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IntrodutionThere is something speial about the mathematial disourse : eah assertionmust be justi�ed by a proof. A proof is a sequene of assertions produed fromthe previous ones by dedution rules. The dedution rules are thus the \rulesof the game" that mathematiians play.Eulid's Elements (IIIrd entury B.C.) are usually onsidered as the �rstsystemati development where eah assertion is given a proof, however, the pre-ise de�nition of the notion of proof has only been formulated at the beginningof the XXth entury. Having a de�nition, and not just an informal idea of whata orret proof is, is important in several areas. First, sine the middle of theXXth entury, proofs have been used not only by mathematiians, but also byomputerized proof proessing systems suh as proof hekers and proof searhsystems, and designing suh a system requires a preise de�nition.Having a de�nition is also neessary to solve some problems about proofs.This is what proof theory is about. A �rst type of results proof theory permitsto prove is independene results: results asserting that some proposition annotbe proved in some theory, for instane that the axiom of parallels annot beproved from the other axioms of geometry.However, proof theory is not onerned only with the provable propositionsbut also with the struture of proofs themselves, for instane with the ompar-ison of di�erent proofs of the same theorem. One key notion in proof theoryis that of anonial, diret or ut free proof. For instane, if we �rst prove twopropositions A and B, to dedue the proposition A ^ B (A and B) and at lastthe proposition A, we build a proof that is not anonial, beause it ontainsan unneessary detour by the proposition A ^ B, that has nothing to do withthe problem. Suh a detour is alled a ut. The main results we prove in theseourse notes are that in some ases, suh uts an be eliminated and thus thatall provable propositions have anonial proofs. Moreover non anonial proofsan be transformed into anonial ones in an algorithmi way.From a philosophial point of view, these results show that proving a theoremdoes not require to use ideas external to the statement of the theorem, or morepreisely, that the use of suh external ideas is only required in some spei�ases, depending on the theory. Another appliation of ut elimination is thatstudying the struture of anonial proofs permits to show that some proposi-tions have no anonial proofs. Hene, from the ut elimination theorem, we an5



6 CONTENTSdedue that they have no proof at all. We get this way independene results.Cut elimination is also used to redue dramatially the searh spae of proofsearh algorithms, by restriting to anonial proofs. Finally, ut eliminationpermits to prove the witness property for onstrutive proofs, i.e. that eahtime we have a proof of a speial form of the existene of an objet verifyinga property P , there is also a mathematial objet, alled a witness, for whihthe property P an be proved to hold. Moreover, with the ut elimination algo-rithm, a desription of this objet an be omputed from the proof. This allowsto use mathematis as a programming language: the ut elimination proess isthe exeution proess of this programming language.Very often, a proof is de�ned as a suession of reasonning steps startingfrom the axioms and ending at a onlusion. With suh a de�nition, dedutionrules are just reasonning rules. This de�nition hides the fat that, in mathemat-is, proofs are not only formed with reasonning steps but also with omputationsteps. Dedution modulo is a reformulation of the axiomati method wherereasonning and omputation are both fully taken into aount. We an, for in-stane, take advantage of this distintion between reasonning and omputationwhen designing proof seah methods. More surprisingly, we an also take ad-vantage of this distintion in proof theory. In partiular, several ut eliminationtheorems an then be seen as orollaries of a single general ut elimination the-orem for dedution modulo. Thus dedution modulo an be used as a unifyingframework to present the basi results of proof theory. This is the point of viewwe have taken in these ourse notes.



Chapter 1Prediate Logi1.1 LanguagesA language permits to designate things (The Moon, the number 2, the set ofeven numbers, ...) and to express fats (The Moon is a satellite of the Earth,the number 2 is a member of the set of even numbers, the set of even numbers isin�nite, ...). A phrase that designates a thing is alled a term, one that expressesa fat is alled a proposition.The easiest way to designate a thing is to use an individual symbol (also alleda proper name) suh as \2". Thus, a language ontains individual symbols andindividual symbols are terms. But, if we want to be able to designate an in�nitenumber of objets with a �nite number of symbols, we annot give a propername to eah objet. Thus, a language must ontain an other kind of symbols,alled funtion symbols. A funtion symbol alone is not a term, but it permits toonstrut a term when it is applied to already onstruted terms. For instane,with the individual symbol 0 and the funtion symbol Su (for \suessor") wean designate all the natural numbers. The number zero is designated by theterm 0, the number one by the term Su(0) obtained by applying the funtionsymbol Su to the term 0, the number two by the term Su(Su(0)), ... Somefuntion symbols must be applied to several arguments to onstrut a term,for instane the symbol + must be applied to two arguments. The funtionsymbol + is said to have two arguments, while the symbol Su is said to haveone argument. Individual symbols an be seen as speial funtion symbols thathave zero arguments.The simplest way to form a proposition is to apply a prediate symbol to oneor several terms. For instane, we an form this way the propositionsatellite(Moon,Earth)that expresses that the Moon is a satellite of the Earth. Thus, a languageontains prediate symbols. The prediate symbol satellite that must be appliedto two terms to form a proposition is said to have two arguments. A proposition7



8 CHAPTER 1. PREDICATE LOGICformed by appliation of a prediate symbol to terms is alled atomi. Morepropositions an be formed with the onnetors : (not), ^ (and), _ (or) and) (implies). It is also onvenient to onsider propositions > (truth) and ?(falsity). We an for instane form this way the propositionprime(Su(Su(0))) ^ :prime(Su(Su(Su(Su(0)))))that expresses that the number two is prime and that the number four is not.A last onstrution is needed for propositions suh as \all men are mortal"or \some number is prime", where we express that all objets verify some pred-iate or that some objet verify some prediate without expliiting this objet.We ould introdue symbols all and some and let them replae a term as anargument of a prediate symbol or a funtion symbol. For instane we wouldwrite prime(some)to express that some number is prime, in the same way that we writeprime(Su(Su(0)))to express that the number two is prime. But, suh a onstrution is ambiguous.Indeed, the proposition some � allmay express that for all numbers there is some greater number (whih is true)but also that there is some number greater than all numbers (whih is false).A more preise onstrution is to apply the prediate symbol to a variableand indiate in a seond step if this variable is universal or existential with aquanti�er 8 (for all) or 9 (there exists). The fat that some number is prime isthen expressed 9x prime(x)The order in whih these quanti�ers are applied permits to resolve the ambigu-ities. The fat that for all numbers there is some greater number is expressedby the proposition 8x 9y y � xwhile the fat that some number is greater than all numbers (whih is false) isexpressed by the proposition 9y 8x y � xAmong all the symbols used to form terms and propositions, some are thesame in all languages: the onnetors >, ?, :, ^, _ and ), the quanti�ers 8and 9 and the variables, while the funtion symbols (inluding the individualsymbols) and the prediate symbols are spei� to a given language. For instanethe symbol Moon is used in the language of astronomy, but not in the languageof geometry.



1.1. LANGUAGES 91.1.1 Terms and propositionsDe�nition 1.1.1 (Language) A language is a set of funtion symbols anda set of prediate symbols. To eah symbol is assoiated a number, alled itsnumber of arguments.De�nition 1.1.2 (Term) Let L be a language and V be an in�nite set whoseelements are alled variables. The terms of the language L with variables V arede�ned by the following rules� if x is a variable then the tree whose root is labeled by x and that has nosub-tree is a term,� if f is a funtion symbol of n arguments and t1; :::; tn are terms then thetree whose root is labeled by f and whose sub-trees are t1; :::; tn is a term.De�nition 1.1.3 (Proposition) Let L be a language and V be an in�nite set.The propositions of the language L with variables V are de�ned by the followingrules� if P is a prediate symbol of n arguments and t1; :::; tn are terms thenthe tree whose root is labeled by P and whose sub-trees are t1; :::; tn is aproposition,� the trees whose root are labeled by > and ? and that have no sub-tree arepropositions,� if A is a proposition then the tree whose root is labeled by : and whosesub-tree is A is a proposition,� if A and B are propositions then the trees whose root are labeled by ^, _or ) and whose sub-trees are A and B are propositions,� if A is a proposition and x a variable then the trees whose root are labeled8x and 9x and whose sub-tree is A are propositions.Remark. In several plaes, we shall use the notation A , B. There is noonnetor, in our de�nition of the notion of proposition. Thus the propositionA, B is just a notation for the proposition (A) B) ^ (B ) A).Example 1.1.1 If = is a prediate symbol of two arguments, + a funtion sym-bol of two arguments, 0 a funtion symbol of zero arguments (i.e. an individualsymbol) and x a variable then the tree =!!!!!! bbbb+ x"""" bbbbx 0is a proposition.



10 CHAPTER 1. PREDICATE LOGICRemark. Terms and propositions have been de�ned as trees whose nodes arelabeled by symbols. Some authors prefer to de�ne terms and propositions asstrings, i.e. as sequenes of symbols. The proposition of example 1.1.1 wouldthen be written = (+(x; 0); x)or x+ 0 = xThis is di�erene is just a matter of taste.However, the advantage of onsidering trees instead of strings is that thispermits to disregard the shallow properties of expressions: whether + is writtenbefore, between or after its arguments, whether parentheses or brakets areused, ... and to fous on the logial struture of expressions.1.1.2 Variables and substitutionsDe�nition 1.1.4 (Variables) The set of variables of a term (resp. proposi-tion) is de�ned by indution over its height as follows� V ar(x) = fxg,� V ar(f(t1; :::; tn)) = V ar(t1) [ ::: [ V ar(tn),� V ar(P (t1; :::; tn)) = V ar(t1) [ ::: [ V ar(tn),� V ar(>) = V ar(?) = ;,� V ar(:A) = V ar(A),� V ar(A ^ B) = V ar(A _ B) = V ar(A) B) = V ar(A) [ V ar(B),� V ar(8x A) = V ar(9x A) = V ar(A) [ fxg.The set of free variables of a term (resp. a proposition) is de�ned by indu-tion over its height as follows� FV (x) = fxg,� FV (f(t1; :::; tn)) = FV (t1) [ ::: [ FV (tn),� FV (P (t1; :::; tn)) = FV (t1) [ ::: [ FV (tn),� FV (>) = FV (?) = ;,� FV (:A) = FV (A),� FV (A ^ B) = FV (A _ B) = FV (A) B) = FV (A) [ FV (B),� FV (8x A) = FV (9x A) = FV (A) n fxg.



1.1. LANGUAGES 11De�nition 1.1.5 (Closed and open) A term (resp. a proposition) that on-tain no free variables is said to be losed, otherwise it is said to be open.We now want to de�ne the operation of substitution. For instane, substi-tuting the term y + 2 for the variable x in the proposition x� 2 = 4 yields theproposition (y+2)� 2 = 4. The result of the substitution of the term u for thevariable x in the term or proposition t is written (u=x)t. When we substitute aterm u for a variable x in a term or a proposition t, we want to substitute onlythe free ourrenes of x. A �rst attempt to de�ne substitution is the following.De�nition 1.1.6 (Replaement) Let t be a term (resp. a proposition), x bea variable and u be a term. The term (resp. the proposition) hu=xit is de�nedby indution over the height of t as follows.� hu=xix = u,if y is a variable di�erent from x, then hu=xiy = y,hu=xif(t1; :::; tn) = f(hu=xit1; :::; hu=xitn),� hu=xiP (t1; :::; tn) = P (hu=xit1; :::; hu=xitn),hu=xi> = >,hu=xi? = ?,hu=xi(:A) = :hu=xiA,hu=xi(A ^ B) = hu=xiA ^ hu=xiB,hu=xi(A _ B) = hu=xiA _ hu=xiB,hu=xi(A) B) = hu=xiA) hu=xiB,hu=xi(8x A) = 8x A,hu=xi(8y A) = 8y hu=xiA if y 6= x,hu=xi(9x A) = 9x A,hu=xi(9y A) = 9y hu=xiA if y 6= x.But there is still a problem with this de�nition : when we replae y + 0 forx in 8y P (x; y) we obtain 8y P (y + 0; y) where the variable y in y + 0 is nowquanti�ed, while originally, this variable y had nothing to do with the variabley quanti�ed in 8y P (x; y). To perform a orret substitution, we must �rstrename the variable y quanti�ed in 8y P (x; y) to get, for instane, 8z P (x; z)and then substitute the variable x by y+0 to get 8z P (y+0; z). The hoie ofthe variable z is arbitrary, and we ould also have obtained 8w P (y + 0; w).Thus, to de�ne the substitution operation, we must �rst de�ne the equiva-lene of two propositions modulo bound variable renaming and de�ne substitu-tion on the quotient of the set of propositions modulo this relation.De�nition 1.1.7 (Alphabeti equivalene) The alphabeti equivalene be-tween propositions is de�ned as follows� if A and B are atomi propositions then A � B if and only if A = B,> � >,? � ?,(:A) � (:A0) if and only if A � A0,



12 CHAPTER 1. PREDICATE LOGIC(A ^ B) � (A0 ^B0) if and only if A � A0 and B � B0,(A _ B) � (A0 _B0) if and only if A � A0 and B � B0,(A) B) � (A0 ) B0) if and only if A � A0 and B � B0,(8x A) � (8y A0) if and only if for some variable z not appearing in 8x Anor in 8y A0 hz=xiA � hz=yiA0,(9x A) � (9y A0) if and only if for some variable z not appearing in 9x Anor in 9y A0 hz=xiA � hz=yiA0.From now on, propositions will be onsidered up to alphabeti equivalene,i.e. we onsider only lasses of propositions modulo alphabeti equivalene. Sothe proposition 8x (0 � x) and 8y (0 � y) are equal.De�nition 1.1.8 (Substitution) Let t be a term (resp. a proposition), x bea variable and u be a term. The term (resp. the proposition) (u=x)t is de�nedby indution over the height of t as follows� (u=x)x = u,if y is a variable di�erent from x, then (u=x)y = y,(u=x)f(t1; :::; tn) = f((u=x)t1; :::; (u=x)tn),� (u=x)P (t1; :::; tn) = P ((u=x)t1; :::; (u=x)tn),(u=x)> = >,(u=x)? = ?,(u=x)(:A) = :(u=x)A,(u=x)(A ^B) = (u=x)A ^ (u=x)B,(u=x)(A _B) = (u=x)A _ (u=x)B,(u=x)(A) B) = (u=x)A) (u=x)B,(u=x)(8y A) = 8z (u=x)(z=y)A where z is a variable not appearing in8y A, not appearing in u and distint from x,(u=x)(9y A) = 9z (u=x)(z=y)A where z is a variable not appearing in9y A, not appearing in u and distint from x.We an in the same way de�ne simultaneous substitution.De�nition 1.1.9 (Simultaneous substitution) Let t be a term (resp. aproposition), x1; :::; xn be variables and u1; :::; un be terms. Let � be the �-nite funtion mapping xi to ui. The term (resp. the proposition) �t is de�nedby indution over the height of t as follows� �xi = ui,if y is a variable di�erent from the xi's, then �y = y,�f(t1; :::; tn) = f(�t1; :::; �tn),� �P (t1; :::; tn) = P (�t1; :::; �tn),�> = >,�? = ?,�(:A) = :�A,�(A ^ B) = �A ^ �B,



1.2. PROOFS 13�(A _B) = �A _ �B,�(A) B) = �A) �B,�(8y A) = 8z �(z=y)A where z is a variable not appearing in 8y A andnot appearing in �,�(9y A) = 9z �(z=y)A where z is a variable not appearing in 9y A andnot appearing in �.1.2 ProofsWe are now ready to de�ne the tools that permit to prove propositions.1.2.1 Proofs �a la HilbertDe�nition 1.2.1 (Theory) A theory is a set of propositions, alled axioms,suh that the membership of some proposition to this set an be deided in analgorithmi way.De�nition 1.2.2 (Dedution rule) A Dedution rule is a set of n+ 1-uplesof propositions, suh that the membership of some n+1-uples of propositions tothis set an be deided in an algorithmi way. The n+ 1-uple hA1; :::; An; Bi iswritten A1 ::: AnBThe propositions A1; :::; An are alled the premises and the proposition B theonlusion of the n+ 1-uple.De�nition 1.2.3 (Proof) Let D a set of dedution rules. A proof of a propo-sition B in D is a tree whose root is labeled by the proposition B, whose sub-treesare proofs of propositions A1; :::; An and suh that the n+ 1-upleA1 ::: AnBis an element of one of the dedution rules of D.De�nition 1.2.4 (Logial axioms) A logial axiom is a proposition of thefollowing form where A, B, C are arbitrary propositions and x an arbitraryvariable. A) (B ) A)(A) (B ) C))) ((A) B)) (A) C))(8x (A) B))) (A) 8x B) (if x 62 FV (A))>?) A



14 CHAPTER 1. PREDICATE LOGICA) (:A) ?)(A) ?)) :A(A ^ B)) A(A ^ B)) BA) B ) (A ^ B)A) (A _B)B ) (A _ B)(A _ B)) ((A) C)) ((B ) C)) C))8x A) (t=x)A(t=x)A) 9x A9x A) ((8x (A) B))) B) (if x 62 FV (B))A _ :ADe�nition 1.2.5 (Dedution rules �a la Hilbert) Given a theory �, thededution rules �a la Hilbert for � are the following:� the rule Axiom ontaining all the 1-uplesAwhere A is an element of � or a logial axiom,� the rule Modus ponens ontaining all the 3-uplesA) B AB� the rule Generalization ontaining all the 2-uplesA8x Awhere x does not appear free in �.These rules should be understood as follows: axioms have trivial proofs, ifwe have already proved A ) B and A we an dedue B, if we have alreadyproved A with no assumption on x, we an dedue 8x A.



