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Introdu
tionThere is something spe
ial about the mathemati
al dis
ourse : ea
h assertionmust be justi�ed by a proof. A proof is a sequen
e of assertions produ
ed fromthe previous ones by dedu
tion rules. The dedu
tion rules are thus the \rulesof the game" that mathemati
ians play.Eu
lid's Elements (IIIrd 
entury B.C.) are usually 
onsidered as the �rstsystemati
 development where ea
h assertion is given a proof, however, the pre-
ise de�nition of the notion of proof has only been formulated at the beginningof the XXth 
entury. Having a de�nition, and not just an informal idea of whata 
orre
t proof is, is important in several areas. First, sin
e the middle of theXXth 
entury, proofs have been used not only by mathemati
ians, but also by
omputerized proof pro
essing systems su
h as proof 
he
kers and proof sear
hsystems, and designing su
h a system requires a pre
ise de�nition.Having a de�nition is also ne
essary to solve some problems about proofs.This is what proof theory is about. A �rst type of results proof theory permitsto prove is independen
e results: results asserting that some proposition 
annotbe proved in some theory, for instan
e that the axiom of parallels 
annot beproved from the other axioms of geometry.However, proof theory is not 
on
erned only with the provable propositionsbut also with the stru
ture of proofs themselves, for instan
e with the 
ompar-ison of di�erent proofs of the same theorem. One key notion in proof theoryis that of 
anoni
al, dire
t or 
ut free proof. For instan
e, if we �rst prove twopropositions A and B, to dedu
e the proposition A ^ B (A and B) and at lastthe proposition A, we build a proof that is not 
anoni
al, be
ause it 
ontainsan unne
essary detour by the proposition A ^ B, that has nothing to do withthe problem. Su
h a detour is 
alled a 
ut. The main results we prove in these
ourse notes are that in some 
ases, su
h 
uts 
an be eliminated and thus thatall provable propositions have 
anoni
al proofs. Moreover non 
anoni
al proofs
an be transformed into 
anoni
al ones in an algorithmi
 way.From a philosophi
al point of view, these results show that proving a theoremdoes not require to use ideas external to the statement of the theorem, or morepre
isely, that the use of su
h external ideas is only required in some spe
i�

ases, depending on the theory. Another appli
ation of 
ut elimination is thatstudying the stru
ture of 
anoni
al proofs permits to show that some proposi-tions have no 
anoni
al proofs. Hen
e, from the 
ut elimination theorem, we 
an5



6 CONTENTSdedu
e that they have no proof at all. We get this way independen
e results.Cut elimination is also used to redu
e dramati
ally the sear
h spa
e of proofsear
h algorithms, by restri
ting to 
anoni
al proofs. Finally, 
ut eliminationpermits to prove the witness property for 
onstru
tive proofs, i.e. that ea
htime we have a proof of a spe
ial form of the existen
e of an obje
t verifyinga property P , there is also a mathemati
al obje
t, 
alled a witness, for whi
hthe property P 
an be proved to hold. Moreover, with the 
ut elimination algo-rithm, a des
ription of this obje
t 
an be 
omputed from the proof. This allowsto use mathemati
s as a programming language: the 
ut elimination pro
ess isthe exe
ution pro
ess of this programming language.Very often, a proof is de�ned as a su

ession of reasonning steps startingfrom the axioms and ending at a 
on
lusion. With su
h a de�nition, dedu
tionrules are just reasonning rules. This de�nition hides the fa
t that, in mathemat-i
s, proofs are not only formed with reasonning steps but also with 
omputationsteps. Dedu
tion modulo is a reformulation of the axiomati
 method wherereasonning and 
omputation are both fully taken into a

ount. We 
an, for in-stan
e, take advantage of this distin
tion between reasonning and 
omputationwhen designing proof sea
h methods. More surprisingly, we 
an also take ad-vantage of this distin
tion in proof theory. In parti
ular, several 
ut eliminationtheorems 
an then be seen as 
orollaries of a single general 
ut elimination the-orem for dedu
tion modulo. Thus dedu
tion modulo 
an be used as a unifyingframework to present the basi
 results of proof theory. This is the point of viewwe have taken in these 
ourse notes.



Chapter 1Predi
ate Logi
1.1 LanguagesA language permits to designate things (The Moon, the number 2, the set ofeven numbers, ...) and to express fa
ts (The Moon is a satellite of the Earth,the number 2 is a member of the set of even numbers, the set of even numbers isin�nite, ...). A phrase that designates a thing is 
alled a term, one that expressesa fa
t is 
alled a proposition.The easiest way to designate a thing is to use an individual symbol (also 
alleda proper name) su
h as \2". Thus, a language 
ontains individual symbols andindividual symbols are terms. But, if we want to be able to designate an in�nitenumber of obje
ts with a �nite number of symbols, we 
annot give a propername to ea
h obje
t. Thus, a language must 
ontain an other kind of symbols,
alled fun
tion symbols. A fun
tion symbol alone is not a term, but it permits to
onstru
t a term when it is applied to already 
onstru
ted terms. For instan
e,with the individual symbol 0 and the fun
tion symbol Su (for \su

essor") we
an designate all the natural numbers. The number zero is designated by theterm 0, the number one by the term Su(0) obtained by applying the fun
tionsymbol Su to the term 0, the number two by the term Su(Su(0)), ... Somefun
tion symbols must be applied to several arguments to 
onstru
t a term,for instan
e the symbol + must be applied to two arguments. The fun
tionsymbol + is said to have two arguments, while the symbol Su is said to haveone argument. Individual symbols 
an be seen as spe
ial fun
tion symbols thathave zero arguments.The simplest way to form a proposition is to apply a predi
ate symbol to oneor several terms. For instan
e, we 
an form this way the propositionsatellite(Moon,Earth)that expresses that the Moon is a satellite of the Earth. Thus, a language
ontains predi
ate symbols. The predi
ate symbol satellite that must be appliedto two terms to form a proposition is said to have two arguments. A proposition7



8 CHAPTER 1. PREDICATE LOGICformed by appli
ation of a predi
ate symbol to terms is 
alled atomi
. Morepropositions 
an be formed with the 
onne
tors : (not), ^ (and), _ (or) and) (implies). It is also 
onvenient to 
onsider propositions > (truth) and ?(falsity). We 
an for instan
e form this way the propositionprime(Su(Su(0))) ^ :prime(Su(Su(Su(Su(0)))))that expresses that the number two is prime and that the number four is not.A last 
onstru
tion is needed for propositions su
h as \all men are mortal"or \some number is prime", where we express that all obje
ts verify some pred-i
ate or that some obje
t verify some predi
ate without expli
iting this obje
t.We 
ould introdu
e symbols all and some and let them repla
e a term as anargument of a predi
ate symbol or a fun
tion symbol. For instan
e we wouldwrite prime(some)to express that some number is prime, in the same way that we writeprime(Su(Su(0)))to express that the number two is prime. But, su
h a 
onstru
tion is ambiguous.Indeed, the proposition some � allmay express that for all numbers there is some greater number (whi
h is true)but also that there is some number greater than all numbers (whi
h is false).A more pre
ise 
onstru
tion is to apply the predi
ate symbol to a variableand indi
ate in a se
ond step if this variable is universal or existential with aquanti�er 8 (for all) or 9 (there exists). The fa
t that some number is prime isthen expressed 9x prime(x)The order in whi
h these quanti�ers are applied permits to resolve the ambigu-ities. The fa
t that for all numbers there is some greater number is expressedby the proposition 8x 9y y � xwhile the fa
t that some number is greater than all numbers (whi
h is false) isexpressed by the proposition 9y 8x y � xAmong all the symbols used to form terms and propositions, some are thesame in all languages: the 
onne
tors >, ?, :, ^, _ and ), the quanti�ers 8and 9 and the variables, while the fun
tion symbols (in
luding the individualsymbols) and the predi
ate symbols are spe
i�
 to a given language. For instan
ethe symbol Moon is used in the language of astronomy, but not in the languageof geometry.



1.1. LANGUAGES 91.1.1 Terms and propositionsDe�nition 1.1.1 (Language) A language is a set of fun
tion symbols anda set of predi
ate symbols. To ea
h symbol is asso
iated a number, 
alled itsnumber of arguments.De�nition 1.1.2 (Term) Let L be a language and V be an in�nite set whoseelements are 
alled variables. The terms of the language L with variables V arede�ned by the following rules� if x is a variable then the tree whose root is labeled by x and that has nosub-tree is a term,� if f is a fun
tion symbol of n arguments and t1; :::; tn are terms then thetree whose root is labeled by f and whose sub-trees are t1; :::; tn is a term.De�nition 1.1.3 (Proposition) Let L be a language and V be an in�nite set.The propositions of the language L with variables V are de�ned by the followingrules� if P is a predi
ate symbol of n arguments and t1; :::; tn are terms thenthe tree whose root is labeled by P and whose sub-trees are t1; :::; tn is aproposition,� the trees whose root are labeled by > and ? and that have no sub-tree arepropositions,� if A is a proposition then the tree whose root is labeled by : and whosesub-tree is A is a proposition,� if A and B are propositions then the trees whose root are labeled by ^, _or ) and whose sub-trees are A and B are propositions,� if A is a proposition and x a variable then the trees whose root are labeled8x and 9x and whose sub-tree is A are propositions.Remark. In several pla
es, we shall use the notation A , B. There is no
onne
tor, in our de�nition of the notion of proposition. Thus the propositionA, B is just a notation for the proposition (A) B) ^ (B ) A).Example 1.1.1 If = is a predi
ate symbol of two arguments, + a fun
tion sym-bol of two arguments, 0 a fun
tion symbol of zero arguments (i.e. an individualsymbol) and x a variable then the tree =!!!!!! bbbb+ x"""" bbbbx 0is a proposition.



10 CHAPTER 1. PREDICATE LOGICRemark. Terms and propositions have been de�ned as trees whose nodes arelabeled by symbols. Some authors prefer to de�ne terms and propositions asstrings, i.e. as sequen
es of symbols. The proposition of example 1.1.1 wouldthen be written = (+(x; 0); x)or x+ 0 = xThis is di�eren
e is just a matter of taste.However, the advantage of 
onsidering trees instead of strings is that thispermits to disregard the shallow properties of expressions: whether + is writtenbefore, between or after its arguments, whether parentheses or bra
kets areused, ... and to fo
us on the logi
al stru
ture of expressions.1.1.2 Variables and substitutionsDe�nition 1.1.4 (Variables) The set of variables of a term (resp. proposi-tion) is de�ned by indu
tion over its height as follows� V ar(x) = fxg,� V ar(f(t1; :::; tn)) = V ar(t1) [ ::: [ V ar(tn),� V ar(P (t1; :::; tn)) = V ar(t1) [ ::: [ V ar(tn),� V ar(>) = V ar(?) = ;,� V ar(:A) = V ar(A),� V ar(A ^ B) = V ar(A _ B) = V ar(A) B) = V ar(A) [ V ar(B),� V ar(8x A) = V ar(9x A) = V ar(A) [ fxg.The set of free variables of a term (resp. a proposition) is de�ned by indu
-tion over its height as follows� FV (x) = fxg,� FV (f(t1; :::; tn)) = FV (t1) [ ::: [ FV (tn),� FV (P (t1; :::; tn)) = FV (t1) [ ::: [ FV (tn),� FV (>) = FV (?) = ;,� FV (:A) = FV (A),� FV (A ^ B) = FV (A _ B) = FV (A) B) = FV (A) [ FV (B),� FV (8x A) = FV (9x A) = FV (A) n fxg.



1.1. LANGUAGES 11De�nition 1.1.5 (Closed and open) A term (resp. a proposition) that 
on-tain no free variables is said to be 
losed, otherwise it is said to be open.We now want to de�ne the operation of substitution. For instan
e, substi-tuting the term y + 2 for the variable x in the proposition x� 2 = 4 yields theproposition (y+2)� 2 = 4. The result of the substitution of the term u for thevariable x in the term or proposition t is written (u=x)t. When we substitute aterm u for a variable x in a term or a proposition t, we want to substitute onlythe free o

urren
es of x. A �rst attempt to de�ne substitution is the following.De�nition 1.1.6 (Repla
ement) Let t be a term (resp. a proposition), x bea variable and u be a term. The term (resp. the proposition) hu=xit is de�nedby indu
tion over the height of t as follows.� hu=xix = u,if y is a variable di�erent from x, then hu=xiy = y,hu=xif(t1; :::; tn) = f(hu=xit1; :::; hu=xitn),� hu=xiP (t1; :::; tn) = P (hu=xit1; :::; hu=xitn),hu=xi> = >,hu=xi? = ?,hu=xi(:A) = :hu=xiA,hu=xi(A ^ B) = hu=xiA ^ hu=xiB,hu=xi(A _ B) = hu=xiA _ hu=xiB,hu=xi(A) B) = hu=xiA) hu=xiB,hu=xi(8x A) = 8x A,hu=xi(8y A) = 8y hu=xiA if y 6= x,hu=xi(9x A) = 9x A,hu=xi(9y A) = 9y hu=xiA if y 6= x.But there is still a problem with this de�nition : when we repla
e y + 0 forx in 8y P (x; y) we obtain 8y P (y + 0; y) where the variable y in y + 0 is nowquanti�ed, while originally, this variable y had nothing to do with the variabley quanti�ed in 8y P (x; y). To perform a 
orre
t substitution, we must �rstrename the variable y quanti�ed in 8y P (x; y) to get, for instan
e, 8z P (x; z)and then substitute the variable x by y+0 to get 8z P (y+0; z). The 
hoi
e ofthe variable z is arbitrary, and we 
ould also have obtained 8w P (y + 0; w).Thus, to de�ne the substitution operation, we must �rst de�ne the equiva-len
e of two propositions modulo bound variable renaming and de�ne substitu-tion on the quotient of the set of propositions modulo this relation.De�nition 1.1.7 (Alphabeti
 equivalen
e) The alphabeti
 equivalen
e be-tween propositions is de�ned as follows� if A and B are atomi
 propositions then A � B if and only if A = B,> � >,? � ?,(:A) � (:A0) if and only if A � A0,



12 CHAPTER 1. PREDICATE LOGIC(A ^ B) � (A0 ^B0) if and only if A � A0 and B � B0,(A _ B) � (A0 _B0) if and only if A � A0 and B � B0,(A) B) � (A0 ) B0) if and only if A � A0 and B � B0,(8x A) � (8y A0) if and only if for some variable z not appearing in 8x Anor in 8y A0 hz=xiA � hz=yiA0,(9x A) � (9y A0) if and only if for some variable z not appearing in 9x Anor in 9y A0 hz=xiA � hz=yiA0.From now on, propositions will be 
onsidered up to alphabeti
 equivalen
e,i.e. we 
onsider only 
lasses of propositions modulo alphabeti
 equivalen
e. Sothe proposition 8x (0 � x) and 8y (0 � y) are equal.De�nition 1.1.8 (Substitution) Let t be a term (resp. a proposition), x bea variable and u be a term. The term (resp. the proposition) (u=x)t is de�nedby indu
tion over the height of t as follows� (u=x)x = u,if y is a variable di�erent from x, then (u=x)y = y,(u=x)f(t1; :::; tn) = f((u=x)t1; :::; (u=x)tn),� (u=x)P (t1; :::; tn) = P ((u=x)t1; :::; (u=x)tn),(u=x)> = >,(u=x)? = ?,(u=x)(:A) = :(u=x)A,(u=x)(A ^B) = (u=x)A ^ (u=x)B,(u=x)(A _B) = (u=x)A _ (u=x)B,(u=x)(A) B) = (u=x)A) (u=x)B,(u=x)(8y A) = 8z (u=x)(z=y)A where z is a variable not appearing in8y A, not appearing in u and distin
t from x,(u=x)(9y A) = 9z (u=x)(z=y)A where z is a variable not appearing in9y A, not appearing in u and distin
t from x.We 
an in the same way de�ne simultaneous substitution.De�nition 1.1.9 (Simultaneous substitution) Let t be a term (resp. aproposition), x1; :::; xn be variables and u1; :::; un be terms. Let � be the �-nite fun
tion mapping xi to ui. The term (resp. the proposition) �t is de�nedby indu
tion over the height of t as follows� �xi = ui,if y is a variable di�erent from the xi's, then �y = y,�f(t1; :::; tn) = f(�t1; :::; �tn),� �P (t1; :::; tn) = P (�t1; :::; �tn),�> = >,�? = ?,�(:A) = :�A,�(A ^ B) = �A ^ �B,



1.2. PROOFS 13�(A _B) = �A _ �B,�(A) B) = �A) �B,�(8y A) = 8z �(z=y)A where z is a variable not appearing in 8y A andnot appearing in �,�(9y A) = 9z �(z=y)A where z is a variable not appearing in 9y A andnot appearing in �.1.2 ProofsWe are now ready to de�ne the tools that permit to prove propositions.1.2.1 Proofs �a la HilbertDe�nition 1.2.1 (Theory) A theory is a set of propositions, 
alled axioms,su
h that the membership of some proposition to this set 
an be de
ided in analgorithmi
 way.De�nition 1.2.2 (Dedu
tion rule) A Dedu
tion rule is a set of n+ 1-uplesof propositions, su
h that the membership of some n+1-uples of propositions tothis set 
an be de
ided in an algorithmi
 way. The n+ 1-uple hA1; :::; An; Bi iswritten A1 ::: AnBThe propositions A1; :::; An are 
alled the premises and the proposition B the
on
lusion of the n+ 1-uple.De�nition 1.2.3 (Proof) Let D a set of dedu
tion rules. A proof of a propo-sition B in D is a tree whose root is labeled by the proposition B, whose sub-treesare proofs of propositions A1; :::; An and su
h that the n+ 1-upleA1 ::: AnBis an element of one of the dedu
tion rules of D.De�nition 1.2.4 (Logi
al axioms) A logi
al axiom is a proposition of thefollowing form where A, B, C are arbitrary propositions and x an arbitraryvariable. A) (B ) A)(A) (B ) C))) ((A) B)) (A) C))(8x (A) B))) (A) 8x B) (if x 62 FV (A))>?) A



14 CHAPTER 1. PREDICATE LOGICA) (:A) ?)(A) ?)) :A(A ^ B)) A(A ^ B)) BA) B ) (A ^ B)A) (A _B)B ) (A _ B)(A _ B)) ((A) C)) ((B ) C)) C))8x A) (t=x)A(t=x)A) 9x A9x A) ((8x (A) B))) B) (if x 62 FV (B))A _ :ADe�nition 1.2.5 (Dedu
tion rules �a la Hilbert) Given a theory �, thededu
tion rules �a la Hilbert for � are the following:� the rule Axiom 
ontaining all the 1-uplesAwhere A is an element of � or a logi
al axiom,� the rule Modus ponens 
ontaining all the 3-uplesA) B AB� the rule Generalization 
ontaining all the 2-uplesA8x Awhere x does not appear free in �.These rules should be understood as follows: axioms have trivial proofs, ifwe have already proved A ) B and A we 
an dedu
e B, if we have alreadyproved A with no assumption on x, we 
an dedu
e 8x A.



