Introduction
to Proof Theory

Gilles Dowek

Ecole polytechnique and INRIA

LIX, Ecole polytechnique

91128 Palaiseau Cedex, France
Gilles.Dowek@polytechnique.fr
http://www.lix.polytechnique.fr/~dowek

Contents

1 Predicate Logic
1.1 Languages« v v v i i e e
1.1.1 Terms and propositions
1.1.2 Variables and substitutions
1.2 Proofs e
1.2.1 Proofs d la Hilbert
1.2.2 The deduction lemma
1.2.3 Natural deduction
1.24 Constructive proofs oL oL
1.3 Models. e
2 Extensions of predicate logic
2.1 Many-sorted predicate logic
2.2 Predicate logicmodulo oL oo 0oL
2.2.1 Deductionrules oL
2.2.2 Congruences defined by rewrite rules
2.3 Bindinglogic o
3 Type theory
3.1 Naiveset theory
3.2 Settheory
3.3 Simple type theory Lo
34 Infinity. o
3.0 Moreaxiomso
3.5.1 Extensionality
3.5.2 Descriptions Lo
3.6 Type theory withabinder
4 Cut elimination in predicate logic
4.1 Uniform proofs
4.2 Cuts and cut eliminationo
4.3 Proofsasterms
4.4 Cut elimination L L o
4.5 Harrop theories o

10
13
13
15
16
21
23

4 CONTENTS
5 Cut elimination in predicate logic modulo 69
5.1 Congruences defined by a system rewriting atomic propositions . 69
5.2 Proofasterms 70
5.3 Counterexamples 71
5.4 Reducibility candidates 0. 72
9.5 Pre-model 74
5.6 Pre-model construction 0. 79
5.6.1 Thetermcase 79

5.6.2 Quantifier free rewrite systems 80

5.6.3 Positive rewrite systemso 80

5.6.4 Type theory and type theory with infinity 81

Introduction

There is something special about the mathematical discourse : each assertion
must be justified by a proof. A proof is a sequence of assertions produced from
the previous ones by deduction rules. The deduction rules are thus the “rules
of the game” that mathematicians play.

Euclid’s Elements (IIIrd century B.C.) are usually considered as the first
systematic development where each assertion is given a proof, however, the pre-
cise definition of the notion of proof has only been formulated at the beginning
of the XX*th century. Having a definition, and not just an informal idea of what
a correct proof is, is important in several areas. First, since the middle of the
xxth century, proofs have been used not only by mathematicians, but also by
computerized proof processing systems such as proof checkers and proof search
systems, and designing such a system requires a precise definition.

Having a definition is also necessary to solve some problems about proofs.
This is what proof theory is about. A first type of results proof theory permits
to prove is independence results: results asserting that some proposition cannot
be proved in some theory, for instance that the axiom of parallels cannot be
proved from the other axioms of geometry.

However, proof theory is not concerned only with the provable propositions
but also with the structure of proofs themselves, for instance with the compar-
ison of different proofs of the same theorem. One key notion in proof theory
is that of canonical, direct or cut free proof. For instance, if we first prove two
propositions A and B, to deduce the proposition A A B (A and B) and at last
the proposition A, we build a proof that is not canonical, because it contains
an unnecessary detour by the proposition A A B, that has nothing to do with
the problem. Such a detour is called a cut. The main results we prove in these
course notes are that in some cases, such cuts can be eliminated and thus that
all provable propositions have canonical proofs. Moreover non canonical proofs
can be transformed into canonical ones in an algorithmic way.

From a philosophical point of view, these results show that proving a theorem
does not require to use ideas external to the statement of the theorem, or more
precisely, that the use of such external ideas is only required in some specific
cases, depending on the theory. Another application of cut elimination is that
studying the structure of canonical proofs permits to show that some proposi-
tions have no canonical proofs. Hence, from the cut elimination theorem, we can

6 CONTENTS

deduce that they have no proof at all. We get this way independence results.
Cut elimination is also used to reduce dramatically the search space of proof
search algorithms, by restricting to canonical proofs. Finally, cut elimination
permits to prove the witness property for constructive proofs, i.e. that each
time we have a proof of a special form of the existence of an object verifying
a property P, there is also a mathematical object, called a witness, for which
the property P can be proved to hold. Moreover, with the cut elimination algo-
rithm, a description of this object can be computed from the proof. This allows
to use mathematics as a programming language: the cut elimination process is
the execution process of this programming language.

Very often, a proof is defined as a succession of reasonning steps starting
from the axioms and ending at a conclusion. With such a definition, deduction
rules are just reasonning rules. This definition hides the fact that, in mathemat-
ics, proofs are not only formed with reasonning steps but also with computation
steps. Deduction modulo is a reformulation of the axiomatic method where
reasonning and computation are both fully taken into account. We can, for in-
stance, take advantage of this distinction between reasonning and computation
when designing proof seach methods. More surprisingly, we can also take ad-
vantage of this distinction in proof theory. In particular, several cut elimination
theorems can then be seen as corollaries of a single general cut elimination the-
orem for deduction modulo. Thus deduction modulo can be used as a unifying
framework to present the basic results of proof theory. This is the point of view
we have taken in these course notes.

Chapter 1

Predicate Logic

1.1 Languages

A language permits to designate things (The Moon, the number 2, the set of
even numbers, ...) and to express facts (The Moon is a satellite of the Earth,
the number 2 is a member of the set of even numbers, the set of even numbers is
infinite, ...). A phrase that designates a thing is called a term, one that expresses
a fact is called a proposition.

The easiest way to designate a thing is to use an individual symbol (also called
a proper name) such as “2”. Thus, a language contains individual symbols and
individual symbols are terms. But, if we want to be able to designate an infinite
number of objects with a finite number of symbols, we cannot give a proper
name to each object. Thus, a language must contain an other kind of symbols,
called function symbols. A function symbol alone is not a term, but it permits to
construct a term when it is applied to already constructed terms. For instance,
with the individual symbol 0 and the function symbol Su (for “successor”) we
can designate all the natural numbers. The number zero is designated by the
term 0, the number one by the term Su(0) obtained by applying the function
symbol Su to the term 0, the number two by the term Su(Su(0)), ... Some
function symbols must be applied to several arguments to construct a term,
for instance the symbol + must be applied to two arguments. The function
symbol + is said to have two arguments, while the symbol Su is said to have
one argument. Individual symbols can be seen as special function symbols that
have zero arguments.

The simplest way to form a proposition is to apply a predicate symbol to one
or several terms. For instance, we can form this way the proposition

satellite(Moon,Earth)
that expresses that the Moon is a satellite of the Earth. Thus, a language

contains predicate symbols. The predicate symbol satellite that must be applied
to two terms to form a proposition is said to have two arguments. A proposition

7

8 CHAPTER 1. PREDICATE LOGIC

formed by application of a predicate symbol to terms is called atomic. More
propositions can be formed with the connectors = (not), A (and), V (or) and
= (implies). It is also convenient to consider propositions T (truth) and L
(falsity). We can for instance form this way the proposition

prime(Su(Su(0))) A =prime(Su(Su(Su(Su(0)))))

that expresses that the number two is prime and that the number four is not.

A last construction is needed for propositions such as “all men are mortal”
or “some number is prime”, where we express that all objects verify some pred-
icate or that some object verify some predicate without expliciting this object.
We could introduce symbols all and some and let them replace a term as an
argument of a predicate symbol or a function symbol. For instance we would
write

prime(some)

to express that some number is prime, in the same way that we write
prime(Su(Su(0)))

to express that the number two is prime. But, such a construction is ambiguous.
Indeed, the proposition

some > all

may express that for all numbers there is some greater number (which is true)
but also that there is some number greater than all numbers (which is false).
A more precise construction is to apply the predicate symbol to a variable
and indicate in a second step if this variable is universal or existential with a
quantifier V (for all) or 3 (there exists). The fact that some number is prime is
then expressed

Az prime(x)

The order in which these quantifiers are applied permits to resolve the ambigu-
ities. The fact that for all numbers there is some greater number is expressed
by the proposition

Ve dyy>ax

while the fact that some number is greater than all numbers (which is false) is
expressed by the proposition

JyVexy >z

Among all the symbols used to form terms and propositions, some are the
same in all languages: the connectors T, L, =, A, V and =, the quantifiers V
and 3 and the variables, while the function symbols (including the individual
symbols) and the predicate symbols are specific to a given language. For instance
the symbol Moon is used in the language of astronomy, but not in the language
of geometry.

1.1. LANGUAGES 9

1.1.1 Terms and propositions

Definition 1.1.1 (Language) A language is a set of function symbols and
a set of predicate symbols. To each symbol is associated a number, called its
number of arguments.

Definition 1.1.2 (Term) Let £ be a language and V be an infinite set whose
elements are called variables. The terms of the language £ with variables V are
defined by the following rules

e if © is a variable then the tree whose root is labeled by x and that has no
sub-tree is a term,

e if f is a function symbol of n arguments and ty,...,t, are terms then the
tree whose root is labeled by f and whose sub-trees are tq, ..., t, is a term.

Definition 1.1.3 (Proposition) Let £ be a language and V be an infinite set.
The propositions of the language £ with variables V are defined by the following
rules

e if P is a predicate symbol of n arguments and ty,...,t, are terms then
the tree whose root is labeled by P and whose sub-trees are ti,...,t, is a
proposition,

o the trees whose root are labeled by T and L and that have no sub-tree are
propositions,

e if A is a proposition then the tree whose root is labeled by — and whose
sub-tree is A is a proposition,

e if A and B are propositions then the trees whose root are labeled by N, V
or = and whose sub-trees are A and B are propositions,

e if A is a proposition and x a variable then the trees whose root are labeled
Vz and Jz and whose sub-tree is A are propositions.

Remark. In several places, we shall use the notation A < B. There is no
connector < in our definition of the notion of proposition. Thus the proposition
A & B is just a notation for the proposition (A = B) A (B = A).

Example 1.1.1 If = is a predicate symbol of two arguments, + a function sym-

bol of two arguments, 0 a function symbol of zero arguments (i.e. an individual
symbol) and x a variable then the tree

1S a proposition.

10 CHAPTER 1. PREDICATE LOGIC

Remark. Terms and propositions have been defined as trees whose nodes are
labeled by symbols. Some authors prefer to define terms and propositions as
strings, i.e. as sequences of symbols. The proposition of example 1.1.1 would
then be written

= (+(,0),7)

or
r+0=2x

This is difference is just a matter of taste.

However, the advantage of considering trees instead of strings is that this
permits to disregard the shallow properties of expressions: whether + is written
before, between or after its arguments, whether parentheses or brackets are
used, ... and to focus on the logical structure of expressions.

1.1.2 Variables and substitutions

Definition 1.1.4 (Variables) The set of variables of a term (resp. proposi-
tion) is defined by induction over its height as follows

o Var(z) = {z},

o Var(f(ty,...tn)) = Var(t;) U...U Var(t,),
ar(P(ty,....,tn)) = Var(ty) U...U Var(t,),
e Var(T)=Var(L) =10,

e Var(—A) = Var(4),

e Var(AAB) = Var(AV B) = Var(A = B) = Var(A) U Var(B),

o Var(Ve A) =Var(3z A) = Var(A) U {z}.

The set of free variables of a term (resp. a proposition) is defined by induc-
tion over its height as follows

) = {z},
ft1,otn)) = FV () U..UFV(t,),

FV(
FV(
FV(P(t1,....,tn)) = FV(t,) U ... U FV(t,),
e FV(T)=FV (L) =90,
FV(-A4) = FV(4),
FV(AAB)=FV(AV B)=FV(A= B) = FV(4) UFV(B),
FV(

V(Ve A) = FV(3z A) = FV(A) \ {z}.

1.1. LANGUAGES 11

Definition 1.1.5 (Closed and open) A term (resp. a proposition) that con-
tain no free variables is said to be closed, otherwise it is said to be open.

We now want to define the operation of substitution. For instance, substi-
tuting the term y + 2 for the variable = in the proposition = x 2 = 4 yields the
proposition (y + 2) x 2 = 4. The result of the substitution of the term u for the
variable z in the term or proposition ¢ is written (u/z)t. When we substitute a
term u for a variable z in a term or a proposition ¢, we want to substitute only
the free occurrences of x. A first attempt to define substitution is the following.

Definition 1.1.6 (Replacement) Let t be a term (resp. a proposition), x be
a variable and u be a term. The term (resp. the proposition) (u/x)t is defined
by induction over the height of t as follows.

o (u/z)r = u,
if y is a variable different from x, then (u/z)y =y,
U/iL“>f(t1, sy tn) = f((u/a:)tl; sy <U/£U>tn),

b U/ZL“ P(tla"'atn) = P((U/ﬂ?>t1,,<u/$>tn),
u/x)T =T,
ufz)l =1,
u/z)(mA) = ~(u/z)A,

B) = (u/z)A N (u/z)B,
B) = (u/z)AV (u/x)B,
= B) = (u/z)A = (u/z)B,

But there is still a problem with this definition : when we replace y + 0 for
x in Vy P(xz,y) we obtain Yy P(y + 0,y) where the variable y in y + 0 is now
quantified, while originally, this variable y had nothing to do with the variable
y quantified in Yy P(z,y). To perform a correct substitution, we must first
rename the variable y quantified in Yy P(z,y) to get, for instance, Vz P(z, z)
and then substitute the variable z by y + 0 to get Yz P(y + 0, z). The choice of
the variable z is arbitrary, and we could also have obtained Yw P(y + 0, w).

Thus, to define the substitution operation, we must first define the equiva-
lence of two propositions modulo bound variable renaming and define substitu-
tion on the quotient of the set of propositions modulo this relation.

Definition 1.1.7 (Alphabetic equivalence) The alphabetic equivalence be-
tween propositions is defined as follows

e if A and B are atomic propositions then A ~ B if and only if A = B,
T~T,
L~d,
(mA) ~ (=A") if and only if A~ A',

12 CHAPTER 1. PREDICATE LOGIC

(AANB) ~(A"AB'") if and only if A~ A" and B ~ B,
(AVB)~(A'VDB") ifand only if A~ A" and B ~ B,

(A= B)~(A'"= B') ifand only if A~ A" and B~ B,

(Vx A) ~ (Vy A") if and only if for some variable z not appearing in YV A
nor in Yy A' (z/x)A ~ (z/y)A’,

3z A) ~ (Fy A') if and only if for some variable z not appearing in Ixr A
nor in Jy A' (z/z)A ~ (z/y)A".

From now on, propositions will be considered up to alphabetic equivalence,
i.e. we consider only classes of propositions modulo alphabetic equivalence. So
the proposition Vz (0 < z) and Yy (0 < y) are equal.

Definition 1.1.8 (Substitution) Let t be a term (resp. a proposition), © be
a variable and u be a term. The term (resp. the proposition) (u/x)t is defined
by induction over the height of t as follows

o (u/2)z =1u,
if y is a variable different from z, then (u/z)y =y,

(w/x)f(t1, .- tn) = f((u/2)t1, ..., (u/2)ty),
o (u/x)P(t1,....,tn) = P((u/x)t1, ..., (u/x)t,),
(u/x)T =T,
(ufz)L = 1,
(U/ﬂ?)(ﬁA) = ~(u/z)A,
(u/2)(A A B) = (u/a)A A (u/x)B
(u/z)(AV B) = (u/x)AV (u/x)B
(u/x)(A = B) = (u/z)A = (u/z)B,
(u/z)(My A) = Vz (u/z)(z/y)A where z is a variable not appearing in

Yy A, not appearing in u and distinct from x,
(u/az)(fly A) = 3z (u/z)(z/y)A where z is a variable not appearing in
Jy A, not appearing in u and distinct from x.

We can in the same way define simultaneous substitution.

Definition 1.1.9 (Simultaneous substitution) Let ¢t be a term (resp. a
proposition), 1, ...,T, be variables and ui,...,u, be terms. Let o be the fi-
nite function mapping x; to u;. The term (resp. the proposition) ot is defined
by induction over the height of t as follows

® 0T; = Ug,
if y is a variable different from the x;’s, then oy =y,

of(ty,....tn) = f(ot1, ..., 0ty),
e 0P(t1,....,tn) = P(oty,...,0ty),

cT =T,
ol =1,
o(-A) =-0A,

0(AANB)=0AAN0B,

1.2. PROOEFS 13

0(AVB)=0AVoDB,

0(A= B)=0A= 0B,

o(Vy A) = Vz o(z/y)A where z is a variable not appearing in Yy A and
not appearing in o,

o(Jy A) = 3z o(z/y)A where z is a variable not appearing in Jy A and
not appearing in o.

1.2 Proofs

We are now ready to define the tools that permit to prove propositions.

1.2.1 Proofs a la Hilbert

Definition 1.2.1 (Theory) A theory is a set of propositions, called axioms,
such that the membership of some proposition to this set can be decided in an
algorithmic way.

Definition 1.2.2 (Deduction rule) A Deduction rule is a set of n + 1-uples
of propositions, such that the membership of some n + 1-uples of propositions to
this set can be decided in an algorithmic way. The n+ 1-uple (A4, ..., Ay, B) is

written
A LA,

B

The propositions Ai, ..., A, are called the premises and the proposition B the
conclusion of the n + 1-uple.

Definition 1.2.3 (Proof) Let D a set of deduction rules. A proof of a propo-
sitton B in D is a tree whose root is labeled by the proposition B, whose sub-trees
are proofs of propositions Ay, ..., A, and such that the n + 1-uple

Al Ay
B

is an element of one of the deduction rules of D.