1.2. PROOFS 15Example 1.2.1 Consider the language formed with the four proposition sym-bols (i.e. prediate symbol of zero arguments) P , Q, R and S. Consider thetheory formed with the propositions PQQ) RP ) (R) S)we have the following proof of the proposition SAxiomP ) (R) S) AxiomP Modus ponensR) S AxiomQ) R AxiomQ Modus ponensR Modus ponensSRemark. Some authors prefer to de�ne proofs as sequenes of propositionsrather than as trees. Again, this is just a matter of taste.1.2.2 The dedution lemmaWe now want to prove that a proposition A) B has a proof in the theory � ifand only if the proposition B has a proof in the theory �; A.Proposition 1.2.1 Let A be a proposition, the proposition A) A has a proofin the empty theory.Proof. The propositions(A) ((A) A)) A))) ((A) (A) A))) (A) A))A) ((A) A)) A)A) (A) A)are logial axioms. Hene, the proposition A) A has the proofB A) ((A) A)) A) Modus ponens(A) (A) A))) (A) A) A) (A) A) Modus ponensA) Awhere B is (A) ((A) A)) A))) ((A) (A) A))) (A) A)).Proposition 1.2.2 (Dedution lemma) The proposition A) B has a proofin the theory � is and only if the proposition B has a proof in the theory �; A.



16 CHAPTER 1. PREDICATE LOGICProof. If the proposition A) B has a proof in the theory �, then it has a proofin the theory �; A. So does the proposition A. Thus, the proposition B has aproof built with the Modus ponens rule.Conversely, we prove by indution over the height of the proof of B in �; Athat there is a proof of A) B in �.� If the root of the proof is a Axiom, then either B = A and we have a proofof A) B by the proposition 1.2.1, or B an element of � and we have theproof B ) (A) B) B Modus ponensA) B� If the root of the proof is a Modus ponens then B is dedued from C ) Band C, that have smaller proofs. By indution hypothesis, there are proofs�1 and �2 of A) (C ) B) and A) C in � and we take the proof(A) (C ) B))) ((A) C)) (A) B)) �1A) (C ) B) Modus p.(A) C)) (A) B) �2A) C Modus p.A) B� If the root of the proof is a Generalization then we have B = 8x C, xdoes not appear in � nor in A and C has a smaller proof. By indutionhypothesis, there is a proof � of A) C in � and we take the proof(8x (A) C))) (A) 8x C) �A) C Generalization8x (A) C) Modus ponensA) 8x C1.2.3 Natural dedutionIntroduing an hypothesis seems to be a natural step in a proof. To prove, forinstane, the proposition (n = 0)) (n+ 1 = 1) we want to assume that n = 0and then to prove that n+ 1 = 1.Proofs �a la Hilbert do not permit to do that diretly: if we have a proof of theproposition n+1 = 1 using the hypothesis n = 0, the dedution lemma permitsto transform this proof into one of the proposition (n = 0) ) (n + 1 = 1),but this proof is muh longer than the proof we started with and it is not verynatural.Natural dedution is an alternative de�nition of the notion of proof wherethe introdution of an hypothesis is dedution rule. In Natural dedution, adedution step an modify not only the proved proposition but also the theory�, hene a proof is not a tree of propositions, but a tree of ordered pairs h�; Aiwhere � is a theory and A a proposition. Suh an ordered pair is alled a sequent



1.2. PROOFS 17and is written � ` A (read \� entails A"). The Introdution rule that permitsto introdue an hypothesis transforms the sequent �; A ` B into the sequent� ` A) B.The notions of dedution rule and proof adapt straightforwardly to sequents.De�nition 1.2.6 (Dedution rule on sequents) A Dedution rule is a setof n + 1-uples of sequents, suh that the membership of some n + 1-uples ofsequents to this set an be deided in an algorithmi way. The n+1-uple h�1 `A1; :::;�n ` An;� ` Bi is written�1 ` A1 ::: �n ` An� ` BThe sequents �1 ` A1; :::;�n ` An are alled the premises and the sequent � ` Bthe onlusion of the n+ 1-uple.De�nition 1.2.7 (Proof on sequents) Let D a set of dedution rules. Aproof of a sequent � ` B in D is a tree whose root is labeled by the sequent� ` B, whose sub-trees are proofs of sequents �1 ` A1; :::;�n ` An and suhthat the n+ 1-uple �1 ` A1 ::: �n ` An� ` Bis an element of one of the dedution rule of D.With the introdution rule, the three �rst logial axioms are now redundant,indeed the sequent � ` A) (B ) A) an be proved as follows�; A;B ` A Intro�; A ` B ) A Intro� ` A) (B ) A)The sequent � ` (A ) (B ) C)) ) ((A ) B) ) (A ) C)) an be proved asfollows � ` A) (B ) C) � ` AModus p.� ` B ) C � ` A) B � ` AModus p.� ` B Modus p.�; A) (B ) C); A) B;A ` C Intro�; A) (B ) C); A) B ` A) C Intro�; A) (B ) C) ` (A) B)) (A) C) Intro� ` (A) (B ) C))) ((A) B)) (A) C))where � = �; A ) (B ) C); A ) B;A. And, if the variable x appears freeneither in � nor in A, the sequent � ` (8x (A ) B)) ) (A ) 8x B) an beproved as follows� ` (8x (A) B))) (A) B) � ` 8x (A) B) Modus p.� ` A) B � ` AModus p.� ` B Generalization�; 8x (A) B); A ` 8x B Intro�; 8x (A) B) ` A) 8x B Intro� ` (8x (A) B))) (A) 8x B)where � = �;8x (A) B); A.



18 CHAPTER 1. PREDICATE LOGICUsing proof �a la Hilbert, when we have proved the propositions A and Band we want to dedue the proposition A ^ B, we must use the logial axiomA ) (B ) (A ^ B)) and dedue B ) (A ^ B) and then A ^ B with theModus ponens rule. It is more natural to take a rule allowing to dedue diretly� ` A^B from � ` A and � ` B. As we have the rule Introdution this logialaxiom and this rule are equivalent. As we have just seen, in a system where wehave the logial axiom, we an simulate any instane of the rule and onversely,in a system where we have the rule, the axiom an be proved as follows�; A;B ` A �; A;B ` B New rule�; A;B ` A ^B Intro�; A ` B ) (A ^B) Intro� ` A) (B ) (A ^ B))Exerise 1.2.1 With proof �a la Hilbert, are the logial axiom and the ruleequivalent ? Hint: try to prove the Dedution lemma.We an suppress in a similar way all the logial axioms and replae them bydedution rules. Let us take another example. The logial axiom(A _ B)) ((A) C)) ((B ) C)) C))an be replaed by the rule� ` A _ B � ` A) C � ` B ) C� ` CBut, as it is equivalent to prove the sequent � ` A) C or the sequent �; A ` Cwe an transform this rule further into� ` A _B �; A ` C �; B ` C� ` CIn this rule, _ is the only onnetor or quanti�er that appears expliitly. Inmost rules, only one onnetor or quanti�er ours. This permits to lassify therules aording to the onnetor or quanti�er that appears in this rule. The rulesof a onnetor or quanti�er an further be lassi�ed aording to the positionof this onnetor or quanti�er. If it appears in the onlusion of the rule, thenthe rules is alled an introdution rule, if it appears in a premise, then the ruleis an elimination rule. For instane, the onnetor _ has two introdution rules� ` A _-intro� ` A _ B� ` B _-intro� ` A _ Band one elimination rule� ` A _B �; A ` C �; B ` C _-elim� ` C



1.2. PROOFS 19The Modus ponens � ` A) B � ` A� ` Bis the elimination rule of impliation. The Generalization� ` A if x 62 FV (�)� ` 8x Ais the introdution rule of the universal quanti�er 8. And the rule Introdution�; A ` B� ` A) Bis the introdution rule of the impliation.The system obtained this way is alled Natural Dedution.De�nition 1.2.8 (Natural dedution) Axiom if A 2 �� ` A >-intro� ` >� ` ? ?-elim� ` A�; A ` ? :-intro� ` :A� ` A � ` :A :-elim� ` ?� ` A � ` B ^-intro� ` A ^ B� ` A ^ B ^-elim� ` A� ` A ^ B ^-elim� ` B� ` A _-intro� ` A _ B� ` B _-intro� ` A _ B� ` A _ B �; A ` C �; B ` C _-elim� ` C�; A ` B )-intro� ` A) B



20 CHAPTER 1. PREDICATE LOGIC� ` A) B � ` A)-elim� ` B� ` A 8-intro if x 62 FV (�)� ` 8x A� ` 8x A 8-elim� ` (t=x)A� ` (t=x)A 9-intro� ` 9x A� ` 9x A �; A ` B 9-elim if x 62 FV (�; B)� ` B Exluded middle� ` A _ :AProposition 1.2.3 A proposition A has a proof �a la Hilbert in the theory � ifand only if the sequent � ` A has a proof in natural dedution.Proof. By indution on the height of proofs.De�nition 1.2.9 (Contraditory, onsistent) A theory � is ontraditoryif all propositions have a proof in �. It is onsistent otherwise.Exerise 1.2.2 Prove that a theory � is ontraditory if and only the propo-sition ? has a proof. Prove that a theory � is ontraditory if and only there isa proposition A suh that A and :A have a proof.Exerise 1.2.3 Let A be a proposition, prove that a theory that proves theproposition A, :A is ontraditory.Example 1.2.2 (Equality) Given a language L ontaining a prediate symbol= of two arguments, the theory of equality in this language is formed with thefollowing axioms.Identity axiom: 8x (x = x)Leibniz' axiom sheme: for eah proposition A, the axiom8x 8y ((x = y)) ((x=z)A) (y=z)A))Exerise 1.2.4 In the theory of equality, give a proof of the proposition8x 8y (x = y ) y = x)Example 1.2.3 (Arithmeti) The language of arithmeti is formed with� an individual symbol 0, a funtion symbol Su of one argument and twofuntion symbols + and � of two arguments



1.2. PROOFS 21� a prediate symbol = of two arguments.The axioms of arithmeti are the axioms of equality and the axioms:8x 8y (Su(x) = Su(y)) x = y)8x :(0 = Su(x))indution sheme: for eah proposition A the axiom((0=z)A ^ (8x ((x=z)A) (Su(x)=z)A)))) 8y (y=z)Aand the axioms 8y (0 + y = y)8x 8y (Su(x) + y = Su(x+ y))8y (0� y = 0)8x 8y (Su(x)� y = (x � y) + y)Exerise 1.2.5 Write a proof in arithmeti of the propositionsSu(0) + Su(0) = Su(Su(0))8x (x+ 0 = x)1.2.4 Construtive proofsDe�nition 1.2.10 (Construtive proof) A proof is onstrutive if it doesnot use the exluded middle rule.We want to prove that onstrutive provability and general provability areequivalent. This does not mean, of ourse, that all propositions that have a proofhave a onstrutive proof, but that for eah proposition A we an omputea proposition A0 suh that the proposition A has a proof if and only if theproposition A0 has a onstrutive proof.De�nition 1.2.11 (Negative translation) Let A be a proposition, the propo-sition A0 is de�ned by indution over the height of A as follows.� A0 = ::A if A is atomi,� >0 = ::>,� ?0 = ::?,� (:A)0 = :::A0,� (A ^ B)0 = ::(A0 ^ B0),� (A _ B)0 = ::(A0 _ B0),



22 CHAPTER 1. PREDICATE LOGIC� (A) B)0 = ::(A0 ) B0),� (8x A)0 = ::(8x A0),� (9x A)0 = ::(9x A0).Proposition 1.2.4 The proposition A has a proof if and only if A0 has a on-strutive proof.Proof. (1) If a sequent � ` A has a onstrutive proof �, then the sequent� ` ::A has a onstrutive proof. First, we an add the hypothesis :A to allsequents of the proof �, we obtain a proof �0 of the sequent �;:A ` A. Thenwe have the following proof.�;:A ` :A �0�;:A ` A :-elim�;:A ` ? :-intro� ` ::AThus, we an build a onstrutive proof of ::>. From a onstrutive proof of�; A ` ? we an build a onstrutive proof of � ` :::A. From onstrutiveproofs of � ` A and � ` B, we an build a onstrutive proof of � ` ::(A^B).From a onstrutive proof of � ` A, we an build a onstrutive proof of � `::(A _ B). From a onstrutive proof of � ` B, we an build a onstrutiveproof of � ` ::(A _ B). From a onstrutive proof of �; A ` B, we an builda onstrutive proof of � ` ::(A ) B). From a onstrutive proof of � ` A,we an build a onstrutive proof of � ` ::8x A provided x does not appearfree in �. From a onstrutive proof of � ` (t=x)A, we an build a onstrutiveproof of � ` ::9x A.(2) Then, we hek that from a onstrutive proofs of � ` ::?, we an builda onstrutive proof of � ` ::A. From onstrutive proofs of � ` :::A and� ` ::A, we an build a onstrutive proof of � ` ::?. From a onstrutiveproof of � ` ::(::A ^ ::B), we an build a onstrutive proof of � ` ::Aand a onstrutive proof of � ` ::B. From a onstrutive proofs of � `::(::A_::B), �;::A ` ::C and �;::B ` ::C we an build a onstrutiveproof of � ` ::C. From onstrutive proofs of � ` ::(::A ) ::B) and� ` ::A, we an build a onstrutive proof of � ` ::B. From onstrutiveproofs of � ` ::(8x ::A), we an build a onstrutive proof of � ` ::(t=x)A.From onstrutive proofs of � ` ::9x A and �;::A ` ::B we an build aonstrutive proof of � ` ::B provided that x does not appear free in � nor inB. As an example we show that from onstrutive proofs of � ` ::(::A )::B) and � ` ::A, we an build a onstrutive proof of � ` ::B.��;:B ` ::(::A) ::B)�;:B;::A) ::B ` ::A) ::B �0�;:B;::A) ::B ` ::A)-elim�;:B;::A) ::B ` ::B �;:B;::A) ::B ` :B :-elim�;:B;::A) ::B ` ? :-intro�;:B ` :(::A) ::B) :-elim�;:B ` ? :-intro� ` ::B



1.3. MODELS 23(3) We hek that if A is a proposition, then the proposition ::(A _ :A)has a onstrutive proof.:(A _ :A) ` :(A _ :A):(A _ :A); A ` :(A _ :A) :(A _ :A); A ` A _-i.:(A _ :A); A ` A _ :A :-e.:(A _ :A); A ` ? :-intro:(A _ :A) ` :A _-intro:(A _ :A) ` A _ :A :-elim:(A _ :A) ` ? :-intro` ::(A _ :A)(4) Then, we show that if � ` A has a proof � then �0 ` A0 has a onstrutiveproof, by indution over the height of �. If the last rule of � is an axiom thenwe use the axiom rule, if the last rule is an introdution rule then we use lemma(1), if it is an elimination rule then we use lemma (2), if it the exluded middlerule, we use lemma (3).(5) Conversely, we show that the proposition A , ::A has a (not nees-sarily onstrutive) proof and we dedue that A , A0 has a (non neessarilyonstrutive) proof and that if �0 ` A0 has a onstrutive proof then � ` A hasa (not neessarily onstrutive) proof.Remark. In these ourse notes, we shall mainly fous on onstrutive proofs.This does not mean that we renoune the non onstrutive proofs, but that nononstrutive proofs of a proposition A are understood as onstrutive proofs ofits negative translation.1.3 ModelsDe�nition 1.3.1 (Struture) Let L be a language formed with the funtionsymbols f0; f1; ::: of number or arguments n0; n1; ::: and the prediate symbolsP0; P1; ::: of number of arguments m0;m1; :::. A struture M built on L is an-uple formed with� a non empty set M ,� a funtion f̂0 from Mn0 to M , a funtion f̂1 from Mn1 to M , ...� a funtion P̂0 from Mm0 to f0; 1g, a funtion P̂1 from Mm1 to f0; 1g, ...De�nition 1.3.2 (Assignment) An assignment over the set of variables V isa funtion from V to M . If � is an assignment, x a variable and a an elementof M , then � + hx; ai is the assignment mapping x to a and y to �(y) when yis distint from x.De�nition 1.3.3 (Denotation) Let L be a language, V be a set of variablesand M be a struture built on L. Let � be an assignment and t be a term (resp.a proposition), the denotation of t in M modulo � is de�ned by indution overthe height of t.



24 CHAPTER 1. PREDICATE LOGIC� jxj� = �(x),jfi(t1; :::; tni)j� = f̂i(jt1j�; :::; jtni j�),� jPi(t1; :::; tni)j� = P̂i(jt1j�; :::; jtni j�),j>j� = 1,j?j� = 0,j:Aj� = 1 if jAj� = 0, and 0 otherwise,jA ^ Bj� = 1 if jAj� = 1 and jBj� = 1, and 0 otherwise,jA _ Bj� = 1 if jAj� = 1 or jBj� = 1, and 0 otherwise,jA) Bj� = 1 if jAj� = 0 or jBj� = 1, and 0 otherwise,j8x Aj� = 1 if for all elements a of M , jAj�+hx;ai = 1, and 0 otherwisej9x Aj� = 1 if there is an element a of M suh that jAj�+hx;ai = 1, and 0otherwise.De�nition 1.3.4 (Validity, model) Let L be a language, V be a set of vari-ables and M be a struture built on L. A proposition P is valid in M is for allassignments �, jP j� = 1. A theory � is valid in M if all its axioms are valid.The struture M is a model of � if � is valid in M.Proposition 1.3.1 (Soundness) Let � be a theory. If the proposition P hasa proof in �, then it is valid in all the models of �.Proof. By indution over the height of a proof of P in �.Corollary 1.3.2 If the theory � has a model in whih P is not valid then Phas no proof in �.Corollary 1.3.3 If � has a model then � is onsistent.Example 1.3.1 Consider the language ontaining two prediate symbol = and� of two arguments. Consider the theory O formed with the axioms of equalityand 8x (x � x)8x 8y ((x � y ^ y � x)) x = y)8x 8y 8z ((x � y ^ y � z)) x � z)From these axiom we annot dedue the proposition8x 8y (x � y _ y � x)Indeed, onsider the struture M = hN; I ; ji where I(n;m) = 1 if n = m and0 otherwise, j(n;m) = 1 if n is a divisor of m and 0 otherwise. The strutureMis a model of O. But it is not a model of the proposition 8x 8y (x � y _ y � x),beause 2 is not a divisor of 3 and 3 is not a divisor of 2.