1.2. PROOFS 15Example 1.2.1 Consider the language formed with the four proposition sym-bols (i.e. predi
ate symbol of zero arguments) P , Q, R and S. Consider thetheory formed with the propositions PQQ) RP ) (R) S)we have the following proof of the proposition SAxiomP ) (R) S) AxiomP Modus ponensR) S AxiomQ) R AxiomQ Modus ponensR Modus ponensSRemark. Some authors prefer to de�ne proofs as sequen
es of propositionsrather than as trees. Again, this is just a matter of taste.1.2.2 The dedu
tion lemmaWe now want to prove that a proposition A) B has a proof in the theory � ifand only if the proposition B has a proof in the theory �; A.Proposition 1.2.1 Let A be a proposition, the proposition A) A has a proofin the empty theory.Proof. The propositions(A) ((A) A)) A))) ((A) (A) A))) (A) A))A) ((A) A)) A)A) (A) A)are logi
al axioms. Hen
e, the proposition A) A has the proofB A) ((A) A)) A) Modus ponens(A) (A) A))) (A) A) A) (A) A) Modus ponensA) Awhere B is (A) ((A) A)) A))) ((A) (A) A))) (A) A)).Proposition 1.2.2 (Dedu
tion lemma) The proposition A) B has a proofin the theory � is and only if the proposition B has a proof in the theory �; A.



16 CHAPTER 1. PREDICATE LOGICProof. If the proposition A) B has a proof in the theory �, then it has a proofin the theory �; A. So does the proposition A. Thus, the proposition B has aproof built with the Modus ponens rule.Conversely, we prove by indu
tion over the height of the proof of B in �; Athat there is a proof of A) B in �.� If the root of the proof is a Axiom, then either B = A and we have a proofof A) B by the proposition 1.2.1, or B an element of � and we have theproof B ) (A) B) B Modus ponensA) B� If the root of the proof is a Modus ponens then B is dedu
ed from C ) Band C, that have smaller proofs. By indu
tion hypothesis, there are proofs�1 and �2 of A) (C ) B) and A) C in � and we take the proof(A) (C ) B))) ((A) C)) (A) B)) �1A) (C ) B) Modus p.(A) C)) (A) B) �2A) C Modus p.A) B� If the root of the proof is a Generalization then we have B = 8x C, xdoes not appear in � nor in A and C has a smaller proof. By indu
tionhypothesis, there is a proof � of A) C in � and we take the proof(8x (A) C))) (A) 8x C) �A) C Generalization8x (A) C) Modus ponensA) 8x C1.2.3 Natural dedu
tionIntrodu
ing an hypothesis seems to be a natural step in a proof. To prove, forinstan
e, the proposition (n = 0)) (n+ 1 = 1) we want to assume that n = 0and then to prove that n+ 1 = 1.Proofs �a la Hilbert do not permit to do that dire
tly: if we have a proof of theproposition n+1 = 1 using the hypothesis n = 0, the dedu
tion lemma permitsto transform this proof into one of the proposition (n = 0) ) (n + 1 = 1),but this proof is mu
h longer than the proof we started with and it is not verynatural.Natural dedu
tion is an alternative de�nition of the notion of proof wherethe introdu
tion of an hypothesis is dedu
tion rule. In Natural dedu
tion, adedu
tion step 
an modify not only the proved proposition but also the theory�, hen
e a proof is not a tree of propositions, but a tree of ordered pairs h�; Aiwhere � is a theory and A a proposition. Su
h an ordered pair is 
alled a sequent



1.2. PROOFS 17and is written � ` A (read \� entails A"). The Introdu
tion rule that permitsto introdu
e an hypothesis transforms the sequent �; A ` B into the sequent� ` A) B.The notions of dedu
tion rule and proof adapt straightforwardly to sequents.De�nition 1.2.6 (Dedu
tion rule on sequents) A Dedu
tion rule is a setof n + 1-uples of sequents, su
h that the membership of some n + 1-uples ofsequents to this set 
an be de
ided in an algorithmi
 way. The n+1-uple h�1 `A1; :::;�n ` An;� ` Bi is written�1 ` A1 ::: �n ` An� ` BThe sequents �1 ` A1; :::;�n ` An are 
alled the premises and the sequent � ` Bthe 
on
lusion of the n+ 1-uple.De�nition 1.2.7 (Proof on sequents) Let D a set of dedu
tion rules. Aproof of a sequent � ` B in D is a tree whose root is labeled by the sequent� ` B, whose sub-trees are proofs of sequents �1 ` A1; :::;�n ` An and su
hthat the n+ 1-uple �1 ` A1 ::: �n ` An� ` Bis an element of one of the dedu
tion rule of D.With the introdu
tion rule, the three �rst logi
al axioms are now redundant,indeed the sequent � ` A) (B ) A) 
an be proved as follows�; A;B ` A Intro�; A ` B ) A Intro� ` A) (B ) A)The sequent � ` (A ) (B ) C)) ) ((A ) B) ) (A ) C)) 
an be proved asfollows � ` A) (B ) C) � ` AModus p.� ` B ) C � ` A) B � ` AModus p.� ` B Modus p.�; A) (B ) C); A) B;A ` C Intro�; A) (B ) C); A) B ` A) C Intro�; A) (B ) C) ` (A) B)) (A) C) Intro� ` (A) (B ) C))) ((A) B)) (A) C))where � = �; A ) (B ) C); A ) B;A. And, if the variable x appears freeneither in � nor in A, the sequent � ` (8x (A ) B)) ) (A ) 8x B) 
an beproved as follows� ` (8x (A) B))) (A) B) � ` 8x (A) B) Modus p.� ` A) B � ` AModus p.� ` B Generalization�; 8x (A) B); A ` 8x B Intro�; 8x (A) B) ` A) 8x B Intro� ` (8x (A) B))) (A) 8x B)where � = �;8x (A) B); A.



18 CHAPTER 1. PREDICATE LOGICUsing proof �a la Hilbert, when we have proved the propositions A and Band we want to dedu
e the proposition A ^ B, we must use the logi
al axiomA ) (B ) (A ^ B)) and dedu
e B ) (A ^ B) and then A ^ B with theModus ponens rule. It is more natural to take a rule allowing to dedu
e dire
tly� ` A^B from � ` A and � ` B. As we have the rule Introdu
tion this logi
alaxiom and this rule are equivalent. As we have just seen, in a system where wehave the logi
al axiom, we 
an simulate any instan
e of the rule and 
onversely,in a system where we have the rule, the axiom 
an be proved as follows�; A;B ` A �; A;B ` B New rule�; A;B ` A ^B Intro�; A ` B ) (A ^B) Intro� ` A) (B ) (A ^ B))Ex
er
ise 1.2.1 With proof �a la Hilbert, are the logi
al axiom and the ruleequivalent ? Hint: try to prove the Dedu
tion lemma.We 
an suppress in a similar way all the logi
al axioms and repla
e them bydedu
tion rules. Let us take another example. The logi
al axiom(A _ B)) ((A) C)) ((B ) C)) C))
an be repla
ed by the rule� ` A _ B � ` A) C � ` B ) C� ` CBut, as it is equivalent to prove the sequent � ` A) C or the sequent �; A ` Cwe 
an transform this rule further into� ` A _B �; A ` C �; B ` C� ` CIn this rule, _ is the only 
onne
tor or quanti�er that appears expli
itly. Inmost rules, only one 
onne
tor or quanti�er o

urs. This permits to 
lassify therules a

ording to the 
onne
tor or quanti�er that appears in this rule. The rulesof a 
onne
tor or quanti�er 
an further be 
lassi�ed a

ording to the positionof this 
onne
tor or quanti�er. If it appears in the 
on
lusion of the rule, thenthe rules is 
alled an introdu
tion rule, if it appears in a premise, then the ruleis an elimination rule. For instan
e, the 
onne
tor _ has two introdu
tion rules� ` A _-intro� ` A _ B� ` B _-intro� ` A _ Band one elimination rule� ` A _B �; A ` C �; B ` C _-elim� ` C



1.2. PROOFS 19The Modus ponens � ` A) B � ` A� ` Bis the elimination rule of impli
ation. The Generalization� ` A if x 62 FV (�)� ` 8x Ais the introdu
tion rule of the universal quanti�er 8. And the rule Introdu
tion�; A ` B� ` A) Bis the introdu
tion rule of the impli
ation.The system obtained this way is 
alled Natural Dedu
tion.De�nition 1.2.8 (Natural dedu
tion) Axiom if A 2 �� ` A >-intro� ` >� ` ? ?-elim� ` A�; A ` ? :-intro� ` :A� ` A � ` :A :-elim� ` ?� ` A � ` B ^-intro� ` A ^ B� ` A ^ B ^-elim� ` A� ` A ^ B ^-elim� ` B� ` A _-intro� ` A _ B� ` B _-intro� ` A _ B� ` A _ B �; A ` C �; B ` C _-elim� ` C�; A ` B )-intro� ` A) B



20 CHAPTER 1. PREDICATE LOGIC� ` A) B � ` A)-elim� ` B� ` A 8-intro if x 62 FV (�)� ` 8x A� ` 8x A 8-elim� ` (t=x)A� ` (t=x)A 9-intro� ` 9x A� ` 9x A �; A ` B 9-elim if x 62 FV (�; B)� ` B Ex
luded middle� ` A _ :AProposition 1.2.3 A proposition A has a proof �a la Hilbert in the theory � ifand only if the sequent � ` A has a proof in natural dedu
tion.Proof. By indu
tion on the height of proofs.De�nition 1.2.9 (Contradi
tory, 
onsistent) A theory � is 
ontradi
toryif all propositions have a proof in �. It is 
onsistent otherwise.Ex
er
ise 1.2.2 Prove that a theory � is 
ontradi
tory if and only the propo-sition ? has a proof. Prove that a theory � is 
ontradi
tory if and only there isa proposition A su
h that A and :A have a proof.Ex
er
ise 1.2.3 Let A be a proposition, prove that a theory that proves theproposition A, :A is 
ontradi
tory.Example 1.2.2 (Equality) Given a language L 
ontaining a predi
ate symbol= of two arguments, the theory of equality in this language is formed with thefollowing axioms.Identity axiom: 8x (x = x)Leibniz' axiom s
heme: for ea
h proposition A, the axiom8x 8y ((x = y)) ((x=z)A) (y=z)A))Ex
er
ise 1.2.4 In the theory of equality, give a proof of the proposition8x 8y (x = y ) y = x)Example 1.2.3 (Arithmeti
) The language of arithmeti
 is formed with� an individual symbol 0, a fun
tion symbol Su of one argument and twofun
tion symbols + and � of two arguments



1.2. PROOFS 21� a predi
ate symbol = of two arguments.The axioms of arithmeti
 are the axioms of equality and the axioms:8x 8y (Su(x) = Su(y)) x = y)8x :(0 = Su(x))indu
tion s
heme: for ea
h proposition A the axiom((0=z)A ^ (8x ((x=z)A) (Su(x)=z)A)))) 8y (y=z)Aand the axioms 8y (0 + y = y)8x 8y (Su(x) + y = Su(x+ y))8y (0� y = 0)8x 8y (Su(x)� y = (x � y) + y)Ex
er
ise 1.2.5 Write a proof in arithmeti
 of the propositionsSu(0) + Su(0) = Su(Su(0))8x (x+ 0 = x)1.2.4 Constru
tive proofsDe�nition 1.2.10 (Constru
tive proof) A proof is 
onstru
tive if it doesnot use the ex
luded middle rule.We want to prove that 
onstru
tive provability and general provability areequivalent. This does not mean, of 
ourse, that all propositions that have a proofhave a 
onstru
tive proof, but that for ea
h proposition A we 
an 
omputea proposition A0 su
h that the proposition A has a proof if and only if theproposition A0 has a 
onstru
tive proof.De�nition 1.2.11 (Negative translation) Let A be a proposition, the propo-sition A0 is de�ned by indu
tion over the height of A as follows.� A0 = ::A if A is atomi
,� >0 = ::>,� ?0 = ::?,� (:A)0 = :::A0,� (A ^ B)0 = ::(A0 ^ B0),� (A _ B)0 = ::(A0 _ B0),



22 CHAPTER 1. PREDICATE LOGIC� (A) B)0 = ::(A0 ) B0),� (8x A)0 = ::(8x A0),� (9x A)0 = ::(9x A0).Proposition 1.2.4 The proposition A has a proof if and only if A0 has a 
on-stru
tive proof.Proof. (1) If a sequent � ` A has a 
onstru
tive proof �, then the sequent� ` ::A has a 
onstru
tive proof. First, we 
an add the hypothesis :A to allsequents of the proof �, we obtain a proof �0 of the sequent �;:A ` A. Thenwe have the following proof.�;:A ` :A �0�;:A ` A :-elim�;:A ` ? :-intro� ` ::AThus, we 
an build a 
onstru
tive proof of ::>. From a 
onstru
tive proof of�; A ` ? we 
an build a 
onstru
tive proof of � ` :::A. From 
onstru
tiveproofs of � ` A and � ` B, we 
an build a 
onstru
tive proof of � ` ::(A^B).From a 
onstru
tive proof of � ` A, we 
an build a 
onstru
tive proof of � `::(A _ B). From a 
onstru
tive proof of � ` B, we 
an build a 
onstru
tiveproof of � ` ::(A _ B). From a 
onstru
tive proof of �; A ` B, we 
an builda 
onstru
tive proof of � ` ::(A ) B). From a 
onstru
tive proof of � ` A,we 
an build a 
onstru
tive proof of � ` ::8x A provided x does not appearfree in �. From a 
onstru
tive proof of � ` (t=x)A, we 
an build a 
onstru
tiveproof of � ` ::9x A.(2) Then, we 
he
k that from a 
onstru
tive proofs of � ` ::?, we 
an builda 
onstru
tive proof of � ` ::A. From 
onstru
tive proofs of � ` :::A and� ` ::A, we 
an build a 
onstru
tive proof of � ` ::?. From a 
onstru
tiveproof of � ` ::(::A ^ ::B), we 
an build a 
onstru
tive proof of � ` ::Aand a 
onstru
tive proof of � ` ::B. From a 
onstru
tive proofs of � `::(::A_::B), �;::A ` ::C and �;::B ` ::C we 
an build a 
onstru
tiveproof of � ` ::C. From 
onstru
tive proofs of � ` ::(::A ) ::B) and� ` ::A, we 
an build a 
onstru
tive proof of � ` ::B. From 
onstru
tiveproofs of � ` ::(8x ::A), we 
an build a 
onstru
tive proof of � ` ::(t=x)A.From 
onstru
tive proofs of � ` ::9x A and �;::A ` ::B we 
an build a
onstru
tive proof of � ` ::B provided that x does not appear free in � nor inB. As an example we show that from 
onstru
tive proofs of � ` ::(::A )::B) and � ` ::A, we 
an build a 
onstru
tive proof of � ` ::B.��;:B ` ::(::A) ::B)�;:B;::A) ::B ` ::A) ::B �0�;:B;::A) ::B ` ::A)-elim�;:B;::A) ::B ` ::B �;:B;::A) ::B ` :B :-elim�;:B;::A) ::B ` ? :-intro�;:B ` :(::A) ::B) :-elim�;:B ` ? :-intro� ` ::B



1.3. MODELS 23(3) We 
he
k that if A is a proposition, then the proposition ::(A _ :A)has a 
onstru
tive proof.:(A _ :A) ` :(A _ :A):(A _ :A); A ` :(A _ :A) :(A _ :A); A ` A _-i.:(A _ :A); A ` A _ :A :-e.:(A _ :A); A ` ? :-intro:(A _ :A) ` :A _-intro:(A _ :A) ` A _ :A :-elim:(A _ :A) ` ? :-intro` ::(A _ :A)(4) Then, we show that if � ` A has a proof � then �0 ` A0 has a 
onstru
tiveproof, by indu
tion over the height of �. If the last rule of � is an axiom thenwe use the axiom rule, if the last rule is an introdu
tion rule then we use lemma(1), if it is an elimination rule then we use lemma (2), if it the ex
luded middlerule, we use lemma (3).(5) Conversely, we show that the proposition A , ::A has a (not ne
es-sarily 
onstru
tive) proof and we dedu
e that A , A0 has a (non ne
essarily
onstru
tive) proof and that if �0 ` A0 has a 
onstru
tive proof then � ` A hasa (not ne
essarily 
onstru
tive) proof.Remark. In these 
ourse notes, we shall mainly fo
us on 
onstru
tive proofs.This does not mean that we renoun
e the non 
onstru
tive proofs, but that non
onstru
tive proofs of a proposition A are understood as 
onstru
tive proofs ofits negative translation.1.3 ModelsDe�nition 1.3.1 (Stru
ture) Let L be a language formed with the fun
tionsymbols f0; f1; ::: of number or arguments n0; n1; ::: and the predi
ate symbolsP0; P1; ::: of number of arguments m0;m1; :::. A stru
ture M built on L is an-uple formed with� a non empty set M ,� a fun
tion f̂0 from Mn0 to M , a fun
tion f̂1 from Mn1 to M , ...� a fun
tion P̂0 from Mm0 to f0; 1g, a fun
tion P̂1 from Mm1 to f0; 1g, ...De�nition 1.3.2 (Assignment) An assignment over the set of variables V isa fun
tion from V to M . If � is an assignment, x a variable and a an elementof M , then � + hx; ai is the assignment mapping x to a and y to �(y) when yis distin
t from x.De�nition 1.3.3 (Denotation) Let L be a language, V be a set of variablesand M be a stru
ture built on L. Let � be an assignment and t be a term (resp.a proposition), the denotation of t in M modulo � is de�ned by indu
tion overthe height of t.



24 CHAPTER 1. PREDICATE LOGIC� jxj� = �(x),jfi(t1; :::; tni)j� = f̂i(jt1j�; :::; jtni j�),� jPi(t1; :::; tni)j� = P̂i(jt1j�; :::; jtni j�),j>j� = 1,j?j� = 0,j:Aj� = 1 if jAj� = 0, and 0 otherwise,jA ^ Bj� = 1 if jAj� = 1 and jBj� = 1, and 0 otherwise,jA _ Bj� = 1 if jAj� = 1 or jBj� = 1, and 0 otherwise,jA) Bj� = 1 if jAj� = 0 or jBj� = 1, and 0 otherwise,j8x Aj� = 1 if for all elements a of M , jAj�+hx;ai = 1, and 0 otherwisej9x Aj� = 1 if there is an element a of M su
h that jAj�+hx;ai = 1, and 0otherwise.De�nition 1.3.4 (Validity, model) Let L be a language, V be a set of vari-ables and M be a stru
ture built on L. A proposition P is valid in M is for allassignments �, jP j� = 1. A theory � is valid in M if all its axioms are valid.The stru
ture M is a model of � if � is valid in M.Proposition 1.3.1 (Soundness) Let � be a theory. If the proposition P hasa proof in �, then it is valid in all the models of �.Proof. By indu
tion over the height of a proof of P in �.Corollary 1.3.2 If the theory � has a model in whi
h P is not valid then Phas no proof in �.Corollary 1.3.3 If � has a model then � is 
onsistent.Example 1.3.1 Consider the language 
ontaining two predi
ate symbol = and� of two arguments. Consider the theory O formed with the axioms of equalityand 8x (x � x)8x 8y ((x � y ^ y � x)) x = y)8x 8y 8z ((x � y ^ y � z)) x � z)From these axiom we 
annot dedu
e the proposition8x 8y (x � y _ y � x)Indeed, 
onsider the stru
ture M = hN; I ; ji where I(n;m) = 1 if n = m and0 otherwise, j(n;m) = 1 if n is a divisor of m and 0 otherwise. The stru
tureMis a model of O. But it is not a model of the proposition 8x 8y (x � y _ y � x),be
ause 2 is not a divisor of 3 and 3 is not a divisor of 2.