Definition 1.2.4 (Logical axioms) A logical axiom is a proposition of the
following form where A, B, C are arbitrary propositions and x an arbitrary

variable.
A= (B=A)

(A= (B=0C)=(4A4=>B)= (4=20))
(Vz (A= B)) = (A=>Vz B) (ifx g FV(A))
T
1=A

14 CHAPTER 1. PREDICATE LOGIC

A= (-A=1)

A= 1)=>-4
(AANB)= A
(ANB)=B

A= B=(AAB)
A= (AVB)
B = (AV B)
(AVB)=> (A=C)=(B=0C)=C(C)

Vz A= (t/z)A

(t/z)A =3z A

dz A= (Ve (A= B))=B) (ifc¢ FV(B))
Av-A

Definition 1.2.5 (Deduction rules a la Hilbert) Given a theory I', the
deduction rules a la Hilbert for T' are the following:

e the rule Axiom containing all the 1-uples

A
where A is an element of I' or a logical aziom,

o the rule Modus ponens containing all the 3-uples

A=>B A
B
e the rule Generalization containing all the 2-uples
A
Vo A
where x does not appear free in T.

These rules should be understood as follows: axioms have trivial proofs, if
we have already proved A = B and A we can deduce B, if we have already
proved A with no assumption on z, we can deduce Va A.

1.2. PROOEFS 15

Example 1.2.1 Consider the language formed with the four proposition sym-
bols (i.e. predicate symbol of zero arguments) P,), R and S. Consider the
theory formed with the propositions

P

Q
Q=R
P=(R=Y5)
we have the following proof of the proposition S
Aziom — Aziom O=R Aziom - Aziom

Modus ponens = R Q Modus ponens
5 Modus ponens

P=(R=15)
R=S

Remark. Some authors prefer to define proofs as sequences of propositions
rather than as trees. Again, this is just a matter of taste.

1.2.2 The deduction lemma

We now want to prove that a proposition A = B has a proof in the theory I if
and only if the proposition B has a proof in the theory I', A.

Proposition 1.2.1 Let A be a proposition, the proposition A = A has a proof
in the empty theory.

Proof. The propositions
A= (A=4)=24)=>(A=>A=4)= (A= 4)
A= ((A=A4)=4)
A= (A= A4)

are logical axioms. Hence, the proposition A = A has the proof

B A= (A= A)= A)
A=>(A=>A)=> (A=A
A=A

Modus ponens
A= (A= 4) Modus ponens

where Bis (A= (A= A4)=>A4)=> (A= (A= 4) = (A= 4)).

Proposition 1.2.2 (Deduction lemma) The proposition A = B has a proof
in the theory T is and only if the proposition B has a proof in the theory I, A.

16 CHAPTER 1. PREDICATE LOGIC

Proof. If the proposition A = B has a proof in the theory I, then it has a proof
in the theory I', A. So does the proposition A. Thus, the proposition B has a
proof built with the Modus ponens rule.

Conversely, we prove by induction over the height of the proof of B in I', A
that there is a proof of A = B in I'.

e If the root of the proof is a Aziom, then either B = A and we have a proof
of A = B by the proposition 1.2.1, or B an element of [' and we have the
proof

B=(A=B) B
A=1B

Modus ponens

e If the root of the proof is a Modus ponens then B is deduced from C' = B
and C, that have smaller proofs. By induction hypothesis, there are proofs
7 and mp of A = (C = B) and A = C in I" and we take the proof

(A= (C=B))=((A=C)= (A= B)) Aﬁ(gﬁB)
(A=C)= (A= B)

T2
A=C

Modus p.
Modus p.

A=B

e If the root of the proof is a Generalization then we have B = Vz C, x
does not appear in [nor in A and C' has a smaller proof. By induction
hypothesis, there is a proof 7 of A = C in I' and we take the proof

_T
A=C

o1~ Generalization
(Ve (A= C)) :>1L(1A$:;:xc’0) vV (A= C) Modus ponens

1.2.3 Natural deduction

Introducing an hypothesis seems to be a natural step in a proof. To prove, for
instance, the proposition (n = 0) = (n + 1 = 1) we want to assume that n =0
and then to prove that n +1 = 1.

Proofs a la Hilbert do not permit to do that directly: if we have a proof of the
proposition n + 1 = 1 using the hypothesis n = 0, the deduction lemma permits
to transform this proof into one of the proposition (n = 0) = (n +1 = 1),
but this proof is much longer than the proof we started with and it is not very
natural.

Natural deduction is an alternative definition of the notion of proof where
the introduction of an hypothesis is deduction rule. In Natural deduction, a
deduction step can modify not only the proved proposition but also the theory
', hence a proof is not a tree of propositions, but a tree of ordered pairs (I", A)
where I' is a theory and A a proposition. Such an ordered pair is called a sequent

1.2. PROOEFS 17

and is written I' F A (read “T" entails A”). The Introduction rule that permits
to introduce an hypothesis transforms the sequent I', A - B into the sequent
'HA= B.

The notions of deduction rule and proof adapt straightforwardly to sequents.

Definition 1.2.6 (Deduction rule on sequents) A Deduction rule is a set
of n + 1-uples of sequents, such that the membership of some n + 1-uples of
sequents to this set can be decided in an algorithmic way. The n + 1-uple (I';
A, ., T E Ay A B) is written

nhHA T, FA,
AFB

The sequents Ty F Aq, ...,y F A, are called the premises and the sequent A - B
the conclusion of the n + 1-uple.

Definition 1.2.7 (Proof on sequents) Let D a set of deduction rules. A
proof of a sequent A F B in D is a tree whose root is labeled by the sequent
A F B, whose sub-trees are proofs of sequents I'y - Aq,...,I'y b A, and such
that the n + 1-uple
A ...T,FA,
A+ B

is an element of one of the deduction rule of D.

With the introduction rule, the three first logical axioms are now redundant,
indeed the sequent I' F A = (B = A) can be proved as follows

I'A,BF A
NAFB=A
'FA=(B=A

The sequent I' - (A = (B = C)) = ((A = B) = (A = C)) can be proved as
follows

Intro

Intro
)

AFA=(B=C) AFA AFA=B AFA

AFBESC Modus p. AT B Modus p.
NA= (B=C),A=B,A+-C Modus p.
T, A= (B= C),A= BF A= ¢ 20

TA= (B=CO)F (A= B) = (A= 0) 2

TFA=S (B=0) = (A= B) = (A= 0)) nmwo

where A =T,A = (B = (C),A = B,A. And, if the variable z appears free
neither in T" nor in A, the sequent I' + (Vx (A = B)) = (A = V& B) can be

proved as follows
AFVz (A= B))=(A=B) AFVz (A= B) Modus

AFA=B PAR A
AF B o
T.Vz (A= B),AFVz B Generalization
T.Ve (A= B)F A= vz B 200
TF (V2 (A= B)) = (A= vz B) M0

where A =T',Vz (A = B), A.

Modus p.

18 CHAPTER 1. PREDICATE LOGIC

Using proof a la Hilbert, when we have proved the propositions A and B
and we want to deduce the proposition A A B, we must use the logical axiom
A = (B = (AAB)) and deduce B = (A A B) and then A A B with the
Modus ponens rule. It is more natural to take a rule allowing to deduce directly
'FAABfrom '+ A and I' F B. As we have the rule Introduction this logical
axiom and this rule are equivalent. As we have just seen, in a system where we
have the logical axiom, we can simulate any instance of the rule and conversely,
in a system where we have the rule, the axiom can be proved as follows

I AB+A T,ABFB
TABFrAAB _ ewrule
T,AF B= (AAB) m0°
TF A= (B= (A4 B)) 1

Excercise 1.2.1 With proof a la Hilbert, are the logical axiom and the rule
equivalent ¢ Hint: try to prove the Deduction lemma.

We can suppress in a similar way all the logical axioms and replace them by
deduction rules. Let us take another example. The logical axiom

(AVB)= ((A=C)=(B=C)=0))

can be replaced by the rule
'-rAvB TTFA=C THFB=C

r=c

But, as it is equivalent to prove the sequent I' - A = C or the sequent I', A - C
we can transform this rule further into

'-AvB TA-C I,B-C
r-c

In this rule, V is the only connector or quantifier that appears explicitly. In
most rules, only one connector or quantifier occurs. This permits to classify the
rules according to the connector or quantifier that appears in this rule. The rules
of a connector or quantifier can further be classified according to the position
of this connector or quantifier. If it appears in the conclusion of the rule, then
the rules is called an introduction rule, if it appears in a premise, then the rule
is an elimination rule. For instance, the connector V has two introduction rules

r-A4

TFAvp vmtro

I'FB

TFAvp Ymro

and one elimination rule
'-AvB T ,A-C TI''B-C

TFC V-elim

1.2. PROOEFS 19

The Modus ponens
''HrA=B TFA

I'-B

is the elimination rule of implication. The Generalization

r-A4

is the introduction rule of the universal quantifier V. And the rule Introduction

T A+ B
TFA=B

is the introduction rule of the implication.
The system obtained this way is called Natural Deduction.

Definition 1.2.8 (Natural deduction)

Aziom if Ael

'-A
TET T-wntro
el
CFA-—&m
| A% e
m —-initro
'-4 I'-4 .
—rrL
r-A =B .
TTFAAB /i
I'-AAB .
TEA4A N-elim
I'-AAB .
“TEB A-elim
'+-A .
TFAvp Y miro
I'-B .
TFAVE /e
'rAvB T,A-C TI',B-C .
TFC V-elim
CAFB
=-intro

'-A= 1B

20 CHAPTER 1. PREDICATE LOGIC

'rA=B T'FHA

TFB =-elim
% V-intro if v ¢ FV(T)
'+ve A Vel
Tk (t/z)A "

Ik (t/x)A

TF 3z A d-intro

I'F3z A I,AFB
TF-B

J-elim if x ¢ FV ([, B)

TFAV A FExcluded middle

Proposition 1.2.3 A proposition A has a proof & la Hilbert in the theory T' if
and only if the sequent ' A has a proof in natural deduction.

Proof. By induction on the height of proofs.

Definition 1.2.9 (Contradictory, consistent) A theory I' is contradictory
if all propositions have a proof in I'. It is consistent otherwise.

Excercise 1.2.2 Prove that a theory I is contradictory if and only the propo-
sition L has a proof. Prove that a theory I' is contradictory if and only there is
a proposition A such that A and —A have a proof.

Excercise 1.2.3 Let A be a proposition, prove that a theory that proves the
proposition A & —A is contradictory.

Example 1.2.2 (Equality) Given a language L containing a predicate symbol
= of two arguments, the theory of equality in this language is formed with the
following azioms.
Identity axiom:

Vo (r = x)

Leibniz’ axiom scheme: for each proposition A, the aziom
Vo Vy ((z =y) = (z/2)A = (y/2)A))
Excercise 1.2.4 In the theory of equality, give a proof of the proposition
Ve Vy (z=y =y =r1)
Example 1.2.3 (Arithmetic) The language of arithmetic is formed with

o an individual symbol 0, a function symbol Su of one argument and two
function symbols + and x of two arguments

1.2. PROOEFS 21

e q predicate symbol = of two arguments.

The azioms of arithmetic are the axioms of equality and the axioms:
Vo Yy (Su(z) = Su(y) = © =y)

Vo =(0 = Su(x))

induction scheme: for each proposition A the aziom
((0/2)AN (Vo ((x/2)A = (Su(z)/2)A))) = Vy (y/2)A

and the axioms

Vy 0+y=y)
Vz Vy (Su(z) +y = Su(z + y))
Vy (0 xy =0)

Vo Vy (Su(z) xy = (z X y) +y)
Excercise 1.2.5 Write a proof in arithmetic of the propositions
Su(0) + Su(0) = Su(Su(0))

Ve (x+0=1x)

1.2.4 Constructive proofs

Definition 1.2.10 (Constructive proof) A proof is constructive if it does
not use the excluded middle rule.

We want to prove that constructive provability and general provability are
equivalent. This does not mean, of course, that all propositions that have a proof
have a constructive proof, but that for each proposition A we can compute
a proposition A’ such that the proposition A has a proof if and only if the
proposition A’ has a constructive proof.

Definition 1.2.11 (Negative translation) Let A be a proposition, the propo-
sition A’ is defined by induction over the height of A as follows.

o A' =——A if A is atomic,
o T'=--T,

o 1/=-l,

o (mA) =4,

e (AANB) =—-=(A'"AB'),
e (AVB) =-=(A"V B,

22 CHAPTER 1. PREDICATE LOGIC

e (A= B) =-=(A"=> B'),
o (Vo A) = -~ (Vo A'),
e (z A) = ——~(dz A").

Proposition 1.2.4 The proposition A has a proof if and only if A" has a con-
structive proof.

Proof. (1) If a sequent I' - A has a constructive proof m, then the sequent
I' F == A has a constructive proof. First, we can add the hypothesis = A to all
sequents of the proof m, we obtain a proof ' of the sequent I',~A + A. Then

we have the following proof.
7_rl

I-Ar-A T,-AFA
IL-AFL .
TF-mA ne

Thus, we can build a constructive proof of =—T. From a constructive proof of
' A L we can build a constructive proof of I' F =——A. From constructive
proofs of I' H A and ' F B, we can build a constructive proof of I' - ==(AA B).
From a constructive proof of I' F A, we can build a constructive proof of I" -
-=(A V B). From a constructive proof of I' - B, we can build a constructive
proof of I' F =—(A V B). From a constructive proof of I'; A + B, we can build
a constructive proof of I' - =—(A = B). From a constructive proof of I' - A,
we can build a constructive proof of I' F =—=Vz A provided z does not appear
free in I'. From a constructive proof of I' F (¢/x)A, we can build a constructive
proof of I' F =—3dz A.

(2) Then, we check that from a constructive proofs of I' - ==L, we can build
a constructive proof of I' - =—A. From constructive proofs of I - =——A and
I' - ==A, we can build a constructive proof of I' H =—L. From a constructive
proof of I' =—(==A A ==B), we can build a constructive proof of I' F ——=A
and a constructive proof of I' —==B. From a constructive proofs of I' +
—=(==AV--B),,-—A+F —-=C and I', == B I =—C we can build a constructive
proof of I' - ==C. From constructive proofs of I' F ==(=—A4 = —-B) and
' F =—A, we can build a constructive proof of I' F == B. From constructive
proofs of I' F ==(Vz =—A4), we can build a constructive proof of T' - =—(t/z) A.
From constructive proofs of I' F =—=3z A and I',-—A F —-—B we can build a
constructive proof of I' F =—B provided that = does not appear free in I' nor in
B.

As an example we show that from constructive proofs of I' F —=(-—-A4 =
—=B) and I' F =—A, we can build a constructive proof of I' F =—B.

—-elim

’
™

F, —lB, -—A=-—-BF-—-A= --B F, —lB, -—A=-—-BF--A
F, —|B7 -—A = -——-BF--B
™ F,—lB,—!—lA:>—l—|B|—_L .
—-lntro
F, -BF —|—|(—|—|A = —|—|B) F,_LB = _l(_|_lA = —|—|B)
T -BF L
I+ -—B

=-elim

F, —IB, -—A = --B+F-B .
—-elim

—-elim
—-intro

1.3. MODELS 23

(3) We check that if A is a proposition, then the proposition =—(A V —A)
has a constructive proof.
S(AV-A), Ak A
“(AV-A),AFa(AV-A) 2(AV-A),AFAV-A
“(AV-A)L,AF L .
S(AV A)F o4 miro
A(AV =A) F ~(AV —4) S(AV=A) F AV -4 Yo
—AV-AFL . —-elim
m —-intro

V-i

—-€.

(4) Then, we show that if ' - A has a proof 7 then I - A’ has a constructive
proof, by induction over the height of w. If the last rule of 7 is an axiom then
we use the axiom rule, if the last rule is an introduction rule then we use lemma
(1), if it is an elimination rule then we use lemma (2), if it the excluded middle
rule, we use lemma (3).

(5) Conversely, we show that the proposition A < ——A has a (not neces-
sarily constructive) proof and we deduce that A < A’ has a (non necessarily
constructive) proof and that if I'' F A’ has a constructive proof then I' - A has
a (not necessarily constructive) proof.

Remark. In these course notes, we shall mainly focus on constructive proofs.
This does not mean that we renounce the non constructive proofs, but that non
constructive proofs of a proposition A are understood as constructive proofs of
its negative translation.

1.3 Models

Definition 1.3.1 (Structure) Let £ be a language formed with the function
symbols fo, f1,... of number or arguments ng,n,... and the predicate symbols
Py, Py, ... of number of arguments mg, my,.... A structure M built on L is a
n-uple formed with

e a non empty set M,
e a function fo from M™ to M, a function fl from M™ to M, ...
e a function Py from M™ to {0,1}, a function P, from M™ to {0,1}, ...

Definition 1.3.2 (Assignment) An assignment over the set of variables V is
a function from V to M. If ¢ is an assignment, © a variable and a an element
of M, then ¢ + (x,a) is the assignment mapping x to a and y to ¢(y) when y
is distinct from x.

Definition 1.3.3 (Denotation) Let £ be a language, V be a set of variables
and M be a structure built on L. Let ¢ be an assignment and t be a term (resp.
a proposition), the denotation of t in M modulo ¢ is defined by induction over
the height of t.

24 CHAPTER 1. PREDICATE LOGIC

o lelo =),
|fi(t17 ---;tni)|¢> = fi(|t1|¢7 [T |tni|¢)’
hd |Pi(t17 "'7tni) ¢ = ﬁi(|t1|¢7 s |tni ¢)7
|T|¢> =1,
|Lle =0,

|-Alg =1 if |Als =0, and 0 otherwise,

|[AAB|y =1if|Alg =1 and |Bls =1, and 0 otherwise,

[AV B|y =1if|Alg =1 or |Bls =1, and 0 otherwise,

|A= Bls =1if |Alp =0 or |Bls =1, and 0 otherwise,

Vo Alp = 1 if for all elements a of M, |Algp4(z,a) = 1, and O otherwise
|3z Als = 1 if there is an element a of M such that |A|y4(zq) = 1, and 0
otherwise.