1.3. MODELS 25Remark. The �rst use of the notion of model to prove that some proposition hasno proof in a theory is probably that of F. Klein who has built in 1871 a modelof all the axioms of Eulid's geometry exept the axiom of parallels, showingthat the axiom of parallels annot be dedued from the other axioms of Eulid'sgeometry. (However the notion of model has only been de�ned by A. Tarski,more than �fty years later, in 1936).The soundness theorem has a onverse we shall not prove here.Proposition 1.3.4 (G�odel's ompleteness theorem) Let � be a theory. Ifthe proposition P is valid in all the models of � then it has a proof in �.Remark. The soundness theorem holds also for onstrutive proofs. But notthe ompleteness theorem. For instane, let P be a proposition symbol (i.e.a prediate symbol of zero arguments). We shall see (exerise 4.1.1) that theproposition P _:P has no onstrutive proof, but it is valid in all models. Thenotion of model needs to be adapted for onstrutive proofs.Remark. In proof theory, the notion of model is mostly used to prove inde-pendene results, i.e. that some propositions have no proof in some theories.The notion of model is also used in algebra. For instane, ordered sets an bede�ned as the models of the theory O of example 1.3.1. Groups an also bede�ned as the models of some theory, but it an be shown that Arhimedianomplete ordered �elds annot be de�ned as the models of some theory. Thisfat may be used to prove, for instane, that there are ordered sets or groups ofall in�nite ardinals, while it is known that all Arhimedian omplete ordered�elds are isomorphi to R and thus that they all have ardinal 2�0 . The branhof mathematis that studies these appliations of logi to algebra is alled modeltheory.Remark. A ommon misoneption is that the notion of model an be used, asan alternative to the notion of proof, to de�ne the notion of mathematial truth,i.e. that instead of saying that a proposition is true if it has a proof, we ouldsay that it is true if it is valid in all models. The problem with suh a de�nitionof truth is that, unlike the fat that a tree is a proof of some proposition, thefat that a proposition is valid in all models is not self evident, i.e. it annotbe heked in an algorithmi way. Thus, the fat that some proposition is validin all models must itself be justi�ed by some argument. Thus, suh a de�nitionof truth redues the question of the truth of the proposition \P" to that of theproposition \the proposition P is valid in all models" and trying to justify someproposition we enter into an in�nite regression.Remark. (Many-valued model) In the de�nition 1.3.1, the truth value 0 is usedas denotation of non valid propositions, and the truth value 1 as denotationof valid propositions. This de�nition an be extended by adding other truthvalues. A ommon extension is to take a third value for propositions whosevalidity is unknown in this model.



26 CHAPTER 1. PREDICATE LOGIC



Chapter 2Extensions of prediatelogi2.1 Many-sorted prediate logiIn some theories, we want to distinguish several sorts of objets. For instane, ina language with the individual symbols German, English, Frenh, Germany,United�Kingdom, Ireland, Frane and a prediate L, we an form the propo-sitions L(German;Germany)L(English; United�Kingdom)L(English; Ireland)L(Frenh; Frane)expressing that German is an oÆial language of Germany, ... In this theory,we an also form the unwanted propositionL(Germany;Germany)An extension of prediate logi permits to restrit the term and propositionformation rules, in suh a way that suh unwanted propositions are avoided.De�nition 2.1.1 (Many-sorted language) A language is a set of sorts, aset of funtion symbols and a set of prediate symbols. To eah funtion symbolis assoiated a n + 1-uple of sorts hs1; :::; sn; sn+1i alled its rank and to eahprediate symbol is assoiated a n-uple of sorts hs1; :::; sni alled its rank.De�nition 2.1.2 (Term in a many-sorted language) Let L be a many-sorted language and Vs be a a family of disjoint in�nite sets indexed by sorts.The terms of the language L with variables Vs are de�ned by the following rules27



28 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC� if x is a variable of Vs then the tree whose root is labeled by x and thathas no sub-tree is a term of sort s,� if f is a funtion symbol of rank hs1; :::; sn; sn+1i and t1; :::; tn are terms ofsort s1; :::; sn then the tree whose root is labeled by f and whose sub-treesare t1; :::; tn is a term of sort sn+1.De�nition 2.1.3 (Proposition in a many-sorted language) Let L be amany-sorted language and Vs be a a family of disjoint in�nite sets indexed bysorts. The propositions of the language L with variables Vs are de�ned by thefollowing rules� if P is a prediate symbol of rank hs1; :::; sni and t1; :::; tn are terms of sorts1; :::; sn, then the tree whose root is labeled by P and whose sub-trees aret1; :::; tn is a proposition,� the trees whose root are labeled by > and ? and that have no sub-tree arepropositions,� if A is a proposition then the tree whose root is labeled by : and whosesub-tree is A is a proposition,� if A and B are propositions then the trees whose root are labeled by ^, _or ) and whose sub-trees are A and B are propositions,� if A is a proposition and x a variable then the trees whose root are labeled8x and 9x and whose sub-tree is A are propositions.The de�nition of a substitution is restrited in suh a way that a variable ofsort s an only be substituted by a term of sort s. The proof rules are the samethan in ordinary prediate logi.De�nition 2.1.4 (Struture in a many-sorted language) Let L be a lan-guage formed with the sorts s0; s1; :::, the funtion symbols f0; f1; ::: of numberor arguments and the prediate symbols P0; P1; :::. A struture M built on L isa n-uple formed with� a family of non empty sets Ms0 ;Ms1 ; :::,� a funtion f̂0 from Ms1 � :::�Msn to Msn+1 where hs1; :::; sn; sn+1i is therank of f0, a funtion f̂1 ...� a funtion P̂0 from Ms1 � :::�Msn to f0; 1g where hs1; :::; sni is the rankof P0, a funtion P̂1 ...The denotation of a term and a proposition is de�ned in the same way as inordinary prediate logi, with the extra ondition that in the ase of quanti�ers,the objet a belongs to Ms where s is the sort of the quanti�ed variable.



2.2. PREDICATE LOGIC MODULO 29Proposition 2.1.1 (Soundness and ompleteness) A proposition has a proofin a theory if and only if it is valid in all the models of this theory.Remark. Prediate logi is a partiular ase of many-sorted prediate logi witha single sort.2.2 Prediate logi moduloIn prediate logi, proofs are sequenes of dedution steps. The idea of prediatelogi modulo is that a proof is not a sequene of dedution steps, but a sequeneof dedution steps and of omputation steps. For instane, in arithmeti, toprove the proposition 9x (2� x = 4)we use the 9-intro rule and we are redued to prove the proposition 2� 2 = 4.Then, we have to use the axioms of addition and multipliation to prove thisproposition. In prediate logi modulo, we an simply ompute the term 2� 2and obtain the proposition 4 = 4 that an easily be proved with the identityaxiom.2.2.1 Dedution rulesDe�nition 2.2.1 A relation � de�ned on terms and propositions of a languageis a ongruene if� it is an equivalene relation,� it is ompatible with all funtion symbols, prediate symbols, onnetorsand quanti�ers, i.e. if t � u then f(t) � f(u), if A � B and A0 � B0 thenA ^ A0 � B ^ B0, if A � B then 8x A � 8x B, ...In prediate logi modulo a theory is formed with a set of axioms � suh thatthe membership of some proposition to this set an be deided in an algorithmiway and a ongruene � on terms and propositions suh that the equivaleneof two propositions an be deided in an algorithmi way. Before or after eahdedution step, we an transform the proved proposition into any equivalent one.The dedution rules are thus modi�ed to take these omputations into aount.These rules permit to prove sequents of the form � `� A. A proposition is saidto have a proof in the theory �;� if the sequent � `� A has a proof with thefollowing dedution rules.De�nition 2.2.2 (Dedution rules modulo)Axiom if A 2 � and A � B� `� B >-intro if A � >� `� A



30 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC� `� B ?-elim if B � ?� `� A�; A `� B :-intro if B � ? and C � :A� `� C� `� C � `� A :-elim if C � :A and B � ?� `� B� `� A � `� B ^-intro if C � (A ^ B)� `� C� `� C ^-elim if C � (A ^ B)� `� A� `� C ^-elim if C � (A ^ B)� `� B� `� A _-intro if C � (A _ B)� `� C� `� B _-intro if C � (A _ B)� `� C� `� D �; A `� C �; B `� C _-elim if D � (A _B)� `� C�; A `� B )-intro if C � (A) B)� `� C� `� C � `� A)-elim if C � (A) B)� `� B� `� A hx;Ai 8-intro if B � (8x A) and x 62 FV (�)� `� B� `� B hx;A; ti 8-elim if B � (8x A) and C � (t=x)A� `� C� `� C hx;A; ti 9-intro if B � (9x A) and C � (t=x)A� `� B� `� C �; A `� B hx;Ai 9-elim if C � (9x A) and x 62 FV (�; B)� `� B B Exluded middle if A � (B _ :B)� `� AProposition 2.2.1 (Equivalene) For every ongruene � there is a theoryT suh that � `� A if and only if T � ` A.Proof. We take, for instane, all the axioms of the form 8x1 ::: 8xn (A , B)where A � B.De�nition 2.2.3 (Model of a theory modulo) A struture M is a modelof a theory modulo �;� if all the axioms of � are valid in M and eah time twoterms (resp. propositions) are ongruent they have the same denotation in M.Proposition 2.2.2 (Soundness and ompleteness) A proposition has a proofin a theory if and only if it is valid in all the models of this theory.



2.2. PREDICATE LOGIC MODULO 312.2.2 Congruenes de�ned by rewrite rulesCongruenes used in prediate logi modulo are often de�ned by rewrite systems.De�nition 2.2.4 (Rewrite rule, rewrite system) A rewrite rule is an or-dered pair of terms or an ordered pair of propositions hl; ri written l �! r. Arewrite system is a set of rewrite rules.De�nition 2.2.5 (Redex) Let R be a rewrite system and t be a term. Theterm t is a redex (reduible expression) if there exists a rule l �! r in R and asubstitution � suh that t = �l. A term t is said to ontain a redex if one of itssub-terms is a redex.De�nition 2.2.6 (One step redution) Let R be a rewrite system. A term(resp. a proposition) t redues to a term (resp. a proposition) u in one step(t �!1 u) if there is a sub-term t0 of t and a substitution � suh that t0 = �land u is obtained by replaing in t the sub-term t0 by the term �u.De�nition 2.2.7 (Redution sequene) Let R be a rewrite system. A re-dution sequene is a �nite or in�nite sequene of terms (resp. propositions)t0; t1; ::: suh that for every i, ti �!1 ti+1.De�nition 2.2.8 (Redution) Let R be a rewrite system. A term (resp. aproposition) t redues to a term (resp. a proposition) u (t �! u) if there is a�nite redution sequene starting on t and ending on u.De�nition 2.2.9 (Congruene sequene) Let R be a rewrite system. Aongruene sequene is a �nite or in�nite sequene of terms (resp. proposi-tions) t0; t1; ::: suh that for every i, ti �!1 ti+1 or ti+1 �!1 ti.De�nition 2.2.10 (Congruene) Let R be a rewrite system. Two terms(resp. two propositions) t and u are ongruent if there is a �nite ongruenesequene starting on t and ending on u.De�nition 2.2.11 (Normal term) A term (resp. a proposition) is normal ifit ontains no redex. A term (resp. a proposition) u is a normal form of a term(resp. a proposition) t if t �! u and u is normal.De�nition 2.2.12 (Terminating) A term (resp. a proposition) is terminat-ing if it has a normal form, i.e. if there exists a �nite redution sequene startingon this term and ending on a normal term. It is strongly terminating if all re-dution sequenes issued from this term are �nite.A rewrite system is terminating (resp. strongly terminating) if all terms andall propositions are terminating (resp. strongly terminating).De�nition 2.2.13 (Conuent) A rewrite system is onuent if whenever aterm (resp. proposition) t redues to two terms (resp. proposition) u1 and u2,then there exists a term (resp. proposition) v suh that u1 redues to v and u2redues to v.



32 CHAPTER 2. EXTENSIONS OF PREDICATE LOGICProposition 2.2.3 In a onuent rewrite system, two terms (resp. two propo-sitions) are ongruent if and only if they redue to a ommon term.Proof. By indution on the length of the ongruene sequene.Proposition 2.2.4 In a onuent rewrite system a term has at most one nor-mal form.Proof. If u1 and u2 are normal forms of t, then t �! u1 and t �! u2. Byonuene, there exists a term v suh that u1 �! v and u2 �! v. As u1 andu2 are normal u1 = v = u2.Proposition 2.2.5 In a terminating and onuent rewrite system a term hasexatly one normal form. And this normal form an be omputed form the term.Proof. Termination yields existene and onuene uniity. To ompute thenormal form, it is suÆient to redue the term until a normal form is reahed.Proposition 2.2.6 In a terminating and onuent rewrite system two terms(resp. propositions) are ongruent if they have the same normal form.Proof. If the two terms have the same normal form, then they are ongruent.If they are ongruent, so are their normal forms and these two normal formsredue to a ommon term. Hene they are equal.Proposition 2.2.7 In a terminating and onuent rewrite system, the ongru-ene an be heked in an algorithmi way.Proof. Congruene an be heked by omputing the normal forms and hekingtheir identity.Example 2.2.1 (A presentation of arithmeti in prediate logi modulo)To formulate arithmeti in prediate logi modulo, we an keep the axioms ofequality and the axioms8x 8y (Su(x) = Su(y)) x = y)8x :(0 = Su(x))((0=z)A ^ (8x ((x=z)A) (Su(x)=z)A)))) 8y (y=z)Aand replae the axioms 8y (0 + y = y)8x 8y (Su(x) + y = Su(x+ y))8y (0� y = 0)8x 8y (Su(x)� y = (x� y) + y)



2.3. BINDING LOGIC 33by the rewrite rules 0 + y �! ySu(x) + y �! Su(x+ y)0� y �! 0Su(x)� y �! x� y + yExerise 2.2.1 Give a proof of the proposition 9x (2� x = 4).2.3 Binding logiIn mathematis, we use the notation x 7! x + 2 to designate the funtion thatmaps x to x + 2. Suh a symbol is said to be a binder, beause the variable xthat is free in x + 2 is bound in x 7! x+ 2. In prediate logi the only bindersare the quanti�ers 8 and 9 that bind variables in propositions, but there is noway to bind variables in terms and so, there is no way to form a term suh asx 7! t.Binding logi is an extension of prediate logi where funtion symbols andprediate symbols an bind variables in their arguments. To eah funtionsymbol or prediate symbol of n arguments is assoiated a rank hk1; :::; kniwhere k1; :::; kn are natural numbers. Then, if f has the rank hk1; :::; kni andt1; :::; tn are terms, we an form the termf(x11:::x1k1 t1; :::; xn1 :::xnkn tn)where x11; :::; x1k1 are bound in the term t1, ..., xn1 ; :::; xnkn are bound in the termtn. In many-sorted binding logi a rank is a sequene of sequenes of sorts. Then,when a funtion symbol f has the rankhhs11; :::; s1k1 ; s1k1+1i; :::hsn1 ; :::; snkn ; snkn+1i; sn+1ix11; :::; x1k1 are variables of sorts s11; :::; s1k1 , ..., xnkn ; :::; xnkn are variables of sortssn1 ; :::; snkn and t1; :::; tn are terms or sorts s1k1+1; :::; snkn+1 then the sort of theterm f(x11:::x1k1 t1; :::; xn1 :::xnkn tn) is sn+1.Substitution is modi�ed in suh a way that bound variables are renamedto avoid apture. Proof rules are the same than in prediate logi or prediatelogi modulo. A notion of model an also be de�ned for binding logi, but weshall not present it here.



34 CHAPTER 2. EXTENSIONS OF PREDICATE LOGIC



Chapter 3Type theoryIn arithmeti, (example 1.2.3), we an speak about the natural numbers but notabout the funtions mapping natural numbers to natural numbers nor about thesets of natural numbers. Thus, arithmeti is not suÆient to express mathemat-is and we need to build more expressive theories. Set theory and type theory(also alled higher-order logi) are suh theories.3.1 Naive set theoryIn the language of arithmeti, the symbol Su is a funtion symbol, thus, it maybe used to form terms, suh as Su(0), but it is not itself a term. If we want to beable to speak about the funtion Su, we need the symbol Su to be a term andhene an individual symbol. When Su is an individual symbol, we annot formthe term Su(0) anymore. Hene, we need to introdue a new funtion symbol �for the appliation of a funtion to its argument and write this term �(Su; 0).We ould also introdue a funtion symbol �2 for funtions of two arguments,but this is not needed. Indeed, a funtion f of two arguments an always beseen as a funtion of one argument that maps x to the funtion that maps y tof(x; y). Thus instead of writing �2(f; x; y) we an write �(�(f; x); y).To ease notations we shall write (f x) for the term �(f; x) and (f x1 ::: xn)for the term (:::(f x1):::xn).In the same way, we want the symbols designating prediates (sets), to beterms and hene individual symbols, for instane if the individual symbol primedesignates the set of prime numbers, to express that the number 2 is prime, weannot write prime(2), but we need to introdue a new prediate symbol 2 andwrite this proposition 2 2 prime.For terms expressing prediates of several arguments to be terms, we mustalso introdue symbols 22, 23, ... For prediates of zero arguments (i.e. propo-sitions) to be terms, we must introdue a prediate symbol 20, also written ".The proposition 22 (R; x; y) expresses that x and y are related by the prediateof two arguments (relation) R. The proposition "(E) expresses that the pred-35



36 CHAPTER 3. TYPE THEORYiate of zero argument E is true. The only di�erene between E and "(E) isthat E is a term (designating an objet) while "(E) is a proposition (expressinga fat). The objet E may be alled the propositional ontent of the proposition"(E).The notions of funtion and set are redundant. We an express a funtionas a funtional relation (its graph), i.e. as a set of ordered pairs. In this ase,we just need the symbol 2.Conversely, we an de�ne a set as its harateristi funtion, i.e. as thefuntion mapping its argument to the propositional ontent of the fat that xbelongs to the set. In this ase, we just need the symbols � and ". If E is aset and x an objet, the propositional ontent of the fat that x belongs to E isdesignated by the term (E x) and the fat that x belongs to E is expressed bythe proposition "(E x). Thus, the proposition x 2 E is thus written "(E x). Inthe same way, the proposition 22 (R; x; y) is written "(R x y), ...Let us now turn to the making of funtions and sets. Whenever we have aterm t and variables x1; :::; xn, we want to onsider the funtion x1; :::; xn 7! t,for instane the funtion x 7! (3� x). This funtion is suh that we get bak twhen we apply it to x1; :::; xn. Whenever we have a proposition P and variablesx1; :::; xn, we want to build the prediate fx1; :::; xn j Pg, for instane the setfx j 9y (x = 2� y)g. This prediate is suh that we get bak P when we applyit to x1; :::; xn.A solution would be to introdue for eah term t and sequene of variablesx1; :::; xn an individual symbol Cx1;:::;xn;t and an axiom(Cx1;:::;xn;t x1 ::: xn) = tand for eah proposition P and sequene of variables x1; :::; xn an individualsymbol Ex1;:::;xn;P and an axiom"(Ex1;:::;xn;P x1 ::: xn), PIn prediate logi modulo, these axioms an be transformed into rewrite rules(Cx1;:::;xn;t u1 ::: un) �! (u1=x1; :::; un=xn)t"(Ex1;:::;xn;P u1 ::: un) �! (u1=x1; :::; un=xn)PBut, not all these symbols are neessary, and we an restrit to a muh smallerlanguage.De�nition 3.1.1 (Naive set theory) The language of naive set theory isformed with� a prediate symbol " of one argument.� a funtion symbol � of two arguments,� individual symbols S, K, _>, _?, _:, _̂ , __, _), _8 and _9.



