ � A⊃ �A) ∧ (♦A ⊃ �♦A)◦

Figure 5. Proofs of the axioms d, t, b, 4, and 5 in our system

introduction), as can be seen by the following two derivations in NCK+ b[ ]:

id −−−−−−−−−−−−−−

[ [ [A•, A◦ ] ] ]
♦◦ −−−−−−−−−−−−−−−−

[ [ [A• ],♦A◦ ] ]
b[ ] −−−−−−−−−−−−−−−−

[A•, [♦A◦ ] ]
∨◦ −−−−−−−−−−−−−−−−−−−−−

[A•, [♦A ∨ ♦B◦ ] ]

id −−−−−−−−−−−−−−

[ [ [B•, B◦ ] ] ]
♦◦ −−−−−−−−−−−−−−−−

[ [ [B• ],♦B◦ ] ]
b[ ] −−−−−−−−−−−−−−−−

[B•, [♦B◦ ] ]
∨◦ −−−−−−−−−−−−−−−−−−−−−

[B•, [♦A ∨ ♦B◦ ] ]
∨• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[A ∨B•, [♦A ∨ ♦B◦ ] ]
b[ ] −−−−−−−−−−−−−−−−−−−−−−−−−−

[A ∨B• ],♦A ∨ ♦B◦

♦• −−−−−−−−−−−−−−−−−−−−−−−−−

♦(A ∨B)•,♦A ∨ ♦B◦

⊃◦ −−−−−−−−−−−−−−−−−−−−−−−−−−−−

♦(A ∨B)⊃ (♦A ∨ ♦B)◦

and

⊥• −−−−−−−−−−−−

[⊥•, [⊥◦ ] ]
b[ ] −−−−−−−−−−−−

[⊥• ],⊥◦

♦• −−−−−−−−−−

♦⊥•,⊥◦

⊃◦ −−−−−−−−−−

♦⊥⊃⊥◦

(4.3)

While the proof of k5 can be easily shown directly in the Hilbert system, the proof of k3 in
HCK + b is not so simple. From our cut-elimination result in Section 6 it will follow that
the 5 axiom alone is not enough to derive k3 or k5. But since b is derivable in CS5, both k3
or k5 are derivable in CS5.

5. Completeness

Completeness is also shown with respect to the Hilbert system. This is in fact very similar
to the completeness proof for intuitionistic modal logic given in [Str13]. To simplify our
cut-elimination argument in Section 6 we will put a restriction on the ♦•-rule: we define
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the system NCK′ to be NCK with the ♦•-rule replaced by

Γ{[A• ],Π◦}
♦̂• −−−−−−−−−−−−−−

Γ{♦A•,Π◦}
(5.1)

Theorem 5.1 (Completeness). Let X ⊆ {d, t, 4} and Y ⊆ {d, t, b, 4, 5}. Then every formula
that is provable in HCK+ X+ Y is provable in NCK′ + XG# + Y[ ] + cut.

Proof. Clearly, all axioms of propositional intuitionistic logic are provable in NCK′. The
axioms k1 and k2 are provable in NCK′, by the same derivations as in [Str13], so we do not
repeat them here. Note that the derivations for k3, k4, and k5 of [Str13] are not valid in
our setting because of the restrictions to the ∨•-, ⊃•-, and ⊥•-rules, respectively. Figure 5
shows that each axiom x ∈ X ∪ Y is provable in NCK′ + XG# + Y[ ]. Finally the rules mp and
nec, shown in (4.1), can be simulated by the rules cut and nec[ ], shown in (3.1), as follows:

A◦

A⊃B◦

id −−−−−−−

A◦, A•
id −−−−−−−−−−−−

B•, A•, B◦

⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−

A⊃B•, A•, B◦

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A•, B◦

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B◦

A◦

nec[ ] −−−−−

[A◦ ]
�◦ −−−−−

�A◦

From here we appeal to the admissibility of the nec[ ]-rule, which follows by a straightforward
induction on the size of a derivation.

Theorems 4.1 and 5.1 are enough to give sound and complete nested sequent systems
with cut for any logic in the cube shown in Figure 1, by simply adding the corresponding
structural rules from Figure 4. If one of the axioms is d, t, or 4, then we can use the logical
rules from Figure 3 instead of the structural rule. For example, for CS4, we can use {t[ ], 4[ ]}
or {t• , t◦ , 4[ ]} or {t[ ], 4• , 4◦} or {t• , t◦ , 4• , 4◦} or any union of these sets.

In the next section we show cut-elimination for NCK′ +XG# +Y[ ], yielding completeness
for the cut-free system. However, this is not achieved for every subset of XG# ∪ Y[ ] with
X ⊆ {d, t, 4} and Y ⊆ {d, t, b, 4, 5}. In fact, it can be shown that, for example, NCK′ + 4[ ] is
not complete for CK4. On the other hand, we have:

Theorem 5.2 (Cut-free Completeness). Let X ⊆ {d, t, 4} and Y ⊆ {d, b, 5}, such that if
t ∈ X and 5 ∈ Y then b ∈ Y, and if b ∈ Y or 5 ∈ Y then 4 ∈ X. Then every formula that is
provable in HCK+ X+ Y is also provable in NCK′ + XG# + Y[ ].

Thus, if we want a cut-free system for CS4, we have to add the rules {t• , t◦ , 4• , 4◦} to
NCK′. The proof of Theorem 5.2 relies on the cut-elimination argument presented in the
next section, and can thus be presented only at the end of Section 6.

Looking back at the cube in Figure 1, we can see that Theorem 5.2 gives us cut-free
systems for the logics CK, CK4, CK45, CD, CD4, CD45, CT, CS4, and CS5. The logics for
which our cut-elimination proof does not apply are CKB, CK5, CKB5, CD5, CDB, and CTB.

6. Cut-Elimination

By inspection of the statement of Theorem 5.2, we have that t and 4 must be present as
logical rules, and b and 5 as structural rules, whereas d can be present in either variation.
This is due to the following result, whose proof is straightforward.
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Proposition 6.1. (i) The rules d• and d◦ are derivable in {�•, d[ ]} and {♦◦, d[ ]}, respec-
tively. (ii) The rule d[ ] is admissible for any subsystem of NCK′ +XG# +Y[ ], provided d ∈ X.

However, our cut-elimination argument becomes slightly simpler if we work with d[ ]

instead of d• and d◦ . To summarize, the following definition fixes the axiom sets our cut-
elimination proof deals with.

Definition 6.2. Let X,Y ⊆ {d, t, b, 4, 5}. We call the pair 〈X,Y〉 safe if X ⊆ {t, 4} and
Y ⊆ {d, b, 5}, such that if t ∈ X and 5 ∈ Y then b ∈ Y, and if b ∈ Y or 5 ∈ Y then 4 ∈ X.

We can now state our cut-elimination result in a concise way:

Theorem 6.3 (Cut-Elimination). Let 〈X,Y〉 be a safe pair of axioms, and let D be a proof
in NCK′+XG#+Y[ ]+cut. Then there is a proof D′ of the same conclusion in NCK′+XG#+Y[ ].