Definition 1.3.4 (Validity, model) Let £ be a language, V be a set of vari-
ables and M be a structure built on L. A proposition P is valid in M is for all
assignments ¢, |P|, = 1. A theory ' is valid in M if all its axioms are valid.
The structure M is a model of T if I is valid in M.

Proposition 1.3.1 (Soundness) Let [be a theory. If the proposition P has
a proof in ', then it is valid in all the models of T.

Proof. By induction over the height of a proof of P in T.

Corollary 1.3.2 If the theory I' has a model in which P is not valid then P
has no proof in .

Corollary 1.3.3 If I has a model then I is consistent.

Example 1.3.1 Consider the language containing two predicate symbol = and
< of two arguments. Consider the theory O formed with the azioms of equality
and

Vo (v < x)
Ve Vy (z<yAy<z)=>z=y9)
VeVyVz ((zr <yAy<z)=>z<z2)
From these axiom we cannot deduce the proposition
Vo Vy (r <yVy<w)

Indeed, consider the structure M = (N, I,|) where I(n,m) =1 ifn =m and
0 otherwise, |(n,m) = 1 if n is a divisor of m and 0 otherwise. The structure M
is @ model of O. But it is not a model of the proposition Yz Yy (z <yVy < z),
because 2 is not a divisor of 3 and 3 is not a divisor of 2.

1.3. MODELS 25

Remark. The first use of the notion of model to prove that some proposition has
no proof in a theory is probably that of F. Klein who has built in 1871 a model
of all the axioms of Euclid’s geometry except the axiom of parallels, showing
that the axiom of parallels cannot be deduced from the other axioms of Euclid’s
geometry. (However the notion of model has only been defined by A. Tarski,
more than fifty years later, in 1936).

The soundness theorem has a converse we shall not prove here.

Proposition 1.3.4 (Gédel’s completeness theorem) Let I be a theory. If
the proposition P is valid in all the models of " then it has a proof in I.

Remark. The soundness theorem holds also for constructive proofs. But not
the completeness theorem. For instance, let P be a proposition symbol (i.e.
a predicate symbol of zero arguments). We shall see (exercise 4.1.1) that the
proposition PV =P has no constructive proof, but it is valid in all models. The
notion of model needs to be adapted for constructive proofs.

Remark. In proof theory, the notion of model is mostly used to prove inde-
pendence results, i.e. that some propositions have no proof in some theories.
The notion of model is also used in algebra. For instance, ordered sets can be
defined as the models of the theory O of example 1.3.1. Groups can also be
defined as the models of some theory, but it can be shown that Archimedian
complete ordered fields cannot be defined as the models of some theory. This
fact may be used to prove, for instance, that there are ordered sets or groups of
all infinite cardinals, while it is known that all Archimedian complete ordered
fields are isomorphic to R and thus that they all have cardinal 2%°. The branch
of mathematics that studies these applications of logic to algebra is called model
theory.

Remark. A common misconception is that the notion of model can be used, as
an alternative to the notion of proof, to define the notion of mathematical truth,
i.e. that instead of saying that a proposition is true if it has a proof, we could
say that it is true if it is valid in all models. The problem with such a definition
of truth is that, unlike the fact that a tree is a proof of some proposition, the
fact that a proposition is valid in all models is not self evident, i.e. it cannot
be checked in an algorithmic way. Thus, the fact that some proposition is valid
in all models must itself be justified by some argument. Thus, such a definition
of truth reduces the question of the truth of the proposition “P” to that of the
proposition “the proposition P is valid in all models” and trying to justify some
proposition we enter into an infinite regression.

Remark. (Many-valued model) In the definition 1.3.1, the truth value 0 is used
as denotation of non valid propositions, and the truth value 1 as denotation
of valid propositions. This definition can be extended by adding other truth
values. A common extension is to take a third value for propositions whose
validity is unknown in this model.

26

CHAPTER 1. PREDICATE LOGIC

Chapter 2

Extensions of predicate
logic

2.1 Many-sorted predicate logic

In some theories, we want to distinguish several sorts of objects. For instance, in
a language with the individual symbols German, English, French, Germany,
United— Kingdom, Ireland, France and a predicate L, we can form the propo-
sitions

L(German, Germany)

L(English,United — Kingdom)
L(English, Ireland)
L(French, France)

expressing that German is an official language of Germany, ... In this theory,
we can also form the unwanted proposition

L(Germany, Germany)

An extension of predicate logic permits to restrict the term and proposition
formation rules, in such a way that such unwanted propositions are avoided.

Definition 2.1.1 (Many-sorted language) A language is a set of sorts, a
set of function symbols and a set of predicate symbols. To each function symbol
is associated a n + 1-uple of sorts (si,...,5n,Snt1) called its rank and to each
predicate symbol is associated a n-uple of sorts (s1,...,s,) called its rank.

Definition 2.1.2 (Term in a many-sorted language) Let £ be a many-

sorted language and Vs be a a family of disjoint infinite sets indexed by sorts.
The terms of the language £ with variables Vs are defined by the following rules

27

28 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC

o if = is a variable of Vs then the tree whose root is labeled by x and that
has no sub-tree is a term of sort s,

e if [is a function symbol of rank (s1, ..., Sn, Snt1) and t1, ..., t, are terms of
sort s1,...,Sn then the tree whose root is labeled by f and whose sub-trees
are ty, ...,t, is a term of sort s,11.

Definition 2.1.3 (Proposition in a many-sorted language) Let £ be a
many-sorted language and Vs be a a family of disjoint infinite sets indexed by
sorts. The propositions of the language L with variables Vs are defined by the
following rules

e if P is a predicate symbol of rank (s1,...,s,) and t1,...,t, are terms of sort
S1,---, Sn, then the tree whose root is labeled by P and whose sub-trees are
t1,...,tn 1S a proposition,

o the trees whose root are labeled by T and L and that have no sub-tree are
propositions,

e if A is a proposition then the tree whose root is labeled by — and whose
sub-tree is A is a proposition,

e if A and B are propositions then the trees whose root are labeled by N, V
or = and whose sub-trees are A and B are propositions,

e if A is a proposition and x a variable then the trees whose root are labeled
Vz and 3z and whose sub-tree is A are propositions.

The definition of a substitution is restricted in such a way that a variable of
sort s can only be substituted by a term of sort s. The proof rules are the same
than in ordinary predicate logic.

Definition 2.1.4 (Structure in a many-sorted language) Let L be a lan-
guage formed with the sorts sg, s1,-.., the function symbols fo, f1,... of number
or arqguments and the predicate symbols Py, Py, A structure M built on L is
a n-uple formed with

o a family of non empty sets M, M, , ...,

® a function fo from Mg, x ... x M, to M

snpr Where (S1,...,8n,8n41) 05 the

rank of fo, a function fl

e a function Py from Ms, x ... x Mg, to{0,1} where (s1, ..., s,) is the rank
of Py, a function Py ...

The denotation of a term and a proposition is defined in the same way as in
ordinary predicate logic, with the extra condition that in the case of quantifiers,
the object a belongs to M where s is the sort of the quantified variable.

2.2. PREDICATE LOGIC MODULO 29

Proposition 2.1.1 (Soundness and completeness) A proposition has a proof
in a theory if and only if it is valid in all the models of this theory.

Remark. Predicate logic is a particular case of many-sorted predicate logic with
a single sort.

2.2 Predicate logic modulo

In predicate logic, proofs are sequences of deduction steps. The idea of predicate
logic modulo is that a proof is not a sequence of deduction steps, but a sequence
of deduction steps and of computation steps. For instance, in arithmetic, to
prove the proposition

Jr (2xaz=4)

we use the J-intro rule and we are reduced to prove the proposition 2 x 2 = 4.
Then, we have to use the axioms of addition and multiplication to prove this
proposition. In predicate logic modulo, we can simply compute the term 2 x 2
and obtain the proposition 4 = 4 that can easily be proved with the identity
axiom.

2.2.1 Deduction rules

Definition 2.2.1 A relation = defined on terms and propositions of a language
is a congruence if

e it is an equivalence relation,

e it is compatible with all function symbols, predicate symbols, connectors
and quantifiers, i.e. if t = u then f(t) = f(u), if A= B and A' = B’ then
ANA'=BAB',if A=B thenVx A=Vz B, ...

In predicate logic modulo a theory is formed with a set of axioms I" such that
the membership of some proposition to this set can be decided in an algorithmic
way and a congruence = on terms and propositions such that the equivalence
of two propositions can be decided in an algorithmic way. Before or after each
deduction step, we can transform the proved proposition into any equivalent one.
The deduction rules are thus modified to take these computations into account.
These rules permit to prove sequents of the form I' = A. A proposition is said
to have a proof in the theory I', = if the sequent I' F= A has a proof with the
following deduction rules.

Definition 2.2.2 (Deduction rules modulo)

@AmomzfAEFandAEB

TroA T-intro if A=T

30 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC

}:E i leelimif B=1
F’FAF%CB —sintro if B= L and C = -A
r F;FCF:FBFE A elimifC=-Aand B= 1
I FEFAI—;FC"_E B N-intro if C = (A A B)
? ';2 i N-elim if C = (AN B)
g ::i g N-elim if C = (AN B)
% V-intro if C = (AV B)
E ::i g V-intro if C = (AV B)
LH=D F,?l: g LBP=C\ vlimif D= (Av B)
Iﬁ—%CB =-intro if C = (A = B)
r FEFCFEFBFE A elimif C= (A= B)
E E g (¢, A) V-intro if B = (Vo A) and & ¢ FV(T)
Tr=2 (A,) Veelim if B= (Vi A) and C = (t/2)A
g E g (¢, A,t) -intro if B = 3z A) and C = (t/x)A
[(,; Fz,g "= B (1 A) 3-clim if C = (3z A) and z & FV(T, B)
T B Brcluded middle if A= (BV -B)

Proposition 2.2.1 (Equivalence) For every congruence = there is a theory
T such that T' = A if and only if TT F A.

Proof. We take, for instance, all the axioms of the form Vz; ... Vo, (A & B)
where A = B.

Definition 2.2.3 (Model of a theory modulo) A structure M is a model
of a theory modulo ', = if all the axioms of ' are valid in M and each time two
terms (resp. propositions) are congruent they have the same denotation in M.

Proposition 2.2.2 (Soundness and completeness) A proposition has a proof
in a theory if and only if it is valid in all the models of this theory.

2.2. PREDICATE LOGIC MODULO 31

2.2.2 Congruences defined by rewrite rules

Congruences used in predicate logic modulo are often defined by rewrite systems.

Definition 2.2.4 (Rewrite rule, rewrite system) A rewrite rule is an or-
dered pair of terms or an ordered pair of propositions (l,r) written | — r. A
rewrite system is a set of rewrite rules.

Definition 2.2.5 (Redex) Let R be a rewrite system and t be a term. The
term t is a redex (reducible expression) if there ezists a rulel — r in R and a
substitution o such that t = ol. A term t is said to contain a redex if one of its
sub-terms is a redex.

Definition 2.2.6 (One step reduction) Let R be a rewrite system. A term
(resp. a proposition) t reduces to a term (resp. a proposition) u in one step
(t —* u) if there is a sub-term t' of t and a substitution o such that t' = ol
and u is obtained by replacing in t the sub-term t' by the term ou.

Definition 2.2.7 (Reduction sequence) Let R be a rewrite system. A re-
duction sequence is a finite or infinite sequence of terms (resp. propositions)
to,t1,... such that for every i, t; —* t; 1.

Definition 2.2.8 (Reduction) Let R be a rewrite system. A term (resp. a
proposition) t reduces to a term (resp. a proposition) u (t — u) if there is a
finite reduction sequence starting on t and ending on u.

Definition 2.2.9 (Congruence sequence) Let R be a rewrite system. A
congruence sequence is a finite or infinite sequence of terms (resp. proposi-
tions) to,t1,... such that for every i, t; —*' tixq or tiz; —1 t;.

Definition 2.2.10 (Congruence) Let R be a rewrite system. Two terms
(resp. two propositions) t and u are congruent if there is a finite congruence
sequence starting on t and ending on u.

Definition 2.2.11 (Normal term) A term (resp. a proposition) is normal if
it contains no redex. A term (resp. a proposition) u is a normal form of a term
(resp. a proposition) t if t — u and u is normal.

Definition 2.2.12 (Terminating) A term (resp. a proposition) is terminat-
ing if it has a normal form, i.e. if there exists a finite reduction sequence starting
on this term and ending on a normal term. It is strongly terminating if all re-
duction sequences issued from this term are finite.

A rewrite system is terminating (resp. strongly terminating) if all terms and
all propositions are terminating (resp. strongly terminating).

Definition 2.2.13 (Confluent) A rewrite system is confluent if whenever a
term (resp. proposition) t reduces to two terms (resp. proposition) u; and us,
then there exists a term (resp. proposition) v such that u; reduces to v and us
reduces to v.

32 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC

Proposition 2.2.3 In a confluent rewrite system, two terms (resp. two propo-
sitions) are congruent if and only if they reduce to a common term.

Proof. By induction on the length of the congruence sequence.

Proposition 2.2.4 In a confluent rewrite system a term has at most one nor-
mal form.

Proof. If u; and us are normal forms of ¢, then t — w; and ¢ — u2. By
confluence, there exists a term v such that u; — v and us — v. As u; and
us are normal u; = v = us.

Proposition 2.2.5 In a terminating and confluent rewrite system a term has
exactly one normal form. And this normal form can be computed form the term.

Proof. Termination yields existence and confluence unicity. To compute the
normal form, it is sufficient to reduce the term until a normal form is reached.

Proposition 2.2.6 In a terminating and confluent rewrite system two terms
(resp. propositions) are congruent if they have the same normal form.

Proof. If the two terms have the same normal form, then they are congruent.
If they are congruent, so are their normal forms and these two normal forms
reduce to a common term. Hence they are equal.

Proposition 2.2.7 In a terminating and confluent rewrite system, the congru-
ence can be checked in an algorithmic way.

Proof. Congruence can be checked by computing the normal forms and checking
their identity.

Example 2.2.1 (A presentation of arithmetic in predicate logic modulo)

To formulate arithmetic in predicate logic modulo, we can keep the azioms of
equality and the axioms

Ve Vy (Su(z) = Su(y) =z =y)
Yz =(0 = Su(z))
((0/2)AN (Vo ((x/2)A = (Su(z)/2)A))) = Vy (y/2)A

and replace the axioms

Yy 0+y=1y)
Vz Vy (Su(z) +y = Su(z +y))
Yy (0 xy =0)

Ve Vy (Su(z) xy = (z xy)+y)

2.3. BINDING LOGIC 33

by the rewrite rules
O+y —vy

Su(z) +y — Sulz +y)
Oxy—0

Su(z) Xy —zxy+y

Excercise 2.2.1 Give a proof of the proposition 3z (2 X x = 4).

2.3 Binding logic

In mathematics, we use the notation z — x + 2 to designate the function that
maps z to + 2. Such a symbol is said to be a binder, because the variable z
that is free in & + 2 is bound in & — z + 2. In predicate logic the only binders
are the quantifiers V and 3 that bind variables in propositions, but there is no
way to bind variables in terms and so, there is no way to form a term such as
T =t

Binding logic is an extension of predicate logic where function symbols and
predicate symbols can bind variables in their arguments. To each function
symbol or predicate symbol of n arguments is associated a rank (ki,...,kn)
where ki, ..., k,, are natural numbers. Then, if f has the rank (k, ..., k,) and
t1,...,t, are terms, we can form the term

f@lozp, t, .zl a) t)

where z1, ...,z are bound in the term ¢y, ..., «},...,z} are bound in the term
tn.

In many-sorted binding logic a rank is a sequence of sequences of sorts. Then,
when a function symbol f has the rank

((S%, rery si1 ’ sk1+1>7 <S?7 rery S’Ircln ’ s']rczn+1>7 sn+1>

i,...,xy are variables of sorts si,...,s; , ..., #¢ ,...,x} are variables of sorts
st ..., 8 and ty,...,t, are terms or sorts s,lclﬂ, .-y g1 then the sort of the
term f(x]..xp t1,..,o].a) t,) is s"TL

Substitution is modified in such a way that bound variables are renamed
to avoid capture. Proof rules are the same than in predicate logic or predicate
logic modulo. A notion of model can also be defined for binding logic, but we
shall not present it here.

34

CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC

Chapter 3

Type theory

In arithmetic, (example 1.2.3), we can speak about the natural numbers but not
about the functions mapping natural numbers to natural numbers nor about the
sets of natural numbers. Thus, arithmetic is not sufficient to express mathemat-
ics and we need to build more expressive theories. Set theory and type theory
(also called higher-order logic) are such theories.

3.1 Naive set theory

In the language of arithmetic, the symbol Su is a function symbol, thus, it may
be used to form terms, such as Su(0), but it is not itself a term. If we want to be
able to speak about the function Su, we need the symbol Su to be a term and
hence an individual symbol. When Su is an individual symbol, we cannot form
the term Su(0) anymore. Hence, we need to introduce a new function symbol «
for the application of a function to its argument and write this term a(Swu,0).

We could also introduce a function symbol as for functions of two arguments,
but this is not needed. Indeed, a function f of two arguments can always be
seen as a function of one argument that maps x to the function that maps y to
f(z,y). Thus instead of writing as(f,z,y) we can write a(a(f,z),y).

To ease notations we shall write (f z) for the term «a(f,z) and (f z; ... z,,)
for the term (...(f #1)...xy).

In the same way, we want the symbols designating predicates (sets), to be
terms and hence individual symbols, for instance if the individual symbol prime
designates the set of prime numbers, to express that the number 2 is prime, we
cannot write prime(2), but we need to introduce a new predicate symbol € and
write this proposition 2 € prime.