3.1. NAIVE SET THEORY 37and the ongruene de�ned by the rewrite rules(S x y z) �! ((x z) (y z))(K x y) �! x"( _>) �! >"( _?) �! ?"( _: x) �! :"(x)"( _̂ x y) �! ("(x) ^ "(y))"( __ x y) �! ("(x) _ "(y))"( _) x y) �! ("(x)) "(y))"( _8 x) �! 8y "(x y)"( _9 x) �! 9y "(x y)Proposition 3.1.1 (Comprehension) For eah term t and sequene of vari-ables x1; :::; xn there is a term u suh that(u x1 ::: xn) � tand for eah proposition P and sequene of variables x1; :::; xn there is a termu suh that "(u x1 ::: xn) � PProof. By indution over the height of t (resp. P ).Many variants of this theory have been proposed in the History of mathe-matis: Cantor's set theory (1872), Frege's Begri�shrift (1879), Churh's pure�-alulus (1932), ... Unfortunately, all these systems are ontraditory. Aontradition is given by Russell's paradox.By proposition 3.1.1 there exists a term R suh that8x ("(R x), :"(x x))(take for instane R = (S (K _:) (S (S K K) (S K K)))). The set R is the setof all sets that do not ontain themselves. By de�nition, this set ontains itselfif and only if it does not, whih is ontraditory. More preisely, with the elim-ination rule of the universal quanti�er 8, we an dedue from this propositionthe proposition "(R R), :"(R R)and we have seen (exerise 1.2.3) that from suh a proposition, we an prove aontradition.



38 CHAPTER 3. TYPE THEORY3.2 Set theoryIn naive set theory, it is possible to onstrut funtions de�ned on all the universeand to onstrut sets in omprehension with any property P . To restrit naiveset theory and avoid paradoxes, we may restrit funtion onstrution in suh away that funtions are de�ned with a domain of de�nition and, similarly, onlysubsets of already onstruted sets are onstruted in omprehension. Suhideas are exploited in several theories, inluding set theory and simple typetheory.In Zermelo's set theory and in its extension Zermelo-Fraenkel set theory,the basi notion is that of set and funtions are de�ned as relations. Thus thelanguage does not ontain symbols � and ", but a symbol 2.When P is a proposition, it is not always possible to form the set of objetsverifying the property P . This is only allowed in four ases.� If x and y are two sets, we an form the set fx; yg ontaining exatly xand y (the symbol f; g is a funtion symbol),� If x is a set we an form the set S(x) ontaining the elements of theelements of x,� If x is a set, we an form a set }(x) ontaining the subsets of x.� If x is a set and P is a proposition ontaining variables y; z1; :::; zn, wean form the subset of x of the elements y verifying P . This set an bewritten fy;z1;:::;zn;P (x; z1; :::; zn) where fy;z1;:::;zn;P is a funtion symbol.The axioms are z 2 fx; yg , (z = x _ z = y)y 2[(x), (9z (y 2 z ^ z 2 x))y 2 }(x), (8z (z 2 y ) z 2 x))y 2 fy;z1;:::;zn;P (x; z1; :::; zn), (y 2 x ^ P )There is no way to onstrut the set of sets that do not belong to themselvesand Russell's paradox is avoided.In prediate logi modulo, these axioms may be transformed into rewriterules t 2 fu; vg �! t = u _ t = vt 2[(u) �! 9z (t 2 z ^ z 2 u)t 2 }(u) �! 8z (z 2 t) z 2 u)t 2 fy;z1;:::;zn;P (u; v1; :::; vn) �! t 2 u ^ (t=y; v1=z1; :::; vn=zn)PThis system does not terminate as the proposition fy;:y2y(x) 2 fy;:y2y(x)redues to fy;:y2y(x) 2 x ^ :fy;:y2y(x) 2 fy;:y2y(x). Thus, if we all A the



3.3. SIMPLE TYPE THEORY 39proposition fy;:y2y(x) 2 fy;:y2y(x) and B the proposition fy;:y2y(x) 2 x wehave A �! B ^ :AThe deidability of the ongruene relation generated by these rule is an openproblem.3.3 Simple type theorySimple type theory originates from the work of A.N. Whitehead and B. Russell.It is another way to restrit naive set theory to avoid paradoxes. In this theory,the basi notion is that of funtion. Eah funtion has a domain of de�nitionand the appliation (f t) an be onstruted only when t belongs to the domainof the funtion f , otherwise it is prohibited by the syntax. Hene simple typetheory is a many-sorted theory. Taking all sets as possible funtion domains,i.e. all sets as sorts, makes it diÆult to deide if a term (f t) is well-formed ornot beause we need to deide if the term t designates an objet that belongsto the domain of f or not. Moreover as an objet an belong to several set, itshould have several sorts. In type theory, an objet has only one sort that is themaximal set it belongs to. It is alled the type of this objet. There is one type� for atoms and one type o for propositional ontents, then eah time we havetwo types T and U , we an form the type T ! U of funtions mapping objetsof sort T to objets of sort U .De�nition 3.3.1 (Simple types) Simple types are losed terms formed withthe individual symbols � and o and the funtion symbol ! of two arguments.To ease notation, we write T1 ! T2 ! ::: ! Tn ! U for the type (T1 !(T2:::! (Tn ! U):::)).De�nition 3.3.2 (Language of type theory) The language of simple typetheory in prediate logi modulo is formed with� a prediate symbol " of rank hoi,� for eah pair of type T; U , a funtion symbol �T;U of rank hT ! U; T; Ui,� for eah triple of types T; U; V an individual symbol ST;U;V of sort (T !U ! V )! (T ! U)! T ! V ,for eah pair of types T; U an individual symbol KT;U of sort T ! U ! T ,individual symbols _> and _? of sort o,an individual symbol _: of sort o! o,individual symbols _̂ , __, _) of sort o! o! o,for eah type T , individual symbols _8T and _9T of type (T ! o)! o.De�nition 3.3.3 (Rewrite system of type theory) The rewrite system Tis de�ned by the rules (ST;U;V x y z) �! ((x z) (y z))



40 CHAPTER 3. TYPE THEORY(KT;U x y) �! x"( _>) �! >"( _?) �! ?"( _: x) �! :"(x)"( _̂ x y) �! "(x) ^ "(y)"( __ x y) �! "(x) _ "(y)"( _) x y) �! "(x)) "(y)"( _8T x) �! 8y "(x y)"( _9T x) �! 9y "(x y)Proposition 3.3.1 (Comprehension) For eah term t there is a term u notontaining the variable x suh that (u x) � t. For eah proposition P there is aterm u suh that "(u) � A.Proof. By indution over the height of t.� If t = x then we take u = (S K K), we have (u x) = (S K K x) �(K x (K x)) � x.� If t is a variable di�erent from x or an individual symbol, we take u =(K t), we have (u x) = (K t x) � t.� If t = (t1 t2), then by indution hypothesis, there are terms u1 and u2suh that (u1 x) � t1 and (u2 x) � t2. We take u = (S u1 u2). We have(u x) = (S u1 u2 x) � ((u1 x) (u2 x)) � (t1 t2) = t.By indution over the height of A.� If A = "(t), we take u = t.� If A = B ^C, then by indution hypothesis, there are terms v and w suhthat "(v) � B and "(w) � C. We take u = ( _̂ v w). We proeed the sameway if A = >;?;:B;B _ C or B ) C.� If A = 8x B, then by indution hypothesis, there is a term v suh that"(v) � B and there is a term w not ontaining x suh that (w x) � vand hene "(w x) � "(v) � B. We take u = ( _8 w). We have "(u) �8x "(w x) � 8x B. We proeed the same way if A = 9x B.De�nition 3.3.4 (Leibniz' Equality) By the proposition 3.3.1 there is a term_= suh that "( _= x y) � 8p ("(p x)) "(p y))



3.3. SIMPLE TYPE THEORY 41Exerise 3.3.1 Prove 8x "(x _=x)and for eah proposition A8x 8y ("(x _=y)) ((x=z)A) (y=z)A))To prove that the rewrite system T is terminating, we �rst fous on the two�rst rules.Proposition 3.3.2 (Tait's theorem) The rewrite system(ST;U;V x y z) �! ((x z) (y z))(KT;U x y) �! xis strongly terminating.Proof. The set of reduible terms of type T is de�ned by indution over theheight of T .� If T is � or o then t is reduible of type T if and only if it is stronglyterminating.� If T = T1 ! T2 then t is reduible of type T if and only if for everyreduible term u of type T1, the term (t u) is reduible of type T2.We prove by indution over the height of T that� (1) all reduible terms are strongly terminating and� (2) variables and individual symbols other than S and K are reduibleterms.Let T = U1 ! ::: ! Un ! V (V = � or V = o). (1) If t is a reduibleterm of type T , then let x1, ..., xn be variables of types U1; :::; Un. By indutionhypothesis, the variables x1; :::; xn are reduible. Hene, the term (t x1 ::: xn) isreduible and its type is either � or o. Hene it is strongly terminating and so ist. (2) If x is a variable of type T or an individual symbol of type T di�erent fromS and K, then let u1, ..., un be reduible terms of types U1; :::; Un. By indutionhypothesis the terms u1; :::; un are strongly terminating. A redution sequenestarting from (x u1 ::: un) redues redexes in the terms u1; :::; un. Hene, it is�nite. The term (x u1 ::: xn) is strongly terminating and its type is � or o, heneit is reduible. Thus, x is reduible.Then, we prove by indution over the height of t that every term is reduible.� If t is a variable or an individual symbol di�erent from S and K then itis reduible.� If t = (u v), then the terms u and v are reduible by indution hypothesis,and the term t is reduible.



42 CHAPTER 3. TYPE THEORY� If t = K (resp. t = S) then let U1 ! ::: ! Un ! V (V = � or V = o)be the type of t and let u1; :::; un be reduible terms of types U1; :::; Un.We have to prove that the term (K u1 ::: un) (resp. (S u1 ::: un)) isstrongly terminating. Consider a redution sequene t0; t1; t2; ::: startingfrom the term (K u1 ::: un) (resp. (S u1 ::: un)). We have to provethat this redution sequene is �nite. If the root redex is never redued,all redutions take plae in u1; :::; un, these terms are reduible and henestrongly terminating and the redution sequene is �nite. If the root redexis redued at step m, then the term tm has the form (K u01 u02 u03::: u0n)(resp. (S u01 u02 u03::: u0n)) and the term tm+1 is (u01 u03 ::: u0n) (resp.(u01 u03 (u02 u03) u04 ::: u0n)) where u01 is a redut of u1, ..., u0n is a redutof un. The term (u1 u3 ::: un) (resp. (u1 u3 (u2 u3) u4 ::: un)) is re-duible, hene it is strongly terminating and the term (u01 u03 ::: u0n) (resp.(u01 u03 (u02 u03) u04 ::: u0n)) is strongly terminating, thus the redution se-quene t0; t1; t2; ::: is �nite. Therefore, the term K (resp. S) is reduible.All terms are reduible, hene all terms are strongly terminating.Proposition 3.3.3 The rewrite system T is strongly terminating.Proof. We redue termination in T to termination in the system SK. We de�nea translation k k of the terms and the propositions of type theory into terms oftype theory. In eah type T , we hoose a variable zT .� kxk = x,� kST;U;V k = ST;U;V ,kKT;Uk = KT;U ,� k(t u)k = (ktk kuk),� k _>k = k _?k = ((S K K) zo),k _:k = (S K K),k _̂ k = k __k = k _)k = ((S K K) zo!o!o),k _8Tk = k _9T k = (S (S K K) (K zT )),� k"(t)k = ktk,k>k = k?k = zo,k:Ak = kAk,kA ^Bk = kA _ Bk = kA) Bk = (zo!o!o kAk kBk),k8x Ak = k9x Ak = k(zT =x)Ak.We hek that if A rewrites in one step to B in T , then kAk rewrites inat least one step to kBk in SK. If A0; A1; A2; ::: is a redution sequene in T ,then the sequene kA0k; kA1k; kA2k; ::: is a redution sequene in SK, thus it is�nite.Proposition 3.3.4 The rewrite system T is onuent.



3.4. INFINITY 43Proposition 3.3.5 Eah term (resp. proposition) has a unique normal formfor the rewrite system T and the ongruene generated by this system an beheked in an algorithmi way.Proof. It is terminating and onuent.Proposition 3.3.6 Type theory has a model.Proof. Consider the modelM� = f0gMo = f0; 1gMT!U = MMTUŜT;U;V = a 7! (b 7! ( 7! a()(b())))K̂T;U = a 7! (b 7! a)�̂(a; b) = a(b)"̂(a) = a_̂> = 1_̂? = 0_̂:(a) = 1 if a = 0 and 0 otherwise_̂̂ (a; b) = 1 if a = 1 and b = 1 and 0 otherwise_̂_(a; b) = 1 if a = 1 or b = 1 and 0 otherwise_̂)(a; b) = 1 if a = 0 or b = 1 and 0 otherwise_̂8T (a) = 1 if for all b in MT a(b) = 1 and 0 otherwise_̂9T (a) = 1 if there exists a b in MT suh that a(b) = 1 and 0 otherwiseIt is easy to hek that jAj� = jBj� when A � B.3.4 In�nityA set is said E to be in�nite if there is funtion f mapping elements of E toelements of E that is injetive, but not surjetive. In type theory this propositionInfinite(E) is expressed as follows.9a 9f 8x ("(E x)) (E (f x))) ^ 8x 8y (("(E x) ^ "(E y)^"((f x) _=(f y)))) "(x _=y)) ^ (8x ("(E x)) :"(a _=(f x))))Notie that the proposition 9E Infinite(E) is not valid in the model of propo-sition 3.3.6, hene it is not provable. If we replae M� by the set N in themodel of proposition 3.3.6, we keep a model of type theory and the proposition9E Infinite(E) is valid in this model. Thus, the proposition :9E Infinite(E)is not valid in this model and therefore it is not provable either. Indeed, so farneither in type theory nor in set theory we have given an axiom that permits to



44 CHAPTER 3. TYPE THEORYonstrut an in�nite set. To be able to formalize mathematis we need to addsuh an axiom.In type theory, we add an axiom expressing that the set of objets of type �is in�nite. Thus, the set E is suh that "(E x) � > and we an formulate theaxiom 9a 9f 8x 8y ("((f x) _=(f y))) "(x _=y)) ^ (8x :"(a _=(f x)))Instead of taking an existential axiom, we an give a name to the funtion andto the element that is not in its image. For instane, we an all them Su and0 and we get the two axioms8x 8y ("((Su x) _=(Su y))) "(x _=y))8x :"(0 _=(Su x))that are two of Peano's axioms.These axioms beome theorems if we add some symbols and rewrite rules.De�nition 3.4.1 (Type theory with in�nity) Type theory with in�nity isthe extension of type theory with individual symbols 0 of type �, Su and Pred oftype �! �, an individual symbol Null of type �! o and the rules(Pred (Su x)) �! x(Null 0) �! _>(Null (Su 0)) �! _?Exerise 3.4.1 In simple type theory with in�nity, prove the propositions8x 8y ("((Su x) _=(Su y))) "(x _=y))8x :"(0 _=(Su x))Proposition 3.4.1 Type theory with in�nity has a model.Proof. Consider the modelM� = NMo = f0; 1gMT!U = MMTU0̂ = 0;Ŝu = n 7! n+ 1;^Pred = n 7! if n = 0 then 0 else n� 1;^Null = n 7! if n = 0 then 1 else 0;ŜT;U;V = a 7! (b 7! ( 7! a()(b())))K̂T;U = a 7! (b 7! a)�̂(a; b) = a(b)"̂(a) = a