The rest of this section is dedicated to the proof of Theorem 6.3.
Since our cut-elimination strategy might seem unorthodox, we first explain some of the

problems we encountered. Consider the following derivation:

Γ{Θ{C•,♦A◦}} Γ{Θ{B•,♦A◦}}
∨• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{C ∨B•,♦A◦}}

Γ{Θ{C ∨B•, [A• ]},Π◦}
♦• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{C ∨B•,♦A•},Π◦}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{C ∨B•},Π◦}

(6.1)

We cannot permute the instance of ∨• under the cut because in general it is not applicable in
Γ{Θ{C∨B•},Π◦}. On the other hand, we cannot reduce the rank of the cut along the main
connective of the cut formula ♦A, since there is no invertible rule for ♦A◦, and different
things might happen in the left two branches. Furthermore, we cannot just impose the
same restriction that we impose on the ∨• rule also on the cut rule, because then we would
not be able to reduce the cut rank in the ordinary ♦◦-♦• cases. The situation in (6.1) is the

reason we work with the rule ♦̂• instead of ♦•. Note that imposing the same restriction on
all logical rules would make other permutation cases difficult.

In what follows we will use the shorthand JΓKn to denote Γ with n pairs of brack-

ets around it, i.e.

n
︷︸︸︷

[· · · [ Γ

n
︷︸︸︷

] · · · ]. Also, we define the depth of a context Γ{ } to be
the number of bracket pairs in whose scope the hole of Γ{ } appears, i.e., the depth of
∆0, [∆1, [. . . , [∆n, { }] . . .] ] is n.

We consider super rule variants of the rules 4• , 4◦ , b[ ], and 5[ ], shown in Figure 6,
obtained from unboundedly many applications of the corresponding normal rules in a certain
way. For a safe pair 〈X,Y〉 of axioms, we define

X
G#

s =

{

XG# if 4 6∈ X

(XG# \ {4◦ , 4•}) ∪ {s4◦ , s4• , s4
◦

♦
, s4

•
�
} if 4 ∈ X

and

Y[ ]
s =







Y[ ] if b, 5 /∈ Y

(Y[ ] \ {b[ ]}) ∪ {sb[ ]} if b ∈ Y, 5 /∈ Y

(Y[ ] \ {5[ ]}) ∪ {s5[ ]} if b /∈ Y, 5 ∈ Y

(Y[ ] \ {b[ ], 5[ ]}) ∪ {s5b[ ], sb5[ ]} if b, 5 ∈ Y

We need these variants in order to obtain height-preserving admissibility of certain
rules. We have the following proposition:
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Γ{∆{♦A◦}}
s4◦ −−−−−−−−−−−−−−−−−

Γ{♦A◦,∆{∅}}

Γ{∆{�A•}}
s4• −−−−−−−−−−−−−−−−−

Γ{�A•,∆{∅}}

Γ{[∆{A◦}]}
s4

◦

♦
−−−−−−−−−−−−−−−−−−−
Γ{♦A◦, [∆{∅}]}

Γ{[∆{A•}]}
s4

•
�

−−−−−−−−−−−−−−−−−−−
Γ{�A•, [∆{∅}]}

Γ{∆{JΣKn}}
sb[ ] −−−−−−−−−−−−−−−

Γ{Σ,∆{∅}}

Γ{∆{[Σ]}}
s5[ ] −−−−−−−−−−−−−−−−

Γ{[Σ],∆{∅}}

Γ{∆{JΣKk}}
s5b[ ] −−−−−−−−−−−−−−

Γ{Σ,∆{∅}}

Γ{∆{JΣKk}}
sb5[ ] −−−−−−−−−−−−−−−−

Γ{[Σ],∆{∅}}

Figure 6. Super rules for 4, b, and 5, where n is the depth of ∆{ } and
1 ≤ k ≤ n.

Proposition 6.4. A sequent is provable in NCK′ + XG#

s + Y
[ ]
s if and only if it is provable in

NCK′ + XG# + Y[ ].

Proof. One direction follows immediately from the observation that 4• and 4◦ are special
cases of s4• and s4◦ , respectively, and that b[ ] is a special case of sb[ ] and of s5b[ ], and that
5[ ] is a special case of s5[ ] and of sb5[ ]. Conversely, s4• and s4◦ are just sequences of 4• and
4◦ , respectively, and s4

•
�
and s4

◦

♦
are obtained by composing with �• and ♦◦, respectively.

Then sb[ ] and s5[ ] are just sequences of b[ ] and 5[ ], respectively, whereas s5b[ ] and sb5[ ] use
both b[ ] and 5[ ].

Lemma 6.5. Let 〈X,Y〉 be a safe pair of axioms. If 4 ∈ X, then the rules s4• and s4◦

permute over any r ∈ Y
[ ]
s .

Proof. We show here how s4◦ permutes over sb[ ]. There are two nontrivial interactions:

Γ{∆{JΣ{♦A◦}Kn}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ{♦A◦},∆{∅}}
s4◦ −−−−−−−−−−−−−−−−−−−−−−−−

Γ{♦A◦,Σ{∅},∆{∅}}

→

Γ{∆{JΣ{♦A◦}Kn}}
s4◦ −−−−−−−−−−−−−−−−−−−−−−−−−

Γ{♦A◦,∆{JΣ{∅}Kn}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{♦A◦,Σ{∅},∆{∅}}

and
Γ{∆′{JΣKn}}

sb[ ]
−−−−−−−−−−−−−−−

Γ{Σ,∆′{∅}}
s4◦ −−−−−−−−−−−−−−−−−−−−

Γ{♦A◦,Σ,∆{∅}}

→

Γ{∆′{JΣKn}}
s4◦ −−−−−−−−−−−−−−−−−−−−−

Γ{♦A◦,∆{JΣKn}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−

Γ{♦A◦,Σ,∆{∅}}

The other cases are similar.

When the rules 4• and 4◦ are present our cut rule, shown in (3.1), is not strong enough
for our induction to work. Therefore we additionally use the following two rules

Γ⇓{Θ•{♦A◦}} Γ{♦A•,Θ•{∅}}
♦cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{∅}}
and

Γ⇓{�A◦, (Θ{∅})⇓} Γ{Θ{�A•}}
�cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∅}}
(6.2)

which are just combinations of cut with towers of 4◦ and 4• , respectively. More precisely:

Fact 6.6. The rule ♦cut is derivable in {cut, s4◦} and in {cut, 4◦}, and the rule �cut is
derivable in {cut, s4•} and in {cut, 4•}.

By Cut, we refer to the set {cut,♦cut,�cut} or {cut}, depending on whether 4• and 4◦

are present or not, and we write ∗cut for any variant in Cut. Throughout this section we
fix the convention that, for any ∗cut step, the output cut formula occurs in the left premise,
while the input cut formula occurs in the right premise.
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Definition 6.7. For a formula A we define depth(A) inductively as follows:

depth(a) = depth(⊥) = 1 depth(�A) = depth(♦A) = depth(A) + 1

depth(A ∧B) = depth(A ∨B) = depth(A⊃B) = max(depth(A), depth(B)) + 1

Given a cut step, as shown in (3.1), its cut formula is A, and its rank is depth(A).

Since the rules ♦cut and �cut can be seen as derivations consisting of one instance
of cut and some instances of 4◦ and 4• , respectively, the definition of rank also applies to
♦cut and �cut given in (6.2). We use this convention throughout this section: whenever we
define a notion for an instance of cut, this definition also applies for ♦cut and �cut because
there is a unique instance of cut contained in them.

Definition 6.8. The inference rules id, ⊥•, ∧•, ∨•, ⊃•, �•, ♦•, t• , and s4
•
�
are called black

destructing. The principal formula of a black destructing rule instance is the input formula
singled out in its conclusion in Figures 2, 3 and 6.

In other words a rule instance is black destructing if, considered bottom-up, it decom-
poses an input formula along its main connective, and that formula is its principal formula.
In particular, note that 4• and s4• are not black destructing.