For terms expressing predicates of several arguments to be terms, we must
also introduce symbols €5, €3, ... For predicates of zero arguments (i.e. propo-
sitions) to be terms, we must introduce a predicate symbol €, also written ¢.
The proposition €, (R, x,y) expresses that x and y are related by the predicate
of two arguments (relation) R. The proposition (E) expresses that the pred-

35

36 CHAPTER 3. TYPE THEORY

icate of zero argument E is true. The only difference between E and e(FE) is
that E is a term (designating an object) while €(E) is a proposition (expressing
a fact). The object E may be called the propositional content of the proposition
e(E).

The notions of function and set are redundant. We can express a function
as a functional relation (its graph), i.e. as a set of ordered pairs. In this case,
we just need the symbol €.

Conversely, we can define a set as its characteristic function, i.e. as the
function mapping its argument to the propositional content of the fact that =
belongs to the set. In this case, we just need the symbols « and €. If E is a
set and = an object, the propositional content of the fact that x belongs to E is
designated by the term (E z) and the fact that = belongs to E is expressed by
the proposition £(E x). Thus, the proposition z € E is thus written ¢(E z). In
the same way, the proposition € (R, z,y) is written (R x y), ...

Let us now turn to the making of functions and sets. Whenever we have a
term t and variables z1, ..., z,, we want to consider the function z1,...,z, — t,
for instance the function z + (3 x x). This function is such that we get back ¢
when we apply it to z1, ..., z,. Whenever we have a proposition P and variables
Z1,..., Ty, we want to build the predicate {zi,...,x, | P}, for instance the set
{z | Jy (x = 2 x y)}. This predicate is such that we get back P when we apply
it to Llyeeey Ly

A solution would be to introduce for each term ¢ and sequence of variables
Z1,..., %, an individual symbol Cy, . ..+ and an axiom

(Cz1,---7xn,t Ty . Tp) =1

and for each proposition P and sequence of variables x1,...,z, an individual
symbol E;, . .. p and an axiom

E(Ez17...7zn,P L1 ven mn) < P

In predicate logic modulo, these axioms can be transformed into rewrite rules

(Canrooint UL ee Up) —> (U1 /T1, ooy Up [Tt
(Bgy,zn, P U1 oo Up) — (U1 /21, ..yt /xy) P

But, not all these symbols are necessary, and we can restrict to a much smaller
language.

Definition 3.1.1 (Naive set theory) The language of naive set theory is
formed with

e g predicate symbol € of one argument.
e a function symbol o of two arguments,

e individual symbols S, K, T, L, 5, A, V, =,V and 3.

3.1. NAIVE SET THEORY 37

and the congruence defined by the rewrite rules
(Szyz)—((x2)(y2)

(Kzy) —x

5(']') — T

e(L) — L
e(m) — —e(z)

e(A wy) — (e(z) Ne(y))
e(V @ y) — (e(z) Vely))
e(= zy) — (e(z) = £(y))
e(V 2) — Yy ez y)
(@ x) — Ty e(z y)

Proposition 3.1.1 (Comprehension) For each term t and sequence of vari-
ables x4, ..., xy there is a term u such that

(u g ... ;) =t

and for each proposition P and sequence of variables x1, ..., z, there is a term
u such that

euxy ... 2p) =P

Proof. By induction over the height of ¢ (resp. P).

Many variants of this theory have been proposed in the History of mathe-
matics: Cantor’s set theory (1872), Frege’s Begriffschrift (1879), Church’s pure
A-calculus (1932), ... Unfortunately, all these systems are contradictory. A
contradiction is given by Russell’s paradox.

By proposition 3.1.1 there exists a term R such that

Ve (e(R x) & —e(z z))

(take for instance R = (S (K =) (S (S K K) (S K K)))). The set R is the set
of all sets that do not contain themselves. By definition, this set contains itself
if and only if it does not, which is contradictory. More precisely, with the elim-
ination rule of the universal quantifier ¥V, we can deduce from this proposition
the proposition

e(RR) < —e(R R)

and we have seen (exercise 1.2.3) that from such a proposition, we can prove a
contradiction.

38 CHAPTER 3. TYPE THEORY

3.2 Set theory

In naive set theory, it is possible to construct functions defined on all the universe
and to construct sets in comprehension with any property P. To restrict naive
set theory and avoid paradoxes, we may restrict function construction in such a
way that functions are defined with a domain of definition and, similarly, only
subsets of already constructed sets are constructed in comprehension. Such
ideas are exploited in several theories, including set theory and simple type
theory.

In Zermelo’s set theory and in its extension Zermelo-Fraenkel set theory,
the basic notion is that of set and functions are defined as relations. Thus the
language does not contain symbols « and e, but a symbol €.

When P is a proposition, it is not always possible to form the set of objects
verifying the property P. This is only allowed in four cases.

e If x and y are two sets, we can form the set {z,y} containing exactly
and y (the symbol {, } is a function symbol),

e If x is a set we can form the set |J(z) containing the elements of the
elements of x,

e If x is a set, we can form a set p(x) containing the subsets of x.

e If x is a set and P is a proposition containing variables y, z1, ..., 2, we
can form the subset of z of the elements y verifying P. This set can be
written fy sy, z..P(T,21,...,2n) Where fy ., . pisa function symbol.

©9%n,

The axioms are
ze{r,yy e (z=2Vvz=y)

yEU(m)@(Ez (yezNz€x))
yep(r)e Vz(zey=ze€x))
YE fyo, o pP(@21,....2n) & (Y ETAP)

There is no way to construct the set of sets that do not belong to themselves
and Russell’s paradox is avoided.
In predicate logic modulo, these axioms may be transformed into rewrite
rules
te{u,v} —t=uVt=vw

tEU(u)—)Hz(th/\zEu)
teplu) —Vz(z€t=z€u)

te fy,217...7zn,P(u7U17 "'7Un) —teuAN (t/yavl/zla 7vn/zn)P

This system does not terminate as the proposition fy —yey(z) € fy —yey(2)
reduces to fy yey(z) € A fy yey(x) € fy-yey(x). Thus, if we call A the

3.3. SIMPLE TYPE THEORY 39

proposition f, —yey () € fy,~yey(2) and B the proposition fy —yey(z) € = we
have
A— BA-A

The decidability of the congruence relation generated by these rule is an open
problem.

3.3 Simple type theory

Simple type theory originates from the work of A.N. Whitehead and B. Russell.
It is another way to restrict naive set theory to avoid paradoxes. In this theory,
the basic notion is that of function. Each function has a domain of definition
and the application (f t) can be constructed only when ¢ belongs to the domain
of the function f, otherwise it is prohibited by the syntax. Hence simple type
theory is a many-sorted theory. Taking all sets as possible function domains,
i.e. all sets as sorts, makes it difficult to decide if a term (f t) is well-formed or
not because we need to decide if the term ¢ designates an object that belongs
to the domain of f or not. Moreover as an object can belong to several set, it
should have several sorts. In type theory, an object has only one sort that is the
maximal set it belongs to. It is called the type of this object. There is one type
¢ for atoms and one type o for propositional contents, then each time we have
two types T and U, we can form the type T' — U of functions mapping objects
of sort T" to objects of sort U.

Definition 3.3.1 (Simple types) Simple types are closed terms formed with
the individual symbols v and o and the function symbol — of two arguments.

To ease notation, we write 7y — To — ... — T, — U for the type (T} —
(Ty... » (T, = U)...)).

Definition 3.3.2 (Language of type theory) The language of simple type
theory in predicate logic modulo is formed with

e a predicate symbol € of rank (o),
e for each pair of type T,U, a function symbol ar y of rank (T — U, T,U),

e for each triple of types T,U,V an individual symbol Sty of sort (T —
U=V (T—->U)»T->YV,
for each pair of types T, U an individual symbol K1y of sortT — U = T,
individual symbols T and L of sort o,
an individual symbol - of sort o — o,
individual symbols A, V, = of sort o — 0 = o,
for each type T, individual symbols Vr and A7 of type (T — 0) — o.

Definition 3.3.3 (Rewrite system of type theory) The rewrite system T
is defined by the rules

(Stuv zyz) — ((z 2) (y 2))

40 CHAPTER 3. TYPE THEORY

(Kruzy) —z
e(T) — T
e(l) — L

x) — —e(x)

) — e(@) Aely)

e(Vay) —e(@) Ve(y)
e(=xy) — e(x) =

— Yy ez y)

y)

e(=

e(Azy

Y)

e(Vr @)
e(@r) — Jy e(z

Proposition 3.3.1 (Comprehension) For each term t there is a term u not
containing the variable x such that (u x) =t. For each proposition P there is a

term u such that (u) = A.

Proof. By induction over the height of ¢.

e If ¢ = x then we take u = (S K K), we have (v z) = (S K K z) =

e If t is a variable different from x or an individual symbol, we take u =
(K t), we have (u z) = (K t) =t.

e If ¢t = (t1 t2), then by induction hypothesis, there are terms u; and us
such that (u1 z) = t; and (u2 x) = t2. We take u = (S uy uz). We have
(uz)=(Suy u2) = ((u1 z) (u2 z)) = (t1 t2) = t.

By induction over the height of A.
o If A =c¢(t), we take u =t.

e If A = BAC, then by induction hypothesis, there are terms v and w such
that e(v) = B and e(w) = C. We take u = (A v w). We proceed the same
wayif A=T,L,-B,BVvCorB=C.

o If A =Vz B, then by induction hypothesis, there is a term v such that
e(v) = B and there is a term w not containing z such that (w z) = v
and hence e(w z) = £(v) = B. We take u = (V w). We have e(u) =
Vx e(w x) = Vo B. We proceed the same way if A = 3z B.

Definition 3.3.4 (Leibniz’ Equality) By the proposition 3.3.1 there is a term
= such that

e(=zy)=Vp (e(px) > epy))

3.3. SIMPLE TYPE THEORY 41

Excercise 3.3.1 Prove
Vo e(z=x)

and for each proposition A
Ve Yy (e(z=y) = ((z/2)A = (y/2)A))

To prove that the rewrite system 7 is terminating, we first focus on the two
first rules.

Proposition 3.3.2 (Tait’s theorem) The rewrite system
Sty zyz) — ((z 2) (y 2))

(Krpy zy) —x
is strongly terminating.

Proof. The set of reducible terms of type T is defined by induction over the
height of T'.

e If T is 1 or o then t is reducible of type T if and only if it is strongly
terminating.

o If T =T, — T, then t is reducible of type T if and only if for every
reducible term wu of type 77, the term (¢ u) is reducible of type T5.

We prove by induction over the height of 7" that
e (1) all reducible terms are strongly terminating and

e (2) variables and individual symbols other than S and K are reducible
terms.

Let T=U; - .. > U, >V (V=vorV =0). (1) If ¢t is a reducible
term of type 7', then let z1, ..., x,, be variables of types Uy, ..., U,. By induction
hypothesis, the variables z;, ..., z,, are reducible. Hence, the term (¢ z; ... z,,) is
reducible and its type is either ¢ or 0. Hence it is strongly terminating and so is
t. (2) If z is a variable of type T or an individual symbol of type T different from
S and K, then let uq, ..., u, be reducible terms of types Uy, ..., U,. By induction
hypothesis the terms uq, ..., u,, are strongly terminating. A reduction sequence
starting from (z wu; ... u,) reduces redexes in the terms us, ..., u,. Hence, it is
finite. The term (z uy ... x,,) is strongly terminating and its type is ¢ or o, hence
it is reducible. Thus, x is reducible.

Then, we prove by induction over the height of ¢ that every term is reducible.

e If t is a variable or an individual symbol different from S and K then it
is reducible.

e If t = (u v), then the terms v and v are reducible by induction hypothesis,
and the term ¢ is reducible.

42

CHAPTER 3. TYPE THEORY

Ift = K (resp. t =S) thenletU; - ... 2 U, >V (V=1vorV =o0)
be the type of ¢t and let wuq, ..., u, be reducible terms of types Uy, ..., U,.
We have to prove that the term (K wy ... up) (resp. (S up ... up)) is
strongly terminating. Consider a reduction sequence tg, 1, t2, ... starting
from the term (K wy ... uy) (resp. (S up ... up)). We have to prove
that this reduction sequence is finite. If the root redex is never reduced,
all reductions take place in uq, ..., u,, these terms are reducible and hence
strongly terminating and the reduction sequence is finite. If the root redex
is reduced at step m, then the term t,, has the form (K u] u} uj... ul)
(vesp. (S w] uh uj... uw))) and the term tp4q is (u] wf ... wl) (resp.
(uf uh (uh ub))y ... ul)) where v} is a reduct of uy, ..., u}, is a reduct
of u,. The term (uy us ... u,) (resp. (u; us (u2 us) ug ... uy,)) is re-
ducible, hence it is strongly terminating and the term (u} uj ... u!,) (resp.
(u] ufy (uh uh)) ... ul)) is strongly terminating, thus the reduction se-

quence tg, t1,to, ... is finite. Therefore, the term K (resp. S) is reducible.

All terms are reducible, hence all terms are strongly terminating.

Proposition 3.3.3 The rewrite system T is strongly terminating.

Proof. We reduce termination in 7 to termination in the system SK. We define
a translation || || of the terms and the propositions of type theory into terms of
type theory. In each type T', we choose a variable zp.

|l = ,

ISt o vl = Stuv,
|Krull = Krv,

&)l = (] Null),

1Tl = |1l = (S K K) =),

15l = (s K K),

1AL = 1V = 12 = (S K K) z0m0s0).
¥zl = 132l = (5 (S K K) (K z1)),

eI = 1lll,
T = LI = 2o,
[I=All = [JAl,

|AAB|| = [|AV B|| = [|[A = B[l = (2000 [|All [|BI]),
V2 All = [Pz All = [|(zr/2) All-

We check that if A rewrites in one step to B in T, then ||A|| rewrites in
at least one step to ||B|| in SK. If Ay, A, Ao, ... is a reduction sequence in T,
then the sequence || Ao, ||41]], ||Az]|, -.- is a reduction sequence in SK, thus it is

finite.

Proposition 3.3.4 The rewrite system T is confluent.

3.4. INFINITY 43

Proposition 3.3.5 Each term (resp. proposition) has a unique normal form
for the rewrite system T and the congruence generated by this system can be
checked in an algorithmic way.

Proof. It is terminating and confluent.

Proposition 3.3.6 Type theory has a model.

Proof. Consider the model

M, = {0}
M, = {07]-}
Mry = M(JJWT
Stuyv = am (b (e a()(b(c)))
KT7U = — (b — a)
a(a,b) = a(d)
€a) = a
T o= 1
L =0
(@) = 1ifa=0and 0 otherwise
/\(a, b) = 1lifa=1andb=1 and 0 otherwise
V(a, b) = 1lifa=1orb=1 and 0 otherwise
:>(a, b) = 1lifa=0orb=1and 0 otherwise
Vr(a) 1if for all b in My a(b) =1 and 0 otherwise
HT() = 1if there exists a b in My such that a(b) = 1 and 0 otherwise

It is easy to check that |A|, = |B|g when A = B.

3.4 Infinity

A set is said E to be infinite if there is function f mapping elements of E to
elements of E that is injective, but not surjective. In type theory this proposition
Infinite(E) is expressed as follows.

da 3f Vz (e(E 2) = (B (f 2))) AVx Yy ((e(E x) Ae(E y)
Ne((f ©)=(f y))) = e(z=y)) A (Vz (e(E 2) = —e(a=(f 2))))

Notice that the proposition 3E Infinite(E) is not valid in the model of propo-
sition 3.3.6, hence it is not provable. If we replace M, by the set N in the
model of proposition 3.3.6, we keep a model of type theory and the proposition
3E Infinite(E) is valid in this model. Thus, the proposition =3E Infinite(E)
is not valid in this model and therefore it is not provable either. Indeed, so far
neither in type theory nor in set theory we have given an axiom that permits to

44 CHAPTER 3. TYPE THEORY

construct an infinite set. To be able to formalize mathematics we need to add

such an axiom.
In type theory, we add an axiom expressing that the set of objects of type ¢
is infinite. Thus, the set E is such that e(E) = T and we can formulate the

axiom
Ja 3f Va Yy (e((f 2)=(f y)) = e(z=y)) A (V& —e(a=(f z)))

Instead of taking an existential axiom, we can give a name to the function and
to the element that is not in its image. For instance, we can call them Su and
0 and we get the two axioms

Vz Vy (e((Su z)=(Su y)) = e(z=y))
Vz —e(0=(Su 7))

that are two of Peano’s axioms.
These axioms become theorems if we add some symbols and rewrite rules.

Definition 3.4.1 (Type theory with infinity) Type theory with infinity is
the extension of type theory with individual symbols 0 of type 1, Su and Pred of
type v — ¢, an individual symbol Null of type « — o and the rules

(Pred (Su z)) — =z

(Null 0) — T
(Null (Su 0)) — L

Excercise 3.4.1 In simple type theory with infinity, prove the propositions
Va Yy (e((Su z)=(Su y)) = e(z=y))
Vo —e(0=(Su z))
Proposition 3.4.1 Type theory with infinity has a model.

Proof. Consider the model

M, = N
M, = {07 1}
Mrouv = M(]]MT
0 = o,
Su = nen+ 1,
Pred = n+—if n =0then O else n — 1,
Null = nwifn =0 then 1 else 0,
Stuy = ar (b= (e a(c)(b(0))))
KT7U = atr (b = a)
a(a,b) = a(d)

éa) = a

3.5. MORE AXIOMS 45

T =1
i =0
(@) = 1ifa=0and 0 otherwise
;\(a, b) = 1lifa=1andb=1 and 0 otherwise
\7((1, b) = 1lifa=1orb=1 and 0 otherwise
:'>A(a, b) = 1lifa=0orb=1and 0 otherwise
Vr(a) = 1ifforall bin My a(b) =1 and 0 otherwise

Jr(a) = 1if there exists a b in My such that a(b) = 1 and 0 otherwise
It is easy to check that |A|, = |B|g when A = B.

