
École Polytechnique
Thèse de Doctorat

Spécialité Informatique

Investigation on the typing of
equality in type systems

Présentée et soutenue publiquement par

Vincent Siles

le 25 Novembre 2010

devant le jury composé de

Bruno Barras Co-directeur de thèse
Gilles Barthe Rapporteur
Roberto Di Cosmo
Herman Geuvers Rapporteur
Hugo Herbelin Co-directeur de thèse
Alexandre Miquel Rapporteur
Randy Pollack
Benjamin Werner

Abstract

Pure Type Systems are a good way to factorize the questions of meta-theory
about a large family of type systems. They have been introduced as a gener-
alization of Barendregt’s λ-cube, an abstraction of several type systems like
the Simply Typed λ-Calculus, System F or the Calculus of Constructions.
One critical detail of the Pure Type Systems is their conversion rule that
allows to do computation at the level of types.

Traditionally, Pure Type Systems are presented in a natural deduction
style, and use an untyped notion of conversion. Through the years, several
presentations of the Pure Type Systems have been used, with subtle dif-
ferences like sequent calculus instead of natural deduction, or the use of a
typed conversion instead of the untyped original one. The question to know
whereas the latter choice leads to equivalent systems has been first asked
by Geuvers in the early 90’s, and the answer was only known for particular
subclasses of Pure Type Systems. The main contribution of this dissertation
is to finally provide a final and positive answer to this question by proving
that all Pure Type Systems relying on an untyped conversion are equivalent
to their typed conversion counterpart. During this work, we also investigated
the open problem of Expansion Postponement.

The proofs are quite complex and rely on mechanisms that are tedious
to manually check. In order to have more confidence in our development, all
the results presented in this dissertation have also been checked within the
proof assistant Coq.

iii

Acknowledgments

v

Contents

I Introduction 1

1 Type systems in a nutshell 9
1.1 The general setting . 10
1.2 The purpose of programming languages 11
1.3 A practical example . 13
1.4 Computation on types . 18
1.5 Where to go next ? . 20

II Untyped equality 21

2 Pure Type Systems 23
2.1 Pure Type System in Natural Deduction 25

2.1.1 Terms and Untyped Reductions 25
2.1.2 Presentation of Pure Type Systems 28

2.2 Pure Type Systems in Sequent Calculus 36
2.2.1 Terms and Reduction 38
2.2.2 Confluence of β-reduction in λ 39
2.2.3 Typing Rules . 42
2.2.4 Properties of the system 42

2.3 Delayed Pure Type System in Sequent Calculus 45
2.3.1 Typing Rules . 46
2.3.2 Properties of the system 46

2.4 Expansion Postponement in Delayed System 50
2.4.1 Postponement in Sequent Calculus 51
2.4.2 Postponement in Natural Deduction 52

2.5 Sequent Calculus and Type Inference 54
2.6 A brief look back at syntactical Pure Type Systems 57

vii

III Typed equality 59

3 Judgmental Equality 61
3.1 PTSs with Judgmental Equality 63

3.1.1 Typing Rules . 63
3.1.2 Subject Reduction and Equivalence 65

3.2 Basic meta-theory of the annotated system 68
3.2.1 Definition of PTSs with Annotated Type Reduction . . 69
3.2.2 General properties of PTSatr 74
3.2.3 The Church-Rosser Property in PTSatr 79
3.2.4 Consequences of the Church-Rosser property 81

3.3 Equivalence of PTSatr and PTSs 83
3.3.1 Confluence of the annotation process 83
3.3.2 Consequences of the Erased Confluence 86
3.3.3 Consequences of the equivalence 88

4 Formalization in Coq 91
4.1 Formal proof: paper or computer ? 92

4.1.1 What is a formal proof ? 92
4.1.2 Automatic resolution and induction schemes 93

4.2 Encoding PTSs in a proof assistant 95
4.2.1 Questions about encodings of binders 95
4.2.2 Higher order encodings 97
4.2.3 Our final choice: de Bruijn indices 99

IV Conclusion and Further Research 103

5 Extensions of PTS 105
5.1 Sorts, order and subtyping . 107
5.2 Toward a typed conversion for CCω 110

5.2.1 The straightforward approach 110
5.2.2 Other attempts and possible leads 112

5.3 Other leads for future investigations 114

Part I

Introduction

1

3

Introduction

In the early days of computer programming, people were first interested in
programming effectively, due to the limited resources that were available.
Since then, the power of computers has grown in enormous proportions (and
should still continue until at least 2015 according to Moore’s Law), such that
people are getting more and more interested in programming safely : during
the development of a software, avoiding bugs and tracking errors can be a
difficult task. Usually, programs are described by their signature (also known
as type). For example, the plus function, that adds two natural numbers,
can be given the type N × N → N. Checking that a particular program
matches the required signature can prevent a lot of errors. A simple calculus
to write functional programs has been introduced by Church in the 1930’s,
known as the Simply Typed λ-Calculus.

Lately, computer scientists have also focused their attention on the field of
formal reasoning. The idea is that checking a type is not enough, one wants a
formal proof that a program will compute the correct algorithm. It may seem
weird to talk about computer and logical reasoning when the former is usually
the problem of engineers and the latter the problem of mathematicians and
philosophers. But the fact is that a logical proposition can easily be seen as
a sequence of symbols, and handling such symbolic object is easily done in
most programming languages. A simple example of logical statement is the
identity predicate: ∀A.A→ A (it should be read as “for all proposition A, A
implies A”). This proposition can be intentionally interpreted as a function
that, given a proof of A, computes a proof of A. There is a certain similarity
between the type of plus and the identity predicate:

• the type of plus can be read as the proposition “N×N implies N”.