3.5. MORE AXIOMS 45_̂> = 1_̂? = 0_̂:(a) = 1 if a = 0 and 0 otherwise_̂̂ (a; b) = 1 if a = 1 and b = 1 and 0 otherwise_̂_(a; b) = 1 if a = 1 or b = 1 and 0 otherwise_̂)(a; b) = 1 if a = 0 or b = 1 and 0 otherwise_̂8T (a) = 1 if for all b in MT a(b) = 1 and 0 otherwise_̂9T (a) = 1 if there exists a b in MT suh that a(b) = 1 and 0 otherwiseIt is easy to hek that jAj� = jBj� when A � B.There are many ways to onstrut the natural numbers in type theory within�nity (as �nite ardinals, ...). An easy way is simply to take 0 for zero and(Su n) for the suessor of n.Then the type � ontains all the natural numbers, but possibly also otherobjets. The set of natural numbers an be de�ned as the smallest set ontaining0 and losed by suessor, i.e. as the intersetion of all suh sets. An objet is amember of N if it is a member of all sets E ontaining 0 and losed by suessor.Thus "(N n) = 8E (("(E 0) ^ (8x ("(E x)) "(E (Su x))))) ) "(E n))The existene of suh an objet given by proposition 3.3.1.Exerise 3.4.2 Prove the indution theorem8E ("(E 0) ^ 8x ("(E x)) "(E (Su x)))) ) 8n ("(N n)) "(E n))3.5 More axioms3.5.1 ExtensionalityIn mathematis, it is usual to onsider that two sets that have the same elementsare equal and that two funtions that are point-wise equal are equal. This leads,both in set theory and in type theory to the axiom of extensionality. In typetheory, this axiom is stated8f 8g ((8x "((f x) _=(g x))) ) "(f _=g))8x 8y ("(x), "(y))) "(x _=y)3.5.2 DesriptionsThe proposition 3.3.1 permits for instane to prove the existene of a funtionthat adds two to its arguments, i.e. the proposition9f 8x "((f x) _=(Su (Su x)))



46 CHAPTER 3. TYPE THEORYbut, it does not permit to prove the existene of a funtion that takes the value 1on 1 and the value 0 anywhere else. Indeed, it an be proved that the proposition9f 8x (("(x _=(Su 0))) "((f x) _=(Su 0))) ^ (:"(x _=(Su 0))) "((f x) _=0)))has no proof in type theory.In ontrast, with the proposition 3.3.1, it is easy to prove the existene ofthe graph of this funtion, i.e. the proposition9R 8x 8y ("(R x y), (("(x _=1)) "(y _=1)) ^ (:"(x _=1)) "(y _=0))))and we an also prove, for instane by indution, that this relation is funtional,i.e. that 8x ("(N x)) 91y "(R x y))But to onlude to the existene of the funtion we need the following axiom(desriptions axiom)8P 8Q (8x ("(P x)) 91y "(Q x y))) 9f 8x ("(P x)) "(Q x (f x)))that relates funtions and funtional relations.In set theory, funtions are funtional relations, thus they need no axiom tobe related.3.6 Type theory with a binderWe have seen in proposition 3.3.1 that to have a language ontaining the funtionsymbols �T;U and the individual symbols ST;U;V and KT;U and the relatedrewrite rules is suÆient to prove that, for eah term t and variable x thereis a term u not ontaining the variable x suh that (u x) � t. But, the termu is sometimes umbersome to ompute. It is more omfortable to have asymbol 7! suh that the funtion mapping x to t an simply be written x 7! t.The symbol 7! is a funtion symbol of one argument binding one variable inits argument. When we take the symbol 7!, the symbols S and K beomesuperuous (S = x 7! y 7! z 7! ((x z) (y z)), K = x 7! y 7! x). We thus getthe following theory.De�nition 3.6.1 (Language of type theory with a binder) The languageof simple type theory with a binder is formed with� a prediate symbol " of rank hoi,� for eah pair of type T; U , a funtion symbol �T;U of rank hT ! U; T; Ui,for eah pair of types T; U a funtion symbol 7! of rank hhT; Ui; T ! Ui,� individual symbols _> and _? of sort o,an individual symbol _: of sort o! o,individual symbols _̂ , __, _) of sort o! o! o,for eah type T , individual symbols _8T and _9T of type (T ! o)! o.



3.6. TYPE THEORY WITH A BINDER 47De�nition 3.6.2 (Rewrite system of type theory with a binder) The rewritesystem T 0 is de�ned by the rules((x 7! t) u) �! (u=x)t"( _>) �! >"( _?) �! ?"( _: x) �! :"(x)"( _̂ x y) �! "(x) ^ "(y)"( __ x y) �! "(x) _ "(y)"( _) x y) �! "(x)) "(y)"( _8T x) �! 8y "(x y)"( _9T x) �! 9y "(x y)To prove that the rewrite system T 0 is terminating, we �rst fous on the �rstrule.Proposition 3.6.1 (Tait's theorem with a binder) The rewrite system((x 7! t) u) �! (u=x)tis strongly terminating.Proof. The set jT j of reduible terms of type T is de�ned by indution over theheight of T .� If T is � or o then t is in jT j if and only if it is strongly terminating.� If T = T1 ! T2 then t is in jT j if and only if it is strongly terminatingand when its redues to a term of the form x 7! t0 then for every term uin jT1j, (u=x)t0 is in jT2j.To prove that all terms of type T are strongly terminating, we prove thatall terms of type T are in jT j. More generally, we prove, by indution over theheight of t, that if t is a term of type T , � a substitution mapping variables oftype U to elements of jU j, then �t is in jT j.� If t = y, then if y is in the domain of � then �t is in jT j. Otherwise,�t = y, the variable y is normal, hene it is strongly terminating and itannot redue to a term of the form x 7! t0, hene it is in jT j.



48 CHAPTER 3. TYPE THEORY� If t = x 7! u, then T = T1 ! T2. Modulo alphabeti equivalene, we anhose the variable x not appearing in �, thus �t = x 7! �u. This term isstrongly terminating beause a redution sequene issued from it an onlyredue the term �u and, by indution hypothesis, this term is in jT2j andthus it is strongly terminating. Then, if �t redues to the term x 7! t0,then t0 is a redut of �u. Let v be a term of jT2j, the term (v=x)t0 is aredut of ((v=x) Æ �)u, that is in jT2j by indution hypothesis. It is easyto hek that jT2j is losed by redution. Thus the term (v=x)t0 is in jT2j.Hene, the term �t is in jT j.� If t = (t1 t2) and t1 is a term of type U ! T and t2 a term of type U .We have �t = (�t1 �t2). By indution hypothesis �t1 and �t2 are in thesets jU ! T j and jU j. To prove that �t is in jT j, we prove that if u1 is injU ! T j and u2 is in U then (u1 u2) is in jT j.The terms u1 and u2 are strongly terminating. Let n be the maximumlength of a redution sequene issued from u1 and n0 the maximum lengthof a redution sequene issued from u2. We prove that (u1 u2) is in jT jby indution on n+ n0.First we prove that (u1 u2) is strongly terminating. Consider a redutionsequene issued from this term. If the �rst redex is in u1 or u2 then weapply the indution hypothesis, otherwise the redex is at the root of theterm (u1 u2), u1 has the form x 7! u0 and the �rst step of the redutionsequene redues (u1 u2) to (u2=x)u0. This term is in jT j, hene it isstrongly terminating and the redution sequene is �nite. Then, we provethat if T = U1 ! U2 and (u1 u2) redues to a term of the form y 7! v, thenfor every term w in jU1j, (w=y)v is in jU2j. As (u1 u2) is an appliation,the redution sequene is not empty. If the �rst redex is in u1 or u2, weapply the indution hypothesis, otherwise the redex is at the root of theterm (u1 u2), u1 has the form x 7! u0 and the �rst step of the redutionsequene redues (u1 u2) to (u2=x)u0. This term is in jT j and it reduesto y 7! v, hene for every term w in jU1j, (w=y)v is in jU2j. Thus the term(u1 u2) is in jT j.Proposition 3.6.2 The rewrite system T 0 is strongly terminating.Proof. We follow the lines of the proof of proposition 3.3.3 and redue termina-tion in T 0 to termination in the system formed with the �rst rule. We de�ne atranslation k k of the terms and the propositions of type theory into terms oftype theory. In eah type T , we hoose a variable zT .� kxk = x,� kx 7! tk = x 7! ktk,� k(t u)k = (ktk kuk),



3.6. TYPE THEORY WITH A BINDER 49� k _>k = k _?k = ((x 7! x) zo),k _:k = x 7! x,k _̂ k = k __k = k _)k = ((x 7! x) zo!o!o),k _8Tk = k _9T k = x 7! (x zT ),� k"(t)k = ktk,k>k = k?k = zo,k:Ak = kAk,kA ^ Bk = kA _ Bk = kA) Bk = (zo!o!o kAk kBk),k8x Ak = k9x Ak = k(zT=x)Ak.We hek that if A rewrites in one step to B in T , then kAk rewrites in atleast one step to kBk in the system formed with the �rst rule. If A0; A1; A2; ::: isa redution sequene in T , then the sequene kA0k; kA1k; kA2k; ::: is a redutionsequene in the system formed with the �rst rule, thus it is �nite.Proposition 3.6.3 The rewrite system T 0 is onuent.Remark. If we add the axiom of extensionality to both formulations of typetheory we get equivalent theories, i.e. eah language an be translated into theother preserving provability. When we do not take the extensionality axioms,there are subtle di�erenes between these theories, we shall not disuss here.Remark. Some authors use the notation �x t for x 7! t, hene the name �-alulus for this language.
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Chapter 4Cut elimination inprediate logi4.1 Uniform proofsA natural dedution proof built without the exluded middle rule is said to beonstrutive. The hoie of this name omes from the fat that, as we shall see,from a onstrutive proof in the empty theory of a proposition of the form 9x A,it is possible to ompute a term t and a proof of the proposition (t=x)A. Suh aterm t is alled a witness of the proposition 9x A. Thus, expliitly or impliitly,a onstrutive existene proof ontains a witness.Conversely, from a term t and a proof of (t=x)A, the rule 9-intro permits tobuild a proof of the proposition 9x A. A proof ended by an introdution ruleis said to be uniform. Witnesses are expliit in uniform existene proofs. Thus,it is equivalent to have a term t and a proof of (t=x)A or a uniform proof ofthe proposition 9x A. To prove that from a onstrutive proof of a propositionof the form 9x A we an ompute a witness, we shall prove that all proofs anbe transformed into uniform ones. For instane, the non uniform proof of theproposition 9x (P (x) ) P (x))9x (P (x)) P (x)) ` 9x (P (x)) P (x)) )-intro` 9x (P (x)) P (x))) 9x (P (x)) P (x)) P () ` P () )-intro` P ()) P () 9-intro` 9x (P (x)) P (x)))-elim` 9x (P (x)) P (x))will be transformed into P () ` P () )-intro` P ()) P () 9-intro` 9x (P (x)) P (x))From the fat that all proofs an be transformed into uniform ones, we willdedue that� if A is an atomi proposition then it has no proof,51



52 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC� ? has no proof,� if :A has a proof then ? has a proof from the axiom A,� if A ^ B has a proof then A has a proof and B has a proof,� if A _ B has a proof then A has a proof or B has a proof,� if A) B has a proof then B has a proof from the axiom A,� if 8x A has a proof then A has a proof,� if 9x A has a proof then there is a term t suh that (t=x)A has a proof.The results obtained for the ase of >, :, ^, ) and 8 are trivial, they ansimply be established with the elimination rules. The interesting results arethus for ?, _ and 9. The result in the ase of the existential quanti�er 9 is thewitness property. The result obtained in the ase of the disjuntion _ is alledthe disjuntion property. The result obtained in the ase of the ontradition? is the onsisteny of the empty theory. Thus, like model onstrutions, prooftransformation results permit to prove onsisteny and independene results.Exerise 4.1.1 (Independene of the Exluded middle rule) Considera language formed with a proposition symbol P and a theory ontaining no ax-ioms and no rewrite rules. Construt a model where the proposition P is notvalid. Does this proposition have a proof ? Construt a model where the propo-sition :P is not valid. Does this proposition have a proof ? Does the propositionP _ :P have a onstrutive proof ?Exerise 4.1.2 Consider a language formed with a proposition symbol P anda theory ontaining no axioms and no rewrite rules. Construt a model wherethe proposition P is not valid. Does this proposition have a proof ? Construt amodel where the proposition :P is not valid. Does this proposition have a proof ?Does the proposition P _ :P have a proof (possibly using the exluded middlerule) ? Does natural dedution with the exluded middle have the disjuntionproperty ?Exerise 4.1.3 Consider a language formed with a proposition symbol P , aprediate symbol Q of one argument and two individual symbols 0 and 1 and atheory ontaining no axioms and no rewrite rules. Construt a model where theproposition (((Q(0)) Q(0)) ^ P ) _ (Q(1)) Q(0) ^ :P ))is not valid. Does this proposition have a proof ? Construt a model where theproposition (((Q(0)) Q(1)) ^ P ) _ (Q(1)) Q(1) ^ :P ))is not valid. Does this proposition have a proof ? Does the proposition9x (((Q(0)) Q(x)) ^ P ) _ (Q(1)) Q(x) ^ :P ))have a proof (possibly using the exluded middle) ? Does natural dedution withthe exludes middle rule have the witness property ?



4.2. CUTS AND CUT ELIMINATION 53Remark. Some problems in mathematis have the form \Find an objet xsuh that A". One way to solve suh a problem is to prove onstrutively theproposition 9x A, to transform this proof into a uniform one and to read thewitness in the proof. For instane, �nding the quotient of the division of 9 by 2an be done in the following way: �st prove onstrutively the proposition9q 9r (9 = 2� q + r ^ r < 2)then transform this proof into a uniform one and read the witness in the proof.One advantage of proeeding this way, ompared to other division algorithms,is that the result annot be wrong. Indeed, a uniform proof of9q 9r (9 = 2� q + r ^ r < 2)not only ontains the witness 4 but also a proof of the proposition9r (9 = 2� 4 + r ^ r < 2)Of ourse, �nding a proof of the proposition9q 9r (9 = 2� q + r ^ r < 2)may be tedious, but it is not if we prove one for all the proposition8n 8p (:(p = 0)) 9q 9r (n = p� q + r ^ r < p))Notie that when we apply this theorem to 9 and 2 and to a proof of :2 = 0 weget a proof of 9q 9r (9 = 2� q + r ^ r < 2)that is not uniform. Thus, this proof needs to be transformed before the witnessan be read. The quotient 4 is omputed during this transformation. Thus utelimination is the exeution proess of mathematis seen as a programminglanguage.4.2 Cuts and ut eliminationDe�nition 4.2.1 (Cut, ut free) A ut is a proof ended with an eliminationrule whose left premise is proved by an introdution rule on the same symbol.Here are the di�erent ases ��; A ` ? :-intro� ` :A �0� ` A :-elim� ` ?�� ` A �0� ` B ^-intro� ` A ^B ^-elim� ` A



54 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC�� ` A �0� ` B ^-intro� ` A ^B ^-elim� ` B�� ` A _-intro� ` A _ B �0�; A ` C �00�; B ` C _-elim� ` C�� ` B _-intro� ` A _ B �0�; A ` C �00�; B ` C _-elim� ` C��; A ` B )-intro� ` A) B �0� ` A)-elim� ` B�� ` A 8-intro� ` 8x A 8-elim� ` (t=x)A�� ` (t=x)A 9-intro� ` 9x A �0�; A ` B 9-elim� ` BA proof ontains a ut if one of its sub-trees is a ut. Otherwise it is ut free.It is easy to hek that ut free proofs in the empty theory are uniform.Proposition 4.2.1 In the empty theory, a ut free proof ends with an intro-dution rule.Proof. By indution over the height of the proof. The last rule annot bean axiom rule, beause the theory ontains no axioms. If the last rule is anelimination, then the left premise of the elimination is proved with a ut freeproof. Hene it ends by an introdution and the proof is a ut ontraditing thefat that it is ut free.Thus to prove that all proofs an be transformed into uniform ones we willprove that all proofs an be transformed into ut free ones. To do so, we de�nea proess that eliminates uts step by step. A ut of the form��; A ` ? :-intro� ` :A �0� ` A :-elim� ` ?is replaed by the proof obtained this way: in the proof � we suppress thehypothesis A in all sequents, then eah time the axiom rule is used with this



4.2. CUTS AND CUT ELIMINATION 55proposition, we replae it with the proof �0. A ut of the form�� ` A �0� ` B ^-intro� ` A ^B ^-elim� ` Ais replaed by the proof �. A ut of the form�� ` A �0� ` B ^-intro� ` A ^B ^-elim� ` Bis replaed by the proof �0. A ut of the form�� ` A _-intro� ` A _B �0�; A ` C �00�; B ` C _-elim� ` Cis replaed by the proof obtained this way: in the proof �0 we suppress thehypothesis A in all sequents, then eah time the axiom rule is used with thisproposition, we replae it by the proof �. A ut of the form�� ` B _-intro� ` A _B �0�; A ` C �00�; B ` C _-elim� ` Cis replaed by the proof obtained this way: in the proof �00 we suppress thehypothesis B in all sequents, then eah time the axiom rule is used with thisproposition, we replae it by the proof �. A ut of the form��; A ` B )-intro� ` A) B �0� ` A)-elim� ` Bis replaed by the proof obtained this way: in the proof � we suppress thehypothesis A in all sequents, then eah time the axiom rule is used with thisproposition, we replae it with the proof �0. A ut of the form�� ` A 8-intro� ` 8x A 8-elim� ` (t=x)Ais replaed by the proof � where the variable x is substituted by the term teverywhere. A ut of the form�� ` (t=x)A 9-intro� ` 9x A �0�; A ` B 9-elim� ` B



56 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGICis replaed by the proof obtained this way: in the proof �0, we substitute thevariable x by the term t everywhere, then we suppress the hypothesis (t=x)Ain all sequents and eah time the axiom rule is used with this proposition, wereplae it with the proof �.Exerise 4.2.1 Eliminate the uts in the proof9x (P (x)) P (x)) ` 9x (P (x)) P (x)) )-intro` 9x (P (x)) P (x))) 9x (P (x)) P (x)) P () ` P () )-intro` P ()) P () 9-intro` 9x (P (x)) P (x)))-elim` 9x (P (x)) P (x))When a proof ontains a ut, it is always simple to remove it, thus the utelimination proess is not diÆult to de�ne. But removing a ut may reatenew uts, so the main question is that of the termination of this proess.4.3 Proofs as termsThe ut elimination proess of the previous setion is still umbersome to ex-press. This is due to the fat that we use a too umbersome notation for naturaldedution proof. The goal of this setion is to introdue another notation forthese proofs.As we have seen, one of the key operations in this proof transformationproess is the substitution of a variable by a term. Another key operation isthe following: in a proof � of the sequent �; A ` B, remove the hypothesisA in all sequents and replae the axiom rules on this proposition by a proof�0 of the sequent � ` A. To be able to express smoothly this operation, it isbetter to use a notation where proofs are expressed by terms ontaining speialvariables standing for proofs of the hypotheses. Thus to express a proof of asequent A1; :::; An ` B we shall �rst introdue variables �1; :::; �n standing forproofs of the propositions A1; :::; An. If B is the proposition Ai and the sequentA1; :::; An ` Ai is proved with the axiom rule, we shall write this proof �i.Now a proof � of the sequent �; A ` B is expressed by a term ontaining onevariable for eah proposition of � and a variable � for A and the proof obtainedby removing the hypothesis A in all sequents of � and replaing the axiom ruleson this proposition by a proof �0 of the sequent � ` A is simply obtained bysubstituting the proof �0 for the variable � in �.For eah natural dedution rule, we introdue a funtion symbol. To expressa proof suh as �� ` A �0� ` B ^-intro� ` A ^Bwe express �rst the proofs � and �0 as terms, then we apply the funtion symbolof two arguments assoiated to the rule ^-intro to � and �0.In the ase of the rule)-intro, we transform a proof � of the sequent �; A `B into one of the sequent � ` A ) B ontaining less hypotheses. The proof �



4.3. PROOFS AS TERMS 57is expressed by a term ontaining a variable � standing for a proof of A. Thisvariable must not appear in the proof of � ` A) B. Thus the funtion symbolassoiated to the rule )-intro must be a binder.From now on, to simplify proofs, we shall drop the negation symbol :.Everything works for the proposition :A as for the proposition A) ?.De�nition 4.3.1 (Term notation for proofs) We express proofs as termsin a language with two sorts: one for terms of the theory and the other forproof-terms. Terms of the theory will be written with Latin letters (t, u, ...)while proof-terms will be written with Greek letters (�, ...).� The proof AxiomA1; :::; An ` Aiis expressed by the term �i.� The proof >-intro� ` >is expressed by the term I, where I is an individual symbol.� The proof �� ` ? ?-elim� ` Ais expressed by the term Æ?(�), where Æ? is a funtion symbol of oneargument.� The proof �� ` A �0� ` B ^-intro� ` A ^Bis expressed by the term h�; �0i, where h; i is a funtion symbol of twoarguments.� The proof �� ` A ^B ^-elim� ` Ais expressed by the term fst(�) and the proof�� ` A ^B ^-elim� ` Ais expressed by the term snd(�) where fst and snd are funtion symbols ofone argument.