1.3. MODELS 25Remark. The �rst use of the notion of model to prove that some proposition hasno proof in a theory is probably that of F. Klein who has built in 1871 a modelof all the axioms of Eu
lid's geometry ex
ept the axiom of parallels, showingthat the axiom of parallels 
annot be dedu
ed from the other axioms of Eu
lid'sgeometry. (However the notion of model has only been de�ned by A. Tarski,more than �fty years later, in 1936).The soundness theorem has a 
onverse we shall not prove here.Proposition 1.3.4 (G�odel's 
ompleteness theorem) Let � be a theory. Ifthe proposition P is valid in all the models of � then it has a proof in �.Remark. The soundness theorem holds also for 
onstru
tive proofs. But notthe 
ompleteness theorem. For instan
e, let P be a proposition symbol (i.e.a predi
ate symbol of zero arguments). We shall see (exer
ise 4.1.1) that theproposition P _:P has no 
onstru
tive proof, but it is valid in all models. Thenotion of model needs to be adapted for 
onstru
tive proofs.Remark. In proof theory, the notion of model is mostly used to prove inde-penden
e results, i.e. that some propositions have no proof in some theories.The notion of model is also used in algebra. For instan
e, ordered sets 
an bede�ned as the models of the theory O of example 1.3.1. Groups 
an also bede�ned as the models of some theory, but it 
an be shown that Ar
himedian
omplete ordered �elds 
annot be de�ned as the models of some theory. Thisfa
t may be used to prove, for instan
e, that there are ordered sets or groups ofall in�nite 
ardinals, while it is known that all Ar
himedian 
omplete ordered�elds are isomorphi
 to R and thus that they all have 
ardinal 2�0 . The bran
hof mathemati
s that studies these appli
ations of logi
 to algebra is 
alled modeltheory.Remark. A 
ommon mis
on
eption is that the notion of model 
an be used, asan alternative to the notion of proof, to de�ne the notion of mathemati
al truth,i.e. that instead of saying that a proposition is true if it has a proof, we 
ouldsay that it is true if it is valid in all models. The problem with su
h a de�nitionof truth is that, unlike the fa
t that a tree is a proof of some proposition, thefa
t that a proposition is valid in all models is not self evident, i.e. it 
annotbe 
he
ked in an algorithmi
 way. Thus, the fa
t that some proposition is validin all models must itself be justi�ed by some argument. Thus, su
h a de�nitionof truth redu
es the question of the truth of the proposition \P" to that of theproposition \the proposition P is valid in all models" and trying to justify someproposition we enter into an in�nite regression.Remark. (Many-valued model) In the de�nition 1.3.1, the truth value 0 is usedas denotation of non valid propositions, and the truth value 1 as denotationof valid propositions. This de�nition 
an be extended by adding other truthvalues. A 
ommon extension is to take a third value for propositions whosevalidity is unknown in this model.
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Chapter 2Extensions of predi
atelogi
2.1 Many-sorted predi
ate logi
In some theories, we want to distinguish several sorts of obje
ts. For instan
e, ina language with the individual symbols German, English, Fren
h, Germany,United�Kingdom, Ireland, Fran
e and a predi
ate L, we 
an form the propo-sitions L(German;Germany)L(English; United�Kingdom)L(English; Ireland)L(Fren
h; Fran
e)expressing that German is an oÆ
ial language of Germany, ... In this theory,we 
an also form the unwanted propositionL(Germany;Germany)An extension of predi
ate logi
 permits to restri
t the term and propositionformation rules, in su
h a way that su
h unwanted propositions are avoided.De�nition 2.1.1 (Many-sorted language) A language is a set of sorts, aset of fun
tion symbols and a set of predi
ate symbols. To ea
h fun
tion symbolis asso
iated a n + 1-uple of sorts hs1; :::; sn; sn+1i 
alled its rank and to ea
hpredi
ate symbol is asso
iated a n-uple of sorts hs1; :::; sni 
alled its rank.De�nition 2.1.2 (Term in a many-sorted language) Let L be a many-sorted language and Vs be a a family of disjoint in�nite sets indexed by sorts.The terms of the language L with variables Vs are de�ned by the following rules27



28 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC� if x is a variable of Vs then the tree whose root is labeled by x and thathas no sub-tree is a term of sort s,� if f is a fun
tion symbol of rank hs1; :::; sn; sn+1i and t1; :::; tn are terms ofsort s1; :::; sn then the tree whose root is labeled by f and whose sub-treesare t1; :::; tn is a term of sort sn+1.De�nition 2.1.3 (Proposition in a many-sorted language) Let L be amany-sorted language and Vs be a a family of disjoint in�nite sets indexed bysorts. The propositions of the language L with variables Vs are de�ned by thefollowing rules� if P is a predi
ate symbol of rank hs1; :::; sni and t1; :::; tn are terms of sorts1; :::; sn, then the tree whose root is labeled by P and whose sub-trees aret1; :::; tn is a proposition,� the trees whose root are labeled by > and ? and that have no sub-tree arepropositions,� if A is a proposition then the tree whose root is labeled by : and whosesub-tree is A is a proposition,� if A and B are propositions then the trees whose root are labeled by ^, _or ) and whose sub-trees are A and B are propositions,� if A is a proposition and x a variable then the trees whose root are labeled8x and 9x and whose sub-tree is A are propositions.The de�nition of a substitution is restri
ted in su
h a way that a variable ofsort s 
an only be substituted by a term of sort s. The proof rules are the samethan in ordinary predi
ate logi
.De�nition 2.1.4 (Stru
ture in a many-sorted language) Let L be a lan-guage formed with the sorts s0; s1; :::, the fun
tion symbols f0; f1; ::: of numberor arguments and the predi
ate symbols P0; P1; :::. A stru
ture M built on L isa n-uple formed with� a family of non empty sets Ms0 ;Ms1 ; :::,� a fun
tion f̂0 from Ms1 � :::�Msn to Msn+1 where hs1; :::; sn; sn+1i is therank of f0, a fun
tion f̂1 ...� a fun
tion P̂0 from Ms1 � :::�Msn to f0; 1g where hs1; :::; sni is the rankof P0, a fun
tion P̂1 ...The denotation of a term and a proposition is de�ned in the same way as inordinary predi
ate logi
, with the extra 
ondition that in the 
ase of quanti�ers,the obje
t a belongs to Ms where s is the sort of the quanti�ed variable.



2.2. PREDICATE LOGIC MODULO 29Proposition 2.1.1 (Soundness and 
ompleteness) A proposition has a proofin a theory if and only if it is valid in all the models of this theory.Remark. Predi
ate logi
 is a parti
ular 
ase of many-sorted predi
ate logi
 witha single sort.2.2 Predi
ate logi
 moduloIn predi
ate logi
, proofs are sequen
es of dedu
tion steps. The idea of predi
atelogi
 modulo is that a proof is not a sequen
e of dedu
tion steps, but a sequen
eof dedu
tion steps and of 
omputation steps. For instan
e, in arithmeti
, toprove the proposition 9x (2� x = 4)we use the 9-intro rule and we are redu
ed to prove the proposition 2� 2 = 4.Then, we have to use the axioms of addition and multipli
ation to prove thisproposition. In predi
ate logi
 modulo, we 
an simply 
ompute the term 2� 2and obtain the proposition 4 = 4 that 
an easily be proved with the identityaxiom.2.2.1 Dedu
tion rulesDe�nition 2.2.1 A relation � de�ned on terms and propositions of a languageis a 
ongruen
e if� it is an equivalen
e relation,� it is 
ompatible with all fun
tion symbols, predi
ate symbols, 
onne
torsand quanti�ers, i.e. if t � u then f(t) � f(u), if A � B and A0 � B0 thenA ^ A0 � B ^ B0, if A � B then 8x A � 8x B, ...In predi
ate logi
 modulo a theory is formed with a set of axioms � su
h thatthe membership of some proposition to this set 
an be de
ided in an algorithmi
way and a 
ongruen
e � on terms and propositions su
h that the equivalen
eof two propositions 
an be de
ided in an algorithmi
 way. Before or after ea
hdedu
tion step, we 
an transform the proved proposition into any equivalent one.The dedu
tion rules are thus modi�ed to take these 
omputations into a

ount.These rules permit to prove sequents of the form � `� A. A proposition is saidto have a proof in the theory �;� if the sequent � `� A has a proof with thefollowing dedu
tion rules.De�nition 2.2.2 (Dedu
tion rules modulo)Axiom if A 2 � and A � B� `� B >-intro if A � >� `� A



30 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC� `� B ?-elim if B � ?� `� A�; A `� B :-intro if B � ? and C � :A� `� C� `� C � `� A :-elim if C � :A and B � ?� `� B� `� A � `� B ^-intro if C � (A ^ B)� `� C� `� C ^-elim if C � (A ^ B)� `� A� `� C ^-elim if C � (A ^ B)� `� B� `� A _-intro if C � (A _ B)� `� C� `� B _-intro if C � (A _ B)� `� C� `� D �; A `� C �; B `� C _-elim if D � (A _B)� `� C�; A `� B )-intro if C � (A) B)� `� C� `� C � `� A)-elim if C � (A) B)� `� B� `� A hx;Ai 8-intro if B � (8x A) and x 62 FV (�)� `� B� `� B hx;A; ti 8-elim if B � (8x A) and C � (t=x)A� `� C� `� C hx;A; ti 9-intro if B � (9x A) and C � (t=x)A� `� B� `� C �; A `� B hx;Ai 9-elim if C � (9x A) and x 62 FV (�; B)� `� B B Ex
luded middle if A � (B _ :B)� `� AProposition 2.2.1 (Equivalen
e) For every 
ongruen
e � there is a theoryT su
h that � `� A if and only if T � ` A.Proof. We take, for instan
e, all the axioms of the form 8x1 ::: 8xn (A , B)where A � B.De�nition 2.2.3 (Model of a theory modulo) A stru
ture M is a modelof a theory modulo �;� if all the axioms of � are valid in M and ea
h time twoterms (resp. propositions) are 
ongruent they have the same denotation in M.Proposition 2.2.2 (Soundness and 
ompleteness) A proposition has a proofin a theory if and only if it is valid in all the models of this theory.



2.2. PREDICATE LOGIC MODULO 312.2.2 Congruen
es de�ned by rewrite rulesCongruen
es used in predi
ate logi
 modulo are often de�ned by rewrite systems.De�nition 2.2.4 (Rewrite rule, rewrite system) A rewrite rule is an or-dered pair of terms or an ordered pair of propositions hl; ri written l �! r. Arewrite system is a set of rewrite rules.De�nition 2.2.5 (Redex) Let R be a rewrite system and t be a term. Theterm t is a redex (redu
ible expression) if there exists a rule l �! r in R and asubstitution � su
h that t = �l. A term t is said to 
ontain a redex if one of itssub-terms is a redex.De�nition 2.2.6 (One step redu
tion) Let R be a rewrite system. A term(resp. a proposition) t redu
es to a term (resp. a proposition) u in one step(t �!1 u) if there is a sub-term t0 of t and a substitution � su
h that t0 = �land u is obtained by repla
ing in t the sub-term t0 by the term �u.De�nition 2.2.7 (Redu
tion sequen
e) Let R be a rewrite system. A re-du
tion sequen
e is a �nite or in�nite sequen
e of terms (resp. propositions)t0; t1; ::: su
h that for every i, ti �!1 ti+1.De�nition 2.2.8 (Redu
tion) Let R be a rewrite system. A term (resp. aproposition) t redu
es to a term (resp. a proposition) u (t �! u) if there is a�nite redu
tion sequen
e starting on t and ending on u.De�nition 2.2.9 (Congruen
e sequen
e) Let R be a rewrite system. A
ongruen
e sequen
e is a �nite or in�nite sequen
e of terms (resp. proposi-tions) t0; t1; ::: su
h that for every i, ti �!1 ti+1 or ti+1 �!1 ti.De�nition 2.2.10 (Congruen
e) Let R be a rewrite system. Two terms(resp. two propositions) t and u are 
ongruent if there is a �nite 
ongruen
esequen
e starting on t and ending on u.De�nition 2.2.11 (Normal term) A term (resp. a proposition) is normal ifit 
ontains no redex. A term (resp. a proposition) u is a normal form of a term(resp. a proposition) t if t �! u and u is normal.De�nition 2.2.12 (Terminating) A term (resp. a proposition) is terminat-ing if it has a normal form, i.e. if there exists a �nite redu
tion sequen
e startingon this term and ending on a normal term. It is strongly terminating if all re-du
tion sequen
es issued from this term are �nite.A rewrite system is terminating (resp. strongly terminating) if all terms andall propositions are terminating (resp. strongly terminating).De�nition 2.2.13 (Con
uent) A rewrite system is 
on
uent if whenever aterm (resp. proposition) t redu
es to two terms (resp. proposition) u1 and u2,then there exists a term (resp. proposition) v su
h that u1 redu
es to v and u2redu
es to v.



32 CHAPTER 2. EXTENSIONS OF PREDICATE LOGICProposition 2.2.3 In a 
on
uent rewrite system, two terms (resp. two propo-sitions) are 
ongruent if and only if they redu
e to a 
ommon term.Proof. By indu
tion on the length of the 
ongruen
e sequen
e.Proposition 2.2.4 In a 
on
uent rewrite system a term has at most one nor-mal form.Proof. If u1 and u2 are normal forms of t, then t �! u1 and t �! u2. By
on
uen
e, there exists a term v su
h that u1 �! v and u2 �! v. As u1 andu2 are normal u1 = v = u2.Proposition 2.2.5 In a terminating and 
on
uent rewrite system a term hasexa
tly one normal form. And this normal form 
an be 
omputed form the term.Proof. Termination yields existen
e and 
on
uen
e uni
ity. To 
ompute thenormal form, it is suÆ
ient to redu
e the term until a normal form is rea
hed.Proposition 2.2.6 In a terminating and 
on
uent rewrite system two terms(resp. propositions) are 
ongruent if they have the same normal form.Proof. If the two terms have the same normal form, then they are 
ongruent.If they are 
ongruent, so are their normal forms and these two normal formsredu
e to a 
ommon term. Hen
e they are equal.Proposition 2.2.7 In a terminating and 
on
uent rewrite system, the 
ongru-en
e 
an be 
he
ked in an algorithmi
 way.Proof. Congruen
e 
an be 
he
ked by 
omputing the normal forms and 
he
kingtheir identity.Example 2.2.1 (A presentation of arithmeti
 in predi
ate logi
 modulo)To formulate arithmeti
 in predi
ate logi
 modulo, we 
an keep the axioms ofequality and the axioms8x 8y (Su(x) = Su(y)) x = y)8x :(0 = Su(x))((0=z)A ^ (8x ((x=z)A) (Su(x)=z)A)))) 8y (y=z)Aand repla
e the axioms 8y (0 + y = y)8x 8y (Su(x) + y = Su(x+ y))8y (0� y = 0)8x 8y (Su(x)� y = (x� y) + y)



2.3. BINDING LOGIC 33by the rewrite rules 0 + y �! ySu(x) + y �! Su(x+ y)0� y �! 0Su(x)� y �! x� y + yEx
er
ise 2.2.1 Give a proof of the proposition 9x (2� x = 4).2.3 Binding logi
In mathemati
s, we use the notation x 7! x + 2 to designate the fun
tion thatmaps x to x + 2. Su
h a symbol is said to be a binder, be
ause the variable xthat is free in x + 2 is bound in x 7! x+ 2. In predi
ate logi
 the only bindersare the quanti�ers 8 and 9 that bind variables in propositions, but there is noway to bind variables in terms and so, there is no way to form a term su
h asx 7! t.Binding logi
 is an extension of predi
ate logi
 where fun
tion symbols andpredi
ate symbols 
an bind variables in their arguments. To ea
h fun
tionsymbol or predi
ate symbol of n arguments is asso
iated a rank hk1; :::; kniwhere k1; :::; kn are natural numbers. Then, if f has the rank hk1; :::; kni andt1; :::; tn are terms, we 
an form the termf(x11:::x1k1 t1; :::; xn1 :::xnkn tn)where x11; :::; x1k1 are bound in the term t1, ..., xn1 ; :::; xnkn are bound in the termtn. In many-sorted binding logi
 a rank is a sequen
e of sequen
es of sorts. Then,when a fun
tion symbol f has the rankhhs11; :::; s1k1 ; s1k1+1i; :::hsn1 ; :::; snkn ; snkn+1i; sn+1ix11; :::; x1k1 are variables of sorts s11; :::; s1k1 , ..., xnkn ; :::; xnkn are variables of sortssn1 ; :::; snkn and t1; :::; tn are terms or sorts s1k1+1; :::; snkn+1 then the sort of theterm f(x11:::x1k1 t1; :::; xn1 :::xnkn tn) is sn+1.Substitution is modi�ed in su
h a way that bound variables are renamedto avoid 
apture. Proof rules are the same than in predi
ate logi
 or predi
atelogi
 modulo. A notion of model 
an also be de�ned for binding logi
, but weshall not present it here.



34 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC



Chapter 3Type theoryIn arithmeti
, (example 1.2.3), we 
an speak about the natural numbers but notabout the fun
tions mapping natural numbers to natural numbers nor about thesets of natural numbers. Thus, arithmeti
 is not suÆ
ient to express mathemat-i
s and we need to build more expressive theories. Set theory and type theory(also 
alled higher-order logi
) are su
h theories.3.1 Naive set theoryIn the language of arithmeti
, the symbol Su is a fun
tion symbol, thus, it maybe used to form terms, su
h as Su(0), but it is not itself a term. If we want to beable to speak about the fun
tion Su, we need the symbol Su to be a term andhen
e an individual symbol. When Su is an individual symbol, we 
annot formthe term Su(0) anymore. Hen
e, we need to introdu
e a new fun
tion symbol �for the appli
ation of a fun
tion to its argument and write this term �(Su; 0).We 
ould also introdu
e a fun
tion symbol �2 for fun
tions of two arguments,but this is not needed. Indeed, a fun
tion f of two arguments 
an always beseen as a fun
tion of one argument that maps x to the fun
tion that maps y tof(x; y). Thus instead of writing �2(f; x; y) we 
an write �(�(f; x); y).To ease notations we shall write (f x) for the term �(f; x) and (f x1 ::: xn)for the term (:::(f x1):::xn).In the same way, we want the symbols designating predi
ates (sets), to beterms and hen
e individual symbols, for instan
e if the individual symbol primedesignates the set of prime numbers, to express that the number 2 is prime, we
annot write prime(2), but we need to introdu
e a new predi
ate symbol 2 andwrite this proposition 2 2 prime.For terms expressing predi
ates of several arguments to be terms, we mustalso introdu
e symbols 22, 23, ... For predi
ates of zero arguments (i.e. propo-sitions) to be terms, we must introdu
e a predi
ate symbol 20, also written ".The proposition 22 (R; x; y) expresses that x and y are related by the predi
ateof two arguments (relation) R. The proposition "(E) expresses that the pred-35



36 CHAPTER 3. TYPE THEORYi
ate of zero argument E is true. The only di�eren
e between E and "(E) isthat E is a term (designating an obje
t) while "(E) is a proposition (expressinga fa
t). The obje
t E may be 
alled the propositional 
ontent of the proposition"(E).The notions of fun
tion and set are redundant. We 
an express a fun
tionas a fun
tional relation (its graph), i.e. as a set of ordered pairs. In this 
ase,we just need the symbol 2.Conversely, we 
an de�ne a set as its 
hara
teristi
 fun
tion, i.e. as thefun
tion mapping its argument to the propositional 
ontent of the fa
t that xbelongs to the set. In this 
ase, we just need the symbols � and ". If E is aset and x an obje
t, the propositional 
ontent of the fa
t that x belongs to E isdesignated by the term (E x) and the fa
t that x belongs to E is expressed bythe proposition "(E x). Thus, the proposition x 2 E is thus written "(E x). Inthe same way, the proposition 22 (R; x; y) is written "(R x y), ...Let us now turn to the making of fun
tions and sets. Whenever we have aterm t and variables x1; :::; xn, we want to 
onsider the fun
tion x1; :::; xn 7! t,for instan
e the fun
tion x 7! (3� x). This fun
tion is su
h that we get ba
k twhen we apply it to x1; :::; xn. Whenever we have a proposition P and variablesx1; :::; xn, we want to build the predi
ate fx1; :::; xn j Pg, for instan
e the setfx j 9y (x = 2� y)g. This predi
ate is su
h that we get ba
k P when we applyit to x1; :::; xn.A solution would be to introdu
e for ea
h term t and sequen
e of variablesx1; :::; xn an individual symbol Cx1;:::;xn;t and an axiom(Cx1;:::;xn;t x1 ::: xn) = tand for ea
h proposition P and sequen
e of variables x1; :::; xn an individualsymbol Ex1;:::;xn;P and an axiom"(Ex1;:::;xn;P x1 ::: xn), PIn predi
ate logi
 modulo, these axioms 
an be transformed into rewrite rules(Cx1;:::;xn;t u1 ::: un) �! (u1=x1; :::; un=xn)t"(Ex1;:::;xn;P u1 ::: un) �! (u1=x1; :::; un=xn)PBut, not all these symbols are ne
essary, and we 
an restri
t to a mu
h smallerlanguage.De�nition 3.1.1 (Naive set theory) The language of naive set theory isformed with� a predi
ate symbol " of one argument.� a fun
tion symbol � of two arguments,� individual symbols S, K, _>, _?, _:, _̂ , __, _), _8 and _9.