Definition 6.9. An instance of cut is anchored if the rule immediately above it on the
right is a black-destructing rule whose principal formula is the cut formula. We define the
value of a cut-instance to be the pair 〈r, s〉, where r is its rank, and s = 0 if it is anchored
and s = 1 if it is not anchored. The value of an instance of ♦cut or �cut is the value of
the underlying cut-instance (if we read the ♦cut/�cut as composition of cut and s4◦/s4•).
Finally, the cut-value of a derivation D, denoted by v(D) is the multiset of the values of its
cut-instances.

We order cut values lexicographically, i.e.,

〈r1, s1〉 < 〈r2, s2〉 iff r1 < r2 or r1 = r2 and s1 < s2

Then, multisets of cut values are ordered via a common multiset ordering: Given an ordered
set 〈V,<〉, let M(V ) be the set of multisets of elements of V , and let M1,M2 ∈ M(V ) be
two such multisets. We define M1 ≪ M2 iff there is a multiset surjection f : M1 → M2 such
that for all v ∈ M2, we either have f−1(v) = {v} or ∀u ∈ f−1(v). u < v.

Fact 6.10. If < is a strict total order, then so is ≪. Furthermore, if < is well-founded,
then so is ≪ [DM79].

Example 6.11. If we let V = N, with the usual ordering, then we have, for example,
{1, 2, 3, 4, 4, 5} ≪ {2, 5, 5} and {1, 1, 2, 2, 2, 2} ≪ {1, 2, 3}, where in the first case we can
map 2 to 2, and 1, 3, 4, 4 all to one 5, and 5 to the other 5. We could also map 1 to 2, and
2, 3, 4, 4 to one 5, and 5 to the other 5. These choices will be associated with reductions in
our later cut-elimination arguments.

This gives us a well-order ≪ on the cut-values of a derivation, and our cut-reduction
proceeds by an induction on this well-order. For simplicity, we always consider a topmost
cut. There are two main lemmas, one for reducing anchored cuts (Lemma 6.20), and one for
reducing cuts that are not anchored (Lemma 6.19). For both of these lemmas we need, as
is often the case, height preserving admissibility and invertibility of certain inference rules.
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Definition 6.12. The height of a derivation D, denoted by h(D), is defined to be the length
of a maximal branch in the derivation tree. We say that a rule r with one premise is height
preserving admissible in a system S, if for each derivation D in S\{r} of r’s premise there is
a derivation D′ of r’s conclusion in S \ {r}. Similarly, a rule r is height preserving invertible
in a system S, if for every derivation of the conclusion of r there are derivations for each of
r’s premises with at most the same height.

Proposition 6.13. Let 〈X,Y〉 be a safe pair of axioms. Then all rules in X[ ], as well as
the rules w and nec are height preserving admissible for NCK′ ∪ XG#

s ∪ Y
[ ]
s .

Proof. For w and nec this is a straightforward induction on the height of the derivation. For
t[ ] and 4[ ] we permute steps upwards through the proof to show admissibility, preserving
height of the other rules in each reduction. Notice that, for either step, any nontrivial over-
lap with a rule above must have a bracket in its conclusion. For t[ ] we have the following
nontrivial cases:

(1) sb[ ] − t[ ]. The only overlap possible is in the ∆ part of a sb[ ]-step, so let ∆{ } =
∆1{[∆2{ }]} with depth(∆2) = m and depth(∆1) = n, and the permutation is as
follows:

Γ{∆1{[∆2{JΣKm+n+1}]}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{[∆2{∅}]}}
t[ ] −−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{∆2{∅}}}

→

Γ{∆1{[∆2{JΣKm+n+1}]}}
t[ ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆1{∆2{JΣKm+n+1}}}
t[ ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆1{∆2{JΣKm+n}}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{∆2{∅}}}

and we can apply the induction hypothesis twice.
(2) s4

◦

♦
− t[ ].

Γ{[∆{A◦}]}
s4

◦

♦
−−−−−−−−−−−−−−−−−−−

Γ{♦A◦, [∆{∅}]}
t[ ] −−−−−−−−−−−−−−−−−−−

Γ{♦A◦,∆{∅}}

→

Γ{[∆{A◦}]}
t[ ] −−−−−−−−−−−−−−

Γ{∆{A◦}}
r −−−−−−−−−−−−−−−−−

Γ{♦A◦,∆{∅}}

where r is t◦ if the hole of ∆{ } has depth 0 and s4
◦

♦
otherwise.

(3) s4
•
�
− t[ ]. Similar to case 2.

(4) ♦◦ − t[ ].
Γ{[A◦,∆]}

♦◦ −−−−−−−−−−−−−−−

Γ{♦A◦, [∆]}
t[ ] −−−−−−−−−−−−−−−

Γ{♦A◦,∆}

→

Γ{[A◦,∆]}
t[ ] −−−−−−−−−−−−−

Γ{A◦,∆}
t◦ −−−−−−−−−−−−−

Γ{♦A◦,∆}

(5) �• − t[ ]. Similar to case 4.
(6) s5b[ ] − t[ ]. Similar to case 1.
(7) sb5[ ] − t[ ]. One overlap case is similar to case 1, and the other is given below.

Γ{∆{JΣKk}}
sb5[ ]

−−−−−−−−−−−−−−−−

Γ{[Σ],∆{∅}}
t[ ] −−−−−−−−−−−−−−−−

Γ{Σ,∆{∅}}

→
Γ{∆{JΣKk}}

s5b[ ] −−−−−−−−−−−−−−
Γ{Σ,∆{∅}}

(8) s5[ ] − t[ ]. One overlap case is similar to case 1, and the other is similar to 7 above.

And for 4[ ] we have the following nontrivial cases:

(9) sb[ ] − 4[ ]. The only overlap possible is in the ∆ part of a sb[ ]-step, so let ∆{ } =
∆1{[∆2{ }]} with depth(∆2) = m and depth(∆1) = n, and the permutation is as
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follows:

Γ{∆1{[∆2{JΣKm+n+1}]}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{[∆2{∅}]}}
4[ ] −−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{[ [∆2{∅}] ]}}

→

Γ{∆1{[∆2{JΣKm+n+1}]}}
4[ ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆1{[ [∆2{JΣKm+n+1}] ]}}
4[ ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆1{[ [∆2{JΣKm+n+2}] ]}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{[ [∆2{∅}] ]}}

and we can apply the induction hypothesis twice.
(10) s4

◦

♦
− 4[ ].

Γ{[∆{A◦}]}
s4

◦

♦
−−−−−−−−−−−−−−−−−−−

Γ{♦A◦, [∆{∅}]}
4[ ] −−−−−−−−−−−−−−−−−−−−−

Γ{♦A◦, [ [∆{∅}] ]}

→

Γ{[∆{A◦}]}
4[ ] −−−−−−−−−−−−−−−−−

Γ{[ [∆{A◦}] ]}
s4

◦

♦
−−−−−−−−−−−−−−−−−−−−−

Γ{♦A◦, [ [∆{∅}] ]}

(11) s4
•
�
− 4[ ]. Similar to case 10.