58 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC� The proof �� ` A _-intro� ` A _Bis expressed by the term i(�) and the proof�� ` B _-intro� ` A _Bis expressed by the term j(�), where i and j are funtion symbols of oneargument.� The proof �� ` A _B �0�; A ` C �00�; B ` C _-elim� ` Cis expressed by the term Æ(�; � �0; � �00), where Æ is a funtion symbol ofthree arguments binding one variable in its seond argument and one inits third.� The proof ��; A ` B )-intro� ` A) Bis expressed by the term � 7! �, where 7! is a funtion symbol of oneargument binding one variable in its argument.� The proof �� ` A) B �0� ` A)-elim� ` Bis expressed by the term �(�; �0), where � is a funtion symbol of twoarguments. This term is also simply written (� �0).� The proof �� ` A 8-intro� ` 8x Ais expressed by the term x 7! �, where 7! is a funtion symbol of oneargument binding one variable in its argument.� The proof �� ` 8x A 8-elim� ` (t=x)Ais expressed by the term �(�; t) where � is a funtion symbol of two argu-ments. This term is also simply written (� t).



4.3. PROOFS AS TERMS 59� The proof �� ` (t=x)A 9-intro� ` 9x Ais expressed by the term ht; �i where h; i is a funtion symbol of two argu-ments.� The proof �� ` 9x A �0�; A ` B 9-elim� ` Bis expressed by the term Æ9(�; x� �0) where Æ9 is a funtion symbol of twoarguments binding two variables in its seond argument.Exerise 4.3.1 Write the term assoiated to the proof9x (P (x)) P (x)) ` 9x (P (x)) P (x)) )-intro` 9x (P (x)) P (x))) 9x (P (x)) P (x)) P () ` P () )-intro` P ()) P () 9-intro` 9x (P (x)) P (x)))-elim` 9x (P (x)) P (x))Remark.(An historial note on the hoie of symbols) The hoie of these sym-bols omes from a tradition due to Brouwer, Heyting and Kolmogorov, aordingto whih� there is only one proof of >,� there is no proof of ?,� a proof of A ^ B is an ordered pair formed with a proof of A and a proofof B,� a proof of A _ B is a boolean value together with a proof of A or Baording to the value of the boolean,� a proof of A) B is a funtion mapping proofs of A to proofs of B,� a proof of 8x A is a funtion mapping any objet t to a proof of (t=x)A,� a proof of 9x A is an ordered pair formed with a term t and a proof of(t=x)A.Remark. (Types of proofs) If � is a proof of B under the hypothesis A then� 7! � is a proof of A ) B. As all proofs have the same sort, the proof-term� 7! � does not have a type, but if we wanted to give a type to it, it wouldget the type A0 ! B0 where A0 is the type of proofs of A and B0 the type ofproofs of B. Thus the type of a proof would be isomorphi to the propositionproved by the proof-term. This isomorphism is alled Curry-de Bruijn-Howardisomorphism. In partiular it an be proved that a type ontains a losed term



60 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGICin the language of de�nition 3.3.2 or 3.6.1 if and only if this type is isomorphito proposition that has a onstrutive proof.As proof-terms have no type, there are proof-terms that are proof of noproposition. For instane, if P is a proposition symbol and � a variable standingfor a proof of P then the proof-term (� �) does not orresponds to any proof.The natural dedution rules are now used to express whih proof-terms is a aproof of whih proposition. We use a notation �1 : A1; :::; �n : An ` � : B toexpress that � is a proof of the sequent A1; :::; An ` B where �1; :::; �n are thenames given to the variables of standing for proofs of the propositions A1; :::; An.The rules are the following.De�nition 4.3.2 (Dedution rules with proofs)Axiom if � : A 2 �� ` � : A >-intro� ` I : ?� ` � : ? ?-elim� ` Æ?(�) : A� ` � : A � ` �0 : B ^-intro� ` h�; �0i : A ^B� ` � : A ^ B ^-elim� ` fst(�) : A� ` � : A ^ B ^-elim� ` snd(�) : B� ` � : A _-intro� ` i(�) : A _B� ` � : B _-intro� ` j(�) : A _ B� ` � : A _ B �; � : A ` �0 : C �; � : B ` �00 : C _-elim� ` Æ(�; ��0; ��00) : C�; � : A ` � : B )-intro� ` � 7! � : A) B� ` � : A) B � ` �0 : A)-elim� ` (� �0) : B� ` � : A 8-intro if x 62 FV (�)� ` x 7! � : 8x A� ` � : 8x A 8-elim� ` (� t) : (t=x)A



4.4. CUT ELIMINATION 61� ` � : (t=x)A 9-intro� ` ht; �i : 9x A� ` � : 9x A �; � : A ` �0 : B 9-elim if x 62 FV (�; B)� ` Æ9(�; x��0) : BProposition 4.3.1 A sequent A1; : : : ; An ` B is derivable in natural dedutionif and only if there exists a term � suh that the judgment �1 : A1; : : : ; �n : An `� : B is derivable in this system.The ut elimination rules an now be rephrased on the proof-termsDe�nition 4.3.3 (Cut elimination rules)fst(h�1; �2i) �! �1snd(h�1; �2i) �! �2Æ(i(�1); ��2; ��3) �! (�1=�)�2Æ(j(�1); ��2; ��3) �! (�1=�)�3((� 7! �1) �2) �! (�2=�)�1((x 7! �) t) �! (t=x)�Æ9(ht; �1i; �x�2) �! (t=x; �1=�)�2Proposition 4.3.2 (Subjet redution) If � ` � : P and � �! �0 then� ` �0 : P .4.4 Cut eliminationWe now want to prove that if a proof-term is a proof of some proposition thenit is strongly terminating. Following the idea of Curry-de Bruijn-Howard iso-morphism, this proof extends that of proposition 3.6.1.De�nition 4.4.1 (Reduible proof-terms) Let A be a proposition. We de-�ne the set jAj of reduible proof-terms of A by indution over the height ofA. � If A is an atomi proposition then a proof-term � is an element of jAj ifit is strongly terminating.� A proof-term � is an element of j>j if it is strongly terminating.� A proof-term � is an element of j?j if it is strongly terminating.� A proof-term � is an element of jA ^ Bj if it is strongly terminating andwhen � redues to a proof-term of the form h�1; �2i then �1 is an elementof jAj and �2 is an element of jBj.



62 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC� A proof-term � is an element of jA _ Bj if it is strongly terminating andwhen � redues to a proof-term of the form i(�1) (resp. j(�2)) then �1(resp. �2) is an element of jAj (resp. jBj).� A proof-term � is element of jA ) Bj if it is strongly terminating andwhen � redues to a proof-term of the form � 7! �1 then for every �0 injAj, (�0=�)�1 is an element of jBj.� A proof-term � is an element of j8x Aj if it is strongly terminating andwhen � redues to a proof-term of the form x 7! �1 then for every term t(t=x)�1 is an element of j(t=x)Aj (whih is equal to jAj).� A proof-term � is an element of j9x Aj if it is strongly terminating andwhen � redues to a proof-term of the form ht; �1i then �1 is an elementof j(t=x)Aj (whih is equal to jAj).Lemma 4.4.1 Elements of jAj are strongly terminating.Proof. By de�nition.Lemma 4.4.2 If � is an element of jAj and � �! �0 then �0 is an element ofjAj.Proof. By de�nition.Lemma 4.4.3 All variables are members of jAj.Proof. By de�nition.Lemma 4.4.4 If � is an elimination and if for every �0 suh that � �!1 �0,�0 2 jAj then � 2 jAj.Proof. We �rst prove that � is strongly terminating. Let � = �1; �2; : : : be aredution sequene issued from �. If this sequene is empty it is �nite. Oth-erwise we have � �!1 �2 and hene �2 is an element of jAj thus it is stronglyterminating and the redution sequene is �nite.Then, we prove that if � redues to an introdution then the sub-termsbelong to the appropriate sets. Let � = �1; �2; : : : �n be a redution sequeneissued from � and suh that �n is an introdution. This sequene annot beempty beause � is an elimination. Thus � �!1 �2 �! �n. We have �2 2 jAjand thus if �n is an introdution the sub-terms belong to the appropriate sets.Proposition 4.4.5 (Gentzen-Prawitz theorem) If � ` � : A then the proof-term � is strongly terminating.



4.4. CUT ELIMINATION 63Proof. By lemma 4.4.1, it is suÆient to prove that if � ` � : A then theproof-term � is an element of jAj. More generally, we prove, by indution overthe height of the proof-assignment tree, that if � ` � : A, � is a substitutionmapping the term variable to terms and � is a substitution mapping some proofvariables assoiated to a proposition B in � to an element of jBj, then ��� isan element of jAj.� Axiom. If � is a variable �, we have (� : A) 2 �. If � is in the domain ofde�nition of �, then ��� = �� is an element of jAj, otherwise ��� = �� = �is an element of jAj by proposition 4.4.3.� >-intro. The proof-term � has the form I . We have ��� = I . This proof-term is normal and thus it is strongly terminating. Hene, the proof-term��I is in jAj.� ^-intro. The proof-term � has the form h�1; �2i where �1 is a proof ofsome proposition B and �2 a proof of some proposition C. We have��� = h���1; ���2i. Consider a redution sequene issued from this proof-term. This sequene an only redue the proof-terms ���1 and ���2.By indution hypothesis these proof-terms are in jBj and jCj. Thus theredution sequene is �nite.Furthermore, all reduts of ��� have the form h�01; �02i where �01 is a redutof ���1 and �02 one of ���2. The proof-terms �01 and �02 are in jBj and jCjby proposition 4.4.2.Hene, the proof-term ��h�1; �2i is in jAj.� _-intro. The proof-term � has the form i(�) (resp. j(�)) and � is a proofof some proposition B. We have ��� = i(���) (resp. j(���)). Considera redution sequene issued from this proof-term. This sequene an onlyredue the proof-terms ���. By indution hypothesis this proof-term isan element of jBj. Thus the redution sequene is �nite.Furthermore, all reduts of ��� have the form i(�0) (resp. j(�0)) where �0is a redut of ���. The proof-term �0 is an element of jBj by proposition4.4.2.Hene, the proof-term ��i(�) (respetively ��j(�)) is an element of jAj.� )-intro. The proof-term � has the form � 7! � where � is a proof variableof some proposition B and � a proof of some proposition C. We have��� = � 7! ���, onsider a redution sequene issued from this proof-term. This sequene an only redue the proof-term ���. By indutionhypothesis, the proof-term ��� is an element of jCj, thus the redutionsequene is �nite.Furthermore, all reduts of ��� have the form � 7! �0 where �0 is a redutof ���. Let � be any proof of jBj, the proof-term (�=�)�0 an be obtainedby redution from ((�=�) Æ �)��. By indution hypothesis, the proof-term



64 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGIC((�=�) Æ �)�� is an element of jCj. The proof term (�=�)�0 is an elementof jCj, by proposition 4.4.2.Hene, the proof-term ��(� 7! �) is an element of jAj.� 8-intro. The proof-term � has the form x 7! � where � is a proof of someproposition B. We have ��� = x 7! ���. Consider a redution sequeneissued from the proof-term ��� = x 7! ���. This sequene an onlyredue the proof-term ���. By indution hypothesis, the proof-term ���is an element of jBj, thus the redution sequene is �nite.Furthermore, all reduts of ��� have the form x 7! �0 where �0 is aredut of ���. The proof-term (t=x)�0 is obtained by reduing the proof-term ((t=x)�)((t=x) Æ �)�. By indution hypothesis again, the proof-term((t=x)�)((t=x) Æ �)� is an element of jBj. The proof-term (t=x)�0 is anelement of jBj, by proposition 4.4.2.Hene ��(x 7! �) is an element of jAj.� 9-intro. The proof-term � has the form ht; �i, where � is a proof of someproposition B. We have ��� = h�t; ���i. Consider a redution sequeneissued from this proof-term. This sequene an only redue the proof-term ���. By indution hypothesis this proof-term is in jBj. Thus theredution sequene is �nite.Furthermore, all reduts of ��� have the form h�t; �0i where �0 is a redutof ���. The proof-term �0 is an element of jBj, by proposition 4.4.2.Hene, the proof-term ��ht; �i is an element of jAj.� ?-elim. The proof-term � has the form Æ?(�) where � is a proof of ?.We have ��� = Æ?(���). By indution hypothesis, the proof-term ���is an element of j?j. Hene, it is strongly terminating. Let n be themaximum length of redution sequenes issued from this proof-term. Weprove by indution on n that Æ?(���) is in jAj. Sine this proof-term isan elimination, by proposition 4.4.4, we only need to prove that every ofits one step reduts is in jAj. The redution an only take plae in ���and we apply the indution hypothesis.Hene, the proof-term ��Æ?(�) is an element of jAj.� ^-elim. We only detail the ase of left elimination. The proof-term � hasthe form fst(�) where � is a proof of some proposition A ^ B. We have��� = fst(���). By indution hypothesis the proof-term ��� is in jA^Bj.Hene, it is strongly terminating. Let n be the maximum length of aredution sequene issued from this proof-term. We prove by indutionon n that fst(���) is in the set jAj. Sine this proof-term is a elimination,by proposition 4.4.4, we only need to prove that every of its one stepreduts is in jBj. If the redution takes plae in ��� then we apply theindution hypothesis. Otherwise ��� has the form h�01; �02i and the redutis �01. By the de�nition of jA ^Bj this proof-term is in jAj.Hene, the proof-term ��fst(�) is an element of jAj.