• the identity predicate can be read as the type of a program that returns
an element of the same type as its input. In the λ-calculus, there is

4

only one function that fits this description, the identity function λx.x.

In fact this connection happens at several levels, and it is known as the
Curry-Howard correspondence [How80]. We already explained one of these
levels, with the link between signatures and propositions, but we can go even
further by saying that a program can be read as the proof of a proposition
(and again, the other way around). This is the link between programming
and proving: now we can write proofs as we would write the source code of
a program, but we can also write programs by proving that their signature
is a valid proposition.

This is the kind of ideas that opened the way to the development of several
computer-assisted reasoning software. There are now several examples of
successful proof checkers or proof assistants, like Automath, LCF and Lego,
which are no longer used, or like more recent ones such as ACL2, Agda,
Coq, HOL, HOL-light, Isabelle, Matita, Mizar, PVS, or Twelf, just to quote
the most popular ones. Now it is possible to write a proof as if you were
writing a program, and have their validity checked automatically by one of
this software.

Most of these software implement a particular type theory 1 which are
proved correct: it is trivial to build a proof checker which is able to check any
statement, it just has to always return a positive answer, but such checker
would not be very useful since it would be incoherent. This is why the theo-
ries behind these software are heavily investigated, along with any extensions
of those theories. The user also needs guarantees that these software are cor-
rectly implementing the logical theory behind them, so that it is impossible
to derive false propositions, like being able to derive a statement and its
negation.

The starting point of this dissertation was an attempt to extend the ex-
pressiveness the particular theory behind Coq. The Coq proof assistant is
such a tool, whose underlying theory is the Calculus of Inductive Construc-
tions (or CIC for short). It is a quite rich language and its limits constantly
evolve through the evolutions of Coq. Several stages of its evolution are well-
understood (see [Wer94, Cor97, Coq]).

Our initial goal was to improve Coq ’s unification algorithm: it is well-
known that higher-order unification is undecidable [Hue75, Gol81]. Still,

1Which is usually an extension of the Simply Typed λ-Calculus.

5

there are some subcases that remain decidable and useful in practical situa-
tions. The particular subcase we were interested in was the case of pattern
unification [Mil91, Pfe91]: by a clever use of variables, it is possible to re-
strict unification problems to almost fit in the first-order fragment, and thus
be decidable.

Coq already tries to apply pattern unification when possible, but this
unification algorithm requires the use of η-conversion, to be able to have
canonical βη-long terms, which is currently not implemented in CIC2. Our
first task was to investigate how we could reintroduce η-conversion inside
Coq in a safe way.

This investigation on η-conversion (more specifically on η-expansion) made
us realize that the traditional presentation of CIC, which relies on an untyped
notion of conversion, was not an adequate framework to deal properly with
η-conversion. We needed a typed conversion. However, the problem is that
there is no real meta-theory of type systems with typed conversion if they
are not normalizing systems, since no one was ever able to prove two of the
most important facts about typing systems, namely Subject Reduction and
Confluence for a “typed” non-normalizing system. Even if, in practice, all
the logical theories used for proof assistants are normalizing (one does not
want its favorite checker to loop for ever), such requirement seems really too
strong to be a necessary condition for these two theorems.

Furthermore, we want to make a conservative extension of the CIC in
the sense that, if we add something new to the conversion, every statement
that is currently provable should still be valid in the new system. Since
CIC does not rely on a typed conversion, one solution could be to build a
“typed” version of CIC and prove it equivalent to our current version of CIC.
By building such a translation, we would have a better framework to start
thinking about η-conversion. Anything that we would be able to prove in
this typed setting could be imported back into the traditional presentation
of CIC. But the only way we currently know to prove such an equivalence
also requires Subject Reduction and Confluence in the typed framework.

Such investigation could profit to the universal knowledge as well as other
proof assistants which also could extend their theory with η-conversion. In
order to avoid having to build such a meta-theory for all the implemented

2Even if η-conversion is part of the description of CIC in [Wer94], it has since been
removed due to issue with universes subtyping and subject-reduction.

6

type systems one by one, we chose to work on Pure Type Systems, which
are a framework that allows to build meta-theory for a whole family of type
systems, and not all of them are normalizing. So, even before thinking about
η-conversion, we can ask ourselves this particular question:

Are Pure Type Systems with untyped conversion equivalent to Pure Type
Systems with typed conversion ?

By answering this question, we would give ourselves a solid basis to extend
this result to particular implementations used in proof assistants, or to extend
it by adding η-conversion. This would also allow to consider that all the
semantic results we know about Pure Type Systems with typed conversion
are in fact just syntactical facts, provable by means of primitive recursion
instead of being consequences of the construction of a model.

This problem, first asked by Geuvers [Geu93, GW94], has been now
opened for more than a decade. A partial solution has been proved by Adams
[Ada06] for a subclass of Pure Type Systems known as functional. The main
result of this dissertation is to finally give a positive answer to the global
question: both presentations of any Pure Type Systems are equivalent.

There is another difficult problem concerning Pure Type Systems known
as the Expansion Postponement problem3. Since we also faced this issue dur-
ing our investigation on the meta-theory of Pure Type Systems, we thought
our efforts towards solving this second problem were worth being written
down. However, our new approach to this problem still fails to give a final
answer.

The outline of this dissertation is the following:

• Chapter 1 is very simple introduction to type systems, aimed at the
readers that do not have any knowledge about logic in computer science.
Its purpose is to make the motivations behind the investigation of type
systems a little bit clearer for those that really know nothing about it.

• Chapter 2 is about syntactical Pure Type Systems, systems with un-
typed conversion. It is focused on the investigation of the behavior of
conversion, and how could we manage to improve the conversion itself.
By studying a particular presentation of Pure Type Systems in sequent

3A complete definition of this problem is given in Chapter 2.