(12) ♦◦ − 4[ ].
Γ{[A◦,∆]}

♦◦ −−−−−−−−−−−−−−−

Γ{♦A◦, [∆]}
4[ ] −−−−−−−−−−−−−−−−−

Γ{♦A◦, [ [∆] ]}

→

Γ{[A◦,∆]}
4[ ] −−−−−−−−−−−−−−−

Γ{[ [A◦,∆]]}
s4

◦

♦
−−−−−−−−−−−−−−−−−

Γ{♦A◦, [ [∆] ]}

(13) �• − 4[ ]. Similar to case 12.
(14) s5b[ ] − 4[ ]. Similar to case 9.
(15) sb5[ ] − 4[ ]. One overlap case is similar to 9 and the other is given below.

Γ{∆{JΣKk}}
sb5[ ]

−−−−−−−−−−−−−−−−

Γ{[Σ],∆{∅}}
4[ ] −−−−−−−−−−−−−−−−−−

Γ{[ [Σ]],∆{∅}}

→

Γ{∆{JΣKk}}
4[ ] −−−−−−−−−−−−−−−−−

Γ{∆{J[Σ]Kk}}
sb5[ ]

−−−−−−−−−−−−−−−−−−

Γ{[ [Σ] ],∆{∅}}

(16) s5[ ] − 4[ ]. One overlap case is similar to 9, and the other is similar to 15 above.

Note also that permutations over contraction preserve height, since we can apply the induc-
tion hypothesis twice.

Note that the variants XG#

s of XG# and Y
[ ]
s of Y[ ] are needed to make Proposition 6.13 work.

Without the “super-rules” we would not be able to preserve the height, and consequently
would not be able to proceed by the induction hypothesis when eliminating t[ ] and 4[ ] in
the cases 1 and 9 above.

Proposition 6.14. The rules ∧•, ∨•, ♦•, ∧◦, ⊃◦, �◦, and ⊃• on the right premise, are
height preserving invertible for NCK′ ∪ XG#

s ∪ Y
[ ]
s .

Proof. Straightforward induction on the height of the derivation.

Before we can state our main lemmas, we need to define a restricted version of Buss’
logical flow-graphs [Bus91].

Definition 6.15. We define the (formula) flow-graph of a derivation D, denoted by G(D)
to be the directed graph whose vertices are all input formula occurrences in D, and whose
edges are just between two formula occurrences which are the same unaltered occurrence
in the premise and conclusion of an instance of an inference rule. This concerns all formula
occurrences in Γ{ }, ∆, Π, and Σ in the rules in Figures 2, 3, 4, 6 and ∗cut, as well as the
occurrences of �A• in the 4• and s4• rules. The edges are always directed from premise
to conclusion. The length of a path in G(D) is its number of edges. A path p in G(D) is
maximal if for every path p′ in G(D) with p ⊆ p′ we have p = p′.
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Let us emphasize that there are no edges between a formula occurrence and any of its
subformulae that may occur in G(D). For example, the principal A ∨B• in the conclusion
of an ∨•-rule is connected to neither the A• nor the B• in the premises. But every formula
occurrence in Γ{{ },Π◦} in the conclusion is connected via an edge to the same occurrence in
each of the two premises. Thus, the flow-graph is essentially a set of trees, where branching
occurs in the branching rules ∨•, ⊃•, ∧◦, ∗cut, and in a contraction because every formula
occurrence in ∆• in the conclusion is connected to each of its copies in the premise.

Recall from Definition 6.8 the notion of a black-destructing rule, from Definition 6.9
the notion of an anchored cut, and our convention that an output cut formula is written on
the left-hand side of a ∗cut step and an input cut formula on the right.

Definition 6.16. A cut-path in G(D) is a maximal path that ends at the cut formula A•

in the right-hand side premise of a ∗cut-instance. A cut path is relevant if it starts at the
principal formula of a black destructing rule. Otherwise it is called irrelevant. A cut path
is left-free if it never passes through a left-hand side premise of an instance of ∗cut. A
derivation D is left-free if all relevant cut paths in G(D) are left-free. An origin of G(D)
is the topmost vertex of a relevant cut path in G(D). An origin is anchored if its cut path
has length 0. A derivation is anchored if all its cuts are anchored. An instance of ∗cut in
D is called relevant if it has at least one relevant cut path. Otherwise it is called irrelevant.
The relevant cut-value of a derivation D, denoted by vr(D), is the multiset of the values of
its relevant cuts.

To be clear, irrelevant cut-paths are exactly those that begin in the context of an axiom,
i.e. in the Γ{ } part of a ⊥• or id step.

Notice that we are using the term ‘anchored’ to describe both cuts, as in Definition 6.9,
and origins as in the definition above (as well as derivations). In particular we point out that,
if a cut is anchored, then it can have only one origin which is also anchored. Conversely, if
all origins are anchored (which are only defined for relevant cut-paths), there may be some
cuts that are not anchored in the derivation, namely those with only irrelevant cut-paths.
An anchored derivation, thus, is one all of whose cuts and origins are anchored, which is
not the same as simply having all origins anchored. This subtlety is important in the proof
of Lemma 6.19 below. But first, let us make an example.

Example 6.17. Consider the derivation:

⑧⑧
⑧⑧
⑧❄❄❄❄❄

⊥•, A◦

⊥• −−−−−−−−−−−−

⊥•, A•, E◦
⊥• −−−−−−−−−−−−−−−−−−−−

⊥•, A•, E•, d ∧ b◦
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊥•, A•, d ∧ b◦

id −−−−−−−−−−−−−−−−−−−

⊥•, A•, d•, b•, b◦
∧• −−−−−−−−−−−−−−−−−−−

⊥•, A•, d ∧ b•, b◦
∨◦ −−−−−−−−−−−−−−−−−−−−−−−

⊥•, A•, d ∧ b•, b ∨ c◦
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊥•, A•, b ∨ c◦
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊥•, b ∨ c◦

Here the cut-paths for A• and E• are irrelevant, while the cut-path for d ∧ b• is relevant.
There are three cut-paths for A• and, except for the rightmost one, they do not satisfy
left-freeness, since they pass through the left premise of a cut instance. The only cut-path
for d ∧ b• has two vertices and length 1. Therefore, this cut is not anchored. But if we
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permute that cut over the ∨◦-rule instance, we obtain the derivation

⑧⑧
⑧⑧
⑧❄❄❄❄❄

⊥•, A◦

⊥• −−−−−−−−−−−−

⊥•, A•, E◦
⊥• −−−−−−−−−−−−−−−−−−−−

⊥•, A•, E•, d ∧ b◦
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊥•, A•, d ∧ b◦

id −−−−−−−−−−−−−−−−−−−

⊥•, A•, d•, b•, b◦
∧• −−−−−−−−−−−−−−−−−−−

⊥•, A•, d ∧ b•, b◦
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊥•, A•, b◦
∨◦ −−−−−−−−−−−−−−−

⊥•, A•, b ∨ c◦
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊥•, b ∨ c◦

in which the cut-path for d ∧ b• has length 0, and so this cut is anchored.

Lemma 6.18. Let 〈X,Y〉 be a safe pair of axioms. Given a derivation D in NCK′ + XG#

s +
Y

[ ]
s + Cut, there is a derivation D′ in NCK′ + XG#

s + Y
[ ]
s + Cut of the same conclusion, such

that D′ has no irrelevant cuts, and such that vr(D
′) ≤ vr(D).

Proof. We proceed by induction on the number of irrelevant cuts in D. Consider the topmost
one. We can replace

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{A◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{A•}
cut −−−−−−−−−−−−−−−−−−−−

Γ{∅}

by ⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{∅}

where D′
2 is obtained from D2 by removing the A• occurrence everywhere; this results in a

correct derivation since, by irrelevance, A• must occur in the context of an axiom. For ♦cut
and �cut we proceed similarly.