3.1. NAIVE SET THEORY 37and the 
ongruen
e de�ned by the rewrite rules(S x y z) �! ((x z) (y z))(K x y) �! x"( _>) �! >"( _?) �! ?"( _: x) �! :"(x)"( _̂ x y) �! ("(x) ^ "(y))"( __ x y) �! ("(x) _ "(y))"( _) x y) �! ("(x)) "(y))"( _8 x) �! 8y "(x y)"( _9 x) �! 9y "(x y)Proposition 3.1.1 (Comprehension) For ea
h term t and sequen
e of vari-ables x1; :::; xn there is a term u su
h that(u x1 ::: xn) � tand for ea
h proposition P and sequen
e of variables x1; :::; xn there is a termu su
h that "(u x1 ::: xn) � PProof. By indu
tion over the height of t (resp. P ).Many variants of this theory have been proposed in the History of mathe-mati
s: Cantor's set theory (1872), Frege's Begri�s
hrift (1879), Chur
h's pure�-
al
ulus (1932), ... Unfortunately, all these systems are 
ontradi
tory. A
ontradi
tion is given by Russell's paradox.By proposition 3.1.1 there exists a term R su
h that8x ("(R x), :"(x x))(take for instan
e R = (S (K _:) (S (S K K) (S K K)))). The set R is the setof all sets that do not 
ontain themselves. By de�nition, this set 
ontains itselfif and only if it does not, whi
h is 
ontradi
tory. More pre
isely, with the elim-ination rule of the universal quanti�er 8, we 
an dedu
e from this propositionthe proposition "(R R), :"(R R)and we have seen (exer
ise 1.2.3) that from su
h a proposition, we 
an prove a
ontradi
tion.



38 CHAPTER 3. TYPE THEORY3.2 Set theoryIn naive set theory, it is possible to 
onstru
t fun
tions de�ned on all the universeand to 
onstru
t sets in 
omprehension with any property P . To restri
t naiveset theory and avoid paradoxes, we may restri
t fun
tion 
onstru
tion in su
h away that fun
tions are de�ned with a domain of de�nition and, similarly, onlysubsets of already 
onstru
ted sets are 
onstru
ted in 
omprehension. Su
hideas are exploited in several theories, in
luding set theory and simple typetheory.In Zermelo's set theory and in its extension Zermelo-Fraenkel set theory,the basi
 notion is that of set and fun
tions are de�ned as relations. Thus thelanguage does not 
ontain symbols � and ", but a symbol 2.When P is a proposition, it is not always possible to form the set of obje
tsverifying the property P . This is only allowed in four 
ases.� If x and y are two sets, we 
an form the set fx; yg 
ontaining exa
tly xand y (the symbol f; g is a fun
tion symbol),� If x is a set we 
an form the set S(x) 
ontaining the elements of theelements of x,� If x is a set, we 
an form a set }(x) 
ontaining the subsets of x.� If x is a set and P is a proposition 
ontaining variables y; z1; :::; zn, we
an form the subset of x of the elements y verifying P . This set 
an bewritten fy;z1;:::;zn;P (x; z1; :::; zn) where fy;z1;:::;zn;P is a fun
tion symbol.The axioms are z 2 fx; yg , (z = x _ z = y)y 2[(x), (9z (y 2 z ^ z 2 x))y 2 }(x), (8z (z 2 y ) z 2 x))y 2 fy;z1;:::;zn;P (x; z1; :::; zn), (y 2 x ^ P )There is no way to 
onstru
t the set of sets that do not belong to themselvesand Russell's paradox is avoided.In predi
ate logi
 modulo, these axioms may be transformed into rewriterules t 2 fu; vg �! t = u _ t = vt 2[(u) �! 9z (t 2 z ^ z 2 u)t 2 }(u) �! 8z (z 2 t) z 2 u)t 2 fy;z1;:::;zn;P (u; v1; :::; vn) �! t 2 u ^ (t=y; v1=z1; :::; vn=zn)PThis system does not terminate as the proposition fy;:y2y(x) 2 fy;:y2y(x)redu
es to fy;:y2y(x) 2 x ^ :fy;:y2y(x) 2 fy;:y2y(x). Thus, if we 
all A the



3.3. SIMPLE TYPE THEORY 39proposition fy;:y2y(x) 2 fy;:y2y(x) and B the proposition fy;:y2y(x) 2 x wehave A �! B ^ :AThe de
idability of the 
ongruen
e relation generated by these rule is an openproblem.3.3 Simple type theorySimple type theory originates from the work of A.N. Whitehead and B. Russell.It is another way to restri
t naive set theory to avoid paradoxes. In this theory,the basi
 notion is that of fun
tion. Ea
h fun
tion has a domain of de�nitionand the appli
ation (f t) 
an be 
onstru
ted only when t belongs to the domainof the fun
tion f , otherwise it is prohibited by the syntax. Hen
e simple typetheory is a many-sorted theory. Taking all sets as possible fun
tion domains,i.e. all sets as sorts, makes it diÆ
ult to de
ide if a term (f t) is well-formed ornot be
ause we need to de
ide if the term t designates an obje
t that belongsto the domain of f or not. Moreover as an obje
t 
an belong to several set, itshould have several sorts. In type theory, an obje
t has only one sort that is themaximal set it belongs to. It is 
alled the type of this obje
t. There is one type� for atoms and one type o for propositional 
ontents, then ea
h time we havetwo types T and U , we 
an form the type T ! U of fun
tions mapping obje
tsof sort T to obje
ts of sort U .De�nition 3.3.1 (Simple types) Simple types are 
losed terms formed withthe individual symbols � and o and the fun
tion symbol ! of two arguments.To ease notation, we write T1 ! T2 ! ::: ! Tn ! U for the type (T1 !(T2:::! (Tn ! U):::)).De�nition 3.3.2 (Language of type theory) The language of simple typetheory in predi
ate logi
 modulo is formed with� a predi
ate symbol " of rank hoi,� for ea
h pair of type T; U , a fun
tion symbol �T;U of rank hT ! U; T; Ui,� for ea
h triple of types T; U; V an individual symbol ST;U;V of sort (T !U ! V )! (T ! U)! T ! V ,for ea
h pair of types T; U an individual symbol KT;U of sort T ! U ! T ,individual symbols _> and _? of sort o,an individual symbol _: of sort o! o,individual symbols _̂ , __, _) of sort o! o! o,for ea
h type T , individual symbols _8T and _9T of type (T ! o)! o.De�nition 3.3.3 (Rewrite system of type theory) The rewrite system Tis de�ned by the rules (ST;U;V x y z) �! ((x z) (y z))



40 CHAPTER 3. TYPE THEORY(KT;U x y) �! x"( _>) �! >"( _?) �! ?"( _: x) �! :"(x)"( _̂ x y) �! "(x) ^ "(y)"( __ x y) �! "(x) _ "(y)"( _) x y) �! "(x)) "(y)"( _8T x) �! 8y "(x y)"( _9T x) �! 9y "(x y)Proposition 3.3.1 (Comprehension) For ea
h term t there is a term u not
ontaining the variable x su
h that (u x) � t. For ea
h proposition P there is aterm u su
h that "(u) � A.Proof. By indu
tion over the height of t.� If t = x then we take u = (S K K), we have (u x) = (S K K x) �(K x (K x)) � x.� If t is a variable di�erent from x or an individual symbol, we take u =(K t), we have (u x) = (K t x) � t.� If t = (t1 t2), then by indu
tion hypothesis, there are terms u1 and u2su
h that (u1 x) � t1 and (u2 x) � t2. We take u = (S u1 u2). We have(u x) = (S u1 u2 x) � ((u1 x) (u2 x)) � (t1 t2) = t.By indu
tion over the height of A.� If A = "(t), we take u = t.� If A = B ^C, then by indu
tion hypothesis, there are terms v and w su
hthat "(v) � B and "(w) � C. We take u = ( _̂ v w). We pro
eed the sameway if A = >;?;:B;B _ C or B ) C.� If A = 8x B, then by indu
tion hypothesis, there is a term v su
h that"(v) � B and there is a term w not 
ontaining x su
h that (w x) � vand hen
e "(w x) � "(v) � B. We take u = ( _8 w). We have "(u) �8x "(w x) � 8x B. We pro
eed the same way if A = 9x B.De�nition 3.3.4 (Leibniz' Equality) By the proposition 3.3.1 there is a term_= su
h that "( _= x y) � 8p ("(p x)) "(p y))



3.3. SIMPLE TYPE THEORY 41Ex
er
ise 3.3.1 Prove 8x "(x _=x)and for ea
h proposition A8x 8y ("(x _=y)) ((x=z)A) (y=z)A))To prove that the rewrite system T is terminating, we �rst fo
us on the two�rst rules.Proposition 3.3.2 (Tait's theorem) The rewrite system(ST;U;V x y z) �! ((x z) (y z))(KT;U x y) �! xis strongly terminating.Proof. The set of redu
ible terms of type T is de�ned by indu
tion over theheight of T .� If T is � or o then t is redu
ible of type T if and only if it is stronglyterminating.� If T = T1 ! T2 then t is redu
ible of type T if and only if for everyredu
ible term u of type T1, the term (t u) is redu
ible of type T2.We prove by indu
tion over the height of T that� (1) all redu
ible terms are strongly terminating and� (2) variables and individual symbols other than S and K are redu
ibleterms.Let T = U1 ! ::: ! Un ! V (V = � or V = o). (1) If t is a redu
ibleterm of type T , then let x1, ..., xn be variables of types U1; :::; Un. By indu
tionhypothesis, the variables x1; :::; xn are redu
ible. Hen
e, the term (t x1 ::: xn) isredu
ible and its type is either � or o. Hen
e it is strongly terminating and so ist. (2) If x is a variable of type T or an individual symbol of type T di�erent fromS and K, then let u1, ..., un be redu
ible terms of types U1; :::; Un. By indu
tionhypothesis the terms u1; :::; un are strongly terminating. A redu
tion sequen
estarting from (x u1 ::: un) redu
es redexes in the terms u1; :::; un. Hen
e, it is�nite. The term (x u1 ::: xn) is strongly terminating and its type is � or o, hen
eit is redu
ible. Thus, x is redu
ible.Then, we prove by indu
tion over the height of t that every term is redu
ible.� If t is a variable or an individual symbol di�erent from S and K then itis redu
ible.� If t = (u v), then the terms u and v are redu
ible by indu
tion hypothesis,and the term t is redu
ible.



42 CHAPTER 3. TYPE THEORY� If t = K (resp. t = S) then let U1 ! ::: ! Un ! V (V = � or V = o)be the type of t and let u1; :::; un be redu
ible terms of types U1; :::; Un.We have to prove that the term (K u1 ::: un) (resp. (S u1 ::: un)) isstrongly terminating. Consider a redu
tion sequen
e t0; t1; t2; ::: startingfrom the term (K u1 ::: un) (resp. (S u1 ::: un)). We have to provethat this redu
tion sequen
e is �nite. If the root redex is never redu
ed,all redu
tions take pla
e in u1; :::; un, these terms are redu
ible and hen
estrongly terminating and the redu
tion sequen
e is �nite. If the root redexis redu
ed at step m, then the term tm has the form (K u01 u02 u03::: u0n)(resp. (S u01 u02 u03::: u0n)) and the term tm+1 is (u01 u03 ::: u0n) (resp.(u01 u03 (u02 u03) u04 ::: u0n)) where u01 is a redu
t of u1, ..., u0n is a redu
tof un. The term (u1 u3 ::: un) (resp. (u1 u3 (u2 u3) u4 ::: un)) is re-du
ible, hen
e it is strongly terminating and the term (u01 u03 ::: u0n) (resp.(u01 u03 (u02 u03) u04 ::: u0n)) is strongly terminating, thus the redu
tion se-quen
e t0; t1; t2; ::: is �nite. Therefore, the term K (resp. S) is redu
ible.All terms are redu
ible, hen
e all terms are strongly terminating.Proposition 3.3.3 The rewrite system T is strongly terminating.Proof. We redu
e termination in T to termination in the system SK. We de�nea translation k k of the terms and the propositions of type theory into terms oftype theory. In ea
h type T , we 
hoose a variable zT .� kxk = x,� kST;U;V k = ST;U;V ,kKT;Uk = KT;U ,� k(t u)k = (ktk kuk),� k _>k = k _?k = ((S K K) zo),k _:k = (S K K),k _̂ k = k __k = k _)k = ((S K K) zo!o!o),k _8Tk = k _9T k = (S (S K K) (K zT )),� k"(t)k = ktk,k>k = k?k = zo,k:Ak = kAk,kA ^Bk = kA _ Bk = kA) Bk = (zo!o!o kAk kBk),k8x Ak = k9x Ak = k(zT =x)Ak.We 
he
k that if A rewrites in one step to B in T , then kAk rewrites inat least one step to kBk in SK. If A0; A1; A2; ::: is a redu
tion sequen
e in T ,then the sequen
e kA0k; kA1k; kA2k; ::: is a redu
tion sequen
e in SK, thus it is�nite.Proposition 3.3.4 The rewrite system T is 
on
uent.



3.4. INFINITY 43Proposition 3.3.5 Ea
h term (resp. proposition) has a unique normal formfor the rewrite system T and the 
ongruen
e generated by this system 
an be
he
ked in an algorithmi
 way.Proof. It is terminating and 
on
uent.Proposition 3.3.6 Type theory has a model.Proof. Consider the modelM� = f0gMo = f0; 1gMT!U = MMTUŜT;U;V = a 7! (b 7! (
 7! a(
)(b(
))))K̂T;U = a 7! (b 7! a)�̂(a; b) = a(b)"̂(a) = a_̂> = 1_̂? = 0_̂:(a) = 1 if a = 0 and 0 otherwise_̂̂ (a; b) = 1 if a = 1 and b = 1 and 0 otherwise_̂_(a; b) = 1 if a = 1 or b = 1 and 0 otherwise_̂)(a; b) = 1 if a = 0 or b = 1 and 0 otherwise_̂8T (a) = 1 if for all b in MT a(b) = 1 and 0 otherwise_̂9T (a) = 1 if there exists a b in MT su
h that a(b) = 1 and 0 otherwiseIt is easy to 
he
k that jAj� = jBj� when A � B.3.4 In�nityA set is said E to be in�nite if there is fun
tion f mapping elements of E toelements of E that is inje
tive, but not surje
tive. In type theory this propositionInfinite(E) is expressed as follows.9a 9f 8x ("(E x)) (E (f x))) ^ 8x 8y (("(E x) ^ "(E y)^"((f x) _=(f y)))) "(x _=y)) ^ (8x ("(E x)) :"(a _=(f x))))Noti
e that the proposition 9E Infinite(E) is not valid in the model of propo-sition 3.3.6, hen
e it is not provable. If we repla
e M� by the set N in themodel of proposition 3.3.6, we keep a model of type theory and the proposition9E Infinite(E) is valid in this model. Thus, the proposition :9E Infinite(E)is not valid in this model and therefore it is not provable either. Indeed, so farneither in type theory nor in set theory we have given an axiom that permits to
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onstru
t an in�nite set. To be able to formalize mathemati
s we need to addsu
h an axiom.In type theory, we add an axiom expressing that the set of obje
ts of type �is in�nite. Thus, the set E is su
h that "(E x) � > and we 
an formulate theaxiom 9a 9f 8x 8y ("((f x) _=(f y))) "(x _=y)) ^ (8x :"(a _=(f x)))Instead of taking an existential axiom, we 
an give a name to the fun
tion andto the element that is not in its image. For instan
e, we 
an 
all them Su and0 and we get the two axioms8x 8y ("((Su x) _=(Su y))) "(x _=y))8x :"(0 _=(Su x))that are two of Peano's axioms.These axioms be
ome theorems if we add some symbols and rewrite rules.De�nition 3.4.1 (Type theory with in�nity) Type theory with in�nity isthe extension of type theory with individual symbols 0 of type �, Su and Pred oftype �! �, an individual symbol Null of type �! o and the rules(Pred (Su x)) �! x(Null 0) �! _>(Null (Su 0)) �! _?Ex
er
ise 3.4.1 In simple type theory with in�nity, prove the propositions8x 8y ("((Su x) _=(Su y))) "(x _=y))8x :"(0 _=(Su x))Proposition 3.4.1 Type theory with in�nity has a model.Proof. Consider the modelM� = NMo = f0; 1gMT!U = MMTU0̂ = 0;Ŝu = n 7! n+ 1;^Pred = n 7! if n = 0 then 0 else n� 1;^Null = n 7! if n = 0 then 1 else 0;ŜT;U;V = a 7! (b 7! (
 7! a(
)(b(
))))K̂T;U = a 7! (b 7! a)�̂(a; b) = a(b)"̂(a) = a