7

calculus, we give a new approach to the Expansion Postponement prob-
lem.

• Chapter 3 is about judgmental Pure Type Systems, systems with typed
conversion. The equivalence between syntactical and judgmental Pure
Type Systems is achieved by the definition of an intermediate system
that is used as a bridge between both worlds.

• As an example of the power of proof assistants, this work has been
completely done and checked with Coq. This process also ensures that
no detail of the proofs have been forgotten or admitted as is: everything
have been investigated and proved correct. Chapter 4 is a survey of
the different techniques used to achieve such a result.

• Finally, Chapter 5 is an investigation of the possible extensions of this
equivalence to more complex systems. It mainly describes our attempts
at the equivalence for the Calculus of Constructions with Universes.

8

9

Chapter 1

Type systems in a nutshell

Contents
1.1 The general setting 10

1.2 The purpose of programming languages 11

1.3 A practical example 13

1.4 Computation on types 18

1.5 Where to go next ? 20

This chapter is a gentle introduction to type systems for those who may
want to read this dissertation without a minimal background in Computer
Science (hi mom, hi dad !). Anybody who already knows what λ-calculus
and type theory are should not read this part and directly go to Chapter 2.

It is not meant to be rigorous nor exhaustive, and we do not aim to teach
to the reader all the notions he would need to understand this work, but we
rather want to explain some of the motivations behind our work to people
that do not know what λ-calculus and other logical gimmicks mean, using
the well-known “hand-waving explanation” method. By reading this chap-
ter, you should at least be able to parse and read all further mathematical
notations, and (we hope) to understand a bit of what we were trying to do
those past three years.

10 CHAPTER 1. TYPE SYSTEMS IN A NUTSHELL

1.1 The general setting

It may be unclear from the following chapters since we will go deep into
obscure details, but this dissertation started from two questions about com-
munication:

1. How do I explain to my computer what I want it to do ?

2. How do I get sure that my computer actually did what I asked ?

Computers as we know them are quite recent, with the first room-sized
computers that were built during the 1940’s. However, even before that, they
were mechanical devices that could be informally called “computer”: a Barrel
organ is a musical instrument that can read and play music from a written
sheet, or a Jacquard loom can create complex textiles from some recipe. Both
examples are in fact using the same input : a collection of punched cards. As
you may remember, some of the first computers also used punched cards as
computing instructions or data-input. In these three cases, the goal is the
same: we want to give a sequence of instructions to a device so it achieves a
particular purpose, whether it be playing music or computing some complex
mathematical function.

We should all agree on the following points:

• Punched cards are not a reasonable “human-readable media”.

• One can not store so much information on a single punched card.

These are some reasons why we study programming languages. The ul-
timate language may change among people, but everyone will agree on the
fact that a good programming language should be easy to write, easy to
read and expressive enough to let the programmer spend most of this time
“programming”, not “reinventing the wheel” every time.

You may have noticed that we did not ask the language to be “computer-
readable” and in fact, we do not want that. However, we will need another
language that will fulfill this purpose, but this one does not have to be
intelligible to human beings, since it is dedicated to the Computer Processing
Unit (CPU). Back in the early years of computer science, both languages were
almost the same (you may remember punched cards and assembly language
for example), but now we can make a fortunate distinction between both.
All we need is a way to translate our favorite programming language into

1.2. THE PURPOSE OF PROGRAMMING LANGUAGES 11

the favorite programming language of our CPU, which is a process called
compilation. We will not talk about compilation anymore in this dissertation,
but this is a good example to emphasize one more time our two previous
questions: how can we be sure that this translation process is correct ?

1.2 The purpose of programming languages

Hopefully, we now all agree on the fact that we want to give orders to a
computer in a human-friendly manner. Nowadays, computers are quite so-
phisticated, but they are merely bigger calculators than the ones we all used
at school to compute simple equations like “what is the result of 126 di-
vided by 3?”. So programming languages should be about describing the
data-structures we want to work with, and the things we want to compute
with them (this is question 1 of the previous section), and also about how
to compute “in a safe way” (this is question 2): we want to give orders to a
computer, and have some fairly good insurances that the computed results
are what we actually expected.

What do we have at hand to do such computations ? We will keep it
simple by stating: a CPU which will blindly execute the orders we give him
and some space for data storage, which is commonly called memory. This
memory can be seen as a big array of zeros and ones (called bits), most of the
time stored in packs of eight (eight bits are called an octet). In our language,
we will have to handle data such as natural numbers, strings, lists and so
on, but in the end, they will all be stored as a chunk of memory. So, we need
a way to distinguish one chunk of memory from another: let us say we have
the plus function that take two natural numbers and add them together.
What if we call this function on a string and a list of natural numbers ?
What should happen ? What will happen ?

If it happens, we can almost be sure that your program will crash. But
it should never have been allowed in the first place! Just by taking a look
at the types involved in such a program, we can see it fails to work. This is
where question 1 and 2 are facing one another: we manage to write down a
program for our computer, but it was not safe to execute.