4.4. CUT ELIMINATION 65� _-elim. The proof-term � has the form Æ(�1; ��2 ��3) where �1 is a proofof some proposition B _ C and �2 and �3 are proofs of A. We have��� = Æ(���1; ����2; ����3). By indution hypothesis, the proof-term���1 is in the set jB _ Cj, and the proof-terms ���2 and ���3 are in theset jAj. Hene, these proof-terms are strongly terminating. Let n, n0 andn00 be the maximum length of redution sequenes issued from these proof-terms. We prove by indution on n+ n0 + n00 that Æ(���1; ����2; ����3)is in jAj. Sine this proof-term is an elimination, by proposition 4.4.4,we only need to prove that every of its one step reduts is in jAj. If theredution takes plae in ���1, ���2 or ���3 then we apply the indutionhypothesis. Otherwise, if ���1 has the form i(�0) (resp. j(�0)) and theredut is ((�0=�)Æ�)��2 (resp. ((�0=�)Æ�)��3). By the de�nition of jB_Cjthe proof-term �0 is in jBj (resp. jCj). Hene by indution hypothesis((�0=�) Æ �)��2 (resp. ((�0=�) Æ �)��3) is in jAj.Hene, the proof-term ��Æ(�1; ��2; ��3) is an element of jAj.� )-elim. The proof-term � has the form (�1 �2) and �1 is a proof ofsome proposition B ) A and �2 a proof of the proposition B. We have��� = (���1 ���2). By indution hypothesis ���1 and ���2 are in thesets jB ) Aj and jBj. Hene these proof-terms are strongly terminating.Let n be the maximum length of a redution sequene issued from ���1and n0 the maximum length of a redution sequene issued from ���2. Weprove by indution on n+n0 that (���1 ���2) is in the set jAj. Sine thisproof-term is an elimination, by proposition 4.4.4, we only need to provethat every of its one step reduts is in jAj. If the redution takes plae in���1 or in ���2 then we apply the indution hypothesis. Otherwise ���1has the form � 7! �0 and the redut is (���2=�)�0. By the de�nition ofjB ) Aj this proof-term is in jAj.Hene, the proof-term ��(�1 �2) is an element of jAj.� 8-elim. The proof-term � has the form (� t) where � is a proof of someproposition 8x B and A = (t=x)B. We have ��� = (��� �t). By indu-tion hypothesis, the proof-term ��� is in j8x Bj. Hene, it is stronglyterminating. Let n be the maximum length of a redution sequene issuedfrom this proof-term. We prove by indution on n that (��� �t) is in theset jAj. As this proof-term is an elimination, by proposition 4.4.4, we onlyneed to prove that every of its one step reduts is in jAj. If the redutiontakes plae in ��� then we apply the indution hypothesis. Otherwise ���has the form x 7! �0 and the redut is (�t=x)�0. By the de�nition of j8x Bjthis proof-term is in jAj.Hene, the proof-term ��(� t) is an element of jAj.� 9-elim. The proof-term � has the form Æ9(�1; x��2) where �1 is a proofof some proposition 9x B and �2 is a proof of A. We have ��� =Æ9(���1; x����2). By indution hypothesis, the proof-term ���1 is in the



66 CHAPTER 4. CUT ELIMINATION IN PREDICATE LOGICset j9x Bj and the proof-term ���2 is in the set jAj. Hene, these proof-terms are strongly terminating. Let n and n0 be the maximum length ofredution sequenes issued from these proof-terms. We prove by indu-tion on n + n0 that Æ9(���1; x����2) is in jAj. As this proof-term is anelimination, by proposition 4.4.4, we only need to prove that every of itsone step reduts is in jAj. If the redution takes plae in ���1 or ���2then we apply the indution hypothesis. Otherwise, ���1 has the formht; �0i and the redut is (�0=�)(t=x)���2 = ((�0=�) Æ (t=x)�)((t=x) Æ �)�2.By the de�nition of j9x Bj, the proof-term �0 is in jBj. Thus, by indutionhypothesis, the proof-term ((�0=�) Æ (t=x)�)((t=x) Æ �)�2 is in jAj.Hene, the proof-term ��Æ9(�1; �x�2) is an element of jAj.4.5 Harrop theoriesWe have seen that onstrutive ut free proofs in the empty theory are uniform,and we have dedued the disjuntion property and the witness property for theempty theory. Of ourse these properties do not extend to all theories, but theyextended to Harrop theories.De�nition 4.5.1 (Harrop theory) The set of Harrop propositions is indu-tively de�ned as follows:� atomi propositions, > and ? are Harrop propositions,� :A is a Harrop proposition,� A ^ B is a Harrop proposition if A and B are Harrop propositions,� A) B is a Harrop proposition if B is a Harrop proposition,� 8x A is a Harrop proposition if A is a Harrop proposition,A Harrop theory is a theory whose axioms are all Harrop propositions.Proposition 4.5.1 Let � be a Harrop theory. If A_B has a onstrutive proofin �, then A or B has a proof in � and this proof is onstrutive. If 9x A hasa onstrutive proof in �, then there is a term t suh that (t=x)A has a proof in� and this proof is onstrutive.Proof. By indution over the height of the proof.If the proofs ends with an introdution, then the result is trivial.The proof annot end with an axiom beause � ontains only Harrop propo-sitions and the onlusion is not a Harrop proposition.We prove now that if the proof ends with an elimination then the theory �is ontraditory and hene the result is trivial.Let C1 be the onlusion of the proof and C2 be the left premise of thiselimination, the proof of C2 annot end with an introdution beause the proof



4.5. HARROP THEORIES 67is ut free, hene it ends with an axiom rule or an elimination, if it ends with anelimination rule, then let C3 be the left premise of this rule, ... Thus the ruleends with a sequene of elimination rules on propositions C1; :::; Cn and Cn isan axiom.We prove that at least one of the propositions C1; :::; Cn is ?. Assume thisis not the ase. Then the proposition Cn is a Harrop proposition beause it isan element of �. Let us prove that the proposition Cn�1 is also a Harrop propo-sition. The proposition Cn�1 has been produed from Cn with an eliminationrule. This elimination rule annot be _-elim or 9-elim beause Cn is a Harropproposition, it annot be ?-elim, beause none of the propositions C1; :::; Cn is?. Hene it is either ^-elim, )-elim or 8-elim, thus Cn�1 is a Harrop propo-sition. We prove this way by indution that all the propositions Cn; :::; C1 areHarrop propositions. Hene C1 is a Harrop proposition whih is ontraditory.Thus one of the propositions C1; :::; Cn is ?, thus the theory � is ontradi-tory, it proves all propositions and the result is trivial.Exerise 4.5.1 Show that proofs of propositions of the form A_B and 9x Ain onsistent Harrop theories end with an introdution rule.Corollary 4.5.2 Let P and Q be two proposition symbols, the proposition::(P _Q)) (P _Q)does not have a onstrutive proof in the empty theory.Proof. Assume that the proposition ::(P _ Q) ) (P _ Q) has a proof. Let �be the Harrop theory formed with the axiom ::(P _Q), the proposition P _Qhas a proof in �. Thus either the proposition P or the proposition Q has proofin � and it is easy to onstrut a model of � where P is not valid and a modelof � where Q is not valid.Corollary 4.5.3 Let P be a proposition symbol, the proposition::P ) Pdoes not have a onstrutive proof in the empty theory.Proof. If it had, so would the proposition. ::(P _Q)) (P _Q).Corollary 4.5.4 Let P be a prediate symbol of one argument, the proposition(:8x P (x))) 9x :P (x)does not have a onstrutive proof in the empty theory.Proof. Assume that the proposition (:8x P (x)) ) 9x :P (x) has a proof. Let� be the Harrop theory formed with the axiom :8x P (x). Then the proposition9x :P (x) has a proof in �. Thus there is a term t suh that the proposition:P (t) has a proof in �. Consider a model M with two elements and let P̂ holdform the denotation of t but not for the other element. This model is a modelof � but not of :P (t). Thus, the proposition :P (t) does not have a proof in �whih is ontraditory.
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Chapter 5Cut elimination inprediate logi moduloWe have seen that from the ut elimination theorem we ould dedue the onsis-teny, the disjuntion property and the witness property for the empty theory.Of ourse, not many theorems an be proved in the empty theory. When weadd axioms, ut free proofs need not be uniform anymore. For instane addingthe axiom 9x P (x), allows a non uniform proof of the proposition 9x P (x).We have already seen that the disjuntion property and the witness propertyextended to Harrop theories. We are now interested in other theories: theoriesmodulo with no axioms, suh as simple type theory and simple type theory within�nity.5.1 Congruenes de�ned by a system rewritingatomi propositionsProposition 5.1.1 Consider a ongruene � de�ned by a onuent rewritesystem rewriting terms to terms and atomi propositions to arbitrary proposi-tions. If A and B are not atomi and A � B then A and B have the same rootonnetor or quanti�er.Proposition 5.1.2 Consider a ongruene � de�ned by a onuent rewritesystem rewriting terms to terms and atomi propositions to arbitrary proposi-tions. Consider the theory modulo formed with no axioms and the ongruene�. A ut free proof in this theory ends with an introdution rule.Proof. By indution over the height of the proof. The last rule annot bean axiom rule, beause there is no axiom. If the last rule is an elimination,then the left premise of the elimination is proved with a ut free proof. Heneit ends by an introdution. By proposition 5.1.2, this introdution onerns69



70 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOthe same onnetor or quanti�er as the elimination rule and the proof is a utontraditing the fat that it is ut free.Thus, if ut elimination holds for suh a theory, then onsisteny, the dis-juntion property and the witness property also.5.2 Proof as termsProof-terms are de�ned as in prediate logi and the redution rules are thesame. But the proof assignments rules have to be modi�ed to take the ongru-ene into aount.De�nition 5.2.1 (Dedution rules with proofs)Axiom if � : A 2 � and A � B� `� � : B >-intro if A � >� `� I : A� `� � : B ?-elim if B � ?� `� Æ?(�) : A� `� � : A � `� �0 : B ^-intro if C � (A ^B)� `� h�; �0i : C� `� � : C ^-elim if C � (A ^ B)� `� fst(�) : A� `� � : C ^-elim if C � (A ^ B)� `� snd(�) : B� `� � : A _-intro if C � (A _ B)� `� i(�) : C� `� � : B _-intro if C � (A _ B)� `� j(�) : C� `� � : D �; � : A `� �0 : C �; � : B `� �00 : C _-elim if D � (A _ B)� `� Æ(�; ��0; ��00) : C�; � : A `� � : B )-intro if C � (A) B)� `� � 7! � : C� `� � : C � `� �0 : A)-elim if C � (A) B)� `� (� �0) : B� `� � : A hx;Ai 8-intro if B � (8x A) and x 62 FV (�)� `� x 7! � : B� `� � : B hx;A; ti 8-elim if B � (8x A) and C � (t=x)A� `� (� t) : C



5.3. COUNTEREXAMPLES 71� `� � : C hx;A; ti 9-intro if B � (9x A) and C � (t=x)A� `� ht; �i : B� `� � : C �; � : A `� �0 : B hx;Ai 9-elim if C � (9x A) and x 62 FV (�; B)� `� Æ9(�; x��0) : BProposition 5.2.1 A sequent A1; : : : ; An `� B is derivable in natural de-dution modulo if and only if there exists a term � suh that the judgment�1 : A1; : : : ; �n : An `� � : B is derivable in this system.Proposition 5.2.2 (Subjet redution) If � `� � : P and � �! �0 then� ` �0 : P .5.3 CounterexamplesCut elimination fails for very simple rewrite systems.Example 5.3.1 (Russell's ounterexample) We have seen that in naive settheory, if we all A the proposition "(R R) (or R 2 R) we haveA �! :AModulo this rule, the proposition :A has the proof� 7! (� �)and the proposition A also thus the proposition ? has the proof((� 7! (� �)) (� 7! (� �)))This proof only redues to itself and thus it does not terminate. It is easy tohek that more generally, there are no ut free proofs of ? beause there nouniform proofs of this proposition.Example 5.3.2 (Crabb�e's ounterexample) Set theory is an example of atheory modulo that does not have the ut elimination property. We have seenthat there are two propositions A and B in set theory suh thatA �! B ^ :AThus under the assumption � : B, the proposition :A has the proof� 7! (snd(�) �)and the proposition A has the proofh�; � 7! (snd(�) �)ithus the proposition ? has the proof((� 7! (snd(�) �)) h�; � 7! (snd(�) �)i)



72 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOand the proposition :B has the proof� 7! ((� 7! (snd(�) �)) h�; � 7! (snd(�) �)i)It is easy to hek that this proof does not terminate and more generally thatthe proposition :B has no ut free proof.Example 5.3.3 (A terminating ounterexample) Cut elimination may belost even with a onuent and terminating rewrite system. The example is a re-�ned version of Russell's ounterexample. Instead of taking the non terminatingrule R 2 R �! :R 2 R, we take the terminating ruleR 2 R �! 8y (y ' R) :y 2 R)where y ' z stands for 8x (y 2 x ) z 2 x). Modulo this rule, the proposition:R 2 R has the proof � = � 7! (� R (x 7! (� 7! �)) �)and the proposition R 2 R has the proof�0 = y 7! (� 7! (� 7! (� (� R �))))The proposition ? has the proof (� �0)This proof only redues to itself and thus it does not terminate. It is easy tohek that more generally, there are no ut free proofs of ? beause there nouniform proofs of this proposition.5.4 Reduibility andidatesLet us try to haraterize some ongruenes for whih ut elimination holds.We wish to use a ut elimination proof similar to that of prediate logi.The main problem is that we annot take the set of all strongly terminatingproof-terms for the set of reduible proof-terms of an atomi proposition. Forinstane if P , Q and R are three proposition symbol and we have the ruleP �! Q) Rthen a proof of P is also a proof of Q ) R and thus, to belong to jP j, besidesbeing strongly terminating, a proof-term must be suh that whenever it reduesto an introdution � 7! �0 for all proof �00 of jQj, the proof (�00=�)�0 belongs tojRj. In this ase we an take the set of all strongly terminating proofs for jQjand jRj and the set jQ ) Rj for jP j and a proof similar to that of prediatelogi permits to establish ut elimination modulo this rule.



5.4. REDUCIBILITY CANDIDATES 73However, generalizing this method may be diÆult when we have non termi-nating rules or rules introduing quanti�ers. For instane onsider the proposi-tion symbols P and Q and the ruleQ �! P ^Qde�ning jQj as jP ^ Qj would be irular, as to know jP ^Qj we need to knowjP j and jQj. In the same way, onsider a prediate symbol P of one argument,an individual symbol  and the ruleP () �! 8x P (x)De�ning jP ()j as the set j8x P (x)j would be irular as to know j8x P (x)j weneed to know jP (t)j for all terms t, inluding .Thus we shall prove in a �rst step that ut elimination holds provided weknow how to assign a set of proofs jAj to eah atomi proposition A in suh away that the sets of reduible proofs - de�ned relatively to these sets - of twoequivalent propositions are idential. In a seond step we shall give exampleswhere suh sets an be onstruted inluding the two examples above and simpletype theory.Not any set of proof-terms is a good andidate for jAj. Indeed, we have seenthat to let the ut elimination proof go through we needed the sets of reduibleproofs to verify the properties of propositions 4.4.1, 4.4.2, 4.4.3 and 4.4.4 thatare used in the ut elimination proof. Thus, at least, the sets of reduible proofsof atomi propositions must verify these properties. This leads to the followingde�nition.De�nition 5.4.1 (Girard's reduibility andidate) A set R of proof-termsis a reduibility andidate if� if � 2 R, then � is strongly terminating,� if � 2 R and � �! �0 then �0 2 R,� all variables belong to R,� if � is an elimination and if for every �0 suh that � �!1 �0, �0 2 R then� 2 R.Let C be the set of all reduibility andidates.Assigning a reduibility andidate to eah atomi propositionA, is equivalentto assign to eah prediate symbol P of n arguments a funtion P̂ that maps n-uples of terms to reduibility andidates. Then, we de�ne the set jP (t1; :::; tn)jas P̂ (t1; :::; tn). Thus we want to prove that if we know how to assign suh afuntion to eah prediate symbol, in suh a way that the sets of reduible proofsde�ned relatively to these funtions are suh that two equivalent propositionshave the same set of reduible proofs, then ut elimination holds modulo thisongruene.



74 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOThis an be generalized: to have ut elimination it is suÆient to assign,to eah prediate symbol P of n arguments, a funtion P̂ that maps n-uples ofelements of an arbitrary set M to reduibility andidates and to assoiate toeah term t an element jtj of M . Then we de�ne jP (t1; :::; tn)j as P̂ (jt1j; :::; jtnj).If the sets of reduible proofs de�ned relatively to these funtions are suh thattwo equivalent propositions have the same set of reduible proofs, then utelimination holds modulo this ongruene.There are many similarities between this de�nition and the de�nition of amodel. In partiular the fat that if A � B then jAj = jBj an be read asthe validity of the ongruene in this struture. The only di�erene with thenotion of model is that the funtions P̂ do not map n-uples of elements of Mto truth values 0 or 1, but to reduibility andidates. Hene suh strutures aremany-valued models where truth values are reduibility andidates. We shallall them pre-models. As we want to apply this result to many-sorted theoriesalso, we diretly give the de�nition for many-sorted prediate logi modulo.5.5 Pre-modelDe�nition 5.5.1 (Pre-model) Let L be a many sorted �rst-order language.A pre-model for L is given by:� for every sort T , a set MT ,� for every funtion symbol f of rank hT1; : : : ; Tn; Ui, a funtion f̂ fromMT1 � : : :�MTn to MU ,� for every prediate symbol P of rank hT1; : : : ; Tni, a funtion P̂ from MT1�: : :�MTn to C.De�nition 5.5.2 Let t be a term and � an assignment mapping all the freevariables of t of sort T to elements of MT . We de�ne the objet jtj� by indutionover the height of t.� jxj� = �(x),� jf(t1; : : : ; tn)j� = f̂(jt1j�; : : : ; jtnj�).De�nition 5.5.3 Let A be a proposition and � an assignment mapping all thefree variables of A of sort T to elements of MT . We de�ne the set jAj� ofproof-terms by indution over the height of A.� A proof-term � is an element of jP (t1; : : : ; tn)j� if it is inP̂ (jt1j�; : : : ; jtnj�).� A proof-term � is an element of j>j� if � is strongly terminating.� A proof-term � is an element of j?j� if � is strongly terminating.



5.5. PRE-MODEL 75� A proof-term � is an element of jA^Bj� if � is strongly terminating andwhen � redues to a proof-term of the form h�1; �2i then �1 and �2 areelements of jAj� and jBj�.� A proof-term � is an element of jA_Bj� if � is strongly terminating andwhen � redues to a proof-term of the form i(�1) (resp. j(�2)) then �1(resp. �2) is an element of jAj� (resp. jBj�).� A proof-term � is element of jA ) Bj� if it is strongly terminating andwhen � redues to a proof-term of the form � 7! �1 then for every �0 injAj�, (�0=�)�1 is an element of jBj�.� A proof-term � is an element of j8x Aj� if it is strongly terminating andwhen � redues to a proof-term of the form x 7! �1 then for every term tof sort T (where T is the sort of x) and every element E of MT , (t=x)�1is an element of jAj�+hx;Ei.� A proof-term � is an element of j9x Aj� if � is strongly terminating andwhenever � redues to a proof-term of the form ht; �1i there exists anelement E of MT (where T is the sort of x) suh that �1 is an element ofjAj�+hx;Ei.De�nition 5.5.4 A pre-model is a pre-model of a ongruene � if, wheneverA � B, then for every assignment �, jAj� = jBj�.Proposition 5.5.1 For every proposition A and assignment �, jAj� is a re-duibility andidateProof. By indution over the height of A.If A is an atomi proposition, jAj� is a reduibility andidate by de�nition.If A is a omposed proposition, then, by de�nition, jAj� ontains only termi-nating proof-terms. It is routine to prove losure by redution. It is also routineto hek that all variables are members of jAj�.Now, we assume that � is a an elimination and that for every �0 suh that� �!1 �0, �0 2 jAj�. We want to prove that � is in jAj�. Following thede�nition of jAj�, we �rst prove that � is strongly terminating and then that ifit redues to an introdution, the sub-proofs belong to the appropriate sets.We �rst prove that � is strongly terminating. Let � = �1; �2; : : : be a redu-tion sequene issued from �. If this sequene is empty it is �nite. Otherwise wehave � �!1 �2 and hene �2 is an element of jAj� thus it is strongly terminatingand the redution sequene is �nite.Then we prove that if � redues to an introdution then the sub-proofsbelong to the appropriate sets. Let � = �1; �2; : : : �n be a redution sequeneissued from � and suh that �n is an introdution. This sequene annot beempty beause � is an elimination and hene not an introdution. Thus � �!1�2 �! �n. We have �2 2 jAj� and thus if �n is an introdution the sub-proofsbelong to the appropriate sets.