There are many ways to construct the natural numbers in type theory with
infinity (as finite cardinals, ...). An easy way is simply to take 0 for zero and
(Su n) for the successor of n.

Then the type ¢ contains all the natural numbers, but possibly also other
objects. The set of natural numbers can be defined as the smallest set containing
0 and closed by successor, i.e. as the intersection of all such sets. An object is a
member of N if it is a member of all sets E containing 0 and closed by successor.
Thus

e(Nn)=VE ((e(E 0) A (VY (e(E z) = e(E (Su x))))) = ¢(E n))
The existence of such an object given by proposition 3.3.1.
Excercise 3.4.2 Prove the induction theorem

VE (e(E 0) AVz (e(E z) = e(E (Su x)))) = Vn (¢(N n) = e(E n))

3.5 More axioms

3.5.1 Extensionality

In mathematics, it is usual to consider that two sets that have the same elements
are equal and that two functions that are point-wise equal are equal. This leads,
both in set theory and in type theory to the aziom of extensionality. In type
theory, this axiom is stated

Vf Vg (Vz e((f z)=(g 2))) = e(f=g))
Vz Yy (e(z) & e(y)) = e(z=y)

3.5.2 Descriptions

The proposition 3.3.1 permits for instance to prove the existence of a function
that adds two to its arguments, ¢.e. the proposition

Af Va e((f 2)=(Su (Su x)))

46 CHAPTER 3. TYPE THEORY

but, it does not permit to prove the existence of a function that takes the value 1
on 1 and the value 0 anywhere else. Indeed, it can be proved that the proposition

Af Va ((e(e=(Su 0)) = e((f 2)=(5u 0))) A (me(2=(Su 0)) = &((f ©)=0)))

has no proof in type theory.
In contrast, with the proposition 3.3.1, it is easy to prove the existence of
the graph of this function, i.e. the proposition

3R Ve Vy ((R @ y) & (((2=1) = e(y=1)) A (-e(2=1) = £(y=0))))

and we can also prove, for instance by induction, that this relation is functional,
i.e. that
Vz (e(Nz) = F'y e(R z y))

But to conclude to the existence of the function we need the following axiom
(descriptions axiom)

VP VQ (Vx (e(P z) = Ty e(Q v y)) = If Vo (¢(P 2) = (Q = (f x)))

that relates functions and functional relations.
In set theory, functions are functional relations, thus they need no axiom to
be related.

3.6 Type theory with a binder

We have seen in proposition 3.3.1 that to have a language containing the function
symbols ary and the individual symbols Sty and K7y and the related
rewrite rules is sufficient to prove that, for each term ¢ and variable x there
is a term w not containing the variable such that (v) = ¢t. But, the term
u is sometimes cumbersome to compute. It is more comfortable to have a
symbol — such that the function mapping = to ¢ can simply be written x — .
The symbol — is a function symbol of one argument binding one variable in
its argument. When we take the symbol —, the symbols S and K become
superfluous (S =z —y = 2z = ((z 2) (y 2)), K =2 — y — z). We thus get
the following theory.

Definition 3.6.1 (Language of type theory with a binder) The language
of simple type theory with a binder is formed with

e a predicate symbol € of rank (o),

e for each pair of type T,U, a function symbol ary of rank (T — U,T,U),
for each pair of types T, U a function symbol — of rank ((T,U),T — U),

e individual symbols T and L of sort o,
an individual symbol - of sort o — o,
individual symbols A, V, = of sort o — 0 — o,
for each type T, individual symbols ¥ and I of type (T — 0) — o.

3.6. TYPE THEORY WITH A BINDER 47

Definition 3.6.2 (Rewrite system of type theory with a binder) The rewrite
system T' is defined by the rules

((z—t) u) — (u/x)t

f(T)— T
e(l) — L
(5 z) — —e(z)
e(Azy) — e(x) Ne(y)
e(Vay) —e(@)Ve(y)
e(= v y) — e(z) = ely)
e(Vr @) — Vy e(z y)

E(jT z) — Jy e(z y)

To prove that the rewrite system 7 is terminating, we first focus on the first
rule.

Proposition 3.6.1 (Tait’s theorem with a binder) The rewrite system
((z—t) u) — (u/x)t
1s strongly terminating.

Proof. The set |T'| of reducible terms of type T is defined by induction over the
height of T.

e If Tis ¢ or o then ¢t is in |T'| if and only if it is strongly terminating.

o If T =T, — T, then t is in |T| if and only if it is strongly terminating
and when its reduces to a term of the form x +— t' then for every term u
in |T1], (u/z)t' is in |Ty|.

To prove that all terms of type T are strongly terminating, we prove that
all terms of type T are in |T'|. More generally, we prove, by induction over the
height of ¢, that if ¢ is a term of type T', o a substitution mapping variables of
type U to elements of |U|, then ot is in |T'|.

e If t = y, then if y is in the domain of o then ot is in |T'|. Otherwise,
ot = y, the variable y is normal, hence it is strongly terminating and it
cannot reduce to a term of the form x + ¢', hence it is in |T'|.

48 CHAPTER 3. TYPE THEORY

o If t =2z — w, then T =T, — T,. Modulo alphabetic equivalence, we can
chose the variable z not appearing in o, thus ot = £ + ou. This term is
strongly terminating because a reduction sequence issued from it can only
reduce the term ou and, by induction hypothesis, this term is in |75| and
thus it is strongly terminating. Then, if ot reduces to the term z — ¢/,
then ¢’ is a reduct of ou. Let v be a term of |T»|, the term (v/z)t' is a
reduct of ((v/z) o o)u, that is in |T»| by induction hypothesis. It is easy
to check that |T| is closed by reduction. Thus the term (v/z)t' is in |T5|.

Hence, the term ot is in |T|.

o If t = (t1 t2) and #; is a term of type U — T and ¢ a term of type U.
We have ot = (ot; ot2). By induction hypothesis ot; and ots are in the
sets [U — T'| and |U|. To prove that ot is in |T|, we prove that if u; is in
|[U — T'| and up is in U then (u1 us) is in |T.

The terms u; and us are strongly terminating. Let » be the maximum
length of a reduction sequence issued from u; and n' the maximum length
of a reduction sequence issued from u,. We prove that (uq us) is in |T|
by induction on n + n'.

First we prove that (u; us) is strongly terminating. Consider a reduction
sequence issued from this term. If the first redex is in u; or us then we
apply the induction hypothesis, otherwise the redex is at the root of the
term (u1 u2), up has the form z — u' and the first step of the reduction
sequence reduces (u; uz2) to (us/x)u’. This term is in |T'|, hence it is
strongly terminating and the reduction sequence is finite. Then, we prove
that if T' = U; — Us and (u; u2) reduces to a term of the form y — v, then
for every term w in |Uy|, (w/y)v is in |Uz|. As (u1 uz) is an application,
the reduction sequence is not empty. If the first redex is in u; or us, we
apply the induction hypothesis, otherwise the redex is at the root of the
term (u1 u2), ug has the form z — u' and the first step of the reduction
sequence reduces (u; uz2) to (uz/z)u’. This term is in |T| and it reduces
to y — v, hence for every term w in |Uy|, (w/y)v is in |Us|. Thus the term
(u1 ue) is in |T.

Proposition 3.6.2 The rewrite system T' is strongly terminating.

Proof. We follow the lines of the proof of proposition 3.3.3 and reduce termina-
tion in 7' to termination in the system formed with the first rule. We define a
translation || || of the terms and the propositions of type theory into terms of
type theory. In each type T, we choose a variable zr.

o |lzll = =,
o |lz =t ==z~ i,

o (I wll = (el D),

3.6. TYPE THEORY WITH A BINDER 49

o [T =Ll = ((z = 2) 20),
1=l =2 — =,

IAIl =1V = [I=]l = ((z = %) 20-0-0),
IVrll =37l = 2 = (2 27),
e lle@ll = lI¢ll;
1T = 1L = 2o,
[[=All = [IAll;

|AAB|| = [|AV B|| = [|[A = Bl = (2000 [|All [|B]),
V2 All = [[3z Al = [[(zr/2) All.

We check that if A rewrites in one step to B in 7, then ||A|| rewrites in at
least one step to || B|| in the system formed with the first rule. If Ay, Ay, Ao, ... is
a reduction sequence in 7, then the sequence ||4o||, [|A1ll, || A2]|, --- is a reduction
sequence in the system formed with the first rule, thus it is finite.

Proposition 3.6.3 The rewrite system T' is confluent.

Remark. If we add the axiom of extensionality to both formulations of type
theory we get equivalent theories, i.e. each language can be translated into the
other preserving provability. When we do not take the extensionality axioms,
there are subtle differences between these theories, we shall not discuss here.

Remark. Some authors use the notation Ax t for x — t, hence the name A-
calculus for this language.

50

CHAPTER 3. TYPE THEORY

Chapter 4

Cut elimination in
predicate logic

4.1 Uniform proofs

A natural deduction proof built without the excluded middle rule is said to be
constructive. The choice of this name comes from the fact that, as we shall see,
from a constructive proof in the empty theory of a proposition of the form Iz A,
it is possible to compute a term ¢ and a proof of the proposition (¢t/z)A. Such a
term ¢ is called a witness of the proposition 3z A. Thus, explicitly or implicitly,
a constructive existence proof contains a witness.

Conversely, from a term t and a proof of (t/z)A, the rule 3-intro permits to
build a proof of the proposition dx A. A proof ended by an introduction rule
is said to be uniform. Witnesses are explicit in uniform existence proofs. Thus,
it is equivalent to have a term ¢ and a proof of (¢/z)A or a uniform proof of
the proposition 3z A. To prove that from a constructive proof of a proposition
of the form dx A we can compute a witness, we shall prove that all proofs can
be transformed into uniform ones. For instance, the non uniform proof of the
proposition 3z (P(z) = P(x))

) =-intro
(c

dz (P(z) = P(z)) F 3z (P(x) = P(x)) = intro L intro
F 3z (P(z) = P(z)) = 3z (P(z) = P(z) F 3z (P(z) = P(z)) .
F3z (P2) = PQ@)) =-elim

will be transformed into
P(c) F P(c) .
FP(c) = P(o) :';“,tro
F 3z (P(z) = P(a)) - ntro

From the fact that all proofs can be transformed into uniform ones, we will
deduce that

e if A is an atomic proposition then it has no proof,

o1

92 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

L has no proof,

e if = A has a proof then L has a proof from the axiom A,

e if AA B has a proof then A has a proof and B has a proof,

e if AV B has a proof then A has a proof or B has a proof,

e if A = B has a proof then B has a proof from the axiom A,

e if Yz A has a proof then A has a proof,

e if 3z A has a proof then there is a term ¢ such that (¢/z)A has a proof.

The results obtained for the case of T, =, A, = and V are trivial, they can
simply be established with the elimination rules. The interesting results are
thus for L, V and 3. The result in the case of the existential quantifier 3 is the
witness property. The result obtained in the case of the disjunction V is called
the disjunction property. The result obtained in the case of the contradiction
L is the consistency of the empty theory. Thus, like model constructions, proof
transformation results permit to prove consistency and independence results.

Excercise 4.1.1 (Independence of the Excluded middle rule) Consider
a language formed with a proposition symbol P and a theory containing no ax-
ioms and no rewrite rules. Construct a model where the proposition P is not
valid. Does this proposition have a proof ? Construct a model where the propo-
sition —P is not valid. Does this proposition have a proof ? Does the proposition
PV =P have a constructive proof ?

Excercise 4.1.2 Consider a language formed with a proposition symbol P and
a theory containing no axioms and no rewrite rules. Construct a model where
the proposition P is not valid. Does this proposition have a proof ? Construct a
model where the proposition —P is not valid. Does this proposition have a proof ¢
Does the proposition PV =P have a proof (possibly using the excluded middle
rule) ¢ Does natural deduction with the excluded middle have the disjunction
property ?

Excercise 4.1.3 Consider a language formed with a proposition symbol P, a
predicate symbol Q) of one argument and two individual symbols 0 and 1 and a
theory containing no azioms and no rewrite rules. Construct a model where the
proposition

(((Q(0) = Q(0)) A P) vV (Q(1) = Q(0) A ~P))
is not valid. Does this proposition have a proof ¢ Construct a model where the
proposition

(((Q(0) = QM) AP) vV (Q(1) = Q(1) A=P))

is not valid. Does this proposition have a proof ¢ Does the proposition

3z ((Q0) = Q(z)) A P) v (Q(1) = Q(z) A=P))

have a proof (possibly using the excluded middle) ¢ Does natural deduction with
the excludes middle rule have the witness property ?

4.2. CUTS AND CUT ELIMINATION 93

Remark. Some problems in mathematics have the form “Find an object z
such that A”. One way to solve such a problem is to prove constructively the
proposition dz A, to transform this proof into a uniform one and to read the
witness in the proof. For instance, finding the quotient of the division of 9 by 2
can be done in the following way: fist prove constructively the proposition

JgIr (9=2%xqg+rAr<2)

then transform this proof into a uniform one and read the witness in the proof.
One advantage of proceeding this way, compared to other division algorithms,
is that the result cannot be wrong. Indeed, a uniform proof of

JgIr (9=2xqg+rAr<2)
not only contains the witness 4 but also a proof of the proposition
Ir(9=2x4+rAr<2)
Of course, finding a proof of the proposition
JgIr (9=2%xqg+rAr<2)
may be tedious, but it is not if we prove once for all the proposition
VnVp (~(p=0)=>3¢Ir (n=pxqg+rAr<p))

Notice that when we apply this theorem to 9 and 2 and to a proof of =2 = 0 we
get a proof of
JgIr (9=2%xqg+rAr<2)

that is not uniform. Thus, this proof needs to be transformed before the witness
can be read. The quotient 4 is computed during this transformation. Thus cut
elimination is the execution process of mathematics seen as a programming
language.

4.2 Cuts and cut elimination

Definition 4.2.1 (Cut, cut free) A cut is a proof ended with an elimination
rule whose left premise is proved by an introduction rule on the same symbol.

Here are the different cases
s
T,AF L x

TFoA Mo §rg

k1

—-elim

!
s s

'-A I'HB
'-AAB i
TFA4 N-elim

A-intro

o4 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

’
™ ™

'-A I'rB

I'-AAB i
TEB N-elim

A-intro

™
'FA . 7 !
TFavB ' "™ T AFrC T,BFC
TFC

V-elim

Vs
I'-B . 7 !
TFavB ' "™ T ArC T,BFC
TFC

V-elim

T
I'AFB - '
TFA= B ™" TFa

'EB

T
'+A .
TFve A7
m V-elim

=-elim

™
T /oA, x
TFaz A > T AFB
TFB

J-elim
A proof contains a cut if one of its sub-trees is a cut. Otherwise it is cut free.
It is easy to check that cut free proofs in the empty theory are uniform.

Proposition 4.2.1 In the empty theory, a cut free proof ends with an intro-
duction rule.

Proof. By induction over the height of the proof. The last rule cannot be
an axiom rule, because the theory contains no axioms. If the last rule is an
elimination, then the left premise of the elimination is proved with a cut free
proof. Hence it ends by an introduction and the proof is a cut contradicting the
fact that it is cut free.

Thus to prove that all proofs can be transformed into uniform ones we will
prove that all proofs can be transformed into cut free ones. To do so, we define
a process that eliminates cuts step by step. A cut of the form

T

AR L ot '’

TF-Aa ™74
TF L —-elim

is replaced by the proof obtained this way: in the proof @ we suppress the
hypothesis A in all sequents, then each time the axiom rule is used with this

4.2. CUTS AND CUT ELIMINATION 35

proposition, we replace it with the proof 7’. A cut of the form

’

s ™
'rA I'EB .
TFAAB /\-'1ntr0
TFA4 A-elim
is replaced by the proof m. A cut of the form
™ 7T,
'rA I'tEB .
TFAAB /\—.1ntro
TFB A-elim
is replaced by the proof «’. A cut of the form
s
'-A . ' '’
TFAVB'™M°FTIre T.BFrC
TEC V-elim

is replaced by the proof obtained this way: in the proof 7’ we suppress the
hypothesis A in all sequents, then each time the axiom rule is used with this
proposition, we replace it by the proof 7. A cut of the form

"

I'+B Veint ' !

r-Ave "™°T ArC T,BFC
TFC V-elim

is replaced by the proof obtained this way: in the proof n" we suppress the
hypothesis B in all sequents, then each time the axiom rule is used with this
proposition, we replace it by the proof 7. A cut of the form

T

LAFB _ . x

TFA=>B ™ Tra
I'FB =-elim

is replaced by the proof obtained this way: in the proof m we suppress the
hypothesis A in all sequents, then each time the axiom rule is used with this
proposition, we replace it with the proof #’. A cut of the form

T
'FA
I'kEVz A .
mv-ehm

V-intro

is replaced by the proof @ where the variable z is substituted by the term ¢
everywhere. A cut of the form
Vs

CF{/a)A "
TF3z A W0 F3rp

TF B J-elim

o6 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

is replaced by the proof obtained this way: in the proof «', we substitute the
variable z by the term ¢ everywhere, then we suppress the hypothesis (¢/z)A
in all sequents and each time the axiom rule is used with this proposition, we
replace it with the proof 7.

Excercise 4.2.1 Eliminate the cuts in the proof

M =-intro
z (P(z) = P(z)) F 3z (P(x) = P(z)) — _intro F P(c) = Plc) 3-intro
Fﬂ%P@2PwD$ﬂ%(@$P z)) v (Pl) = P@) 7~ i,

F 3z (P(x) = P(z))

When a proof contains a cut, it is always simple to remove it, thus the cut
elimination process is not difficult to define. But removing a cut may create
new cuts, so the main question is that of the termination of this process.