How did we guess that this program was not safe to run ? This is an easy
question: plus is waiting for two natural numbers, and we gave it something

12 CHAPTER 1. TYPE SYSTEMS IN A NUTSHELL

else. But we are clever human beings who saw this issue, while the computer
only saw two chunk of memory with octets in them. It is our work, through
the programming language, to give more information to the computer, so
it can avoid such traps. We need to make the computer understand that a
chunk of memory representing a string should not be used when a natural
number is expected. This is commonly achieved by adding labels to this
structure, saying for example “this chunk is a natural number and this other
one is a list of strings”. With this information, the computer can be aware
of the kind of data it is computing over, and will reject a program like plus

(3,"foo") just because "foo" is not a natural number.
These labels are called types, and the action of seeing if the type of an

input matches the expected type of a function is called type checking. The
structure of types inside a programming language is called a type system.
They are here to enforce some guard properties in a program, to have some
guarantees that the computation will be done in a safe manner. The expres-
siveness of type systems is directly linked to the kind of guarantees we will
have: if they are too simple, we will only be able to have simple information
as in the toy example we just saw. With more expressive languages, we can
have much more powerful assertions, like pre-conditions to fulfill before being
able to use a function, or additional information on the values returned by a
program.

A common example to emphasize the power of a type system is Euclid’s
division algorithm: extensionally, it can be stated as “given a and b two
natural numbers, if b is not equal to 0, we want to find q and r such that
a = b ∗ q + r and r < b”. In real programming languages, the type of this
program may vary depending of the power of the type system:

• in C-like: void div(int a, int b, int *q, int *r)

• in ML-like: div: int -> int -> (int * int)

• in Coq: div : forall (a b:nat), 0 < b ->

{q : nat & {r : nat & a = b * q + r /\ r < b }}.

In the first two examples, the programming language is not informative
enough to carry around information “about” the data, like b is not 0 or
a = b ∗ q + r. The only information we have is that div is expecting two
natural numbers (or integers) and will return two natural numbers, without
any information about the computation itself.

1.3. A PRACTICAL EXAMPLE 13

In the last one, there is a pre-condition and two post-conditions: to be
able to call this function, we need to give a witness that b is not 0, and this
function will give us two natural numbers that verify the two relations that
we are interested in. It is pretty nice to have such power in the type system,
but there is a drawback: in the code of the third program, we need to build
the proof that the resulting q and r enjoy the nice relations with the input.
More expressiveness will require more work from the programmer. In this
particular example, we already know some automatic ways to prove these
arithmetical results, but we have to keep in mind the following statement:
the more we want, the more we need to provide first.

1.3 A practical example

To be able to study a programming language, we first need to explain its
syntax, and then we can try to prove some nice properties over it. In fact,
we need to define two things: the syntax of the language, and the process
of computation. We need to formalize our language along with the process
of computation. As an example of the properties a programming language
can have, we are going to consider a simple (but still powerful) example by
studying the λ-calculus.

This language was introduced by Alonzo Church [Chu51, Bar84] in the
1930’s as a tool to study the foundations of mathematics. Since then, many
extensions of this language have been used as a basis for real programming
language and for logic programming [HAS, SML, Gal, PS]. Here is its syntax:

M,N ::= x | M N | λx.M

A term of the λ-calculus can be built from three different constructors.
The first one is about variables (which we will always write as lower-case
letters x, y, . . .). They are names for more complex terms. The second
one, M N , is called an application: given a function f and an argument a,
f a stands for “let us apply the function f to a”. Back in high-school, we
would write it f(a), this is just another notation for it. Please remember
that this is not the result of the computation of this function when applied
to a particular argument, it is just the syntactic juxtaposition of two terms:
for example, if we consider the identity function id that just return whatever
data we give it, id a is syntactically different from a, but it will compute to
a. If a function has several arguments (like the plus function for example),

14 CHAPTER 1. TYPE SYSTEMS IN A NUTSHELL

we simply use several applications :(plus x) y. By convention, application
is left-associative, so we can even get rid of the parentheses and just write
plus x y.

Finally, the most awkward of the symbols above, the λ-abstraction is
used to define functions. Until now, we gave name to functions but names
can be complicated to handle during a strict formalization, so we introduce
anonymous functions with this abstraction. Here are some simple examples
to illustrate this λ construction:

• the identity function is denoted by the term λx.x, which is equivalent
to the declarative statement “for any term x, we return x”.

• the plus function1 is denoted by the term λxλy.x+ y: “given a x and
a y, we return x+ y”.

• the app function, that takes a function, an argument, and apply this
function to this argument is denoted by the term λfλx.f x.

In a λ-abstraction λx.M , the variable x is bound by the λ inside the body M .
It means that if we apply this function to an argument N , all occurrences of
x inside M will be placeholders for N .

Now that we have a simple syntax for terms (without types at the mo-
ment), we need to explain how to compute with them: how do we go from
id x to x ? This process of rewriting a term into another one is called β-
reduction, and is informally defined as follows: if an abstraction λx.M is
applied to term N , the application (λx.M) N can be β-reduced to M [N/x],
which stands for “replace all the occurrences of x in M by N”. This process
will be noted →β for a one step reduction, and �β for several consecutive
steps:

• id N →β N

• app id a→β (λx.id x) a→β id a

• plus 3 4 �β 7

1Here we cheated: + is not part of our syntax, but it was just to illustrate with a known
example.

1.3. A PRACTICAL EXAMPLE 15

This language is rather simple, but it is quite interesting to study its
computational behavior, even without type information: we can encode a lot
of interesting data-structures (natural numbers, pairs, lists, . . .), but this is
not what we are interested in at this point.

What can we say about this language ? What properties does it give
us on the structure of our program, or on its computation behavior? In
fact, nothing much at the moment: we need types! Since we only have one
function constructor (using the λ-abstraction), we only need one type con-
structor, written →, which is pretty much like the mathematical implication
for function:

• id has type A → A: it takes a data of type A and returns it directly,
so the type is not changed.

• plus has type nat→ nat→ nat: it takes two natural numbers and
returns a natural number.

• app has type (A→ B)→ A→ B: it takes a function of type A→ B,
an argument of type A, and returns the result of their application,
which is of type B.