In the following, we use the notation n∗r where n is a natural number and r a name of
an inference rule. Then n∗r simply stands for n consecutive applications of r.

Lemma 6.19. Let 〈X,Y〉 be a safe pair of axioms, and let D be a left-free derivation in
NCK′+XG#

s +Y
[ ]
s +Cut. Then there is an anchored derivation D′ in NCK′+XG#

s +Y
[ ]
s +Cut of

the same conclusion, such that for each ∗cut in D′, there is a ∗cut in D of the same rank.

Proof. We proceed by induction on the number of origins in G(D) that are not anchored.
If all origins are anchored, then we remove all irrelevant cuts using Lemma 6.18 and we
are done. Otherwise, we pick a topmost origin that is not anchored and proceed by an
inner induction on the length of its cut-path to show that there is a derivation in which the
number of non-anchored origins has decreased. Note that, if the length of this cut-path is 0,
then the cut is already anchored and there is nothing to do.

Now consider the ∗cut-instance connected to our origin and make a case analysis on the
rule instance r on the right above it.

(1) If r is one of ∧•, ♦•, ⊃◦, �◦, we can reduce as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{A◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ1{A•}
r −−−−−−−−−

Γ{A•}
cut −−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

(Inv1)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{A◦}
Invr −−−−−−−−−

Γ⇓
1{A

◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ1{A•}
cut −−−−−−−−−−−−−−−−−−−−−

Γ1{∅}
r −−−−−−−

Γ{∅}

(6.3)

where the Invr is eliminated by Proposition 6.14.
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(2) If r is one of ∨•, ∧◦, we can reduce as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{A◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ1{A•}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

Γ2{A•}
r −−−−−−−−−−−−−−−−−−−−−

Γ{A•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

(r)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{A◦}
Invr −−−−−−−−−

Γ⇓
1{A

◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ1{A•}
cut −−−−−−−−−−−−−−−−−−−−−

Γ1{∅}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{A◦}
Invr −−−−−−−−−

Γ⇓
2{A

◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

Γ2{A•}
cut −−−−−−−−−−−−−−−−−−−−−

Γ2{∅}
r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

where the Invr steps are eliminated by Proposition 6.14.

Note that it can happen in these two cases that the Invr-step is vacuous in the above because

depending on the position of the output formula in Γ{ } it is possible that Γ⇓
1{ } = Γ⇓{ }

and Γ⇓
2{ } = Γ⇓{ }.

(3) If r is ⊃•, there are two cases. The first is

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{(Θ{B ⊃ C•})⇓,∆•{A◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ⇓{Θ⇓{B◦},∆•{A•}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

Γ{Θ{C•},∆•{A•}}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{B ⊃ C•},∆•{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{B ⊃ C•},∆•{∅}}

(⊃•
1)

;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D4

Γ⇓{(Θ{B ⊃ C•})⇓,Θ⇓{B◦},∆•{∅}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D5

Γ{(Θ{B ⊃ C•})⇓,Θ{C•},∆•{∅}}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{(Θ{B ⊃ C•})⇓,Θ{B ⊃ C•},∆•{∅}}
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{B ⊃ C•},∆•{∅}}

where D4 is

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{(Θ{B ⊃ C•})⇓,∆•{A◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ⇓{Θ⇓{B◦},∆•{A•}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{(Θ{B ⊃ C•})⇓,Θ⇓{B◦},∆•{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{(Θ{B ⊃ C•})⇓,Θ⇓{B◦},∆•{∅}}

and D5 is

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{(Θ{B ⊃ C•})⇓,∆•{A◦}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{(Θ{B ⊃ C•})⇓, (Θ{C•})⇓,∆•{A◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

Γ{Θ{C•},∆•{A•}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{(Θ{B ⊃ C•})⇓,Θ{C•},∆•{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{(Θ{B ⊃ C•})⇓,Θ{C•},∆•{∅}}

.

From here, w steps are removed by Proposition 6.13. Left-freeness is preserved since
the derivations initially on the right of the cut, D2 and D3, remain on the right of all
cuts after the transformation. Finally, both of the new cuts have the same rank as the
initial cut, satisfying the requirement in the statement of the lemma. (To see that the
application of the c-rule is correct we refer to Observation 2.2 and Definition 2.3.)

Note that this case shows that we need an explicit contraction rule. Making contrac-
tion implicit in the ⊃•-rule (as done in [Str13]) would not be enough, since we also need
to duplicate the context Θ{ }.
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In the case shown above, the output formula in the conclusion can be in Γ{ } or
Θ{ }. There is another such case for ⊃• on the right branch, where the output formula
in the conclusion is in ∆{ }. That case is simpler, and no extra contraction is needed:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ•{Θ•{B ⊃ C•},∆⇓{A◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ•{Θ•{B◦}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

Γ•{Θ•{C•},∆{A•}}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ•{Θ•{B ⊃ C•},∆{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ•{Θ•{B ⊃ C•},∆{∅}}

(⊃•
2)

;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ•{Θ•{B◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ•{Θ•{B ⊃ C•},∆⇓{A◦}}
Inv⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ•{Θ•{C•},∆⇓{A◦}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

Γ•{Θ•{C•},∆{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ•{Θ•{C•},∆{∅}}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ•{Θ•{B ⊃ C•},∆{∅}}

Here we use invertibility of ⊃• on the right (Proposition 6.14).
(4) If r is one of �•, ♦◦, t• , t◦ , c, or one of the s4-rules, working entirely in the context of

the cut formula A•, then there are contexts Γ′,Γ′
1 such that we can reduce as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{A◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ1{A•}
r −−−−−−−−−

Γ{A•}
cut −−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

(r)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{A◦}
w −−−−−−−−−

Γ′⇓
1 {A◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ1{A•}
w −−−−−−−−−

Γ′
1{A

•}
cut −−−−−−−−−−−−−−−−−−−−−−−−

Γ′
1{∅}

r −−−−−−−

Γ′{∅}
c −−−−−−

Γ{∅}

(6.4)

where, read top-down, the two w-steps weaken as much as is necessary to unify the
contexts in order to perform a cut-step. The r-step then acts on the appropriate redex
(as determined by the r-step on the left) before contraction is performed to eliminate
any formulae duplicated as a result of the permutation. The w-steps are then removed
by Proposition 6.13.

(5) If r is a s4• step moving the cut formula (which is of shape �A•), then we can inductively
apply,

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{�A◦, (Θ{∆{∅}})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{Θ{∆{�A•}}}
4• −−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{�A•,∆{∅}}}
�cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∆{∅}}}

(�4)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{�A◦, (Θ{∆{∅}})⇓}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{Θ{∆{�A•}}}
�cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∆{∅}}}

by decomposing the instance of s4• into several 4• steps.
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(6) If r is a c step duplicating the cut formula, we can reduce as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{∆•{A◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{∆•{A•},∆•{A•}}
c −−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆•{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆•{∅}}

(c)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{∆•{A◦}}
w −−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{∆•{A◦},∆•{∅}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{∆•{A◦}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{∆•{A•},∆•{A◦}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{∆•{A•},∆•{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆•{A•},∆•{∅}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆•{∅},∆•{∅}}
c −−−−−−−−−−−−−−−−−−−−

Γ{∆•{∅}}

(6.5)

Note that the number of origins is not increased because the derivation is left-free.
Furthermore, we can choose the order of the two new cuts such that the origin we
are working on belongs to the topmost cut. Thus, we can proceed by the induction
hypothesis.