76 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOProposition 5.5.2 (Substitution) Given any proposition A, term t and vari-able x we have j(t=x)Aj� = jAj�+hx;jtj�iProof. By indution on the height of A.We an now prove the main theorem of this hapter: if a system has apre-model then proof-terms modulo this system terminate.Proposition 5.5.3 Let � be a ongruene and M be a pre-model of �. If� `� � : A then the proof-term � is strongly terminating.Proof. As jAj; is a reduibility andidate, it is suÆient to prove that if � ` � : Athen the proof-term � is an element of jAj;. More generally, we prove, byindution over the height of the proof-assignment tree, that if � ` � : A,� � is a substitution mapping term variables to terms,� � is an assignment mapping variables to elements of the model,� � is a substitution mapping some proof variables assoiated to propositionB in � to an element of jBj�,then ��� is an element of jAj�.� Axiom. If � is a variable �, we have (� : B) 2 � with B � A. If � is inthe domain of de�nition of �, then ��� = �� is an element of jBj� = jAj�,otherwise ��� = �� = � is an element of jAj� beause jAj� is a andidate.� >-intro. The proof-term � has the form I . We have ��� = I . This proof-term is normal, hene it is strongly terminating. Hene, the proof-term��I is in jAj�.� ^-intro. The proof-term � has the form h�1; �2i where �1 is a proof ofsome proposition B and �2 a proof of some proposition C. We have��� = h���1; ���2i. Consider a redution sequene issued from this proof-term. This sequene an only redue the proof-terms ���1 and ���2. Byindution hypothesis these proof-terms are in jBj� and jCj�. Thus theredution sequene is �nite.Furthermore, all reduts of ��� have the form h�01; �02i where �01 is a redutof ���1 and �02 one of ���2. The proof-terms �01 and �02 are in jBj� andjCj� beause these sets are andidates.Hene, the proof-term ��h�1; �2i is in jAj�.� _-intro. The proof-term � has the form i(�) (resp. j(�)) and � is a proofof some proposition B. We have ��� = i(���) (resp. j(���)). Considera redution sequene issued from this proof-term. This sequene an onlyredue the proof-terms ���. By indution hypothesis this proof-term isan element of jBj�. Thus the redution sequene is �nite.



5.5. PRE-MODEL 77Furthermore, all reduts of ��� have the form i(�0) (resp. j(�0)) where �0is a redut of ���. The proof-term �0 is an element of jBj� beause thisset is a andidate.Hene, the proof-term ��i(�) (respetively ��j(�)) is an element of jAj�.� )-intro. The proof-term � has the form � 7! � where � is a proof variableof some proposition B and � a proof of some proposition C. We have��� = � 7! ���, onsider a redution sequene issued from this proof-term. This sequene an only redue the proof-term ���. By indutionhypothesis, the proof-term ��� is an element of jCj�, thus the redutionsequene is �nite.Furthermore, all reduts of ��� have the form � 7! �0 where �0 is a redutof ���. Let � be any proof of jBj�, the proof-term (�=�)�0 an be obtainedby redution from ((�=�) Æ �)��. By indution hypothesis, the proof-term((�=�) Æ �)�� is an element of jCj�. The proof-term (�=�)�0 is an elementof jCj� beause this set is a andidate.Hene, the proof-term ��� 7! � is an element of jAj�.� 8-intro. The proof-term � has the form x 7! � where � is a proof of someproposition B. We have ��� = x 7! ���.Consider a redution sequene issued from the proof-term ��� = x 7! ���.This sequene an only redue the proof-term ���. Let E be an elementof MT (where T is the sort of x). By indution hypothesis, the proof-term��� is an element of jBj�+hx;Ei, thus the redution sequene is �nite.Furthermore, all reduts of ��� have the form x 7! �0 where �0 is aredut of ���. The proof-term (t=x)�0 is obtained by reduing the proof-term ((t=x)�)((t=x) Æ �)�. By indution hypothesis again, the proof-term((t=x)�)((t=x) Æ �)� is an element of jBj�+hx;Ei. The proof-term (t=x)�0 isan element of jBj�+hx;Ei, beause this set is a andidate.Hene ��(x 7! �) is an element of jAj�.� 9-intro. The proof-term � has the form ht; �i, A � 9x B and � is aproof of (t=x)B. We have ��� = h�t; ���i. Consider a redution sequeneissued from this proof-term. This sequene an only redue the proof-term���. By indution hypothesis this proof-term is in j(t=x)Bj�. Thus theredution sequene is �nite.Furthermore, let E = jtj�. Any redut of ��� has the form h�t; �0i where�0 is a redut of ���. The proof-term �0 is an element of j(t=x)Bj�, i.e. ofjBj�+hx;Ei, beause jBj�+hx;Ei is a andidate.Hene, the proof-term ��ht; �i is an element of jAj�.� ?-elim. The proof-term � has the form Æ?(�) where � is a proof of ?.We have ��� = Æ?(���). By indution hypothesis, the proof-term ���is an element of j?j�. Hene, it is strongly terminating. Let n be themaximum length of redution sequenes issued from this proof-term. We



78 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOprove by indution on n that Æ?(���) is in jAj�. Sine this proof-term isan elimination, we only need to prove that every of its one step redutsis in jAj�. The redution an only take plae in ��� and we apply theindution hypothesis.Hene, the proof-term ��Æ?(�) is an element of jAj�.� ^-elim. We only detail the ase of left elimination. The proof-term �has the form fst(�) where � is a proof of some proposition A ^ B. Wehave ��� = fst(���). By indution hypothesis the proof-term ��� is injA ^ Bj�. Hene, it is strongly terminating. Let n be the maximumlength of a redution sequene issued from this proof-term. We prove byindution on n that fst(���) is in the set jAj�. Sine this proof-term isa elimination we only need to prove that every of its one step reduts isin jBj�. If the redution takes plae in ��� then we apply the indutionhypothesis. Otherwise ��� has the form h�01; �02i and the redut is �01. Bythe de�nition of jA ^ Bj� this proof-term is in jAj�.Hene, the proof-term ��fst(�) is an element of jAj�.� _-elim. The proof-term � has the form Æ(�1; ��2 ��3) where �1 is a proofof some proposition B _ C and �2 and �3 are proofs of A. We have��� = Æ(���1; ����2; ����3). By indution hypothesis, the proof-term���1 is in the set jB _Cj�, and the proof-terms ���2 and ���3 are in theset jAj�. Hene, these proof-terms are strongly terminating. Let n, n0 andn00 be the maximum length of redution sequenes issued from these proof-terms. We prove by indution on n+ n0 + n00 that Æ(���1; ����2; ����3)is in jAj�. Sine this proof-term is an elimination we only need to provethat every of its one step reduts is in jAj�. If the redution takes plae in���1, ���2 or ���3 then we apply the indution hypothesis. Otherwise, if���1 has the form i(�0) (resp. j(�0)) and the redut is (�0=�)���2 (resp.(�0=�)���3). By the de�nition of jB_Cj� the proof-term �0 is in jBj� (resp.jCj�). Hene by indution hypothesis ((�0=�)Æ�)��2 (resp. ((�0=�)Æ�)��3)is in jAj�.Hene, the proof-term ��Æ(�1; ��2; ��3) is an element of jAj�.� )-elim. The proof-term � has the form (�1 �2) and �1 is a proof ofsome proposition B ) A and �2 a proof of the proposition B. We have��� = (���1 ���2). By indution hypothesis ���1 and ���2 are in the setsjB ) Aj� and jBj�. Hene these proof-terms are strongly terminating.Let n be the maximum length of a redution sequene issued from ���1and n0 the maximum length of a redution sequene issued from ���2. Weprove by indution on n + n0 that (���1 ���2) is in the set jAj�. Sinethis proof-term is an elimination we only need to prove that every of itsone step reduts is in jAj�. If the redution takes plae in ���1 or in ���2then we apply the indution hypothesis. Otherwise ���1 has the form� 7! �0 and the redut is (���2=�)�0. By the de�nition of jB ) Aj� thisproof-term is in jAj�.



5.6. PRE-MODEL CONSTRUCTION 79Hene, the proof-term ��(�1 �2) is an element of jAj�.� 8-elim. The proof-term � has the form (� t) where � is a proof of someproposition 8x B and A = (t=x)B. We have ��� = (��� �t). By indu-tion hypothesis, the proof-term ��� is in j8x Bj�. Hene, it is stronglyterminating. Let n be the maximum length of a redution sequene is-sued from this proof-term. We prove by indution on n that (��� �t)is in the set jAj�. As this proof-term is an elimination, we only needto prove that every of its one step reduts is in jAj�. If the redutiontakes plae in ��� then we apply the indution hypothesis. Otherwise��� has the form x 7! �0 and the redut is n(�t=x)�0. By the de�nitionof j8x Bj� this proof-term is in jBj�+hx;Ei for all E. Thus, it is in is injBj�+hx;jtj�i = j(t=x)Bj� = jAj�.Hene, the proof-term ��(� t) is an element of jAj�.� 9-elim. The proof-term � has the form Æ9(�1; x��2) where �1 is a proofof some proposition 9x B and �2 is a proof of A. We have ��� =Æ9(���1; x����2). By indution hypothesis, the proof-term ���1 is in theset j9x Bj� and the proof-term ���2 is in the set jAj�. Hene, theseproof-terms are strongly terminating. Let n and n0 be the maximumlength of redution sequenes issued from these proof-terms. We proveby indution on n + n0 that Æ9(���1; x����2) is in jAj�. As this proof-term is an elimination, we only need to prove that every of its one stepreduts is in jAj�. If the redution takes plae in ���1 or ���2 then weapply the indution hypothesis. Otherwise, ���1 has the form ht; �0i andthe redut is (�0=�)(t=x)���2 = ((�0=�) Æ (t=x)�)((t=x) Æ �)�2. By thede�nition of j9x Bj�, there exists an element E of suh that the proof-term �0 is in jBj�+hx;Ei. Thus, by indution hypothesis, the proof-term((�0=�) Æ (t=x)�)((t=x) Æ �)�2 is in jAj�+hx;Ei, i.e. in jAj�.Hene, the proof-term ��Æ9(�1; �x�2) is an element of jAj�.5.6 Pre-model onstrution5.6.1 The term aseProposition 5.6.1 If a ongruene is de�ned by a rewrite system or a set ofequalities on terms, but not on propositions, then it has a pre-model and heneproof redution terminates modulo this ongruene.Proof. We assoiate the set of strongly terminating proofs for all atomi propo-sitions.Corollary 5.6.2 All equational theories are onsistent, have the disjuntionproperty and the witness property.



80 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULO5.6.2 Quanti�er free rewrite systemsDe�nition 5.6.1 (Quanti�er free) A rewrite system is quanti�er free if noquanti�er appears on the right hand side of any of its rules.Proposition 5.6.3 A quanti�er free, onuent, and terminating rewrite sys-tems has a pre-model, hene proof redution terminates modulo suh a rewritesystem.Proof. By indution over proposition height, we assoiate a set of proof-termsto eah eah normal losed quanti�er free proposition.	(A) = f� j � st. ter.g if A is atomi	(>) = f� j � st. ter.g	(?) = f� j � st. ter.g	(A ^ B) = f� j � st. ter. ^ � �! h�1; �2i ) �1 2 	(A) ^ �2 2 	(B)g	(A _ B) = f� j � st. ter. ^ � �! i(�1)) �1 2 	(A) ^ � �! i(�2)) �2 2 	(B)g	(A) B) = f� j � st. ter. ^ � �! � 7! �1 ) 8�0 2 	(A) (�0=�)�1 2 	(B)gWe de�ne a pre-model as follows. Let MT be the set of normal losed terms ofsort T . f̂(t1; : : : ; tn) = f(t1; : : : ; tn) #P̂ (t1; : : : ; tn) = 	((P (t1; : : : ; tn)) #):where A # (resp. t #) is the normal form of the proposition A (resp. term t).We prove, by an easy indution, that jAj� = jBj� when A � B.5.6.3 Positive rewrite systemsFor some rewrite systems, pre-models an be built by a �xed point onstrution.De�nition 5.6.2 A rewrite system is positive if it rewrites atomi propositionsto propositions ontaining only positive ourrenes of atomi propositions.De�nition 5.6.3 A pre-model is syntatial if� MT = TT = � where TT is the set of losed terms of sort T ,� if f is a funtion symbol, f̂ is the funtion that maps the lasses e1; :::; en tothe lass of the term f(t1; : : : ; tn) where t1; :::; tn are elements of e1; :::; en(sine the relation � is a ongruene, this does not depend of the hoieof representatives).A syntatial pre-model is de�ned solely by the interpretation of prediatevariables.



5.6. PRE-MODEL CONSTRUCTION 81De�nition 5.6.4 Let M1 and M2 be two syntatial pre-models. We write P̂1for the denotation of P in M1 and P̂2 for the denotation of P in M2We say that M1 �M2 if and only if for any prediate symbol P and losedterms t1; : : : ; tn we have P̂1(t1; : : : ; tn) � P̂2(t1; : : : ; tn)The set of syntatial pre-models is a omplete lattie for the order �.Proposition 5.6.4 Let R be a onuent and terminating rewrite system. If thesystem R is positive then it has a pre-model, hene proof redution terminatesmodulo R.Proof. Let F be the funtion mapping syntatial pre-models to syntatialpre-models de�ned byF(M)(P )(t1; : : : ; tn) = jP (t1; : : : ; tn) # jM;;:As the system R is positive the funtion F is monotone. Hene, as the set ofsyntatial pre-models is a omplete lattie, it has a �xed point. This �xedpoint is a pre-model of the rewrite system.Proposition 5.6.5 Let R be a rewrite system suh that any atomi propositionhas at most one one-step redut. If the system R is positive then it has a pre-model, hene proof redution terminates modulo R.Proof. Let F be the funtion mapping syntatial pre-models to syntatialpre-models de�ned byF(M)(P )(t1; : : : ; tn) = jP (t1; : : : ; tn) + jM;;where A+ is the unique one-step redut of A if it exists and A otherwise. Again,sine the system R is positive the funtion F is monotone and again, sine theset of syntatial pre-models is a omplete lattie, it has a �xed point. This�xed point is a pre-model of the rewrite system.5.6.4 Type theory and type theory with in�nityProposition 5.6.6 (Girard's theorem) Simple type theory has a pre-model,hene proof redution terminate in simple type theory.Proof. We onstrut a pre-model as follows. The essential point is that weantiipate the fat that objets of sort o atually represent propositions, byinterpreting them as reduibility andidates.M� = f0gMo = CMT!U = MMTU



82 CHAPTER 5. CUT ELIMINATION IN PREDICATE LOGIC MODULOŜT;U;V = a 7! (b 7! ( 7! a()(b())))K̂T;U = a 7! (b 7! a)�̂(a; b) = a(b)"̂(a) = a_̂> = f� j � st. ter.g_̂? = f� j � st. ter.g_̂̂ (a; b) = f� j � st. ter. ^ � �! h�1; �2i ) �1 2 a ^ �2 2 bg_̂_(a; b) = f� j � st. ter. ^ (� �! i(�1)) �1 2 a) ^ (� �! i(�2)) �2 2 b)g_̂)(a; b) = f� j � st. ter. ^ � �! � 7! �1 ) 8�0 2 a (�0=�)�1 2 bg_̂8T (a) = f� j � st. ter. ^ � �! x 7! �1 ) 8t of type T 8E 2MT (t=x)�1 2 a(E)g_̂9T (a) = f� j � st. ter. ^ � �! ht; �2i ) 9E 2MT �2 2 a(E)gIt is easy to hek that jAj� = jBj� when A � B.Proposition 5.6.7 Simple type theory with in�nity has a pre-model, heneproof redution terminates in simple type theory with in�nity.Proof. M� = NMo = CMT!U = MMTU0̂ = 0;Ŝu = n 7! n+ 1;^Pred = n 7! if n = 0 then 0 else n� 1;^Null = n 7! f� j � st. ter.g;ŜT;U;V = a 7! (b 7! ( 7! a()(b())))K̂T;U = a 7! (b 7! a)�̂(a; b) = a(b)"̂(a) = a_̂> = f� j � st. ter.g_̂? = f� j � st. ter.g_̂̂ (a; b) = f� j � st. ter. ^ � �! h�1; �2i ) �1 2 a ^ �2 2 bg_̂_(a; b) = f� j � st. ter. ^ (� �! i(�1)) �1 2 a) ^ (� �! i(�2)) �2 2 b)g_̂)(a; b) = f� j � st. ter. ^ � �! � 7! �1 ) 8�0 2 a (�0=�)�1 2 bg_̂8T (a) = f� j � st. ter. ^ � �! x 7! �1 ) 8t of type T 8E 2MT (t=x)�1 2 a(E)g_̂9T (a) = f� j � st. ter. ^ � �! ht; �2i ) 9E 2MT �2 2 a(E)gIt is easy to hek that jAj� = jBj� when A � B.Remark. In the pre-model above _> and _? are interpreted by the same reduibil-ity andidate (while in a model they are interpreted by a di�erent truth value)hene the interpretation of Null is simply the onstant funtion equal to this



5.6. PRE-MODEL CONSTRUCTION 83andidate. Thus it is not neessary to interpret the type � as N and we ouldalso take M� = f0g.