We will also need some base types (like nat or string) for our data, but we
do not really care about it for our study. Last thing, we need to store all the
type information we will collect in a context, as a remainder of the types that
we already know: as soon as we know that plus has type nat→ nat→ nat,
we can put this information in our context so we do not need to rebuild this
information the next time we will need it.

With all this, we can build a type system for the λ-calculus, called the
Simply Typed λ-calculus. This extension of the λ-calculus was also introduced
by Church [Chu40] a few years after first presenting the λ-calculus to avoid
some paradoxes that were discovered in the untyped calculus. The system is
defined according to the following rules:

• a variable x has type A if this information is in our context.

• if, knowing that x has type A, we can prove that M has type B, then
λx.M has type A→ B.

• if M is a function of type A → B and N has type A, the resulting
application M N has type B.

16 CHAPTER 1. TYPE SYSTEMS IN A NUTSHELL

Since we are trying to be a little more formal, we now give the same set of
rules, but written in a much more concise way, it will be easier to talk about
a specific rule. The typing rules for the Simply Typed λ-calculus are detailed
in Fig. 1.1. This kind of presentation is called a type system.

(x : A) ∈ Γ

Γ ` x : A
var

Γ(x : A) `M : B

Γ ` λx : A.M : A→ B
lam

Γ `M : A→ B Γ ` N : A

Γ `M N : B
app

Figure 1.1: The Simply Typed λ-Calculus

This presentation is really simple to read: a typing judgment (also called
a sequent) Γ `M : A means that in the context Γ, the term M has type A,
and the lines can be read as a simple implication:

If all the conditions on top are true

the conclusion at the bottom is also true
name of the rule

You may have noticed that, in the lam rule, we wrote λx : A.M instead
of λx.M . This additional annotation is quite handy to reason about typing
judgments, but it is not mandatory: both presentations, with or without the
annotation on λ-abstractions, are commonly used. For the application rule,
we take care to check that the type of the argument N matches the type
expected by the function M : they are both the same A.

A well-typed term is a term for which we can compute a type using only
the previous rules: plus 3 4 is a well-typed term because 3 and 4 are natu-
ral numbers, but plus 3 "foo" is not because "foo" is a string, so we will
not be able to correctly apply the app rule.

With this nice syntax and its simple type system, we can start proving
properties about our programming language. We are going to focus on two
properties which are, according to us, the most important ones: Termination
and Preservation.

A term is said to be terminating if its computation terminates, that is if
we can only apply a finite number of β-reduction steps: our running exam-
ple plus 3 4 is terminating, because 7 can not be reduced anymore. This
property is used to ensure there is no infinite loop inside a program. As you
may guess, all the terms are not terminating (otherwise we would not have
to state such a property). However, all the well-typed terms are. Take a look

1.3. A PRACTICAL EXAMPLE 17

at the term λx.x x, that we will call δ. Without the typing information, we
can do some reductions:

δ δ = (λx.x x) δ
→β (x x)[δ/x] = δ δ
�β δ δ
�β . . .

Having such an infinite reduction sequence can be a bit annoying inside a
program, especially when we want to compute a result: it will loop forever!
But what if we try to attach types to this term ? Let us try to guess the
type of δ, with the previous rules:

1. δ is a λ-abstraction, so its type is of the shape T1 → T2, and in a
context where x has type T1, x x has to have type T2.

2. the first occurrence of x forces the shape of T1: T1 = A→ B.

3. the second one forces the type of x to be equal to the domain of T1, so
we get another equation : T1 = A.

All this leads to a single equation A = A→ B which is unsolvable: δ is not
typable in the Simply Typed λ-Calculus. This example shows how typing
can reject non-terminating programs, without having to run them.

The second property we want to emphasize is Preservation (also known
as Subject Reduction). It states that computation does not change the type
of a term: if M →β N and M is of type A, then N is also of type A. In a
more formal presentation:

Γ `M : A M →β N

Γ ` N : A

This property ensures that computation does not mess with the content of
the data: for example, just from the typing information we have so far, we
know that plus 3 4 is a natural number, because we already know the type of
plus, and because 3 and 4 are natural numbers, but preservation guarantees
that the resulting computation, 7, is also a natural number, even if we do not
perform this computation. In this case, it was easy to check that plus 3 4

will compute to a natural number, but it is not always so simple to verify.

18 CHAPTER 1. TYPE SYSTEMS IN A NUTSHELL

1.4 Computation on types

A nice property about the Simply Typed λ-Calculus is that it has literally
simple types: the world of types and the world of terms are completely
distinct one from the other. With this kind of system, it is impossible to
have complicated information in the types: if you recall the example about
Euclid’s algorithm, the third one was the most informative one, but there
were actually terms (namely a, b, q and r) inside the type of the function.

In order to achieve such expressiveness, we need to add a dependency
between types and terms. There are several ways to do this, at several lev-
els (types depending on types, types depending on terms, terms depending
on types, . . .) and we do not want get into all of them at the moment.
These systems are significantly more difficult to understand than the simple
λ-calculus, so we are not going to try to describe a particular one, but we
are just going to think about one question : why would we want to compute
inside a type?

The usual running example at this point is to consider a particular kind
of lists. The basic type for list of terms has only one parameter: the type of
the data it contains:

• the list l1 = [1; 2; 3; 4; 5] has type list nat.

• the list l2 = [′a′;′ b′;′ z′] has type list char.

• a list containing data of type A has type list A.

We are going to extend this definition by adding a second information in
the type: we want to know the size of the list just by typing, and will call
this new type nlist:

• l1 would have type nlist 5 nat.

• l2 would have type nlist 3 char.

• a list of length n containing data of type A has type nlist n A.