(7) If r is a sb[ ] or s5b[ ] step, such that the cut-formula A• is inside Σ. Then there are two
subcases.
(a) If the depth of Γ{ } is 0, then Γ{Σ,∆{∅}} = Σ,∆′{∅} for some ∆′{ }. Thus,

without loss of generality, we have

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Σ⇓{A◦}, (∆{∅})⇓

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

∆{JΣ{A•}Kn}
sb[ ]

−−−−−−−−−−−−−−−−

Σ{A•},∆{∅}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Σ{∅},∆{∅}

(sb[ ])
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Σ⇓{A◦}, (∆{∅})⇓
2n∗nec ==========================

JΣ⇓{A◦}, (∆{∅})⇓K2n
(n+1)∗w ===============================

∆⇓{JΣ⇓{A◦}, (∆{∅})⇓Kn}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

∆{JΣ{A•}Kn}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−

∆{JΣ{A•}, (∆{∅})⇓Kn}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∆{JΣ{∅}, (∆{∅})⇓Kn}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−

Σ{∅}, (∆{∅})⇓,∆{∅}
c −−−−−−−−−−−−−−−−−−−−−−−−

Σ{∅},∆{∅}

where we use Proposition 6.13 to remove the w- and nec-steps.
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(b) If the depth of Γ{ } is ≥ 1, then Γ{Σ,∆{∅}} = Γ′{[Σ,∆′{∅}]} for some Γ′{ } and
∆′{ }. Thus, without loss of generality, we have

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{[Σ⇓{A◦}, (∆{∅})⇓]}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{[∆{JΣ{A•}Kn}]}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ{A•},∆{∅}]}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ{∅},∆{∅}]}

(sb[ ])
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{[Σ⇓{A◦}, (∆{∅})⇓ ]}
2n∗4[ ] ==================================

Γ⇓{[JΣ⇓{A◦}, (∆{∅})⇓K2n ]}
(n+1)∗w ========================================

Γ⇓{[∆⇓{JΣ⇓{A◦}, (∆{∅})⇓Kn}]}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{[∆{JΣ{A•}Kn}]}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆{JΣ{A•}, (∆{∅})⇓Kn}]}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆{JΣ{∅}, (∆{∅})⇓Kn}]}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ{∅}, (∆{∅})⇓,∆{∅}]}
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ{∅},∆{∅}]}

(6.6)

where we use Proposition 6.13 to remove the w- and 4[ ]-steps. This case is the
reason why we need the presence of 4 when we have b in our logic.

(8) If r is a sb[ ] or s5b[ ], such that the cut-formula A• is inside ∆{∅}, we have that ∆{∅} =
∆1{∆2{∅},∆3{∅}} and we can reduce as follows

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{Σ⇓,∆⇓
1 {∆

⇓
2{A

◦}, (∆3{∅})⇓}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{∆1{∆2{A•},∆3{JΣKn}}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{∆2{A•},∆3{∅}}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{∆2{∅},∆3{∅}}}

(sb[ ])
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{Σ⇓,∆⇓
1{∆

⇓
2{A

◦}, (∆3{∅})⇓}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{Σ⇓,∆⇓
1{∆

⇓
2{A

◦}, (∆3{JΣKn})⇓}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{∆1{∆2{A•},∆3{JΣKn}}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ⇓,∆1{∆2{A•},∆3{JΣKn}}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ⇓,∆1{∆2{∅},∆3{JΣKn}}}
sb[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ⇓,Σ,∆1{∆2{∅},∆3{∅}}}
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ,∆1{∆2{∅},∆3{∅}}}

(6.7)

where the w on the left is not needed if (∆3{∅})
⇓ = (∆3{JΣKn})⇓. Note that this case

can be seen as a special case of case 4 above.
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(9) If r is a s5[ ] or sb5[ ], such that the cut-formula A• is inside Σ, then the situation is
similar to case 7b above:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{[Σ⇓{A◦}], (∆{∅})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{∆{[Σ{A•}]}}
s5[ ]

−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ{A•}],∆{∅}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ{∅}],∆{∅}}

(s5[ ])
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{[Σ⇓{A◦}], (∆{∅})⇓}
n∗4[ ] =================================

Γ⇓{J[Σ⇓{A◦}]Kn, (∆{∅})⇓}
(n+1)∗w ====================================

Γ⇓{∆⇓{[Σ⇓{A◦}]}, (∆{∅})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{∆{[Σ{A•}]}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆{[Σ{A•}]}, (∆{∅})⇓}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∆{[Σ{∅}]}, (∆{∅})⇓}
s5[ ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ{∅}],∆{∅}, (∆{∅})⇓}
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Σ{∅}],∆{∅}}

(6.8)

where we use Proposition 6.13 to remove the w- and 4[ ]-steps. This case is the reason
why we need the presence of 4 when we have 5 in our logic.

(10) If r is a s5[ ] or sb5[ ], such that the cut-formula A• is inside ∆{∅}, then the situation is
similar to case 8 above.

(11) If r is a sb[ ], s5b[ ], s5[ ], or sb5[ ], such that the cut-formula A• is inside Γ{ }, then we
proceed as in case 4 above.

(12) Finally, if r is another cut, we can reduce as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{Σ⇓{A◦}, (∆{∅})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ⇓{(Σ{A•})⇓,∆⇓{B◦}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

Γ{Σ{A•},∆{B•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ{A•},∆{∅}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ{∅},∆{∅}}

(cut)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ⇓{(Σ{∅})⇓,∆⇓{B◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ⇓{Σ⇓{A◦}, (∆{∅})⇓}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{Σ⇓{A◦}, (∆{B•})⇓}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D3

Γ{Σ{A•},∆{B•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ{∅},∆{B•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Σ{∅},∆{∅}}

where D′
2 exists because our original derivation is left-free, and the w-step is removed by

Proposition 6.13. Note that it can happen that (Σ{∅})⇓ = (Σ{A•})⇓ and/or (∆{∅})⇓ =
(∆{B•})⇓, depending on where the output formula occurs in Γ{Σ{∅},∆{∅}}.

Above, we have only shown the cases for cut. The ones for ♦cut and �cut are similar,
except the ones when r is one of sb[ ], s5b[ ], s5[ ], or sb5[ ]. When such a rule is on the right
above a �cut, we decompose that �cut into a s4• and a cut (using Fact 6.6) and then apply
Lemma 6.5 to permute the s4• over r, so that we can proceed as described above. When
the cut is permuted over r, we can compose it again with the s4•-instance, so that we can
proceed by induction hypothesis. Observe that we make crucial use of the left-free property.
Without it, the number of origins in G(D) would not be stable. Furthermore, note that the
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cut-cut permutation does not affect cuts that are above our current origin. Thus, all origins
above remain anchored. This is the reason for starting with the topmost one.

Lemma 6.20. Let 〈X,Y〉 be a safe pair of axioms. If there is a proof

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ1{A◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ2{A•}
∗cut −−−−−−−−−−−−−−−−−−−−−

Γ{∅}

(6.9)

where D1 and D2 are both in NCK′ + XG#

s + Y
[ ]
s and where ∗cut is anchored, then there is a

proof D′ of Γ{∅} in NCK′ + XG#

s + Y
[ ]
s + Cut in which all cuts have a smaller rank.

Proof. We make a case analysis on the cut-formula A.