3.5. MORE AXIOMS 45_̂> = 1_̂? = 0_̂:(a) = 1 if a = 0 and 0 otherwise_̂̂ (a; b) = 1 if a = 1 and b = 1 and 0 otherwise_̂_(a; b) = 1 if a = 1 or b = 1 and 0 otherwise_̂)(a; b) = 1 if a = 0 or b = 1 and 0 otherwise_̂8T (a) = 1 if for all b in MT a(b) = 1 and 0 otherwise_̂9T (a) = 1 if there exists a b in MT su
h that a(b) = 1 and 0 otherwiseIt is easy to 
he
k that jAj� = jBj� when A � B.There are many ways to 
onstru
t the natural numbers in type theory within�nity (as �nite 
ardinals, ...). An easy way is simply to take 0 for zero and(Su n) for the su

essor of n.Then the type � 
ontains all the natural numbers, but possibly also otherobje
ts. The set of natural numbers 
an be de�ned as the smallest set 
ontaining0 and 
losed by su

essor, i.e. as the interse
tion of all su
h sets. An obje
t is amember of N if it is a member of all sets E 
ontaining 0 and 
losed by su

essor.Thus "(N n) = 8E (("(E 0) ^ (8x ("(E x)) "(E (Su x))))) ) "(E n))The existen
e of su
h an obje
t given by proposition 3.3.1.Ex
er
ise 3.4.2 Prove the indu
tion theorem8E ("(E 0) ^ 8x ("(E x)) "(E (Su x)))) ) 8n ("(N n)) "(E n))3.5 More axioms3.5.1 ExtensionalityIn mathemati
s, it is usual to 
onsider that two sets that have the same elementsare equal and that two fun
tions that are point-wise equal are equal. This leads,both in set theory and in type theory to the axiom of extensionality. In typetheory, this axiom is stated8f 8g ((8x "((f x) _=(g x))) ) "(f _=g))8x 8y ("(x), "(y))) "(x _=y)3.5.2 Des
riptionsThe proposition 3.3.1 permits for instan
e to prove the existen
e of a fun
tionthat adds two to its arguments, i.e. the proposition9f 8x "((f x) _=(Su (Su x)))



46 CHAPTER 3. TYPE THEORYbut, it does not permit to prove the existen
e of a fun
tion that takes the value 1on 1 and the value 0 anywhere else. Indeed, it 
an be proved that the proposition9f 8x (("(x _=(Su 0))) "((f x) _=(Su 0))) ^ (:"(x _=(Su 0))) "((f x) _=0)))has no proof in type theory.In 
ontrast, with the proposition 3.3.1, it is easy to prove the existen
e ofthe graph of this fun
tion, i.e. the proposition9R 8x 8y ("(R x y), (("(x _=1)) "(y _=1)) ^ (:"(x _=1)) "(y _=0))))and we 
an also prove, for instan
e by indu
tion, that this relation is fun
tional,i.e. that 8x ("(N x)) 91y "(R x y))But to 
on
lude to the existen
e of the fun
tion we need the following axiom(des
riptions axiom)8P 8Q (8x ("(P x)) 91y "(Q x y))) 9f 8x ("(P x)) "(Q x (f x)))that relates fun
tions and fun
tional relations.In set theory, fun
tions are fun
tional relations, thus they need no axiom tobe related.3.6 Type theory with a binderWe have seen in proposition 3.3.1 that to have a language 
ontaining the fun
tionsymbols �T;U and the individual symbols ST;U;V and KT;U and the relatedrewrite rules is suÆ
ient to prove that, for ea
h term t and variable x thereis a term u not 
ontaining the variable x su
h that (u x) � t. But, the termu is sometimes 
umbersome to 
ompute. It is more 
omfortable to have asymbol 7! su
h that the fun
tion mapping x to t 
an simply be written x 7! t.The symbol 7! is a fun
tion symbol of one argument binding one variable inits argument. When we take the symbol 7!, the symbols S and K be
omesuper
uous (S = x 7! y 7! z 7! ((x z) (y z)), K = x 7! y 7! x). We thus getthe following theory.De�nition 3.6.1 (Language of type theory with a binder) The languageof simple type theory with a binder is formed with� a predi
ate symbol " of rank hoi,� for ea
h pair of type T; U , a fun
tion symbol �T;U of rank hT ! U; T; Ui,for ea
h pair of types T; U a fun
tion symbol 7! of rank hhT; Ui; T ! Ui,� individual symbols _> and _? of sort o,an individual symbol _: of sort o! o,individual symbols _̂ , __, _) of sort o! o! o,for ea
h type T , individual symbols _8T and _9T of type (T ! o)! o.



3.6. TYPE THEORY WITH A BINDER 47De�nition 3.6.2 (Rewrite system of type theory with a binder) The rewritesystem T 0 is de�ned by the rules((x 7! t) u) �! (u=x)t"( _>) �! >"( _?) �! ?"( _: x) �! :"(x)"( _̂ x y) �! "(x) ^ "(y)"( __ x y) �! "(x) _ "(y)"( _) x y) �! "(x)) "(y)"( _8T x) �! 8y "(x y)"( _9T x) �! 9y "(x y)To prove that the rewrite system T 0 is terminating, we �rst fo
us on the �rstrule.Proposition 3.6.1 (Tait's theorem with a binder) The rewrite system((x 7! t) u) �! (u=x)tis strongly terminating.Proof. The set jT j of redu
ible terms of type T is de�ned by indu
tion over theheight of T .� If T is � or o then t is in jT j if and only if it is strongly terminating.� If T = T1 ! T2 then t is in jT j if and only if it is strongly terminatingand when its redu
es to a term of the form x 7! t0 then for every term uin jT1j, (u=x)t0 is in jT2j.To prove that all terms of type T are strongly terminating, we prove thatall terms of type T are in jT j. More generally, we prove, by indu
tion over theheight of t, that if t is a term of type T , � a substitution mapping variables oftype U to elements of jU j, then �t is in jT j.� If t = y, then if y is in the domain of � then �t is in jT j. Otherwise,�t = y, the variable y is normal, hen
e it is strongly terminating and it
annot redu
e to a term of the form x 7! t0, hen
e it is in jT j.



48 CHAPTER 3. TYPE THEORY� If t = x 7! u, then T = T1 ! T2. Modulo alphabeti
 equivalen
e, we 
an
hose the variable x not appearing in �, thus �t = x 7! �u. This term isstrongly terminating be
ause a redu
tion sequen
e issued from it 
an onlyredu
e the term �u and, by indu
tion hypothesis, this term is in jT2j andthus it is strongly terminating. Then, if �t redu
es to the term x 7! t0,then t0 is a redu
t of �u. Let v be a term of jT2j, the term (v=x)t0 is aredu
t of ((v=x) Æ �)u, that is in jT2j by indu
tion hypothesis. It is easyto 
he
k that jT2j is 
losed by redu
tion. Thus the term (v=x)t0 is in jT2j.Hen
e, the term �t is in jT j.� If t = (t1 t2) and t1 is a term of type U ! T and t2 a term of type U .We have �t = (�t1 �t2). By indu
tion hypothesis �t1 and �t2 are in thesets jU ! T j and jU j. To prove that �t is in jT j, we prove that if u1 is injU ! T j and u2 is in U then (u1 u2) is in jT j.The terms u1 and u2 are strongly terminating. Let n be the maximumlength of a redu
tion sequen
e issued from u1 and n0 the maximum lengthof a redu
tion sequen
e issued from u2. We prove that (u1 u2) is in jT jby indu
tion on n+ n0.First we prove that (u1 u2) is strongly terminating. Consider a redu
tionsequen
e issued from this term. If the �rst redex is in u1 or u2 then weapply the indu
tion hypothesis, otherwise the redex is at the root of theterm (u1 u2), u1 has the form x 7! u0 and the �rst step of the redu
tionsequen
e redu
es (u1 u2) to (u2=x)u0. This term is in jT j, hen
e it isstrongly terminating and the redu
tion sequen
e is �nite. Then, we provethat if T = U1 ! U2 and (u1 u2) redu
es to a term of the form y 7! v, thenfor every term w in jU1j, (w=y)v is in jU2j. As (u1 u2) is an appli
ation,the redu
tion sequen
e is not empty. If the �rst redex is in u1 or u2, weapply the indu
tion hypothesis, otherwise the redex is at the root of theterm (u1 u2), u1 has the form x 7! u0 and the �rst step of the redu
tionsequen
e redu
es (u1 u2) to (u2=x)u0. This term is in jT j and it redu
esto y 7! v, hen
e for every term w in jU1j, (w=y)v is in jU2j. Thus the term(u1 u2) is in jT j.Proposition 3.6.2 The rewrite system T 0 is strongly terminating.Proof. We follow the lines of the proof of proposition 3.3.3 and redu
e termina-tion in T 0 to termination in the system formed with the �rst rule. We de�ne atranslation k k of the terms and the propositions of type theory into terms oftype theory. In ea
h type T , we 
hoose a variable zT .� kxk = x,� kx 7! tk = x 7! ktk,� k(t u)k = (ktk kuk),



3.6. TYPE THEORY WITH A BINDER 49� k _>k = k _?k = ((x 7! x) zo),k _:k = x 7! x,k _̂ k = k __k = k _)k = ((x 7! x) zo!o!o),k _8Tk = k _9T k = x 7! (x zT ),� k"(t)k = ktk,k>k = k?k = zo,k:Ak = kAk,kA ^ Bk = kA _ Bk = kA) Bk = (zo!o!o kAk kBk),k8x Ak = k9x Ak = k(zT=x)Ak.We 
he
k that if A rewrites in one step to B in T , then kAk rewrites in atleast one step to kBk in the system formed with the �rst rule. If A0; A1; A2; ::: isa redu
tion sequen
e in T , then the sequen
e kA0k; kA1k; kA2k; ::: is a redu
tionsequen
e in the system formed with the �rst rule, thus it is �nite.Proposition 3.6.3 The rewrite system T 0 is 
on
uent.Remark. If we add the axiom of extensionality to both formulations of typetheory we get equivalent theories, i.e. ea
h language 
an be translated into theother preserving provability. When we do not take the extensionality axioms,there are subtle di�eren
es between these theories, we shall not dis
uss here.Remark. Some authors use the notation �x t for x 7! t, hen
e the name �-
al
ulus for this language.
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Chapter 4Cut elimination inpredi
ate logi
4.1 Uniform proofsA natural dedu
tion proof built without the ex
luded middle rule is said to be
onstru
tive. The 
hoi
e of this name 
omes from the fa
t that, as we shall see,from a 
onstru
tive proof in the empty theory of a proposition of the form 9x A,it is possible to 
ompute a term t and a proof of the proposition (t=x)A. Su
h aterm t is 
alled a witness of the proposition 9x A. Thus, expli
itly or impli
itly,a 
onstru
tive existen
e proof 
ontains a witness.Conversely, from a term t and a proof of (t=x)A, the rule 9-intro permits tobuild a proof of the proposition 9x A. A proof ended by an introdu
tion ruleis said to be uniform. Witnesses are expli
it in uniform existen
e proofs. Thus,it is equivalent to have a term t and a proof of (t=x)A or a uniform proof ofthe proposition 9x A. To prove that from a 
onstru
tive proof of a propositionof the form 9x A we 
an 
ompute a witness, we shall prove that all proofs 
anbe transformed into uniform ones. For instan
e, the non uniform proof of theproposition 9x (P (x) ) P (x))9x (P (x)) P (x)) ` 9x (P (x)) P (x)) )-intro` 9x (P (x)) P (x))) 9x (P (x)) P (x)) P (
) ` P (
) )-intro` P (
)) P (
) 9-intro` 9x (P (x)) P (x)))-elim` 9x (P (x)) P (x))will be transformed into P (
) ` P (
) )-intro` P (
)) P (
) 9-intro` 9x (P (x)) P (x))From the fa
t that all proofs 
an be transformed into uniform ones, we willdedu
e that� if A is an atomi
 proposition then it has no proof,51



52 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC� ? has no proof,� if :A has a proof then ? has a proof from the axiom A,� if A ^ B has a proof then A has a proof and B has a proof,� if A _ B has a proof then A has a proof or B has a proof,� if A) B has a proof then B has a proof from the axiom A,� if 8x A has a proof then A has a proof,� if 9x A has a proof then there is a term t su
h that (t=x)A has a proof.The results obtained for the 
ase of >, :, ^, ) and 8 are trivial, they 
ansimply be established with the elimination rules. The interesting results arethus for ?, _ and 9. The result in the 
ase of the existential quanti�er 9 is thewitness property. The result obtained in the 
ase of the disjun
tion _ is 
alledthe disjun
tion property. The result obtained in the 
ase of the 
ontradi
tion? is the 
onsisten
y of the empty theory. Thus, like model 
onstru
tions, prooftransformation results permit to prove 
onsisten
y and independen
e results.Ex
er
ise 4.1.1 (Independen
e of the Ex
luded middle rule) Considera language formed with a proposition symbol P and a theory 
ontaining no ax-ioms and no rewrite rules. Constru
t a model where the proposition P is notvalid. Does this proposition have a proof ? Constru
t a model where the propo-sition :P is not valid. Does this proposition have a proof ? Does the propositionP _ :P have a 
onstru
tive proof ?Ex
er
ise 4.1.2 Consider a language formed with a proposition symbol P anda theory 
ontaining no axioms and no rewrite rules. Constru
t a model wherethe proposition P is not valid. Does this proposition have a proof ? Constru
t amodel where the proposition :P is not valid. Does this proposition have a proof ?Does the proposition P _ :P have a proof (possibly using the ex
luded middlerule) ? Does natural dedu
tion with the ex
luded middle have the disjun
tionproperty ?Ex
er
ise 4.1.3 Consider a language formed with a proposition symbol P , apredi
ate symbol Q of one argument and two individual symbols 0 and 1 and atheory 
ontaining no axioms and no rewrite rules. Constru
t a model where theproposition (((Q(0)) Q(0)) ^ P ) _ (Q(1)) Q(0) ^ :P ))is not valid. Does this proposition have a proof ? Constru
t a model where theproposition (((Q(0)) Q(1)) ^ P ) _ (Q(1)) Q(1) ^ :P ))is not valid. Does this proposition have a proof ? Does the proposition9x (((Q(0)) Q(x)) ^ P ) _ (Q(1)) Q(x) ^ :P ))have a proof (possibly using the ex
luded middle) ? Does natural dedu
tion withthe ex
ludes middle rule have the witness property ?



4.2. CUTS AND CUT ELIMINATION 53Remark. Some problems in mathemati
s have the form \Find an obje
t xsu
h that A". One way to solve su
h a problem is to prove 
onstru
tively theproposition 9x A, to transform this proof into a uniform one and to read thewitness in the proof. For instan
e, �nding the quotient of the division of 9 by 2
an be done in the following way: �st prove 
onstru
tively the proposition9q 9r (9 = 2� q + r ^ r < 2)then transform this proof into a uniform one and read the witness in the proof.One advantage of pro
eeding this way, 
ompared to other division algorithms,is that the result 
annot be wrong. Indeed, a uniform proof of9q 9r (9 = 2� q + r ^ r < 2)not only 
ontains the witness 4 but also a proof of the proposition9r (9 = 2� 4 + r ^ r < 2)Of 
ourse, �nding a proof of the proposition9q 9r (9 = 2� q + r ^ r < 2)may be tedious, but it is not if we prove on
e for all the proposition8n 8p (:(p = 0)) 9q 9r (n = p� q + r ^ r < p))Noti
e that when we apply this theorem to 9 and 2 and to a proof of :2 = 0 weget a proof of 9q 9r (9 = 2� q + r ^ r < 2)that is not uniform. Thus, this proof needs to be transformed before the witness
an be read. The quotient 4 is 
omputed during this transformation. Thus 
utelimination is the exe
ution pro
ess of mathemati
s seen as a programminglanguage.4.2 Cuts and 
ut eliminationDe�nition 4.2.1 (Cut, 
ut free) A 
ut is a proof ended with an eliminationrule whose left premise is proved by an introdu
tion rule on the same symbol.Here are the di�erent 
ases ��; A ` ? :-intro� ` :A �0� ` A :-elim� ` ?�� ` A �0� ` B ^-intro� ` A ^B ^-elim� ` A



54 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC�� ` A �0� ` B ^-intro� ` A ^B ^-elim� ` B�� ` A _-intro� ` A _ B �0�; A ` C �00�; B ` C _-elim� ` C�� ` B _-intro� ` A _ B �0�; A ` C �00�; B ` C _-elim� ` C��; A ` B )-intro� ` A) B �0� ` A)-elim� ` B�� ` A 8-intro� ` 8x A 8-elim� ` (t=x)A�� ` (t=x)A 9-intro� ` 9x A �0�; A ` B 9-elim� ` BA proof 
ontains a 
ut if one of its sub-trees is a 
ut. Otherwise it is 
ut free.It is easy to 
he
k that 
ut free proofs in the empty theory are uniform.Proposition 4.2.1 In the empty theory, a 
ut free proof ends with an intro-du
tion rule.Proof. By indu
tion over the height of the proof. The last rule 
annot bean axiom rule, be
ause the theory 
ontains no axioms. If the last rule is anelimination, then the left premise of the elimination is proved with a 
ut freeproof. Hen
e it ends by an introdu
tion and the proof is a 
ut 
ontradi
ting thefa
t that it is 
ut free.Thus to prove that all proofs 
an be transformed into uniform ones we willprove that all proofs 
an be transformed into 
ut free ones. To do so, we de�nea pro
ess that eliminates 
uts step by step. A 
ut of the form��; A ` ? :-intro� ` :A �0� ` A :-elim� ` ?is repla
ed by the proof obtained this way: in the proof � we suppress thehypothesis A in all sequents, then ea
h time the axiom rule is used with this



4.2. CUTS AND CUT ELIMINATION 55proposition, we repla
e it with the proof �0. A 
ut of the form�� ` A �0� ` B ^-intro� ` A ^B ^-elim� ` Ais repla
ed by the proof �. A 
ut of the form�� ` A �0� ` B ^-intro� ` A ^B ^-elim� ` Bis repla
ed by the proof �0. A 
ut of the form�� ` A _-intro� ` A _B �0�; A ` C �00�; B ` C _-elim� ` Cis repla
ed by the proof obtained this way: in the proof �0 we suppress thehypothesis A in all sequents, then ea
h time the axiom rule is used with thisproposition, we repla
e it by the proof �. A 
ut of the form�� ` B _-intro� ` A _B �0�; A ` C �00�; B ` C _-elim� ` Cis repla
ed by the proof obtained this way: in the proof �00 we suppress thehypothesis B in all sequents, then ea
h time the axiom rule is used with thisproposition, we repla
e it by the proof �. A 
ut of the form��; A ` B )-intro� ` A) B �0� ` A)-elim� ` Bis repla
ed by the proof obtained this way: in the proof � we suppress thehypothesis A in all sequents, then ea
h time the axiom rule is used with thisproposition, we repla
e it with the proof �0. A 
ut of the form�� ` A 8-intro� ` 8x A 8-elim� ` (t=x)Ais repla
ed by the proof � where the variable x is substituted by the term teverywhere. A 
ut of the form�� ` (t=x)A 9-intro� ` 9x A �0�; A ` B 9-elim� ` B



56 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGICis repla
ed by the proof obtained this way: in the proof �0, we substitute thevariable x by the term t everywhere, then we suppress the hypothesis (t=x)Ain all sequents and ea
h time the axiom rule is used with this proposition, werepla
e it with the proof �.Ex
er
ise 4.2.1 Eliminate the 
uts in the proof9x (P (x)) P (x)) ` 9x (P (x)) P (x)) )-intro` 9x (P (x)) P (x))) 9x (P (x)) P (x)) P (
) ` P (
) )-intro` P (
)) P (
) 9-intro` 9x (P (x)) P (x)))-elim` 9x (P (x)) P (x))When a proof 
ontains a 
ut, it is always simple to remove it, thus the 
utelimination pro
ess is not diÆ
ult to de�ne. But removing a 
ut may 
reatenew 
uts, so the main question is that of the termination of this pro
ess.4.3 Proofs as termsThe 
ut elimination pro
ess of the previous se
tion is still 
umbersome to ex-press. This is due to the fa
t that we use a too 
umbersome notation for naturaldedu
tion proof. The goal of this se
tion is to introdu
e another notation forthese proofs.As we have seen, one of the key operations in this proof transformationpro
ess is the substitution of a variable by a term. Another key operation isthe following: in a proof � of the sequent �; A ` B, remove the hypothesisA in all sequents and repla
e the axiom rules on this proposition by a proof�0 of the sequent � ` A. To be able to express smoothly this operation, it isbetter to use a notation where proofs are expressed by terms 
ontaining spe
ialvariables standing for proofs of the hypotheses. Thus to express a proof of asequent A1; :::; An ` B we shall �rst introdu
e variables �1; :::; �n standing forproofs of the propositions A1; :::; An. If B is the proposition Ai and the sequentA1; :::; An ` Ai is proved with the axiom rule, we shall write this proof �i.Now a proof � of the sequent �; A ` B is expressed by a term 
ontaining onevariable for ea
h proposition of � and a variable � for A and the proof obtainedby removing the hypothesis A in all sequents of � and repla
ing the axiom ruleson this proposition by a proof �0 of the sequent � ` A is simply obtained bysubstituting the proof �0 for the variable � in �.For ea
h natural dedu
tion rule, we introdu
e a fun
tion symbol. To expressa proof su
h as �� ` A �0� ` B ^-intro� ` A ^Bwe express �rst the proofs � and �0 as terms, then we apply the fun
tion symbolof two arguments asso
iated to the rule ^-intro to � and �0.In the 
ase of the rule)-intro, we transform a proof � of the sequent �; A `B into one of the sequent � ` A ) B 
ontaining less hypotheses. The proof �



4.3. PROOFS AS TERMS 57is expressed by a term 
ontaining a variable � standing for a proof of A. Thisvariable must not appear in the proof of � ` A) B. Thus the fun
tion symbolasso
iated to the rule )-intro must be a binder.From now on, to simplify proofs, we shall drop the negation symbol :.Everything works for the proposition :A as for the proposition A) ?.De�nition 4.3.1 (Term notation for proofs) We express proofs as termsin a language with two sorts: one for terms of the theory and the other forproof-terms. Terms of the theory will be written with Latin letters (t, u, ...)while proof-terms will be written with Greek letters (�, ...).� The proof AxiomA1; :::; An ` Aiis expressed by the term �i.� The proof >-intro� ` >is expressed by the term I, where I is an individual symbol.� The proof �� ` ? ?-elim� ` Ais expressed by the term Æ?(�), where Æ? is a fun
tion symbol of oneargument.� The proof �� ` A �0� ` B ^-intro� ` A ^Bis expressed by the term h�; �0i, where h; i is a fun
tion symbol of twoarguments.� The proof �� ` A ^B ^-elim� ` Ais expressed by the term fst(�) and the proof�� ` A ^B ^-elim� ` Ais expressed by the term snd(�) where fst and snd are fun
tion symbols ofone argument.