This new type allows us to be more informative while writing a function.
For example, if we want to extract the first element of a list, we need to check
that this list is not empty: with nlist, this can be done with typing !

1.4. COMPUTATION ON TYPES 19

head : forall (A:Type) (n:nat), nlist (n+1) A -> A.

The head function expects a list of length at least 1, so its execution will
never involve the empty list. This is a pretty interesting feature, but what if
we go with more complicated functions ? Let us consider the concatenation
of two lists:

concat:

forall (A:Type) (n m:nat), nlist n A -> nlist m A -> nlist

(n+m) A.

The concat function takes two lists of arbitrary size, n and m, and return
a list which size is n + m by gluing the second list at the end of the first
one. A practical example: what is the result and the type of concat [1;2]

[3;4;5] ?

concat [1;2] [3;4;5] = [1;2;3;4;5] : nlist (2+3) nat.

Why is it 2+3 and not 5 ? Simply because, as we previously said, 2+3
is not syntactically equal to 5, but it computes to 5. If we want to embed
terms into types, we also need a way to embed the computation at the level
of types. The usual way to do this is to add a conversion rule to our favorite
type systems, which looks like:

Γ `M : A A computes to B

Γ `M : B

The critical notion here is how to define the “computes to”. Several differ-
ent presentations have been proposed until now, all designed for a particular
purpose:

• If one is only concerned with program evaluation, one only needs to
have an untyped notion of reduction, and rely on preservation to type
the result of its computation.

• If one is concerned with consistency, or if its computation needs type
(it is the case with η-expansion for example), one may need to have a
typed notion of reduction, but will have trouble to prove preservation.

The following chapters are a technical investigation about this conversion
rule, in order to finally prove that all the definitions that we study in this
dissertation are actually just different ways to state the very same things:
all these presentations are equivalent.

20 CHAPTER 1. TYPE SYSTEMS IN A NUTSHELL

1.5 Where to go next ?

In this first chapter, we wanted to explain as simply as possible the underlying
motivations of our work: why are we interested in type theory, and what are
the possible applications of this field. From now on, we will forget a bit
about computer programming, and focus on the study of the meta-theory
of a particular family of type systems called Pure Type Systems, which are
used as a basis for the underlying theory of proof assistants and proof search
engines.

Our work will mainly focus on the conversion rule of those systems which
is the main reason why there are several different presentations of those sys-
tems, depending on the kind of guarantees one wants about the computation.

This investigation aims to improve our understanding of the theories be-
hind proof assistants, in order to improve those software. As a practical
application of this concept of “proof assisted by computer”, this dissertation
has been completely formalized within the Coq proof assistant [Coq], as a
supporting tool which helped to build some complex parts of the proofs, and
also to be sure that we did not forget anything in the formalization, and thus
ensure that everything was correctly proved. The whole development can be
found here [Sila, Silb] and has been tested with both the trunk version of
July 2010 (revision 13303) and the 8.3 version of Coq.

Part II

Untyped equality

21

23

Chapter 2

Pure Type Systems

Contents
2.1 Pure Type System in Natural Deduction 25

2.1.1 Terms and Untyped Reductions 25

2.1.2 Presentation of Pure Type Systems 28

2.2 Pure Type Systems in Sequent Calculus 36

2.2.1 Terms and Reduction 38

2.2.2 Confluence of β-reduction in λ 39

2.2.3 Typing Rules . 42

2.2.4 Properties of the system 42

2.3 Delayed Pure Type System in Sequent Calculus 45

2.3.1 Typing Rules . 46

2.3.2 Properties of the system 46

2.4 Expansion Postponement in Delayed System . . 50

2.4.1 Postponement in Sequent Calculus 51

2.4.2 Postponement in Natural Deduction 52

2.5 Sequent Calculus and Type Inference 54

2.6 A brief look back at syntactical Pure Type Systems 57

The first chapter was a first glimpse at type systems: the study of these
systems can give a lot of information on programming languages. However,

24 CHAPTER 2. PURE TYPE SYSTEMS

it can be really fastidious to study every type system that exists, one at
a time. From now on, we are going to focus only on functional languages,
and especially on a particular framework known as Pure Type Systems (or
PTSs from now on). This framework allows to describe and study a large
family of type systems by considering only a single one which relies on some
abstract parameters. Doing so, we can study all those systems at once by
proving properties of the abstract system, properties that will automatically
be inherited by all the instances of this system. In the end, we are able to
select one particular system by simply providing the correct parameters to
the system.

Pure Type Systems were first introduced independently by Berardi and
Terlouw, mainly inspired by Barendregt’s λ-cube [Ber88, Bar92]. The pur-
pose of this cube was to classify the different ways terms and types may
depend on each other in some well-known type systems, from simple system
like the Simply Typed λ-Calculus to more complicated ones like the Calculus
of Constructions. As we previously said, when there is a dependency of types
over terms, we need a way to compute inside those types. This particular
computation will grab most of our attention in the upcoming chapters.

The reason is that, in practice, there is not a unique presentation of those
Pure Type Systems, they exist with different flavors for the shape of the
rules, or even for the notion of conversion. The main result of this work is
to prove that most of the interesting presentations are actually equivalent:
they all describe the very same theory. With this result, one can chose the
best of every presentation without any restriction.

In this chapter, we give an overview of the declarative presentation of
PTSs (also known as syntactical PTSs), whose conversion rule is based on
an external notion of equality: conversion does not depend on typing. They
are already quite well understood, so we are only going to recall here the
major properties and the most difficult proofs, but we also want to highlight
the mechanics of their meta-theory. By understanding the order in which
things can be proved, and how they are used, it will be easier to understand
the more complicated problems of their typed counterpart with judgmental
equality.