4.3 Proofs as terms

The cut elimination process of the previous section is still cumbersome to ex-
press. This is due to the fact that we use a too cumbersome notation for natural
deduction proof. The goal of this section is to introduce another notation for
these proofs.

As we have seen, one of the key operations in this proof transformation
process is the substitution of a variable by a term. Another key operation is
the following: in a proof 7 of the sequent I') A + B, remove the hypothesis
A in all sequents and replace the axiom rules on this proposition by a proof
7' of the sequent I' F A. To be able to express smoothly this operation, it is
better to use a notation where proofs are expressed by terms containing special
variables standing for proofs of the hypotheses. Thus to express a proof of a
sequent Ay, ..., A, b B we shall first introduce variables &1, ..., &, standing for
proofs of the propositions Ay, ..., A,. If B is the proposition A; and the sequent
Ay, ..., A, F A; is proved with the axiom rule, we shall write this proof &;.

Now a proof 7 of the sequent I'; A - B is expressed by a term containing one
variable for each proposition of I and a variable £ for A and the proof obtained
by removing the hypothesis A in all sequents of 7 and replacing the axiom rules
on this proposition by a proof 7’ of the sequent I' F A is simply obtained by
substituting the proof 7’ for the variable ¢ in .

For each natural deduction rule, we introduce a function symbol. To express

a proof such as
!

T T
-4 TrB
TFAAB Mo

we express first the proofs m and 7’ as terms, then we apply the function symbol
of two arguments associated to the rule A-intro to = and #'.

In the case of the rule =-intro, we transform a proof = of the sequent I', A I
B into one of the sequent ' H A = B containing less hypotheses. The proof 7

4.3. PROOFS AS TERMS a7

is expressed by a term containing a variable ¢ standing for a proof of A. This
variable must not appear in the proof of I' - A = B. Thus the function symbol
associated to the rule =-intro must be a binder.

From now on, to simplify proofs, we shall drop the negation symbol —.
Everything works for the proposition = A as for the proposition A = L.

Definition 4.3.1 (Term notation for proofs) We express proofs as terms
in a language with two sorts: one for terms of the theory and the other for
proof-terms. Terms of the theory will be written with Latin letters (t, u, ...)
while proof-terms will be written with Greek letters (r, ...).

e The proof
T Aziom
s expressed by the term &;.
e The proof
TFET T -intro

s expressed by the term I, where I is an individual symbol.

e The proof
_mT
'-1
mJ_-elim
is expressed by the term 6, (w), where §1 is a function symbol of one
argument.
e The proof
L
'rA I'tB . ;
TFAnB /i
is expressed by the term (mw,n'), where {(,) is a function symbol of two
arguments.
e The proof
T
I'-AAB i
TFA4A N-elim

is expressed by the term fst(m) and the proof

T
''-AAB i
“TEA A-elim
is expressed by the term snd(m) where fst and snd are function symbols of
one argument.

58

CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

The proof

_T
'FA
'-AvB

is expressed by the term i(w) and the proof

V-intro

_T
'EB

TFAvE

is expressed by the term j(mw), where i and j are function symbols of one
argument.

The proof
P 7'[" 7_rll
TFAVB T,ArC T,BFC_ .
TFC V-elim

is expressed by the term 6(mw, & ©',x ©''), where § is a function symbol of
three arguments binding one variable in its second argument and one in
its third.

The proof

T
T,A- B

TFAS B

is expressed by the term £ — w, where — is a function symbol of one
argument binding one variable in its argument.

The proof

’
s ™

''rA=B T*FA
I'tB

=-elim

is expressed by the term o(mw,n'), where a is a function symbol of two
arguments. This term is also simply written (7 7).

The proof

_ T
Ira
TFvg Ao

is expressed by the term x — w, where — is a function symbol of one
argument binding one variable in its argument.

The proof

T
F'-vx A

m V-elim

is expressed by the term a(m,t) where a is a function symbol of two argu-
ments. This term is also simply written (7 t).

4.3. PROOFS AS TERMS 29

e The proof
_ T
'k (t/x)A _
Traza
is expressed by the term (t,7) where (,) is a function symbol of two argu-
ments.
e The proof
™ 7T,
[F3c4 [LAFB_
TFB wenm

is expressed by the term d3(mw, x€ ©') where 03 is a function symbol of two
arguments binding two variables in its second argument.

Excercise 4.3.1 Write the term associated to the proof

Pl Plo) = -intro
dz (P(z) = P(x)) F 3z (P(z) = P(z)) s intro F P(c) = P(c) Tintro
F 3z (P(zx) = P(x)) = 3z (P(z) = P(x)) F 3z (P(z) = P(x))

F3z (P(x) = P@)) =>-elim

Remark.(An historical note on the choice of symbols) The choice of these sym-
bols comes from a tradition due to Brouwer, Heyting and Kolmogorov, according
to which

e there is only one proof of T,

e there is no proof of L,

a proof of A A B is an ordered pair formed with a proof of A and a proof
of B,

a proof of AV B is a boolean value together with a proof of A or B
according to the value of the boolean,

a proof of A = B is a function mapping proofs of A to proofs of B,

a proof of Yz A is a function mapping any object ¢ to a proof of (¢/z)A,

a proof of 3z A is an ordered pair formed with a term ¢ and a proof of

(t/z)A.

Remark. (Types of proofs) If 7 is a proof of B under the hypothesis A then
& — mis a proof of A = B. As all proofs have the same sort, the proof-term
¢ — m does not have a type, but if we wanted to give a type to it, it would
get the type A’ — B’ where A’ is the type of proofs of A and B’ the type of
proofs of B. Thus the type of a proof would be isomorphic to the proposition
proved by the proof-term. This isomorphism is called Curry-de Bruijn-Howard
isomorphism. In particular it can be proved that a type contains a closed term

60 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

in the language of definition 3.3.2 or 3.6.1 if and only if this type is isomorphic
to proposition that has a constructive proof.

As proof-terms have no type, there are proof-terms that are proof of no
proposition. For instance, if P is a proposition symbol and £ a variable standing
for a proof of P then the proof-term (£ £) does not corresponds to any proof.
The natural deduction rules are now used to express which proof-terms is a a
proof of which proposition. We use a notation & : Ay,....,&, : A, b 7 : B to
express that 7 is a proof of the sequent Ay, ..., A, b B where &1, ..., &, are the
names given to the variables of standing for proofs of the propositions Ay, ..., A,,.
The rules are the following.

Definition 4.3.2 (Deduction rules with proofs)

mAmomzf{:AEF

m T-intro

I'kFrm:L | eli
TFo,(m):A %"

'trn:A TFx:B

'k (mn'y: ANB A-ntro
''+n:AANB ji
Ik fst(m) : A A\-elim
I'n:AANB i
TF snd(r) : B\ 6™
'tn: A -
TFi(n):AvB /i
I'kn:B)
V-intro

F'+j(r):AVB

F'Fan:AVB TI,6:Ar7':C L,x:Bra":C
['Fé(mén',xn"): C

¢ Arn: B
'-é—»n:A=1B

'tr7:A=B TI'kFxn:A4

V-elim

=-intro

F'F(r7'):B = -elim
F'Fn: A . .
Fl_xb_)ﬂ_:vaV-mtm if e ¢ FV(T)
FFm:Vo A

TF (7) (t/a)A " -chm

44. CUT ELIMINATION 61
Cha:(t/z)A _ .
TF (7, 7) : 30 A 2 7intro

Fka:3z A T, 6: A7 B
[+ o5(m,xén’) : B

J-elim if ¢ ¢ FV (L', B)

Proposition 4.3.1 A sequent Aq,..., A, B is derivable in natural deduction
if and only if there exists a term © such that the judgment & : Ay,..., &, : An b
7w : B is derivable in this system.

The cut elimination rules can now be rephrased on the proof-terms

Definition 4.3.3 (Cut elimination rules)
fSt((’lTl,’lT2>) — M

snd({m1,ma)) — 2

)
6(i(m), Ema, x73) — (1 /&)

6(j(m1), &me, xms) — (m1/x)ms

((§ = m) m2) — (m2/&)m
(z—m)t) — (t/z)7
0a((t, m), Exma) — (t/x, 71 /&) T2

Proposition 4.3.2 (Subject reduction) If ' - 7 : P and 1 — @' then
F'kx":P.

4.4 Cut elimination

We now want to prove that if a proof-term is a proof of some proposition then
it is strongly terminating. Following the idea of Curry-de Bruijn-Howard iso-
morphism, this proof extends that of proposition 3.6.1.

Definition 4.4.1 (Reducible proof-terms) Let A be a proposition. We de-
fine the set |A| of reducible proof-terms of A by induction over the height of
A.

If A is an atomic proposition then a proof-term w is an element of |A| if
it is strongly terminating.

A proof-term 7 is an element of | T| if it is strongly terminating.

A proof-term 7 is an element of |L| if it is strongly terminating.

A proof-term 7 is an element of |A A B| if it is strongly terminating and
when m reduces to a proof-term of the form (my,m2) then m is an element
of |A| and 7y is an element of |B.

62 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

A proof-term w is an element of |AV B| if it is strongly terminating and
when m reduces to a proof-term of the form i(my) (resp. j(m2)) then m
(resp. w2) is an element of |A| (resp. |B|).

e A proof-term 7 is element of |A = B| if it is strongly terminating and
when © reduces to a proof-term of the form & — m; then for every w' in
|A|, (7' /&)m1 is an element of |B|.

e A proof-term w is an element of |Vx A| if it is strongly terminating and
when m reduces to a proof-term of the form x — m then for every term t
(t/z)m is an element of |(t/x)A| (which is equal to |A|).

o A proof-term is an element of |z A| if it is strongly terminating and

when 7 reduces to a proof-term of the form (t,m) then m is an element
of |(t/x)A| (which is equal to |A]).

Lemma 4.4.1 Elements of |A| are strongly terminating.

Proof. By definition.

Lemma 4.4.2 If 7 is an element of |A| and 1 — 7' then @' is an element of

|-

Proof. By definition.

Lemma 4.4.3 All variables are members of | A|.

Proof. By definition.

Lemma 4.4.4 If 7 is an elimination and if for every © such that 1 —' 7',
' € |A| then 7 € |A|.

Proof. We first prove that « is strongly terminating. Let m# = my,m,... be a
reduction sequence issued from 7. If this sequence is empty it is finite. Oth-
erwise we have m —1 2 and hence my is an element of |A| thus it is strongly
terminating and the reduction sequence is finite.

Then, we prove that if # reduces to an introduction then the sub-terms
belong to the appropriate sets. Let 7 = my,m9,...m, be a reduction sequence
issued from 7 and such that 7, is an introduction. This sequence cannot be
empty because 7 is an elimination. Thus 7 —! 72 — m,. We have 73 € |A4]
and thus if 7, is an introduction the sub-terms belong to the appropriate sets.

Proposition 4.4.5 (Gentzen-Prawitz theorem) IfT'F 7 : A then the proof-
term m is strongly terminating.

4.4. CUT ELIMINATION 63

Proof. By lemma 4.4.1, it is sufficient to prove that if ' - «# : A then the
proof-term 7 is an element of |A|. More generally, we prove, by induction over
the height of the proof-assignment tree, that if [' F 7 : A, 8 is a substitution
mapping the term variable to terms and ¢ is a substitution mapping some proof
variables associated to a proposition B in I' to an element of |B|, then of7 is
an element of |A]|.

e Axiom. If 7 is a variable £, we have (£ : A) € I". If £ is in the domain of
definition of o, then 60¢ = o€ is an element of |A|, otherwise o6& = o€ = ¢
is an element of |A| by proposition 4.4.3.

e T-intro. The proof-term 7 has the form I. We have o067 = I. This proof-
term is normal and thus it is strongly terminating. Hence, the proof-term
061 is in |A|.

e A-intro. The proof-term 7 has the form (p1, p2) where p; is a proof of
some proposition B and p; a proof of some proposition C. We have
o0 = (08p1,00p2). Consider a reduction sequence issued from this proof-
term. This sequence can only reduce the proof-terms ofp; and o6ps.
By induction hypothesis these proof-terms are in |B| and |C|. Thus the
reduction sequence is finite.

Furthermore, all reducts of o6 have the form (p, p) where p] is a reduct
of o8p, and pl, one of o8p,. The proof-terms p} and p,, are in |B| and |C|
by proposition 4.4.2.

Hence, the proof-term of{p;, p2) is in |A|.

e V-intro. The proof-term 7 has the form i(p) (resp. j(p)) and p is a proof
of some proposition B. We have o0 = i(a6p) (resp. j(o8p)). Consider
a reduction sequence issued from this proof-term. This sequence can only
reduce the proof-terms ofp. By induction hypothesis this proof-term is
an element of |B|. Thus the reduction sequence is finite.

Furthermore, all reducts of o7 have the form i(p’) (resp. j(p')) where p’
is a reduct of ofp. The proof-term p’ is an element of |B| by proposition
4.4.2.

Hence, the proof-term o8i(p) (respectively 065 (p)) is an element of | A|.

e =-intro. The proof-term 7 has the form £ — p where £ is a proof variable
of some proposition B and p a proof of some proposition C. We have
o = £ — o6p, consider a reduction sequence issued from this proof-
term. This sequence can only reduce the proof-term ofp. By induction
hypothesis, the proof-term ¢6p is an element of |C|, thus the reduction
sequence is finite.

Furthermore, all reducts of o7 have the form & — p’ where p’ is a reduct
of 0fp. Let 7 be any proof of |B|, the proof-term (7/£)p’ can be obtained
by reduction from ((7/£) o 0)8p. By induction hypothesis, the proof-term

64

CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

((1/€) o 0)8p is an element of |C|. The proof term (7/€)p' is an element
of |C], by proposition 4.4.2.

Hence, the proof-term o6(§ — p) is an element of |A|.

e V-intro. The proof-term 7 has the form z + p where p is a proof of some

proposition B. We have gfm = x — 08p. Consider a reduction sequence
issued from the proof-term ofr = x — ofp. This sequence can only
reduce the proof-term ofp. By induction hypothesis, the proof-term o6p
is an element of |B|, thus the reduction sequence is finite.

Furthermore, all reducts of ofn have the form z — p' where p' is a
reduct of ofp. The proof-term (t/x)p’ is obtained by reducing the proof-
term ((¢t/x)o)((t/x) o 8)p. By induction hypothesis again, the proof-term
((t/x)o)((t/z) o)p is an element of |B|. The proof-term (t/z)p’ is an
element of |B|, by proposition 4.4.2.

Hence of(x — p) is an element of |A]|.

F-intro. The proof-term 7 has the form (¢, p), where p is a proof of some
proposition B. We have o6 = (6t,060p). Consider a reduction sequence
issued from this proof-term. This sequence can only reduce the proof-
term ofp. By induction hypothesis this proof-term is in |B|. Thus the
reduction sequence is finite.

Furthermore, all reducts of 087 have the form (0, p') where p' is a reduct
of o6p. The proof-term p’ is an element of |B|, by proposition 4.4.2.

Hence, the proof-term o6(t, p) is an element of | A|.

1-elim. The proof-term 7 has the form §, (p) where p is a proof of L.
We have ofn = §, (08p). By induction hypothesis, the proof-term ofp
is an element of |L|. Hence, it is strongly terminating. Let n be the
maximum length of reduction sequences issued from this proof-term. We
prove by induction on n that §, (06p) is in |A|. Since this proof-term is
an elimination, by proposition 4.4.4, we only need to prove that every of
its one step reducts is in |A|. The reduction can only take place in ofp
and we apply the induction hypothesis.

Hence, the proof-term 06d, (p) is an element of |A]|.

A-elim. We only detail the case of left elimination. The proof-term 7 has
the form fsé(p) where p is a proof of some proposition A A B. We have
ofn = fst(06p). By induction hypothesis the proof-term ofp is in |AA B].
Hence, it is strongly terminating. Let n be the maximum length of a
reduction sequence issued from this proof-term. We prove by induction
on n that fst(o8p) is in the set |A|. Since this proof-term is a elimination,
by proposition 4.4.4, we only need to prove that every of its one step
reducts is in |B|. If the reduction takes place in o6p then we apply the
induction hypothesis. Otherwise ofp has the form (p}, p5) and the reduct
is p}. By the definition of |A A B| this proof-term is in |A4|.

Hence, the proof-term o6fst(p) is an element of |A|.

4.4. CUT ELIMINATION 65

e V-elim. The proof-term 7 has the form 6(p1,£p2 xps) where p; is a proof
of some proposition B V C and ps and ps are proofs of A. We have
o0 = §(00p1,€08pa, xobps). By induction hypothesis, the proof-term
08p; is in the set |B V C|, and the proof-terms ofp> and ofps are in the
set |A|. Hence, these proof-terms are strongly terminating. Let n, n' and
n'" be the maximum length of reduction sequences issued from these proof-
terms. We prove by induction on n + n' + n'' that 6(o0p1,008p2, x0bps)
is in |A]. Since this proof-term is an elimination, by proposition 4.4.4,
we only need to prove that every of its one step reducts is in |A|. If the
reduction takes place in ofp;, 00ps or o6ps then we apply the induction
hypothesis. Otherwise, if op; has the form i(p') (resp. j(p')) and the
reduct is ((p'/€)o0o)Bps (resp. ((p'/x)o0)0ps). By the definition of |[BVC|
the proof-term p’ is in |B| (resp. |C]). Hence by induction hypothesis
((¢'/€) 0 00> (resp. (#/x) © 7)6ps) is in |A].