58 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC� The proof �� ` A _-intro� ` A _Bis expressed by the term i(�) and the proof�� ` B _-intro� ` A _Bis expressed by the term j(�), where i and j are fun
tion symbols of oneargument.� The proof �� ` A _B �0�; A ` C �00�; B ` C _-elim� ` Cis expressed by the term Æ(�; � �0; � �00), where Æ is a fun
tion symbol ofthree arguments binding one variable in its se
ond argument and one inits third.� The proof ��; A ` B )-intro� ` A) Bis expressed by the term � 7! �, where 7! is a fun
tion symbol of oneargument binding one variable in its argument.� The proof �� ` A) B �0� ` A)-elim� ` Bis expressed by the term �(�; �0), where � is a fun
tion symbol of twoarguments. This term is also simply written (� �0).� The proof �� ` A 8-intro� ` 8x Ais expressed by the term x 7! �, where 7! is a fun
tion symbol of oneargument binding one variable in its argument.� The proof �� ` 8x A 8-elim� ` (t=x)Ais expressed by the term �(�; t) where � is a fun
tion symbol of two argu-ments. This term is also simply written (� t).



4.3. PROOFS AS TERMS 59� The proof �� ` (t=x)A 9-intro� ` 9x Ais expressed by the term ht; �i where h; i is a fun
tion symbol of two argu-ments.� The proof �� ` 9x A �0�; A ` B 9-elim� ` Bis expressed by the term Æ9(�; x� �0) where Æ9 is a fun
tion symbol of twoarguments binding two variables in its se
ond argument.Ex
er
ise 4.3.1 Write the term asso
iated to the proof9x (P (x)) P (x)) ` 9x (P (x)) P (x)) )-intro` 9x (P (x)) P (x))) 9x (P (x)) P (x)) P (
) ` P (
) )-intro` P (
)) P (
) 9-intro` 9x (P (x)) P (x)))-elim` 9x (P (x)) P (x))Remark.(An histori
al note on the 
hoi
e of symbols) The 
hoi
e of these sym-bols 
omes from a tradition due to Brouwer, Heyting and Kolmogorov, a

ordingto whi
h� there is only one proof of >,� there is no proof of ?,� a proof of A ^ B is an ordered pair formed with a proof of A and a proofof B,� a proof of A _ B is a boolean value together with a proof of A or Ba

ording to the value of the boolean,� a proof of A) B is a fun
tion mapping proofs of A to proofs of B,� a proof of 8x A is a fun
tion mapping any obje
t t to a proof of (t=x)A,� a proof of 9x A is an ordered pair formed with a term t and a proof of(t=x)A.Remark. (Types of proofs) If � is a proof of B under the hypothesis A then� 7! � is a proof of A ) B. As all proofs have the same sort, the proof-term� 7! � does not have a type, but if we wanted to give a type to it, it wouldget the type A0 ! B0 where A0 is the type of proofs of A and B0 the type ofproofs of B. Thus the type of a proof would be isomorphi
 to the propositionproved by the proof-term. This isomorphism is 
alled Curry-de Bruijn-Howardisomorphism. In parti
ular it 
an be proved that a type 
ontains a 
losed term



60 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGICin the language of de�nition 3.3.2 or 3.6.1 if and only if this type is isomorphi
to proposition that has a 
onstru
tive proof.As proof-terms have no type, there are proof-terms that are proof of noproposition. For instan
e, if P is a proposition symbol and � a variable standingfor a proof of P then the proof-term (� �) does not 
orresponds to any proof.The natural dedu
tion rules are now used to express whi
h proof-terms is a aproof of whi
h proposition. We use a notation �1 : A1; :::; �n : An ` � : B toexpress that � is a proof of the sequent A1; :::; An ` B where �1; :::; �n are thenames given to the variables of standing for proofs of the propositions A1; :::; An.The rules are the following.De�nition 4.3.2 (Dedu
tion rules with proofs)Axiom if � : A 2 �� ` � : A >-intro� ` I : ?� ` � : ? ?-elim� ` Æ?(�) : A� ` � : A � ` �0 : B ^-intro� ` h�; �0i : A ^B� ` � : A ^ B ^-elim� ` fst(�) : A� ` � : A ^ B ^-elim� ` snd(�) : B� ` � : A _-intro� ` i(�) : A _B� ` � : B _-intro� ` j(�) : A _ B� ` � : A _ B �; � : A ` �0 : C �; � : B ` �00 : C _-elim� ` Æ(�; ��0; ��00) : C�; � : A ` � : B )-intro� ` � 7! � : A) B� ` � : A) B � ` �0 : A)-elim� ` (� �0) : B� ` � : A 8-intro if x 62 FV (�)� ` x 7! � : 8x A� ` � : 8x A 8-elim� ` (� t) : (t=x)A



4.4. CUT ELIMINATION 61� ` � : (t=x)A 9-intro� ` ht; �i : 9x A� ` � : 9x A �; � : A ` �0 : B 9-elim if x 62 FV (�; B)� ` Æ9(�; x��0) : BProposition 4.3.1 A sequent A1; : : : ; An ` B is derivable in natural dedu
tionif and only if there exists a term � su
h that the judgment �1 : A1; : : : ; �n : An `� : B is derivable in this system.The 
ut elimination rules 
an now be rephrased on the proof-termsDe�nition 4.3.3 (Cut elimination rules)fst(h�1; �2i) �! �1snd(h�1; �2i) �! �2Æ(i(�1); ��2; ��3) �! (�1=�)�2Æ(j(�1); ��2; ��3) �! (�1=�)�3((� 7! �1) �2) �! (�2=�)�1((x 7! �) t) �! (t=x)�Æ9(ht; �1i; �x�2) �! (t=x; �1=�)�2Proposition 4.3.2 (Subje
t redu
tion) If � ` � : P and � �! �0 then� ` �0 : P .4.4 Cut eliminationWe now want to prove that if a proof-term is a proof of some proposition thenit is strongly terminating. Following the idea of Curry-de Bruijn-Howard iso-morphism, this proof extends that of proposition 3.6.1.De�nition 4.4.1 (Redu
ible proof-terms) Let A be a proposition. We de-�ne the set jAj of redu
ible proof-terms of A by indu
tion over the height ofA. � If A is an atomi
 proposition then a proof-term � is an element of jAj ifit is strongly terminating.� A proof-term � is an element of j>j if it is strongly terminating.� A proof-term � is an element of j?j if it is strongly terminating.� A proof-term � is an element of jA ^ Bj if it is strongly terminating andwhen � redu
es to a proof-term of the form h�1; �2i then �1 is an elementof jAj and �2 is an element of jBj.



62 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC� A proof-term � is an element of jA _ Bj if it is strongly terminating andwhen � redu
es to a proof-term of the form i(�1) (resp. j(�2)) then �1(resp. �2) is an element of jAj (resp. jBj).� A proof-term � is element of jA ) Bj if it is strongly terminating andwhen � redu
es to a proof-term of the form � 7! �1 then for every �0 injAj, (�0=�)�1 is an element of jBj.� A proof-term � is an element of j8x Aj if it is strongly terminating andwhen � redu
es to a proof-term of the form x 7! �1 then for every term t(t=x)�1 is an element of j(t=x)Aj (whi
h is equal to jAj).� A proof-term � is an element of j9x Aj if it is strongly terminating andwhen � redu
es to a proof-term of the form ht; �1i then �1 is an elementof j(t=x)Aj (whi
h is equal to jAj).Lemma 4.4.1 Elements of jAj are strongly terminating.Proof. By de�nition.Lemma 4.4.2 If � is an element of jAj and � �! �0 then �0 is an element ofjAj.Proof. By de�nition.Lemma 4.4.3 All variables are members of jAj.Proof. By de�nition.Lemma 4.4.4 If � is an elimination and if for every �0 su
h that � �!1 �0,�0 2 jAj then � 2 jAj.Proof. We �rst prove that � is strongly terminating. Let � = �1; �2; : : : be aredu
tion sequen
e issued from �. If this sequen
e is empty it is �nite. Oth-erwise we have � �!1 �2 and hen
e �2 is an element of jAj thus it is stronglyterminating and the redu
tion sequen
e is �nite.Then, we prove that if � redu
es to an introdu
tion then the sub-termsbelong to the appropriate sets. Let � = �1; �2; : : : �n be a redu
tion sequen
eissued from � and su
h that �n is an introdu
tion. This sequen
e 
annot beempty be
ause � is an elimination. Thus � �!1 �2 �! �n. We have �2 2 jAjand thus if �n is an introdu
tion the sub-terms belong to the appropriate sets.Proposition 4.4.5 (Gentzen-Prawitz theorem) If � ` � : A then the proof-term � is strongly terminating.



4.4. CUT ELIMINATION 63Proof. By lemma 4.4.1, it is suÆ
ient to prove that if � ` � : A then theproof-term � is an element of jAj. More generally, we prove, by indu
tion overthe height of the proof-assignment tree, that if � ` � : A, � is a substitutionmapping the term variable to terms and � is a substitution mapping some proofvariables asso
iated to a proposition B in � to an element of jBj, then ��� isan element of jAj.� Axiom. If � is a variable �, we have (� : A) 2 �. If � is in the domain ofde�nition of �, then ��� = �� is an element of jAj, otherwise ��� = �� = �is an element of jAj by proposition 4.4.3.� >-intro. The proof-term � has the form I . We have ��� = I . This proof-term is normal and thus it is strongly terminating. Hen
e, the proof-term��I is in jAj.� ^-intro. The proof-term � has the form h�1; �2i where �1 is a proof ofsome proposition B and �2 a proof of some proposition C. We have��� = h���1; ���2i. Consider a redu
tion sequen
e issued from this proof-term. This sequen
e 
an only redu
e the proof-terms ���1 and ���2.By indu
tion hypothesis these proof-terms are in jBj and jCj. Thus theredu
tion sequen
e is �nite.Furthermore, all redu
ts of ��� have the form h�01; �02i where �01 is a redu
tof ���1 and �02 one of ���2. The proof-terms �01 and �02 are in jBj and jCjby proposition 4.4.2.Hen
e, the proof-term ��h�1; �2i is in jAj.� _-intro. The proof-term � has the form i(�) (resp. j(�)) and � is a proofof some proposition B. We have ��� = i(���) (resp. j(���)). Considera redu
tion sequen
e issued from this proof-term. This sequen
e 
an onlyredu
e the proof-terms ���. By indu
tion hypothesis this proof-term isan element of jBj. Thus the redu
tion sequen
e is �nite.Furthermore, all redu
ts of ��� have the form i(�0) (resp. j(�0)) where �0is a redu
t of ���. The proof-term �0 is an element of jBj by proposition4.4.2.Hen
e, the proof-term ��i(�) (respe
tively ��j(�)) is an element of jAj.� )-intro. The proof-term � has the form � 7! � where � is a proof variableof some proposition B and � a proof of some proposition C. We have��� = � 7! ���, 
onsider a redu
tion sequen
e issued from this proof-term. This sequen
e 
an only redu
e the proof-term ���. By indu
tionhypothesis, the proof-term ��� is an element of jCj, thus the redu
tionsequen
e is �nite.Furthermore, all redu
ts of ��� have the form � 7! �0 where �0 is a redu
tof ���. Let � be any proof of jBj, the proof-term (�=�)�0 
an be obtainedby redu
tion from ((�=�) Æ �)��. By indu
tion hypothesis, the proof-term



64 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC((�=�) Æ �)�� is an element of jCj. The proof term (�=�)�0 is an elementof jCj, by proposition 4.4.2.Hen
e, the proof-term ��(� 7! �) is an element of jAj.� 8-intro. The proof-term � has the form x 7! � where � is a proof of someproposition B. We have ��� = x 7! ���. Consider a redu
tion sequen
eissued from the proof-term ��� = x 7! ���. This sequen
e 
an onlyredu
e the proof-term ���. By indu
tion hypothesis, the proof-term ���is an element of jBj, thus the redu
tion sequen
e is �nite.Furthermore, all redu
ts of ��� have the form x 7! �0 where �0 is aredu
t of ���. The proof-term (t=x)�0 is obtained by redu
ing the proof-term ((t=x)�)((t=x) Æ �)�. By indu
tion hypothesis again, the proof-term((t=x)�)((t=x) Æ �)� is an element of jBj. The proof-term (t=x)�0 is anelement of jBj, by proposition 4.4.2.Hen
e ��(x 7! �) is an element of jAj.� 9-intro. The proof-term � has the form ht; �i, where � is a proof of someproposition B. We have ��� = h�t; ���i. Consider a redu
tion sequen
eissued from this proof-term. This sequen
e 
an only redu
e the proof-term ���. By indu
tion hypothesis this proof-term is in jBj. Thus theredu
tion sequen
e is �nite.Furthermore, all redu
ts of ��� have the form h�t; �0i where �0 is a redu
tof ���. The proof-term �0 is an element of jBj, by proposition 4.4.2.Hen
e, the proof-term ��ht; �i is an element of jAj.� ?-elim. The proof-term � has the form Æ?(�) where � is a proof of ?.We have ��� = Æ?(���). By indu
tion hypothesis, the proof-term ���is an element of j?j. Hen
e, it is strongly terminating. Let n be themaximum length of redu
tion sequen
es issued from this proof-term. Weprove by indu
tion on n that Æ?(���) is in jAj. Sin
e this proof-term isan elimination, by proposition 4.4.4, we only need to prove that every ofits one step redu
ts is in jAj. The redu
tion 
an only take pla
e in ���and we apply the indu
tion hypothesis.Hen
e, the proof-term ��Æ?(�) is an element of jAj.� ^-elim. We only detail the 
ase of left elimination. The proof-term � hasthe form fst(�) where � is a proof of some proposition A ^ B. We have��� = fst(���). By indu
tion hypothesis the proof-term ��� is in jA^Bj.Hen
e, it is strongly terminating. Let n be the maximum length of aredu
tion sequen
e issued from this proof-term. We prove by indu
tionon n that fst(���) is in the set jAj. Sin
e this proof-term is a elimination,by proposition 4.4.4, we only need to prove that every of its one stepredu
ts is in jBj. If the redu
tion takes pla
e in ��� then we apply theindu
tion hypothesis. Otherwise ��� has the form h�01; �02i and the redu
tis �01. By the de�nition of jA ^Bj this proof-term is in jAj.Hen
e, the proof-term ��fst(�) is an element of jAj.