The first section is dedicated to the usual presentation, based on nat-
ural deduction. It will be used as a basis in the following chapter to deal
with typed equality. In the second section however, we present a variant of

2.1. PURE TYPE SYSTEM IN NATURAL DEDUCTION 25

those Pure Type Systems (mainly inspired by Lengrand’s thesis [Len06]) by
switching from natural deduction to sequent calculus, in order to address a
particular open question about PTSs called Expansion Postponement.

2.1 Pure Type System in Natural Deduction

As we said, this framework relies on an external notion of equality, which
does not mix with typing. From now on, we will consider this equality to be
the β-conversion. The order in which we will state the following properties
is relevant, it will help to understand the issues that will arise in the next
chapter.

In this section, we are going to only focus on the traditional presentation
of PTSs, in natural deduction. We first present the underlying terms and
reduction used to describe these PTSs, then we explain the formal definition
of PTSs along with some main results. The last part is dedicated to a
particular result often unknown, which is a lead to some of the most difficult
results about PTSs, like Strengthening.

2.1.1 Terms and Untyped Reductions

The terms used in the following type systems are the usual λ-calculus terms
à la Church — variable, annotated abstraction and application — extended
with two more constructions which are the entry points of types inside terms
: Π-types and sorts.

Structure of terms and contexts
s : Sorts
x : V ars
A,B,M,N ::= s | x | MN | λxA.M | ΠxA.B

Γ ::= ∅ | Γ(x : A)

The syntactical equality between two terms M and N is written M ≡ N .

As you can see, there is no syntactical distinction between terms and types,
they are both part of the same grammar. Since we want to cover the whole
generality of dependent type systems (especially those parts of the λ-cube),
we need to be able to handle any kind of dependency, such as types depending

26 CHAPTER 2. PURE TYPE SYSTEMS

on types (System F), types depending on terms (Calculus of Constructions)
or even no dependency at all (Simply Typed λ-Calculus). Using the same
syntax for terms and types avoids redefining several times the same binders
for all those kinds of dependencies. The separation is done by the typing
rules afterwards.

The Π construct will be used to type functions, and ΠxA.B is usually
noted A → B when B does not depend on its argument x. If there is a
dependency, we keep track of the binding variable x with the full notation.

The set Sorts is the first parameter that defines an instance of a PTS.
Sorts are used to assert that a term can correctly be used in a typing position.
We will see how it works in more details after the introduction of the typing
rules. The set of variables Vars is assumed to be infinite, and is common
to all PTSs. In the following, we consider s, si and t to be in Sorts, and
x, y and z to be in V ars. A context is a list of terms labeled by distinct
variables, e.g. Γ ≡ (x1 : A1) . . . (xn : An), where all the xi are distinct. Since
we want to handle dependent types, the order inside the context matters: a
xi can only appear in Aj where j > i. For convenience, we will often use the
notation Γ(x) = A as a shortcut for (x : A) ∈ Γ (a context can be seen as a
finite map from V ars to terms, where the orders of the keys matters) and ∅
denotes the empty context. The domain Dom(Γ) of a context Γ is defined
as the set of xi such that Γ(xi) exists. The concatenation of two contexts
whose domains are disjoint is written Γ1Γ2.

The term λxA.M (resp. ΠxA.B) binds the variable x in M (resp. B) but
not in A and the set of free variables (fv) is defined as usual according to
those binding rules:

- f v(s) , {} if s is a sort.

- f v(x) , {x} if x is a variable.

- f v(MN) , f v(M) ∪ f v(N).

- f v(λxA.M) , f v(A) ∪ (f v(M)\{x}).
- f v(ΠxA.B) , f v(A) ∪ (f v(B)\{x}).

We use an external notion of substitution: [/] is the usual function of
substitution, and M [N/x] stands for the term M where all the occurrences
of the free variable x have been replaced by N , without any variable capture
(in order to avoid any collision between x and a bound variable in M , we can
always α-rename the bound variables in M to fresh ones). We can extend

2.1. PURE TYPE SYSTEM IN NATURAL DEDUCTION 27

the substitution to contexts (in this case, we consider that x 6∈ Dom(Γ)).
Γ[N/x] is recursively defined as :

1. ∅[N/x] , ∅

2. (Γ(y : A))[N/x] , Γ[N/x](y : A[N/x])

Now that we have defined the syntax for terms, it is time to take a closer
look at the conversion process we are going to use. The notion of β-reduction
(→β) is defined as the congruence closure of the relation (λxA.M)N →β

M [N/x] over the grammar of terms. The reflexive-transitive closure of →β

is written as�β, and its reflexive-symmetric-transitive closure as =β (which
can be called conversion or untyped equality in the following). The notion of
syntactic equality (up to α-conversion) is denoted as ≡.

A main property of β-reduction is Confluence:

Theorem 2.1.1 (Confluence of β-reduction). For all terms M,N and P , if
M �β N and M �β P , then there is Q such that N �β Q and P �β Q.

Proof. There are several well-known proofs of Confluence in the literature,
but we would like to emphasize the one using parallel reduction (see [Bar84]
for the usual proof of Tait Martin-Löf, or [Tak95] for another way to prove
it).

Using β-reduction, one can reduce exactly one redex per reduction step.
The idea behind the parallel reduction (→p) is to allow the reduction of all
redexes that appears in separate subterms (thus the name of “parallel”)1

along with the reflexivity property that β-reduction is lacking to enjoy the
diamond property.

For example, here are the rules for the application and head-reduction
cases:

M →p M
′ N →p N

′

MN →p M
′N ′

M →p M
′ N →p N

′

(λxA.M)N →p M
′[N ′/x]

In the first rule, we are allowed to reduce all the redexes that appear in both
part of the application. Because they are two different subterms, no reduction
in one of them can make a new redex appears in the other one. However, in
the second case, the head reduction is going to mix both subterms, so we are
only allowed to reduce one redex in head position at a time.