Hence, the proof-term 00d(p1,&p2, xps) is an element of |A|.

e =-elim. The proof-term 7 has the form (p; p2) and p; is a proof of
some proposition B = A and ps a proof of the proposition B. We have
o0 = (00p1 00p2). By induction hypothesis ofp; and ofp, are in the
sets |B = A| and |B|. Hence these proof-terms are strongly terminating.
Let n be the maximum length of a reduction sequence issued from ofp;
and n/ the maximum length of a reduction sequence issued from ocfp,. We
prove by induction on n +n' that (¢6p; 0fp2) is in the set |A|. Since this
proof-term is an elimination, by proposition 4.4.4, we only need to prove
that every of its one step reducts is in |A|. If the reduction takes place in
ofp; or in gfp, then we apply the induction hypothesis. Otherwise o6p;
has the form & — p’ and the reduct is (08p2/€)p’. By the definition of
|B = A| this proof-term is in |A].

Hence, the proof-term o6(p1 p2) is an element of |A|.

e V-elim. The proof-term 7 has the form (p t) where p is a proof of some
proposition Yo B and A = (t/z)B. We have o = (c6p 6t). By induc-
tion hypothesis, the proof-term ofp is in |Vz B|. Hence, it is strongly
terminating. Let n be the maximum length of a reduction sequence issued
from this proof-term. We prove by induction on n that (66p 6t) is in the
set |A|. As this proof-term is an elimination, by proposition 4.4.4, we only
need to prove that every of its one step reducts is in |A|. If the reduction
takes place in 08p then we apply the induction hypothesis. Otherwise o6p
has the form « — p' and the reduct is (8t/x)p’. By the definition of |Vz B|
this proof-term is in |A|.

Hence, the proof-term of(p t) is an element of | A|.
e J-elim. The proof-term 7 has the form d3(p1,z€p2) where p; is a proof

of some proposition Jz B and ps is a proof of A. We have ofr =
03(c8p1,x€abp2). By induction hypothesis, the proof-term ofp; is in the

66 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

set |3z B| and the proof-term ofp- is in the set |A|. Hence, these proof-
terms are strongly terminating. Let n and n' be the maximum length of
reduction sequences issued from these proof-terms. We prove by induc-
tion on n + n' that d3(0bp1,xobp2) is in |A|. As this proof-term is an
elimination, by proposition 4.4.4, we only need to prove that every of its
one step reducts is in |A|. If the reduction takes place in o6p; or ofp.
then we apply the induction hypothesis. Otherwise, 08p; has the form
(t,) and the reduct is (p'/€)(t/2)o0ps = ((¢'/€) (t/2)0)((t/2) °6)p».
By the definition of |3z B|, the proof-term p’ is in |B|. Thus, by induction
hypothesis, the proof-term ((p'/&) o (t/x)o)((t/x) o 0)p2 is in |A].

Hence, the proof-term o6d35(p1, xp2) is an element of |A|.

4.5 Harrop theories

We have seen that constructive cut free proofs in the empty theory are uniform,
and we have deduced the disjunction property and the witness property for the
empty theory. Of course these properties do not extend to all theories, but they
extended to Harrop theories.

Definition 4.5.1 (Harrop theory) The set of Harrop propositions is induc-
tively defined as follows:

e atomic propositions, T and L are Harrop propositions,
e —A is a Harrop proposition,
e AN B is a Harrop proposition if A and B are Harrop propositions,
e A = B is a Harrop proposition if B is a Harrop proposition,
e YV A is a Harrop proposition if A is a Harrop proposition,
A Harrop theory is a theory whose axioms are all Harrop propositions.

Proposition 4.5.1 Let I' be a Harrop theory. If AV B has a constructive proof
in ', then A or B has a proof in T' and this proof is constructive. If v A has
a constructive proof in T', then there is a term t such that (t/x)A has a proof in
I' and this proof is constructive.

Proof. By induction over the height of the proof.

If the proofs ends with an introduction, then the result is trivial.

The proof cannot end with an axiom because I' contains only Harrop propo-
sitions and the conclusion is not a Harrop proposition.

We prove now that if the proof ends with an elimination then the theory I'
is contradictory and hence the result is trivial.

Let C; be the conclusion of the proof and C5 be the left premise of this
elimination, the proof of C5 cannot end with an introduction because the proof

4.5. HARROP THEORIES 67

is cut free, hence it ends with an axiom rule or an elimination, if it ends with an
elimination rule, then let C5 be the left premise of this rule, ... Thus the rule
ends with a sequence of elimination rules on propositions C1,...,C,, and C), is
an axiom.

We prove that at least one of the propositions C, ...,Cy is L. Assume this
is not the case. Then the proposition C), is a Harrop proposition because it is
an element of I'. Let us prove that the proposition C),_; is also a Harrop propo-
sition. The proposition C,,_; has been produced from C,, with an elimination
rule. This elimination rule cannot be V-elim or 3-elim because C), is a Harrop
proposition, it cannot be 1-elim, because none of the propositions C1, ..., C), is
1. Hence it is either A-elim, =-elim or V-elim, thus C,,_; is a Harrop propo-
sition. We prove this way by induction that all the propositions C,,...,C; are
Harrop propositions. Hence (' is a Harrop proposition which is contradictory.

Thus one of the propositions C1, ..., C), is L, thus the theory I' is contradic-
tory, it proves all propositions and the result is trivial.

Excercise 4.5.1 Show that proofs of propositions of the form AV B and 3x A
in consistent Harrop theories end with an introduction rule.

Corollary 4.5.2 Let P and) be two proposition symbols, the proposition
(PVQ)= (PVQ)

does not have a constructive proof in the empty theory.

Proof. Assume that the proposition =—(P V Q) = (P V Q) has a proof. Let I’

be the Harrop theory formed with the axiom ——(P V @), the proposition PV @

has a proof in I'. Thus either the proposition P or the proposition () has proof

in " and it is easy to construct a model of I' where P is not valid and a model
of I' where @Q is not valid.

Corollary 4.5.3 Let P be a proposition symbol, the proposition
-—P=P

does not have a constructive proof in the empty theory.

Proof. If it had, so would the proposition. =—(P V @) = (P V Q).

Corollary 4.5.4 Let P be a predicate symbol of one argument, the proposition
(=Vz P(x)) = 3z —~P(x)
does not have a constructive proof in the empty theory.

Proof. Assume that the proposition (—Vz P(z)) = 3z —~P(z) has a proof. Let
I be the Harrop theory formed with the axiom —Vz P(z). Then the proposition
Jx —~P(x) has a proof in I'. Thus there is a term ¢ such that the proposition
—P(t) has a proof in . Consider a model M with two elements and let P hold
form the denotation of ¢ but not for the other element. This model is a model
of T but not of =P(t). Thus, the proposition —P(¢) does not have a proof in '
which is contradictory.

68

CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC

Chapter 5

Cut elimination in
predicate logic modulo

We have seen that from the cut elimination theorem we could deduce the consis-
tency, the disjunction property and the witness property for the empty theory.
Of course, not many theorems can be proved in the empty theory. When we
add axioms, cut free proofs need not be uniform anymore. For instance adding
the axiom Jz P(z), allows a non uniform proof of the proposition dz P(z).
We have already seen that the disjunction property and the witness property
extended to Harrop theories. We are now interested in other theories: theories
modulo with no axioms, such as simple type theory and simple type theory with
infinity.

5.1 Congruences defined by a system rewriting
atomic propositions

Proposition 5.1.1 Consider a congruence = defined by a confluent rewrite
system rewriting terms to terms and atomic propositions to arbitrary proposi-
tions. If A and B are not atomic and A = B then A and B have the same root
connector or quantifier.

Proposition 5.1.2 Consider a congruence = defined by a confluent rewrite
system rewriting terms to terms and atomic propositions to arbitrary proposi-
tions. Consider the theory modulo formed with no axioms and the congruence
=. A cut free proof in this theory ends with an introduction rule.

Proof. By induction over the height of the proof. The last rule cannot be
an axiom rule, because there is no axiom. If the last rule is an elimination,
then the left premise of the elimination is proved with a cut free proof. Hence
it ends by an introduction. By proposition 5.1.2, this introduction concerns

69

70 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO

the same connector or quantifier as the elimination rule and the proof is a cut
contradicting the fact that it is cut free.

Thus, if cut elimination holds for such a theory, then consistency, the dis-
junction property and the witness property also.
5.2 Proof as terms

Proof-terms are defined as in predicate logic and the reduction rules are the
same. But the proof assignments rules have to be modified to take the congru-
ence into account.

Definition 5.2.1 (Deduction rules with proofs)

Aziom if E: A€l and A= B

IF=¢:B

Frpa Tt fA=T
1“55% L-elimif B= L

r l_EI‘FI—:EA(W,Z"';%gI - B N-intro if C = (A N\ B)

% A-elim if C' = (AN B)
% A-elim if C = (AA B)
% V-intro if C = (AV B)
% V-intro if C = (AV B)

Fk=n:D Ié:Ab=n':C I,x:Br=x":C
b= §(m &' xn’") : C

é:Ab=7n:B

FkF=é—7m:C

Fk=n:C Ttr=n':A

k= (r7'):B

F'rt—w: A

't=z—7n:B

't=7n:B

Ck=(mt):C

V-elim if D = (AV B)

=-intro if C = (A = B)

=-elim if C = (A = B)
(z, A) V-intro if B = (Vz A) and z ¢ FV ()

(z,A,t) V-elim if B= (Vx A) and C = (t/z)A

5.3. COUNTEREXAMPLES 71

F't=n:C
Ph= (t,7): B
FF=7:C I,6:Ab=7":B
[tz 03(m,zéx') : B

(x, A, t) 3-intro if B= 3z A) and C = (t/x)A

(x, Ay F-elim if C = (Fx A) and x ¢ FV (T, B)

Proposition 5.2.1 A sequent Ay,...,A, F= B is derivable in natural de-
duction modulo if and only if there exists a term w such that the judgment
&1 : A, ... € Ay b= w . B is derivable in this system.

Proposition 5.2.2 (Subject reduction) If ' b= 7 : P and 71 — 7' then
Fxn':P.

5.3 Counterexamples
Cut elimination fails for very simple rewrite systems.

Example 5.3.1 (Russell’s counterexample) We have seen that in naive set
theory, if we call A the proposition e(R R) (or R € R) we have

A—-A
Modulo this rule, the proposition A has the proof
£ (£9)
and the proposition A also thus the proposition L has the proof

(€= (£8) (€= (£9)

This proof only reduces to itself and thus it does not terminate. It is easy to
check that more generally, there are no cut free proofs of L because there no
uniform proofs of this proposition.

Example 5.3.2 (Crabbé’s counterexample) Set theory is an example of a
theory modulo that does not have the cut elimination property. We have seen
that there are two propositions A and B in set theory such that

A— BA-A
Thus under the assumption X : B, the proposition —A has the proof

§ = (snd(€) €)

and the proposition A has the proof

(X, & = (snd(§) €))
thus the proposition L has the proof

((€ = (snd(§) §)) (x,& = (snd(§) €)))

72 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO

and the proposition —B has the proof

x = (€ = (snd(€) €)) (x, € = (snd(E) €)))

It is easy to check that this proof does not terminate and more generally that
the proposition —B has no cut free proof.

Example 5.3.3 (A terminating counterexample) Cut elimination may be
lost even with a confluent and terminating rewrite system. The example is a re-
fined version of Russell’s counterexample. Instead of taking the non terminating
rule R € R — =R € R, we take the terminating rule

ReR—Vy (y~R=-wy€R)

where y ~ z stands for Vo (y € x = z € x). Modulo this rule, the proposition
- R € R has the proof

= (R (@ (x = X)) §)

and the proposition R € R has the proof
=y (= (= (T (€ R X))
The proposition L has the proof
(m ')

This proof only reduces to itself and thus it does not terminate. It is easy to
check that more generally, there are no cut free proofs of L because there no
uniform proofs of this proposition.

5.4 Reducibility candidates

Let us try to characterize some congruences for which cut elimination holds.
We wish to use a cut elimination proof similar to that of predicate logic.
The main problem is that we cannot take the set of all strongly terminating
proof-terms for the set of reducible proof-terms of an atomic proposition. For
instance if P, () and R are three proposition symbol and we have the rule

P—Q=R

then a proof of P is also a proof of) = R and thus, to belong to |P|, besides
being strongly terminating, a proof-term must be such that whenever it reduces
to an introduction & — 7’ for all proof 7" of |@Q|, the proof (7" /)n" belongs to
|R|. In this case we can take the set of all strongly terminating proofs for |Q|
and |R| and the set |@Q = R| for |P| and a proof similar to that of predicate
logic permits to establish cut elimination modulo this rule.

5.4. REDUCIBILITY CANDIDATES 73

However, generalizing this method may be difficult when we have non termi-
nating rules or rules introducing quantifiers. For instance consider the proposi-
tion symbols P and) and the rule

Q—PANQ

defining |@Q| as |P A Q] would be circular, as to know |P A Q| we need to know
|P| and |@|. In the same way, consider a predicate symbol P of one argument,
an individual symbol ¢ and the rule

P(¢c) — Vx P(x)

Defining |P(c)| as the set |Vz P(z)| would be circular as to know |Va P(z)| we
need to know |P(t)| for all terms ¢, including c.

Thus we shall prove in a first step that cut elimination holds provided we
know how to assign a set of proofs |A| to each atomic proposition A in such a
way that the sets of reducible proofs - defined relatively to these sets - of two
equivalent propositions are identical. In a second step we shall give examples
where such sets can be constructed including the two examples above and simple
type theory.

Not any set of proof-terms is a good candidate for |A|. Indeed, we have seen
that to let the cut elimination proof go through we needed the sets of reducible
proofs to verify the properties of propositions 4.4.1, 4.4.2, 4.4.3 and 4.4.4 that
are used in the cut elimination proof. Thus, at least, the sets of reducible proofs
of atomic propositions must verify these properties. This leads to the following
definition.

Definition 5.4.1 (Girard’s reducibility candidate) A set R of proof-terms
is a reducibility candidate if

o if T € R, then 7 is strongly terminating,
e ifmTr€ Rand m — 7' then ' € R,
o all variables belong to R,

e if 7 is an elimination and if for every © such that 1 —' 7', ' € R then
m™ € R.

Let C be the set of all reducibility candidates.

Assigning a reducibility candidate to each atomic proposition A, is equivalent
to assign to each predicate symbol P of n arguments a function P that maps n-
uples of terms to reducibility candidates. Then, we define the set |P(t1, ..., t,)]
as P(t1,...,t,). Thus we want to prove that if we know how to assign such a
function to each predicate symbol, in such a way that the sets of reducible proofs
defined relatively to these functions are such that two equivalent propositions
have the same set of reducible proofs, then cut elimination holds modulo this

congruence.

74 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO

This can be generalized: to have cut elimination it is sufficient to assign,
to each predicate symbol P of n arguments, a function P that maps n-uples of
elements of an arbitrary set M to reducibility candidates and to associate to
each term ¢ an element |t| of M. Then we define |P(t1, ..., tn)| as P(|t1], ..., |tn]).
If the sets of reducible proofs defined relatively to these functions are such that
two equivalent propositions have the same set of reducible proofs, then cut
elimination holds modulo this congruence.

There are many similarities between this definition and the definition of a
model. In particular the fact that if A = B then |A| = |B]| can be read as
the validity of the congruence in this structure. The only difference with the
notion of model is that the functions P do not map n-uples of elements of M
to truth values 0 or 1, but to reducibility candidates. Hence such structures are
many-valued models where truth values are reducibility candidates. We shall
call them pre-models. As we want to apply this result to many-sorted theories
also, we directly give the definition for many-sorted predicate logic modulo.

5.5 Pre-model

Definition 5.5.1 (Pre-model) Let £ be a many sorted first-order language.
A pre-model for L is given by:

e for every sort T, a set Mr,

e for every function symbol f of rank (T1,...,T,,U), a function f from
MT1 X ... XMTn to MU,

e for every predicate symbol P of rank (Ty,...,T,), a function P from M, x
Lo X MTn to C.

Definition 5.5.2 Let t be a term and ¢ an assignment mapping all the free
variables of t of sort T to elements of Mr. We define the object |t|g by induction
over the height of t.

L4 |$|¢> = QZS(ZL“),
o |f(tr,-sta)ls = Fltils,-- - [talo)-

Definition 5.5.3 Let A be a proposition and ¢ an assignment mapping all the
free variables of A of sort T to elements of Mr. We define the set |A|y of
proof-terms by induction over the height of A.

o A proof-term w is an element of |P(t1,...,tn)|e if it is in
P(ltalgs -5 ltnls)-
o A proof-term m is an element of ||y if m is strongly terminating.

o A proof-term m is an element of | L|y if ™ is strongly terminating.

5.5. PRE-MODEL 75

o A proof-term m is an element of |A A B|y if is strongly terminating and
when 7 reduces to a proof-term of the form (my,m2) then m and wo are
elements of |A|g and |B|g.

o A proof-term m is an element of |AV B|y if is strongly terminating and
when 7 reduces to a proof-term of the form i(m1) (resp. j(mw2)) then m
(resp. m2) is an element of |A|y (resp. |Blg).

o A proof-term w is element of |A = B|y if it is strongly terminating and
when m reduces to a proof-term of the form & — m then for every ©' in
|A|g, (7'/&)m1 is an element of |Blg.

o A proof-term m is an element of Nz Aly if it is strongly terminating and
when © reduces to a proof-term of the form x — mwy then for every term t
of sort T (where T is the sort of x) and every element E of My, (t/x)m
is an element of |Al4y (2, B)-

o A proof-term m is an element of |3z Als if m is strongly terminating and
whenever m reduces to a proof-term of the form (t,m) there exists an
element E of My (where T' is the sort of x) such that m, is an element of

|A|¢+(x,E)-

Definition 5.5.4 A pre-model is a pre-model of a congruence = if, whenever
A = B, then for every assignment ¢, |Aly = |Bls.