4.4. CUT ELIMINATION 65� _-elim. The proof-term � has the form Æ(�1; ��2 ��3) where �1 is a proofof some proposition B _ C and �2 and �3 are proofs of A. We have��� = Æ(���1; ����2; ����3). By indu
tion hypothesis, the proof-term���1 is in the set jB _ Cj, and the proof-terms ���2 and ���3 are in theset jAj. Hen
e, these proof-terms are strongly terminating. Let n, n0 andn00 be the maximum length of redu
tion sequen
es issued from these proof-terms. We prove by indu
tion on n+ n0 + n00 that Æ(���1; ����2; ����3)is in jAj. Sin
e this proof-term is an elimination, by proposition 4.4.4,we only need to prove that every of its one step redu
ts is in jAj. If theredu
tion takes pla
e in ���1, ���2 or ���3 then we apply the indu
tionhypothesis. Otherwise, if ���1 has the form i(�0) (resp. j(�0)) and theredu
t is ((�0=�)Æ�)��2 (resp. ((�0=�)Æ�)��3). By the de�nition of jB_Cjthe proof-term �0 is in jBj (resp. jCj). Hen
e by indu
tion hypothesis((�0=�) Æ �)��2 (resp. ((�0=�) Æ �)��3) is in jAj.Hen
e, the proof-term ��Æ(�1; ��2; ��3) is an element of jAj.� )-elim. The proof-term � has the form (�1 �2) and �1 is a proof ofsome proposition B ) A and �2 a proof of the proposition B. We have��� = (���1 ���2). By indu
tion hypothesis ���1 and ���2 are in thesets jB ) Aj and jBj. Hen
e these proof-terms are strongly terminating.Let n be the maximum length of a redu
tion sequen
e issued from ���1and n0 the maximum length of a redu
tion sequen
e issued from ���2. Weprove by indu
tion on n+n0 that (���1 ���2) is in the set jAj. Sin
e thisproof-term is an elimination, by proposition 4.4.4, we only need to provethat every of its one step redu
ts is in jAj. If the redu
tion takes pla
e in���1 or in ���2 then we apply the indu
tion hypothesis. Otherwise ���1has the form � 7! �0 and the redu
t is (���2=�)�0. By the de�nition ofjB ) Aj this proof-term is in jAj.Hen
e, the proof-term ��(�1 �2) is an element of jAj.� 8-elim. The proof-term � has the form (� t) where � is a proof of someproposition 8x B and A = (t=x)B. We have ��� = (��� �t). By indu
-tion hypothesis, the proof-term ��� is in j8x Bj. Hen
e, it is stronglyterminating. Let n be the maximum length of a redu
tion sequen
e issuedfrom this proof-term. We prove by indu
tion on n that (��� �t) is in theset jAj. As this proof-term is an elimination, by proposition 4.4.4, we onlyneed to prove that every of its one step redu
ts is in jAj. If the redu
tiontakes pla
e in ��� then we apply the indu
tion hypothesis. Otherwise ���has the form x 7! �0 and the redu
t is (�t=x)�0. By the de�nition of j8x Bjthis proof-term is in jAj.Hen
e, the proof-term ��(� t) is an element of jAj.� 9-elim. The proof-term � has the form Æ9(�1; x��2) where �1 is a proofof some proposition 9x B and �2 is a proof of A. We have ��� =Æ9(���1; x����2). By indu
tion hypothesis, the proof-term ���1 is in the



66 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGICset j9x Bj and the proof-term ���2 is in the set jAj. Hen
e, these proof-terms are strongly terminating. Let n and n0 be the maximum length ofredu
tion sequen
es issued from these proof-terms. We prove by indu
-tion on n + n0 that Æ9(���1; x����2) is in jAj. As this proof-term is anelimination, by proposition 4.4.4, we only need to prove that every of itsone step redu
ts is in jAj. If the redu
tion takes pla
e in ���1 or ���2then we apply the indu
tion hypothesis. Otherwise, ���1 has the formht; �0i and the redu
t is (�0=�)(t=x)���2 = ((�0=�) Æ (t=x)�)((t=x) Æ �)�2.By the de�nition of j9x Bj, the proof-term �0 is in jBj. Thus, by indu
tionhypothesis, the proof-term ((�0=�) Æ (t=x)�)((t=x) Æ �)�2 is in jAj.Hen
e, the proof-term ��Æ9(�1; �x�2) is an element of jAj.4.5 Harrop theoriesWe have seen that 
onstru
tive 
ut free proofs in the empty theory are uniform,and we have dedu
ed the disjun
tion property and the witness property for theempty theory. Of 
ourse these properties do not extend to all theories, but theyextended to Harrop theories.De�nition 4.5.1 (Harrop theory) The set of Harrop propositions is indu
-tively de�ned as follows:� atomi
 propositions, > and ? are Harrop propositions,� :A is a Harrop proposition,� A ^ B is a Harrop proposition if A and B are Harrop propositions,� A) B is a Harrop proposition if B is a Harrop proposition,� 8x A is a Harrop proposition if A is a Harrop proposition,A Harrop theory is a theory whose axioms are all Harrop propositions.Proposition 4.5.1 Let � be a Harrop theory. If A_B has a 
onstru
tive proofin �, then A or B has a proof in � and this proof is 
onstru
tive. If 9x A hasa 
onstru
tive proof in �, then there is a term t su
h that (t=x)A has a proof in� and this proof is 
onstru
tive.Proof. By indu
tion over the height of the proof.If the proofs ends with an introdu
tion, then the result is trivial.The proof 
annot end with an axiom be
ause � 
ontains only Harrop propo-sitions and the 
on
lusion is not a Harrop proposition.We prove now that if the proof ends with an elimination then the theory �is 
ontradi
tory and hen
e the result is trivial.Let C1 be the 
on
lusion of the proof and C2 be the left premise of thiselimination, the proof of C2 
annot end with an introdu
tion be
ause the proof
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ut free, hen
e it ends with an axiom rule or an elimination, if it ends with anelimination rule, then let C3 be the left premise of this rule, ... Thus the ruleends with a sequen
e of elimination rules on propositions C1; :::; Cn and Cn isan axiom.We prove that at least one of the propositions C1; :::; Cn is ?. Assume thisis not the 
ase. Then the proposition Cn is a Harrop proposition be
ause it isan element of �. Let us prove that the proposition Cn�1 is also a Harrop propo-sition. The proposition Cn�1 has been produ
ed from Cn with an eliminationrule. This elimination rule 
annot be _-elim or 9-elim be
ause Cn is a Harropproposition, it 
annot be ?-elim, be
ause none of the propositions C1; :::; Cn is?. Hen
e it is either ^-elim, )-elim or 8-elim, thus Cn�1 is a Harrop propo-sition. We prove this way by indu
tion that all the propositions Cn; :::; C1 areHarrop propositions. Hen
e C1 is a Harrop proposition whi
h is 
ontradi
tory.Thus one of the propositions C1; :::; Cn is ?, thus the theory � is 
ontradi
-tory, it proves all propositions and the result is trivial.Ex
er
ise 4.5.1 Show that proofs of propositions of the form A_B and 9x Ain 
onsistent Harrop theories end with an introdu
tion rule.Corollary 4.5.2 Let P and Q be two proposition symbols, the proposition::(P _Q)) (P _Q)does not have a 
onstru
tive proof in the empty theory.Proof. Assume that the proposition ::(P _ Q) ) (P _ Q) has a proof. Let �be the Harrop theory formed with the axiom ::(P _Q), the proposition P _Qhas a proof in �. Thus either the proposition P or the proposition Q has proofin � and it is easy to 
onstru
t a model of � where P is not valid and a modelof � where Q is not valid.Corollary 4.5.3 Let P be a proposition symbol, the proposition::P ) Pdoes not have a 
onstru
tive proof in the empty theory.Proof. If it had, so would the proposition. ::(P _Q)) (P _Q).Corollary 4.5.4 Let P be a predi
ate symbol of one argument, the proposition(:8x P (x))) 9x :P (x)does not have a 
onstru
tive proof in the empty theory.Proof. Assume that the proposition (:8x P (x)) ) 9x :P (x) has a proof. Let� be the Harrop theory formed with the axiom :8x P (x). Then the proposition9x :P (x) has a proof in �. Thus there is a term t su
h that the proposition:P (t) has a proof in �. Consider a model M with two elements and let P̂ holdform the denotation of t but not for the other element. This model is a modelof � but not of :P (t). Thus, the proposition :P (t) does not have a proof in �whi
h is 
ontradi
tory.
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Chapter 5Cut elimination inpredi
ate logi
 moduloWe have seen that from the 
ut elimination theorem we 
ould dedu
e the 
onsis-ten
y, the disjun
tion property and the witness property for the empty theory.Of 
ourse, not many theorems 
an be proved in the empty theory. When weadd axioms, 
ut free proofs need not be uniform anymore. For instan
e addingthe axiom 9x P (x), allows a non uniform proof of the proposition 9x P (x).We have already seen that the disjun
tion property and the witness propertyextended to Harrop theories. We are now interested in other theories: theoriesmodulo with no axioms, su
h as simple type theory and simple type theory within�nity.5.1 Congruen
es de�ned by a system rewritingatomi
 propositionsProposition 5.1.1 Consider a 
ongruen
e � de�ned by a 
on
uent rewritesystem rewriting terms to terms and atomi
 propositions to arbitrary proposi-tions. If A and B are not atomi
 and A � B then A and B have the same root
onne
tor or quanti�er.Proposition 5.1.2 Consider a 
ongruen
e � de�ned by a 
on
uent rewritesystem rewriting terms to terms and atomi
 propositions to arbitrary proposi-tions. Consider the theory modulo formed with no axioms and the 
ongruen
e�. A 
ut free proof in this theory ends with an introdu
tion rule.Proof. By indu
tion over the height of the proof. The last rule 
annot bean axiom rule, be
ause there is no axiom. If the last rule is an elimination,then the left premise of the elimination is proved with a 
ut free proof. Hen
eit ends by an introdu
tion. By proposition 5.1.2, this introdu
tion 
on
erns69



70 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOthe same 
onne
tor or quanti�er as the elimination rule and the proof is a 
ut
ontradi
ting the fa
t that it is 
ut free.Thus, if 
ut elimination holds for su
h a theory, then 
onsisten
y, the dis-jun
tion property and the witness property also.5.2 Proof as termsProof-terms are de�ned as in predi
ate logi
 and the redu
tion rules are thesame. But the proof assignments rules have to be modi�ed to take the 
ongru-en
e into a

ount.De�nition 5.2.1 (Dedu
tion rules with proofs)Axiom if � : A 2 � and A � B� `� � : B >-intro if A � >� `� I : A� `� � : B ?-elim if B � ?� `� Æ?(�) : A� `� � : A � `� �0 : B ^-intro if C � (A ^B)� `� h�; �0i : C� `� � : C ^-elim if C � (A ^ B)� `� fst(�) : A� `� � : C ^-elim if C � (A ^ B)� `� snd(�) : B� `� � : A _-intro if C � (A _ B)� `� i(�) : C� `� � : B _-intro if C � (A _ B)� `� j(�) : C� `� � : D �; � : A `� �0 : C �; � : B `� �00 : C _-elim if D � (A _ B)� `� Æ(�; ��0; ��00) : C�; � : A `� � : B )-intro if C � (A) B)� `� � 7! � : C� `� � : C � `� �0 : A)-elim if C � (A) B)� `� (� �0) : B� `� � : A hx;Ai 8-intro if B � (8x A) and x 62 FV (�)� `� x 7! � : B� `� � : B hx;A; ti 8-elim if B � (8x A) and C � (t=x)A� `� (� t) : C



5.3. COUNTEREXAMPLES 71� `� � : C hx;A; ti 9-intro if B � (9x A) and C � (t=x)A� `� ht; �i : B� `� � : C �; � : A `� �0 : B hx;Ai 9-elim if C � (9x A) and x 62 FV (�; B)� `� Æ9(�; x��0) : BProposition 5.2.1 A sequent A1; : : : ; An `� B is derivable in natural de-du
tion modulo if and only if there exists a term � su
h that the judgment�1 : A1; : : : ; �n : An `� � : B is derivable in this system.Proposition 5.2.2 (Subje
t redu
tion) If � `� � : P and � �! �0 then� ` �0 : P .5.3 CounterexamplesCut elimination fails for very simple rewrite systems.Example 5.3.1 (Russell's 
ounterexample) We have seen that in naive settheory, if we 
all A the proposition "(R R) (or R 2 R) we haveA �! :AModulo this rule, the proposition :A has the proof� 7! (� �)and the proposition A also thus the proposition ? has the proof((� 7! (� �)) (� 7! (� �)))This proof only redu
es to itself and thus it does not terminate. It is easy to
he
k that more generally, there are no 
ut free proofs of ? be
ause there nouniform proofs of this proposition.Example 5.3.2 (Crabb�e's 
ounterexample) Set theory is an example of atheory modulo that does not have the 
ut elimination property. We have seenthat there are two propositions A and B in set theory su
h thatA �! B ^ :AThus under the assumption � : B, the proposition :A has the proof� 7! (snd(�) �)and the proposition A has the proofh�; � 7! (snd(�) �)ithus the proposition ? has the proof((� 7! (snd(�) �)) h�; � 7! (snd(�) �)i)



72 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOand the proposition :B has the proof� 7! ((� 7! (snd(�) �)) h�; � 7! (snd(�) �)i)It is easy to 
he
k that this proof does not terminate and more generally thatthe proposition :B has no 
ut free proof.Example 5.3.3 (A terminating 
ounterexample) Cut elimination may belost even with a 
on
uent and terminating rewrite system. The example is a re-�ned version of Russell's 
ounterexample. Instead of taking the non terminatingrule R 2 R �! :R 2 R, we take the terminating ruleR 2 R �! 8y (y ' R) :y 2 R)where y ' z stands for 8x (y 2 x ) z 2 x). Modulo this rule, the proposition:R 2 R has the proof � = � 7! (� R (x 7! (� 7! �)) �)and the proposition R 2 R has the proof�0 = y 7! (� 7! (� 7! (� (� R �))))The proposition ? has the proof (� �0)This proof only redu
es to itself and thus it does not terminate. It is easy to
he
k that more generally, there are no 
ut free proofs of ? be
ause there nouniform proofs of this proposition.5.4 Redu
ibility 
andidatesLet us try to 
hara
terize some 
ongruen
es for whi
h 
ut elimination holds.We wish to use a 
ut elimination proof similar to that of predi
ate logi
.The main problem is that we 
annot take the set of all strongly terminatingproof-terms for the set of redu
ible proof-terms of an atomi
 proposition. Forinstan
e if P , Q and R are three proposition symbol and we have the ruleP �! Q) Rthen a proof of P is also a proof of Q ) R and thus, to belong to jP j, besidesbeing strongly terminating, a proof-term must be su
h that whenever it redu
esto an introdu
tion � 7! �0 for all proof �00 of jQj, the proof (�00=�)�0 belongs tojRj. In this 
ase we 
an take the set of all strongly terminating proofs for jQjand jRj and the set jQ ) Rj for jP j and a proof similar to that of predi
atelogi
 permits to establish 
ut elimination modulo this rule.



5.4. REDUCIBILITY CANDIDATES 73However, generalizing this method may be diÆ
ult when we have non termi-nating rules or rules introdu
ing quanti�ers. For instan
e 
onsider the proposi-tion symbols P and Q and the ruleQ �! P ^Qde�ning jQj as jP ^ Qj would be 
ir
ular, as to know jP ^Qj we need to knowjP j and jQj. In the same way, 
onsider a predi
ate symbol P of one argument,an individual symbol 
 and the ruleP (
) �! 8x P (x)De�ning jP (
)j as the set j8x P (x)j would be 
ir
ular as to know j8x P (x)j weneed to know jP (t)j for all terms t, in
luding 
.Thus we shall prove in a �rst step that 
ut elimination holds provided weknow how to assign a set of proofs jAj to ea
h atomi
 proposition A in su
h away that the sets of redu
ible proofs - de�ned relatively to these sets - of twoequivalent propositions are identi
al. In a se
ond step we shall give exampleswhere su
h sets 
an be 
onstru
ted in
luding the two examples above and simpletype theory.Not any set of proof-terms is a good 
andidate for jAj. Indeed, we have seenthat to let the 
ut elimination proof go through we needed the sets of redu
ibleproofs to verify the properties of propositions 4.4.1, 4.4.2, 4.4.3 and 4.4.4 thatare used in the 
ut elimination proof. Thus, at least, the sets of redu
ible proofsof atomi
 propositions must verify these properties. This leads to the followingde�nition.De�nition 5.4.1 (Girard's redu
ibility 
andidate) A set R of proof-termsis a redu
ibility 
andidate if� if � 2 R, then � is strongly terminating,� if � 2 R and � �! �0 then �0 2 R,� all variables belong to R,� if � is an elimination and if for every �0 su
h that � �!1 �0, �0 2 R then� 2 R.Let C be the set of all redu
ibility 
andidates.Assigning a redu
ibility 
andidate to ea
h atomi
 propositionA, is equivalentto assign to ea
h predi
ate symbol P of n arguments a fun
tion P̂ that maps n-uples of terms to redu
ibility 
andidates. Then, we de�ne the set jP (t1; :::; tn)jas P̂ (t1; :::; tn). Thus we want to prove that if we know how to assign su
h afun
tion to ea
h predi
ate symbol, in su
h a way that the sets of redu
ible proofsde�ned relatively to these fun
tions are su
h that two equivalent propositionshave the same set of redu
ible proofs, then 
ut elimination holds modulo this
ongruen
e.



74 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOThis 
an be generalized: to have 
ut elimination it is suÆ
ient to assign,to ea
h predi
ate symbol P of n arguments, a fun
tion P̂ that maps n-uples ofelements of an arbitrary set M to redu
ibility 
andidates and to asso
iate toea
h term t an element jtj of M . Then we de�ne jP (t1; :::; tn)j as P̂ (jt1j; :::; jtnj).If the sets of redu
ible proofs de�ned relatively to these fun
tions are su
h thattwo equivalent propositions have the same set of redu
ible proofs, then 
utelimination holds modulo this 
ongruen
e.There are many similarities between this de�nition and the de�nition of amodel. In parti
ular the fa
t that if A � B then jAj = jBj 
an be read asthe validity of the 
ongruen
e in this stru
ture. The only di�eren
e with thenotion of model is that the fun
tions P̂ do not map n-uples of elements of Mto truth values 0 or 1, but to redu
ibility 
andidates. Hen
e su
h stru
tures aremany-valued models where truth values are redu
ibility 
andidates. We shall
all them pre-models. As we want to apply this result to many-sorted theoriesalso, we dire
tly give the de�nition for many-sorted predi
ate logi
 modulo.5.5 Pre-modelDe�nition 5.5.1 (Pre-model) Let L be a many sorted �rst-order language.A pre-model for L is given by:� for every sort T , a set MT ,� for every fun
tion symbol f of rank hT1; : : : ; Tn; Ui, a fun
tion f̂ fromMT1 � : : :�MTn to MU ,� for every predi
ate symbol P of rank hT1; : : : ; Tni, a fun
tion P̂ from MT1�: : :�MTn to C.De�nition 5.5.2 Let t be a term and � an assignment mapping all the freevariables of t of sort T to elements of MT . We de�ne the obje
t jtj� by indu
tionover the height of t.� jxj� = �(x),� jf(t1; : : : ; tn)j� = f̂(jt1j�; : : : ; jtnj�).De�nition 5.5.3 Let A be a proposition and � an assignment mapping all thefree variables of A of sort T to elements of MT . We de�ne the set jAj� ofproof-terms by indu
tion over the height of A.� A proof-term � is an element of jP (t1; : : : ; tn)j� if it is inP̂ (jt1j�; : : : ; jtnj�).� A proof-term � is an element of j>j� if � is strongly terminating.� A proof-term � is an element of j?j� if � is strongly terminating.



5.5. PRE-MODEL 75� A proof-term � is an element of jA^Bj� if � is strongly terminating andwhen � redu
es to a proof-term of the form h�1; �2i then �1 and �2 areelements of jAj� and jBj�.� A proof-term � is an element of jA_Bj� if � is strongly terminating andwhen � redu
es to a proof-term of the form i(�1) (resp. j(�2)) then �1(resp. �2) is an element of jAj� (resp. jBj�).� A proof-term � is element of jA ) Bj� if it is strongly terminating andwhen � redu
es to a proof-term of the form � 7! �1 then for every �0 injAj�, (�0=�)�1 is an element of jBj�.� A proof-term � is an element of j8x Aj� if it is strongly terminating andwhen � redu
es to a proof-term of the form x 7! �1 then for every term tof sort T (where T is the sort of x) and every element E of MT , (t=x)�1is an element of jAj�+hx;Ei.� A proof-term � is an element of j9x Aj� if � is strongly terminating andwhenever � redu
es to a proof-term of the form ht; �1i there exists anelement E of MT (where T is the sort of x) su
h that �1 is an element ofjAj�+hx;Ei.De�nition 5.5.4 A pre-model is a pre-model of a 
ongruen
e � if, wheneverA � B, then for every assignment �, jAj� = jBj�.Proposition 5.5.1 For every proposition A and assignment �, jAj� is a re-du
ibility 
andidateProof. By indu
tion over the height of A.If A is an atomi
 proposition, jAj� is a redu
ibility 
andidate by de�nition.If A is a 
omposed proposition, then, by de�nition, jAj� 
ontains only termi-nating proof-terms. It is routine to prove 
losure by redu
tion. It is also routineto 
he
k that all variables are members of jAj�.Now, we assume that � is a an elimination and that for every �0 su
h that� �!1 �0, �0 2 jAj�. We want to prove that � is in jAj�. Following thede�nition of jAj�, we �rst prove that � is strongly terminating and then that ifit redu
es to an introdu
tion, the sub-proofs belong to the appropriate sets.We �rst prove that � is strongly terminating. Let � = �1; �2; : : : be a redu
-tion sequen
e issued from �. If this sequen
e is empty it is �nite. Otherwise wehave � �!1 �2 and hen
e �2 is an element of jAj� thus it is strongly terminatingand the redu
tion sequen
e is �nite.Then we prove that if � redu
es to an introdu
tion then the sub-proofsbelong to the appropriate sets. Let � = �1; �2; : : : �n be a redu
tion sequen
eissued from � and su
h that �n is an introdu
tion. This sequen
e 
annot beempty be
ause � is an elimination and hen
e not an introdu
tion. Thus � �!1�2 �! �n. We have �2 2 jAj� and thus if �n is an introdu
tion the sub-proofsbelong to the appropriate sets.