(1) If A = B ∧ C, we reduce the cut rank as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{B◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

1

Γ⇓{C◦}
∧◦ −−−−−−−−−−−−−−−−−−−−−

Γ⇓{B ∧C◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{B•, C•}
∧• −−−−−−−−−−−−−

Γ{B ∧ C•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

(∧)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{B◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

1

Γ⇓{C◦}
w −−−−−−−−−−−−−−

Γ⇓{B•, C◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{B•, C•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{B•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

whereD′
1 andD′′

1 exist since the ∧
◦-rule is height-preserving invertible (Proposition 6.14),

and D′
2 exists since our cut is anchored. Finally, we remove the w-step using Proposi-

tion 6.13.
(2) If A = B ⊃ C, we reduce the cut rank as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{B•, C◦}
⊃◦ −−−−−−−−−−−−−−

Γ⇓{B ⊃ C◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ⇓{B◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

2

Γ{C•}
⊃• −−−−−−−−−−−−−−−−−−−−

Γ{B ⊃ C•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

(⊃)
; ⑧⑧

⑧⑧
⑧❄❄❄❄❄D

′

2

Γ⇓{B◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{B•, C◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

2

Γ{C•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−

Γ{B•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

where again, D′
1 exists by invertibility of the ⊃◦-rule (Proposition 6.14), and D′

2 and
D′′

2 exist since our cut is anchored.
(3) If A = �B, and the rule on the right above the cut is a �•, then we reduce the cut rank

as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{[B◦ ], (Θ{[∆]})⇓}
�◦ −−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{�B◦, (Θ{[∆]})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{Θ{[B•,∆]}}
�• −−−−−−−−−−−−−−−−−−−−

Γ{Θ{�B•, [∆]}}
�cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{[∆]}}

(�)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{[B◦ ], (Θ{[∆]})⇓}
n∗4[ ] ==============================

Γ⇓{J[B◦ ]Kn, (Θ{[∆]})⇓}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{J[B◦,∆⇓ ]Kn, (Θ{[∆]})⇓}
(n+1)∗w ======================================

Γ⇓{Θ⇓{[B◦,∆⇓ ]}, (Θ{[∆]})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{Θ{[B•,∆]}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{[B•,∆]}, (Θ{[∆]})⇓}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{[∆]}, (Θ{[∆]})⇓}
c −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{[∆]}}
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Where D′
1 and D′

2 exist for the same reason as above, and we finally apply Proposi-
tion 6.13 to remove the w- and 4[ ]-steps, where n is the depth of Θ⇓{ }.

(4) If A = �B and the rule on the right above cut is a s4
•
�
, then we can reduce to the

previous case as follows,

Γ⇓{�B◦, (Θ{∆1{[∆2 ]}})⇓}

Γ{Θ{∆1{[B•,∆2 ]}}}
s4

•

�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{�B•,∆1{[∆2 ]}}}
�cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∆1{[∆2 ]}}}

(�)
;

Γ⇓{�B◦, (Θ{∆1{[∆2 ]}})⇓}

Γ{Θ{∆1{[B•,∆2 ]}}}
�• −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∆1{�B•, [∆2 ]}}}
�cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∆1{[∆2 ]}}}

(5) If A = �B, and the rule on the right above the cut is a t• , then we reduce the cut rank
as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{[B◦ ], (Θ{∅})⇓}
�◦ −−−−−−−−−−−−−−−−−−−−−−

Γ⇓{�B◦, (Θ{∅})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{Θ{B•}}
t• −−−−−−−−−−−−−−

Γ{Θ{�B•}}
�cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∅}}

(�t)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{[B◦ ], (Θ{∅})⇓}
(n−1)∗4[ ]/t[ ] ========================

Γ⇓{JB◦Kn, (Θ{∅})⇓}
(n+1)∗w ===========================

Γ⇓{Θ⇓{B◦}, (Θ{∅})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{Θ{B•}}
w −−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{B•}, (Θ{∅})⇓}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∅}, (Θ{∅})⇓}
c −−−−−−−−−−−−−−−−−−−−−

Γ{Θ{∅}}

where n is the depth of Θ⇓{ }, and at the top we either have one t[ ] step (if n = 0)
or n − 1 steps of 4[ ] (if n ≥ 1), which can be removed via Proposition 6.13. Note that
4 ∈ X if n ≥ 1.

(6) If A = a, then the cut is removed as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ{a◦}
id −−−−−−−−−−−

Γ{a•, a◦}
cut −−−−−−−−−−−−−−−−−−−−−−−−−

Γ{a◦}

(id)
; ⑧⑧

⑧⑧
⑧❄❄❄❄❄D1

Γ{a◦}

Note that here Γ⇓{a◦} = Γ{a◦}.
(7) If A = ⊥, the situation is similar:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D1

Γ{Π◦}
⊥• −−−−−−−−−−−−

Γ{⊥•,Π◦}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Π◦}

(⊥)
; ⑧⑧

⑧⑧
⑧❄❄❄❄❄D1

Γ{Π◦}

(8) If A = B ∨ C, we proceed by induction on the height of D1 and make a case analysis
on its bottommost rule instance r.
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(a) If r is a ∨◦, then it must decompose the cut formula, bottom-up, and we can reduce
the cut rank as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{B◦}
∨◦ −−−−−−−−−−−−−−

Γ⇓{B ∨ C◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{B•}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

2

Γ{C•}
∨• −−−−−−−−−−−−−−−−−−−−

Γ{B ∨C•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

(∨)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{B◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{B•}
cut −−−−−−−−−−−−−−−−−−−−−

Γ{∅}

The case when ∨◦ chooses C◦ is symmetric.
(b) If r is a ⊃•, then we have

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{Θ•{D◦}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

1

Γ⇓{Θ•{E•},∆⇓{A◦}}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{Θ•{D ⊃ E•},∆⇓{A◦}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{Θ•{D ⊃ E•},∆{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{D ⊃ E•},∆{∅}}

(⊃•)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{Θ•{D◦}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{Θ•{D◦}, (∆{∅})⇓}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

1

Γ⇓{Θ•{E•},∆⇓{A◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{Θ•{D ⊃ E•},∆{A•}}
Inv −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{E•},∆{A•}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{E•},∆{∅}}
⊃• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{D ⊃ E•},∆{∅}}

where the Inv-step is removed by Proposition 6.14, and we can proceed by induction
hypothesis.

(c) All other cases are standard commutative cases and are shown below. They are
in fact symmetric to their corresponding cases in Lemma 6.19. This, in particular,
concerns the case where r is ∨•. Since our cut is anchored, the output branch of
the sequent is next to the A• occurrence in the right premise of the cut. Therefore
the ∨• above the left premise of the cut can now be permuted under the cut:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ1{A◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

1

Γ2{A◦}
∨• −−−−−−−−−−−−−−−−−−−−−

Γ{A◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{A•,Π◦}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Π◦}

(∨•)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ1{A◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{A•,Π◦}
Inv −−−−−−−−−−−−−

Γ1{A•,Π◦}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ1{Π◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′′

1

Γ2{A◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{A•,Π◦}
Inv −−−−−−−−−−−−−

Γ2{A•,Π◦}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ2{Π◦}
∨• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Π◦}
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The Inv-steps are removed by Proposition 6.14. The other invertible rules are
handled similarly:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓
1{A

◦}
r −−−−−−−−−

Γ⇓{A◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{A•}
cut −−−−−−−−−−−−−−−−−−−−

Γ{∅}

(r)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓
1{A

◦}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{A•}
Inv −−−−−−−−−

Γ1{A•}
cut −−−−−−−−−−−−−−−−−−−−−−−−−

Γ1{∅}
r −−−−−−−

Γ{∅}

Finally, if the rule on the left above the cut is an axiom ⊥• (note that it cannot be
id because A◦ is not an atom), then we reduce as follows:

⊥• −−−−−−−−−

Γ⇓{A◦}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{A•}
cut −−−−−−−−−−−−−−−−−−−−

Γ{∅}

(⊥•)
; ⊥• −−−−−

Γ{∅}

(9) If A = ♦B we proceed as in the previous case. The only difference occurs when the
bottommost rule r in D1 works on A◦. There are three subcases:
(a) If r is s4◦ we have

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{Θ•{∆•{♦B◦}}}
s4◦ −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{Θ•{♦B◦,∆•{∅}}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{♦B•,Θ•{∆•{∅}}}
♦cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{∆•{∅}}}

(♦4)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{Θ•{∆•{♦B◦}}}
⑧⑧
⑧⑧
⑧❄❄❄❄❄D2

Γ{♦B•,Θ•{∆•{∅}}}
♦cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{∆•{∅}}}

and can proceed by the induction hypothesis.
(b) If r is ♦◦ we can reduce the cut rank as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{Θ•{[B◦,∆• ]}}
♦◦ −−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{Θ•{♦B◦, [∆• ]}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{[B• ],Θ•{[∆• ]}}
♦• −−−−−−−−−−−−−−−−−−−−−−−

Γ{♦B•,Θ•{[∆• ]}}
♦cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{[∆• ]}}

(♦)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{Θ•{[B◦,∆• ]}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{Θ•{[B◦,∆• ]},Θ•{[∆• ]}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{[B• ],Θ•{[∆• ]}}
n∗4[ ] ===========================

Γ{J[B• ]Kn,Θ•{[∆• ]}}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{J[B•,∆• ]Kn,Θ•{[∆• ]}}
(n+1)∗w ===================================

Γ{Θ•{[B•,∆• ]},Θ•{[∆• ]}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{[∆• ]},Θ•{[∆• ]}}
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{[∆• ]}}

where n is the depth of the context Θ•{ }, and D′
2 exists because the instance of

♦cut is anchored. We use Proposition 6.13 to remove the w- and 4[ ]-steps. We
proceed similarly for s4

◦

♦
.
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(c) If r is t◦ the situation is similar and we can reduce the cut rank as follows:

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{Θ•{B◦}}
t◦ −−−−−−−−−−−−−−−−−

Γ⇓{Θ•{♦B◦}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{[B• ],Θ•{∅}}
♦• −−−−−−−−−−−−−−−−−−

Γ{♦B•,Θ•{∅}}
♦cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{∅}}

(♦t)
;

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

1

Γ⇓{Θ•{B◦}}
w −−−−−−−−−−−−−−−−−−−−−−−−

Γ⇓{Θ•{B◦},Θ•{∅}}

⑧⑧
⑧⑧
⑧❄❄❄❄❄D

′

2

Γ{[B• ],Θ•{∅}}
(n−1)∗4[ ]/t[ ] ====================

Γ{JB•Kn,Θ•{∅}}
(n+1)∗w =======================

Γ{Θ•{B•},Θ•{∅}}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Θ•{∅},Θ•{∅}}
c −−−−−−−−−−−−−−−−−−−−

Γ{Θ•{∅}}

Again, n is the depth of the context Θ•{ }. If n = 0, there are no brackets, and we
use t[ ]. If n ≥ 1, there is at least one bracket nesting (and therefore 4 ∈ X), and we
use n− 1 instances of 4[ ], which then are removed by applying Proposition 6.13.

We can now put things together to complete the proof of cut-elimination.

Proof of Theorem 6.3. A proof in NCK′+XG#+Y[ ]+cut is trivially also a proof in NCK′+XG#

s +
Y

[ ]
s +Cut. We proceed by induction on the cut-value v(D) using the well-ordering ≪ (defined

after Definition 6.9). In the base case v(D) is empty, and we are done. Otherwise, we pick a
topmost cut in D. If this ∗cut-instance is anchored, then we can by Lemma 6.20 replace this
cut by cuts of smaller rank, and thus reduce the overall cut-value of the derivation. If our
∗cut-instance is not anchored, we observe that the subderivation rooted at that ∗cut-instance
is left-free (because we chose a topmost cut), and therefore we can apply Lemma 6.19 to
replace that subderivation with one in which all cuts are anchored and have the same rank.
Thus, the overall cut-value of the derivation has reduced as well, and we can proceed by
the induction hypothesis. Finally, we apply Proposition 6.4 to eliminate super steps and
obtain a proof of the same conclusion in NCK′ + XG# + Y[ ].

From here it is simple to see why Theorem 5.2 holds.

Proof of Theorem 5.2. We have that NCK′ + XG# + Y[ ] + cut is complete with respect to
HCK+X+Y by Theorem 5.1. If d /∈ X, we can apply Theorem 6.3 and immediately obtain
the completeness of NCK′ +XG# +Y[ ]. If d ∈ X, we use Theorem 6.3 to obtain completeness
for NCK′ +XG# \ {d• , d◦}+Y[ ] + d[ ], and then use Proposition 6.1 to obtain completeness of
NCK′ + XG# + Y[ ].

7. Conclusions

To the best of our knowledge, our paper is the first attempt to provide some unified proof-
theoretic framework for the constructive modal cube. Although this work does not show
cut-elimination for every logic in the cube, we conjecture that the systems presented do, in
fact, admit cut. More precisely:

Conjecture 7.1. Let X ⊆ {d, t, 4} and Y ⊆ {d, b, 5}, such that if t ∈ X and 5 ∈ Y then
b ∈ Y. Then every theorem of HCK+ X+ Y is provable in NCK′ + XG# + Y[ ].
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This would give us a cut-free system for every logic in the cube. The reason why we
think Conjecture 7.1 is true is the observation that the only place where 4 steps appear
in the presence of b[ ] or 5[ ] is the permutation of sb[ ] steps or s5[ ] steps under a cut, as in
(6.6). Instances of 4[ ] are then introduced, and in the admissibility proof for 4[ ] instances
of 4• or 4◦ are only introduced when 4[ ] steps are permuted over instances of �• or ♦◦.
However, looking back at (6.6) and (6.8), one can see that it seems possible to permute
these instances of �• and ♦◦ under the whole derivation block, including the cut. We have
not yet managed to incorporate this observation into the formal cut-elimination argument,
and leave this issue for further research.

An alternative approach would be to make use of the observation that b implies k3 and
k5, by generalizing the ⊥•- and ∨•-rules to their intuitionistic versions, as used in [Str13,
MS14a]. This would simplify the cut-elimination argument for logics containing b since we
could reuse a lot of the material already appearing in [Str13].

Another path of further research is to give modal logics a similar uniform treatment as
the substructural logics in [CGT08, CST09]. For this, it is necessary to first look at concrete
examples of structural rules corresponding to axioms, as we have shown in Figure 4. Since
these rules almost coincide in the classical, the intuitionistic, and the constructive setting, we
hope to eventually discover a general pattern, yielding uniform cut-elimination arguments
for a variety of modal logics.

Finally, we have observed an apparent dichotomy between the b axiom and the ‘con-
structiveness’ of constructive modal logic, since the former implies k3 and k5, for which we
do not know of any approach providing some sort of Curry-Howard correspondence. We
therefore believe it would be pertinent to develop further outlooks on such logics. Perhaps
it would be possible to find weaker formulations of b which are equivalent classically, but
not constructively, and which do not entail k3 and k5. Such an endeavor might yield new
insights for extending the scope of the Curry-Howard correspondence to modal logics.
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