Proposition 5.5.1 For every proposition A and assignment ¢, |Al|y is a re-
ducibility candidate

Proof. By induction over the height of A.

If A is an atomic proposition, |A|s is a reducibility candidate by definition.

If Ais a composed proposition, then, by definition, |4|, contains only termi-
nating proof-terms. It is routine to prove closure by reduction. It is also routine
to check that all variables are members of |A|4.

Now, we assume that 7 is a an elimination and that for every «’ such that
m —t 7', 7 € |A]ly. We want to prove that m is in |Al,. Following the
definition of |A|e, we first prove that 7 is strongly terminating and then that if
it reduces to an introduction, the sub-proofs belong to the appropriate sets.

We first prove that 7 is strongly terminating. Let # = my, 7o, ... be a reduc-
tion sequence issued from 7. If this sequence is empty it is finite. Otherwise we
have m —! w5 and hence 7 is an element of | A|, thus it is strongly terminating
and the reduction sequence is finite.

Then we prove that if 7 reduces to an introduction then the sub-proofs
belong to the appropriate sets. Let m = 7y, m9,... 7, be a reduction sequence
issued from 7 and such that 7, is an introduction. This sequence cannot be
empty because 7 is an elimination and hence not an introduction. Thus 7 —*
Ty — m,. We have 7y € |A|, and thus if 7, is an introduction the sub-proofs
belong to the appropriate sets.

76 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO

Proposition 5.5.2 (Substitution) Given any proposition A, term t and vari-
able © we have

(t/2)Als = [Algt(@,jt1)
Proof. By induction on the height of A.

We can now prove the main theorem of this chapter: if a system has a
pre-model then proof-terms modulo this system terminate.

Proposition 5.5.3 Let = be a congruence and M be a pre-model of =. If
' F= m : A then the proof-term m is strongly terminating.

Proof. As|A|g is areducibility candidate, it is sufficient to prove that if I' - 7 : A
then the proof-term 7 is an element of |A|g. More generally, we prove, by
induction over the height of the proof-assignment tree, that if I' - 7 : A,

e is a substitution mapping term variables to terms,
e ¢ is an assignment mapping variables to elements of the model,

e 0 is a substitution mapping some proof variables associated to proposition
B in T to an element of |B|,,

then ofr is an element of |A|y.

e Axiom. If 7 is a variable &, we have (§ : B) € I’ with B=A. If { isin
the domain of definition of o, then 66§ = 0§ is an element of |B|, = |4y,
otherwise 00¢ = o€ = £ is an element of |A|, because |A|y is a candidate.

e T-intro. The proof-term 7 has the form I. We have g6 = I. This proof-
term is normal, hence it is strongly terminating. Hence, the proof-term
o6l is in |A|e.

e A-intro. The proof-term 7 has the form (p1, p2) where p; is a proof of
some proposition B and p, a proof of some proposition C. We have
o0 = (08p1,00p2). Consider a reduction sequence issued from this proof-
term. This sequence can only reduce the proof-terms o6p; and ogfp2. By
induction hypothesis these proof-terms are in |B|s and |C|g. Thus the
reduction sequence is finite.

Furthermore, all reducts of of7 have the form (p}, p}) where p{ is a reduct
of ofp, and p)) one of ofp,. The proof-terms pi and p are in |Bl4 and
|Cls because these sets are candidates.

Hence, the proof-term o60{p1, p2) is in |A|4.

e V-intro. The proof-term 7 has the form i(p) (resp. j(p)) and p is a proof
of some proposition B. We have 01 = i(afp) (resp. j(o8p)). Consider
a reduction sequence issued from this proof-term. This sequence can only
reduce the proof-terms ofp. By induction hypothesis this proof-term is
an element of |B|s. Thus the reduction sequence is finite.

5.5. PRE-MODEL 7

Furthermore, all reducts of o6z have the form i(p’) (resp. j(p')) where p’
is a reduct of ofp. The proof-term p' is an element of |B|ys because this
set is a candidate.

Hence, the proof-term o6i(p) (respectively o8j(p)) is an element of |A|.

e =-intro. The proof-term 7 has the form £ — p where £ is a proof variable
of some proposition B and p a proof of some proposition C'. We have
o = £ — o0p, consider a reduction sequence issued from this proof-
term. This sequence can only reduce the proof-term ofp. By induction
hypothesis, the proof-term o6p is an element of |C|s, thus the reduction
sequence is finite.

Furthermore, all reducts of o7 have the form £ — p’ where p’ is a reduct
of ofp. Let T be any proof of |B|y, the proof-term (7/&)p’ can be obtained
by reduction from ((7/£) o 0)8p. By induction hypothesis, the proof-term
((1/€) 0 o)Bp is an element of |C|s. The proof-term (7/£)p’ is an element
of |Cl4 because this set is a candidate.

Hence, the proof-term o6¢ — p is an element of |Ag4.

e V-intro. The proof-term 7 has the form = — p where p is a proof of some
proposition B. We have ofr = x — ogfp.

Consider a reduction sequence issued from the proof-term o7 = x — ofp.
This sequence can only reduce the proof-term ofp. Let E be an element
of My (where T is the sort of z). By induction hypothesis, the proof-term
ofp is an element of |B|y4 (, gy, thus the reduction sequence is finite.

Furthermore, all reducts of g7 have the form x — p' where p’ is a
reduct of 0fp. The proof-term (t/z)p’ is obtained by reducing the proof-
term ((t/x)o)((¢t/z) o 8)p. By induction hypothesis again, the proof-term
((t/z)o)((t/z)00)p is an element of |B|si (, gy. The proof-term (t/x)p’ is
an element of |B|y (. gy, because this set is a candidate.

Hence of(x + p) is an element of |A]g4.

e Fintro. The proof-term 7 has the form (t,p), A = Jx B and p is a
proof of (¢t/x)B. We have ofr = (6t,06p). Consider a reduction sequence
issued from this proof-term. This sequence can only reduce the proof-term
ofp. By induction hypothesis this proof-term is in |(¢/z)B|s. Thus the
reduction sequence is finite.

Furthermore, let E = |t|4. Any reduct of of7 has the form (6t, p') where
p' is a reduct of 0fp. The proof-term p’ is an element of |(t/x)B|y, i.e. of
|Blg+ (2,5, because |B|gq(,,py is a candidate.

Hence, the proof-term o6(t, p) is an element of |A|4.

e l-elim. The proof-term 7 has the form d, (p) where p is a proof of L.
We have o8 = §, (08p). By induction hypothesis, the proof-term o6p
is an element of |L|s,. Hence, it is strongly terminating. Let n be the
maximum length of reduction sequences issued from this proof-term. We

78 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO

prove by induction on n that d, (06p) is in |A|s. Since this proof-term is
an elimination, we only need to prove that every of its one step reducts
is in |A|y. The reduction can only take place in cfp and we apply the
induction hypothesis.

Hence, the proof-term 060, (p) is an element of |A|4.

e A-elim. We only detail the case of left elimination. The proof-term
has the form fst(p) where p is a proof of some proposition A A B. We
have o601 = fst(c0p). By induction hypothesis the proof-term ofp is in
|A A B|y. Hence, it is strongly terminating. Let n be the maximum
length of a reduction sequence issued from this proof-term. We prove by
induction on n that fst(cfp) is in the set |A|4. Since this proof-term is
a elimination we only need to prove that every of its one step reducts is
in |Blg. If the reduction takes place in o6p then we apply the induction
hypothesis. Otherwise o6p has the form (p}, py) and the reduct is p|. By
the definition of |A A B, this proof-term is in |A|4.

Hence, the proof-term offst(p) is an element of |A|4.

e V-elim. The proof-term 7 has the form 6(p1,£p2 xps) where p; is a proof
of some proposition B V C and ps and p3 are proofs of A. We have
o = §(c0p1,E00pa, xobp3). By induction hypothesis, the proof-term
ofp, is in the set |B V C|y, and the proof-terms ofp, and g6p;z are in the
set |A|s. Hence, these proof-terms are strongly terminating. Let n, n' and
n'" be the maximum length of reduction sequences issued from these proof-
terms. We prove by induction on n + n’ + n'' that 6(a0p1,008p2, xo0p3)
is in |A|y. Since this proof-term is an elimination we only need to prove
that every of its one step reducts is in |A|y. If the reduction takes place in
a0p1, 0bps or ofps then we apply the induction hypothesis. Otherwise, if
06p; has the form i(p’) (resp. j(p')) and the reduct is (p’'/£)obp2 (resp.
(p'/x)obps). By the definition of |[BVC|, the proof-term p' is in | B|4 (resp.
|Cls). Hence by induction hypothesis ((p'/€)o0)0p2 (resp. ((p'/x)e0o)bps)
is in |A|¢
Hence, the proof-term 006 (p1,£p2, xp3) is an element of |A|.

e =-elim. The proof-term 7 has the form (p; p2) and p; is a proof of
some proposition B = A and ps a proof of the proposition B. We have
o0 = (08p1 06p2). By induction hypothesis o6p; and ofp- are in the sets
|B = Alg and |B|y. Hence these proof-terms are strongly terminating.
Let n be the maximum length of a reduction sequence issued from ofp;
and n/ the maximum length of a reduction sequence issued from ofp;. We
prove by induction on n + n' that (66p1 g6p2) is in the set |A|4. Since
this proof-term is an elimination we only need to prove that every of its
one step reducts is in |A|4. If the reduction takes place in gfp; or in o6p,
then we apply the induction hypothesis. Otherwise ofp; has the form
& — p' and the reduct is (06p2/€)p’. By the definition of |B = Aly4 this
proof-term is in |A|4.

5.6. PRE-MODEL CONSTRUCTION 79

Hence, the proof-term o6(p1 p2) is an element of |A|4.

e V-elim. The proof-term 7 has the form (p t) where p is a proof of some
proposition Yo B and A = (t/x)B. We have o = (c6p 6t). By induc-
tion hypothesis, the proof-term o8p is in |Va B|s. Hence, it is strongly
terminating. Let n be the maximum length of a reduction sequence is-
sued from this proof-term. We prove by induction on n that (cfp 6t)
is in the set |A|s. As this proof-term is an elimination, we only need
to prove that every of its one step reducts is in |A|s. If the reduction
takes place in o6p then we apply the induction hypothesis. Otherwise
00p has the form = — p’ and the reduct is n(6t/z)p’. By the definition
of |Vz Bls this proof-term is in Bl (, gy for all E. Thus, it is in is in
|1 Blo-+a,ltlo) = [(E/@)Blg = [Alo.

Hence, the proof-term o6(p t) is an element of |A|.

e J-elim. The proof-term 7 has the form d3(p1,x€p2) where p; is a proof
of some proposition Jz B and ps is a proof of A. We have ofr =
03(08p1,x€obps). By induction hypothesis, the proof-term ofp; is in the
set |3z Bl|g and the proof-term ofp, is in the set |A|y. Hence, these
proof-terms are strongly terminating. Let m and n' be the maximum
length of reduction sequences issued from these proof-terms. We prove
by induction on n + n' that d3(c0p1,xz€cbp2) is in |A|s. As this proof-
term is an elimination, we only need to prove that every of its one step
reducts is in |A|s. If the reduction takes place in ofp; or ofp, then we
apply the induction hypothesis. Otherwise, ofp; has the form (¢, p’) and
the reduct is (5'/€)(t/)atps = ((5'/€) o (t/2)0)((t/) 0 O)ps. By the
definition of |3z B4, there exists an element E of such that the proof-
term p' is in |B|g1(,,my- Thus, by induction hypothesis, the proof-term
((¢'/€) o (t/2)0)(t/7) © O)ps is in |Alg, oy ice. in |Aly.

Hence, the proof-term c605(p1,&xp2) is an element of |A|,.

5.6 Pre-model construction

5.6.1 The term case

Proposition 5.6.1 If a congruence is defined by a rewrite system or a set of
equalities on terms, but not on propositions, then it has a pre-model and hence
proof reduction terminates modulo this congruence.

Proof. We associate the set of strongly terminating proofs for all atomic propo-
sitions.

Corollary 5.6.2 All equational theories are consistent, have the disjunction
property and the witness property.

80 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO

5.6.2 Quantifier free rewrite systems

Definition 5.6.1 (Quantifier free) A rewrite system is quantifier free if no
quantifier appears on the right hand side of any of its rules.

Proposition 5.6.3 A quantifier free, confluent, and terminating rewrite sys-
tems has a pre-model, hence proof reduction terminates modulo such a rewrite
system.

Proof. By induction over proposition height, we associate a set of proof-terms
to each each normal closed quantifier free proposition.

= {n |7 st. ter.} if A is atomic

)
U(T) = {n |« st ter.}
U(L) = {m|m st ter.}
V(AANB) = {r|mst ter. A\m— (m,m) = m € U(A) Am € ¥(B)}
V(AVB) = {r|mst ter. A\m—i(m)=>m € V(A) A7 — i(m) = m € ¥(B)}
V(A=B) = {n]|7rst ter. Am— > m = V' € ¥(A) («'/§)m € ¥(B)}

We define a pre-model as follows. Let M7 be the set of normal closed terms of
sort 7.

n) = f(tla"'atn)‘l/
(throortn) = WPl 1)) 1)

where A | (resp. ¢) is the normal form of the proposition A (resp. term t).
We prove, by an easy induction, that |A|s = |B|s, when A = B.

5.6.3 Positive rewrite systems

For some rewrite systems, pre-models can be built by a fixed point construction.

Definition 5.6.2 A rewrite system is positive if it rewrites atomic propositions
to propositions containing only positive occurrences of atomic propositions.

Definition 5.6.3 A pre-model is syntactical if
o My = Typ/ = where Ty is the set of closed terms of sort T,

o if f is a function symbol, f is the function that maps the classes eq, ..., e, to
the class of the term f(t1,...,t,) where tq, ..., t, are elements of e1, ..., e,
(since the relation = is a congruence, this does not depend of the choice
of representatives).

A syntactical pre-model is defined solely by the interpretation of predicate
variables.

5.6. PRE-MODEL CONSTRUCTION 81

Definition 5.6.4 Let My and My be two syntactical pre-models. We write 131
for the denotation of P in My and Py for the denotation of P in My

We say that My < Ms if and only if for any predicate symbol P and closed
terms ty,...,t, we have

A~

Pi(ty,...,tn) C Py(ty,...,t,)
The set of syntactical pre-models is a complete lattice for the order <.

Proposition 5.6.4 Let R be a confluent and terminating rewrite system. If the
system R is positive then it has a pre-model, hence proof reduction terminates
modulo R.

Proof. Let F be the function mapping syntactical pre-models to syntactical
pre-models defined by

FM)(P)(tr, ... tn) =Pty .. tn) 4 M0

As the system R is positive the function F is monotone. Hence, as the set of
syntactical pre-models is a complete lattice, it has a fixed point. This fixed
point is a pre-model of the rewrite system.

Proposition 5.6.5 Let R be a rewrite system such that any atomic proposition
has at most one one-step reduct. If the system R is positive then it has a pre-
model, hence proof reduction terminates modulo R.

Proof. Let F be the function mapping syntactical pre-models to syntactical
pre-models defined by

FM)(P)(t1,-.. tn) =|P(t1,---,tn) + |0

where A+ is the unique one-step reduct of A if it exists and A otherwise. Again,
since the system R is positive the function F is monotone and again, since the
set of syntactical pre-models is a complete lattice, it has a fixed point. This
fixed point is a pre-model of the rewrite system.

5.6.4 Type theory and type theory with infinity

Proposition 5.6.6 (Girard’s theorem) Simple type theory has a pre-model,
hence proof reduction terminate in simple type theory.

Proof. We construct a pre-model as follows. The essential point is that we
anticipate the fact that objects of sort o actually represent propositions, by
interpreting them as reducibility candidates.

M, = {0}
M, = C
Mruy = M[JJWT

82 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO

Stuv
Kry
a(a,b)
é(a)

3r(a)

= (b= (¢ = a(c)(b(c))))

— (b—a)
a(b)
a
{m | w st. ter.}
{7 | 7 st. ter.}
{m| 7 st. ter. Am — (w1, M) = T € a ATy €D}
{m | mst. ter. A (m —i(m) =>m €a) A\ (m —> i(my) = 72 €D)}
{m|mst. ter. Am — > m = V' €a (x'/€)m € b}
{m| 7 st. ter.Am — &+ m = Vtof type T VE € My (t/x)m € a(E)}
{m| 7 st. ter. Am — (t,m2) = IE € My m € a(E)}

It is easy to check that |A|s = |B|y when A = B.

Proposition 5.6.7 Simple type theory with infinity has a pre-model, hence
proof reduction terminates in simple type theory with infinity.

Proof.
M,
M,
Mr_u

3T()

n—n+1,

n—if n =0 then O else n — 1,
n— {m | 7w st. ter.},

= (b= (¢ = a(c)(b(c))))

— (b a)
a(b)
a
{7 | 7 st. ter.}
{m | w st. ter.}
{m| 7 st. ter. Am —> (w1, m2) = 7 € a A7y € b}
{7 | 7 st. ter. A (m —>i(m) = m € a) A (m —> i(m2) = 73 € D)}
{m|mst. ter. A\m — &~ m = V' €a (n'/&)m € b}
{m| 7 st. ter. A\m —> x> m = Vtof type T VE € My (t/x)m € a(E)}
{m| 7 st. ter. Am — (t,me) = IE € My m € a(E)}

It is easy to check that |A|s = |B|y when A = B.

Remark. In the pre-model above T and 1 are interpreted by the same reducibil-
ity candidate (while in a model they are interpreted by a different truth value)
hence the interpretation of Nwull is simply the constant function equal to this

5.6. PRE-MODEL CONSTRUCTION 83

candidate. Thus it is not necessary to interpret the type ¢ as N and we could
also take M, = {0}.