76 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOProposition 5.5.2 (Substitution) Given any proposition A, term t and vari-able x we have j(t=x)Aj� = jAj�+hx;jtj�iProof. By indu
tion on the height of A.We 
an now prove the main theorem of this 
hapter: if a system has apre-model then proof-terms modulo this system terminate.Proposition 5.5.3 Let � be a 
ongruen
e and M be a pre-model of �. If� `� � : A then the proof-term � is strongly terminating.Proof. As jAj; is a redu
ibility 
andidate, it is suÆ
ient to prove that if � ` � : Athen the proof-term � is an element of jAj;. More generally, we prove, byindu
tion over the height of the proof-assignment tree, that if � ` � : A,� � is a substitution mapping term variables to terms,� � is an assignment mapping variables to elements of the model,� � is a substitution mapping some proof variables asso
iated to propositionB in � to an element of jBj�,then ��� is an element of jAj�.� Axiom. If � is a variable �, we have (� : B) 2 � with B � A. If � is inthe domain of de�nition of �, then ��� = �� is an element of jBj� = jAj�,otherwise ��� = �� = � is an element of jAj� be
ause jAj� is a 
andidate.� >-intro. The proof-term � has the form I . We have ��� = I . This proof-term is normal, hen
e it is strongly terminating. Hen
e, the proof-term��I is in jAj�.� ^-intro. The proof-term � has the form h�1; �2i where �1 is a proof ofsome proposition B and �2 a proof of some proposition C. We have��� = h���1; ���2i. Consider a redu
tion sequen
e issued from this proof-term. This sequen
e 
an only redu
e the proof-terms ���1 and ���2. Byindu
tion hypothesis these proof-terms are in jBj� and jCj�. Thus theredu
tion sequen
e is �nite.Furthermore, all redu
ts of ��� have the form h�01; �02i where �01 is a redu
tof ���1 and �02 one of ���2. The proof-terms �01 and �02 are in jBj� andjCj� be
ause these sets are 
andidates.Hen
e, the proof-term ��h�1; �2i is in jAj�.� _-intro. The proof-term � has the form i(�) (resp. j(�)) and � is a proofof some proposition B. We have ��� = i(���) (resp. j(���)). Considera redu
tion sequen
e issued from this proof-term. This sequen
e 
an onlyredu
e the proof-terms ���. By indu
tion hypothesis this proof-term isan element of jBj�. Thus the redu
tion sequen
e is �nite.



5.5. PRE-MODEL 77Furthermore, all redu
ts of ��� have the form i(�0) (resp. j(�0)) where �0is a redu
t of ���. The proof-term �0 is an element of jBj� be
ause thisset is a 
andidate.Hen
e, the proof-term ��i(�) (respe
tively ��j(�)) is an element of jAj�.� )-intro. The proof-term � has the form � 7! � where � is a proof variableof some proposition B and � a proof of some proposition C. We have��� = � 7! ���, 
onsider a redu
tion sequen
e issued from this proof-term. This sequen
e 
an only redu
e the proof-term ���. By indu
tionhypothesis, the proof-term ��� is an element of jCj�, thus the redu
tionsequen
e is �nite.Furthermore, all redu
ts of ��� have the form � 7! �0 where �0 is a redu
tof ���. Let � be any proof of jBj�, the proof-term (�=�)�0 
an be obtainedby redu
tion from ((�=�) Æ �)��. By indu
tion hypothesis, the proof-term((�=�) Æ �)�� is an element of jCj�. The proof-term (�=�)�0 is an elementof jCj� be
ause this set is a 
andidate.Hen
e, the proof-term ��� 7! � is an element of jAj�.� 8-intro. The proof-term � has the form x 7! � where � is a proof of someproposition B. We have ��� = x 7! ���.Consider a redu
tion sequen
e issued from the proof-term ��� = x 7! ���.This sequen
e 
an only redu
e the proof-term ���. Let E be an elementof MT (where T is the sort of x). By indu
tion hypothesis, the proof-term��� is an element of jBj�+hx;Ei, thus the redu
tion sequen
e is �nite.Furthermore, all redu
ts of ��� have the form x 7! �0 where �0 is aredu
t of ���. The proof-term (t=x)�0 is obtained by redu
ing the proof-term ((t=x)�)((t=x) Æ �)�. By indu
tion hypothesis again, the proof-term((t=x)�)((t=x) Æ �)� is an element of jBj�+hx;Ei. The proof-term (t=x)�0 isan element of jBj�+hx;Ei, be
ause this set is a 
andidate.Hen
e ��(x 7! �) is an element of jAj�.� 9-intro. The proof-term � has the form ht; �i, A � 9x B and � is aproof of (t=x)B. We have ��� = h�t; ���i. Consider a redu
tion sequen
eissued from this proof-term. This sequen
e 
an only redu
e the proof-term���. By indu
tion hypothesis this proof-term is in j(t=x)Bj�. Thus theredu
tion sequen
e is �nite.Furthermore, let E = jtj�. Any redu
t of ��� has the form h�t; �0i where�0 is a redu
t of ���. The proof-term �0 is an element of j(t=x)Bj�, i.e. ofjBj�+hx;Ei, be
ause jBj�+hx;Ei is a 
andidate.Hen
e, the proof-term ��ht; �i is an element of jAj�.� ?-elim. The proof-term � has the form Æ?(�) where � is a proof of ?.We have ��� = Æ?(���). By indu
tion hypothesis, the proof-term ���is an element of j?j�. Hen
e, it is strongly terminating. Let n be themaximum length of redu
tion sequen
es issued from this proof-term. We



78 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOprove by indu
tion on n that Æ?(���) is in jAj�. Sin
e this proof-term isan elimination, we only need to prove that every of its one step redu
tsis in jAj�. The redu
tion 
an only take pla
e in ��� and we apply theindu
tion hypothesis.Hen
e, the proof-term ��Æ?(�) is an element of jAj�.� ^-elim. We only detail the 
ase of left elimination. The proof-term �has the form fst(�) where � is a proof of some proposition A ^ B. Wehave ��� = fst(���). By indu
tion hypothesis the proof-term ��� is injA ^ Bj�. Hen
e, it is strongly terminating. Let n be the maximumlength of a redu
tion sequen
e issued from this proof-term. We prove byindu
tion on n that fst(���) is in the set jAj�. Sin
e this proof-term isa elimination we only need to prove that every of its one step redu
ts isin jBj�. If the redu
tion takes pla
e in ��� then we apply the indu
tionhypothesis. Otherwise ��� has the form h�01; �02i and the redu
t is �01. Bythe de�nition of jA ^ Bj� this proof-term is in jAj�.Hen
e, the proof-term ��fst(�) is an element of jAj�.� _-elim. The proof-term � has the form Æ(�1; ��2 ��3) where �1 is a proofof some proposition B _ C and �2 and �3 are proofs of A. We have��� = Æ(���1; ����2; ����3). By indu
tion hypothesis, the proof-term���1 is in the set jB _Cj�, and the proof-terms ���2 and ���3 are in theset jAj�. Hen
e, these proof-terms are strongly terminating. Let n, n0 andn00 be the maximum length of redu
tion sequen
es issued from these proof-terms. We prove by indu
tion on n+ n0 + n00 that Æ(���1; ����2; ����3)is in jAj�. Sin
e this proof-term is an elimination we only need to provethat every of its one step redu
ts is in jAj�. If the redu
tion takes pla
e in���1, ���2 or ���3 then we apply the indu
tion hypothesis. Otherwise, if���1 has the form i(�0) (resp. j(�0)) and the redu
t is (�0=�)���2 (resp.(�0=�)���3). By the de�nition of jB_Cj� the proof-term �0 is in jBj� (resp.jCj�). Hen
e by indu
tion hypothesis ((�0=�)Æ�)��2 (resp. ((�0=�)Æ�)��3)is in jAj�.Hen
e, the proof-term ��Æ(�1; ��2; ��3) is an element of jAj�.� )-elim. The proof-term � has the form (�1 �2) and �1 is a proof ofsome proposition B ) A and �2 a proof of the proposition B. We have��� = (���1 ���2). By indu
tion hypothesis ���1 and ���2 are in the setsjB ) Aj� and jBj�. Hen
e these proof-terms are strongly terminating.Let n be the maximum length of a redu
tion sequen
e issued from ���1and n0 the maximum length of a redu
tion sequen
e issued from ���2. Weprove by indu
tion on n + n0 that (���1 ���2) is in the set jAj�. Sin
ethis proof-term is an elimination we only need to prove that every of itsone step redu
ts is in jAj�. If the redu
tion takes pla
e in ���1 or in ���2then we apply the indu
tion hypothesis. Otherwise ���1 has the form� 7! �0 and the redu
t is (���2=�)�0. By the de�nition of jB ) Aj� thisproof-term is in jAj�.
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e, the proof-term ��(�1 �2) is an element of jAj�.� 8-elim. The proof-term � has the form (� t) where � is a proof of someproposition 8x B and A = (t=x)B. We have ��� = (��� �t). By indu
-tion hypothesis, the proof-term ��� is in j8x Bj�. Hen
e, it is stronglyterminating. Let n be the maximum length of a redu
tion sequen
e is-sued from this proof-term. We prove by indu
tion on n that (��� �t)is in the set jAj�. As this proof-term is an elimination, we only needto prove that every of its one step redu
ts is in jAj�. If the redu
tiontakes pla
e in ��� then we apply the indu
tion hypothesis. Otherwise��� has the form x 7! �0 and the redu
t is n(�t=x)�0. By the de�nitionof j8x Bj� this proof-term is in jBj�+hx;Ei for all E. Thus, it is in is injBj�+hx;jtj�i = j(t=x)Bj� = jAj�.Hen
e, the proof-term ��(� t) is an element of jAj�.� 9-elim. The proof-term � has the form Æ9(�1; x��2) where �1 is a proofof some proposition 9x B and �2 is a proof of A. We have ��� =Æ9(���1; x����2). By indu
tion hypothesis, the proof-term ���1 is in theset j9x Bj� and the proof-term ���2 is in the set jAj�. Hen
e, theseproof-terms are strongly terminating. Let n and n0 be the maximumlength of redu
tion sequen
es issued from these proof-terms. We proveby indu
tion on n + n0 that Æ9(���1; x����2) is in jAj�. As this proof-term is an elimination, we only need to prove that every of its one stepredu
ts is in jAj�. If the redu
tion takes pla
e in ���1 or ���2 then weapply the indu
tion hypothesis. Otherwise, ���1 has the form ht; �0i andthe redu
t is (�0=�)(t=x)���2 = ((�0=�) Æ (t=x)�)((t=x) Æ �)�2. By thede�nition of j9x Bj�, there exists an element E of su
h that the proof-term �0 is in jBj�+hx;Ei. Thus, by indu
tion hypothesis, the proof-term((�0=�) Æ (t=x)�)((t=x) Æ �)�2 is in jAj�+hx;Ei, i.e. in jAj�.Hen
e, the proof-term ��Æ9(�1; �x�2) is an element of jAj�.5.6 Pre-model 
onstru
tion5.6.1 The term 
aseProposition 5.6.1 If a 
ongruen
e is de�ned by a rewrite system or a set ofequalities on terms, but not on propositions, then it has a pre-model and hen
eproof redu
tion terminates modulo this 
ongruen
e.Proof. We asso
iate the set of strongly terminating proofs for all atomi
 propo-sitions.Corollary 5.6.2 All equational theories are 
onsistent, have the disjun
tionproperty and the witness property.



80 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO5.6.2 Quanti�er free rewrite systemsDe�nition 5.6.1 (Quanti�er free) A rewrite system is quanti�er free if noquanti�er appears on the right hand side of any of its rules.Proposition 5.6.3 A quanti�er free, 
on
uent, and terminating rewrite sys-tems has a pre-model, hen
e proof redu
tion terminates modulo su
h a rewritesystem.Proof. By indu
tion over proposition height, we asso
iate a set of proof-termsto ea
h ea
h normal 
losed quanti�er free proposition.	(A) = f� j � st. ter.g if A is atomi
	(>) = f� j � st. ter.g	(?) = f� j � st. ter.g	(A ^ B) = f� j � st. ter. ^ � �! h�1; �2i ) �1 2 	(A) ^ �2 2 	(B)g	(A _ B) = f� j � st. ter. ^ � �! i(�1)) �1 2 	(A) ^ � �! i(�2)) �2 2 	(B)g	(A) B) = f� j � st. ter. ^ � �! � 7! �1 ) 8�0 2 	(A) (�0=�)�1 2 	(B)gWe de�ne a pre-model as follows. Let MT be the set of normal 
losed terms ofsort T . f̂(t1; : : : ; tn) = f(t1; : : : ; tn) #P̂ (t1; : : : ; tn) = 	((P (t1; : : : ; tn)) #):where A # (resp. t #) is the normal form of the proposition A (resp. term t).We prove, by an easy indu
tion, that jAj� = jBj� when A � B.5.6.3 Positive rewrite systemsFor some rewrite systems, pre-models 
an be built by a �xed point 
onstru
tion.De�nition 5.6.2 A rewrite system is positive if it rewrites atomi
 propositionsto propositions 
ontaining only positive o

urren
es of atomi
 propositions.De�nition 5.6.3 A pre-model is synta
ti
al if� MT = TT = � where TT is the set of 
losed terms of sort T ,� if f is a fun
tion symbol, f̂ is the fun
tion that maps the 
lasses e1; :::; en tothe 
lass of the term f(t1; : : : ; tn) where t1; :::; tn are elements of e1; :::; en(sin
e the relation � is a 
ongruen
e, this does not depend of the 
hoi
eof representatives).A synta
ti
al pre-model is de�ned solely by the interpretation of predi
atevariables.



5.6. PRE-MODEL CONSTRUCTION 81De�nition 5.6.4 Let M1 and M2 be two synta
ti
al pre-models. We write P̂1for the denotation of P in M1 and P̂2 for the denotation of P in M2We say that M1 �M2 if and only if for any predi
ate symbol P and 
losedterms t1; : : : ; tn we have P̂1(t1; : : : ; tn) � P̂2(t1; : : : ; tn)The set of synta
ti
al pre-models is a 
omplete latti
e for the order �.Proposition 5.6.4 Let R be a 
on
uent and terminating rewrite system. If thesystem R is positive then it has a pre-model, hen
e proof redu
tion terminatesmodulo R.Proof. Let F be the fun
tion mapping synta
ti
al pre-models to synta
ti
alpre-models de�ned byF(M)(P )(t1; : : : ; tn) = jP (t1; : : : ; tn) # jM;;:As the system R is positive the fun
tion F is monotone. Hen
e, as the set ofsynta
ti
al pre-models is a 
omplete latti
e, it has a �xed point. This �xedpoint is a pre-model of the rewrite system.Proposition 5.6.5 Let R be a rewrite system su
h that any atomi
 propositionhas at most one one-step redu
t. If the system R is positive then it has a pre-model, hen
e proof redu
tion terminates modulo R.Proof. Let F be the fun
tion mapping synta
ti
al pre-models to synta
ti
alpre-models de�ned byF(M)(P )(t1; : : : ; tn) = jP (t1; : : : ; tn) + jM;;where A+ is the unique one-step redu
t of A if it exists and A otherwise. Again,sin
e the system R is positive the fun
tion F is monotone and again, sin
e theset of synta
ti
al pre-models is a 
omplete latti
e, it has a �xed point. This�xed point is a pre-model of the rewrite system.5.6.4 Type theory and type theory with in�nityProposition 5.6.6 (Girard's theorem) Simple type theory has a pre-model,hen
e proof redu
tion terminate in simple type theory.Proof. We 
onstru
t a pre-model as follows. The essential point is that weanti
ipate the fa
t that obje
ts of sort o a
tually represent propositions, byinterpreting them as redu
ibility 
andidates.M� = f0gMo = CMT!U = MMTU



82 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOŜT;U;V = a 7! (b 7! (
 7! a(
)(b(
))))K̂T;U = a 7! (b 7! a)�̂(a; b) = a(b)"̂(a) = a_̂> = f� j � st. ter.g_̂? = f� j � st. ter.g_̂̂ (a; b) = f� j � st. ter. ^ � �! h�1; �2i ) �1 2 a ^ �2 2 bg_̂_(a; b) = f� j � st. ter. ^ (� �! i(�1)) �1 2 a) ^ (� �! i(�2)) �2 2 b)g_̂)(a; b) = f� j � st. ter. ^ � �! � 7! �1 ) 8�0 2 a (�0=�)�1 2 bg_̂8T (a) = f� j � st. ter. ^ � �! x 7! �1 ) 8t of type T 8E 2MT (t=x)�1 2 a(E)g_̂9T (a) = f� j � st. ter. ^ � �! ht; �2i ) 9E 2MT �2 2 a(E)gIt is easy to 
he
k that jAj� = jBj� when A � B.Proposition 5.6.7 Simple type theory with in�nity has a pre-model, hen
eproof redu
tion terminates in simple type theory with in�nity.Proof. M� = NMo = CMT!U = MMTU0̂ = 0;Ŝu = n 7! n+ 1;^Pred = n 7! if n = 0 then 0 else n� 1;^Null = n 7! f� j � st. ter.g;ŜT;U;V = a 7! (b 7! (
 7! a(
)(b(
))))K̂T;U = a 7! (b 7! a)�̂(a; b) = a(b)"̂(a) = a_̂> = f� j � st. ter.g_̂? = f� j � st. ter.g_̂̂ (a; b) = f� j � st. ter. ^ � �! h�1; �2i ) �1 2 a ^ �2 2 bg_̂_(a; b) = f� j � st. ter. ^ (� �! i(�1)) �1 2 a) ^ (� �! i(�2)) �2 2 b)g_̂)(a; b) = f� j � st. ter. ^ � �! � 7! �1 ) 8�0 2 a (�0=�)�1 2 bg_̂8T (a) = f� j � st. ter. ^ � �! x 7! �1 ) 8t of type T 8E 2MT (t=x)�1 2 a(E)g_̂9T (a) = f� j � st. ter. ^ � �! ht; �2i ) 9E 2MT �2 2 a(E)gIt is easy to 
he
k that jAj� = jBj� when A � B.Remark. In the pre-model above _> and _? are interpreted by the same redu
ibil-ity 
andidate (while in a model they are interpreted by a di�erent truth value)hen
e the interpretation of Null is simply the 
onstant fun
tion equal to this



5.6. PRE-MODEL CONSTRUCTION 83
andidate. Thus it is not ne
essary to interpret the type � as N and we 
ouldalso take M� = f0g.