1This is a particular case of finite development [Bar84].

28 CHAPTER 2. PURE TYPE SYSTEMS

Such a reduction enjoys the Diamond Property, and also has the same
transitive closure as the usual β-reduction. Those two properties are enough
to show that β-reduction is Confluent.

At this point, it is important to notice the order in which we can prove
things: Confluence of the β-reduction can be established before even defining
the typing system, it is only a property of the reduction. Using this, we can
prove some useful properties of Π-types and sorts:

Lemma 2.1.2 (Consequences of Confluence).

• Π-injectivity: If ΠxA.B =β ΠxC .D then A =β C and B =β D

• If s =β t then s ≡ t.

• The statement ΠxA.B =β s does not hold for any A,B and s.

2.1.2 Presentation of Pure Type Systems

As we said, a PTS is a generic framework that allows us to study a family of
type systems all at once. Popular type systems like Simply Typed λ-Calculus,
System F , the systems U and U− or the Calculus of Constructions are part
of this family. They have been brought mainstream by Barendregt in the
early 1990’s, and were also known as Generalized Type Systems. There is
plenty of literature on the subject [Bar92, vBJMP93] so we will only recall
the main ideas of those systems.

The abstract nature of a PTS arise in the typing rules for sorts and Π-
types. The set Ax ⊂ (Sorts×Sorts) is used to type sorts: (s, t) ∈ Ax means
that the sort s can be typed by the sort t. The set Rel ⊂ (Sorts× Sorts×
Sorts) is used to check the well-formedness of Π-types.
The typing rules for PTSs are given in Fig. 2.1. Intuitively, Γ ` M : T can
be read as “the term M has type T in the context Γ”, and Γ ` A : s as “A is
a valid type in Γ”. In the following, even if terms and types share the same
syntax in PTSs, we will often call type a term which is typed by a sort.

As we can see, the conv rule relies on the external notion of β-conversion,
so we do not check that every step of the conversion is well-typed. However,
it is easy to prove Confluence and Subject Reduction, two properties which
ensure that everything goes well.

2.1. PURE TYPE SYSTEM IN NATURAL DEDUCTION 29

∅wf
nil

Γ ` A : s x /∈ Dom(Γ)

Γ(x : A)wf
cons

Γwf (s, t) ∈ Ax
Γ ` s : t

sort
Γwf Γ(x) = A

Γ ` x : A
var

Γ ` A : s Γ(x : A) ` B : t
(s, t, u) ∈ Rel Γ(x : A) `M : B

Γ ` λxA.M : ΠxA.B
lam

Γ ` A : s
Γ(x : A) ` B : t (s, t, u) ∈ Rel

Γ ` ΠxA.B : u
pi

Γ `M : ΠxA.B Γ ` N : A

Γ `MN : B[N/x]
app

A =β B
Γ `M : A Γ ` B : s

Γ `M : B
conv

Figure 2.1: Typing Rules for PTSs

Since we only require Sorts to be a set, one can choose any labeling
system that suits ones need to name the sorts. There is an informal habit to
choose symbols like ? or � when there are few sorts, or indexed names like
Typei or �i when this set is infinite. Here are two simple examples (from
the λ-cube) of such instantiation of PTSs:

Definition Examples of PTSs

• the Simply Typed λ-Calculus :

Sorts = {?,�}
Ax = {(?,�)}
Rel = {(?, ?, ?)}

• the Calculus of Constructions

Sorts , {Prop, Type}
Ax , {(Prop, Type)}
Rel , {(s, Prop, Prop), (Prop, s, s) | s ∈ Sorts}∪

{(Type, Type, Type)}

30 CHAPTER 2. PURE TYPE SYSTEMS

Remark The traditional way describe PTSs can be found in [Bar92]. Here,
I presented here a version of the typing rules inspired by [vBJMP93], which
is designed to help the formalization of this meta theory in a proof assistant.
The proof of equivalence of these two presentations is easily done by induction
and some basic properties of PTSs we are going to introduce (2.1.6, 2.1.7).

Definition Top sorts
A sort s ∈ Sorts is called a top sort if it never appears at the right-hand

side of a pair in Ax, i.e. there is no t such that (s, t) ∈ Ax. In the previous
examples, � and Type are top sorts, whereas ? and Prop are not.

The following properties hold for all PTSs. Even if they are quite tech-
nical, they are the basic meta-theory that we need to prove the interesting
theorems.

The two following lemmas are the first structural properties of PTSs:
Weakening allows to add more assumptions in the context without chang-
ing the typing judgment, and Substitution witnesses the correct use of the
external substitution (substitution is allowed if the types match).

Lemma 2.1.3 (Weakening).

1. If Γ1Γ2 ` M : B, Γ1 ` A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 `
M : B.

2. If Γ1Γ2 wf , Γ1 ` A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 wf .

Lemma 2.1.4 (Substitution).

1. If Γ1(x : A)Γ2 ` M : B and Γ1 ` P : A then Γ1Γ2[P/x] ` M [P/x] :
B[P/x].

2. If Γ1(x : A)Γ2 wf and Γ1 ` P : A then Γ1Γ2[P/x]wf .

While proving facts about PTSs, we will often need to compute some
typing information about the subterms of one judgment. To do this, we will
frequently use the Generation (or Inversion) property and the Validity of
Contexts :

Lemma 2.1.5 (Validity of Contexts).
For all Γ,M and T , if Γ `M : T , then Γwf .

2.1. PURE TYPE SYSTEM IN NATURAL DEDUCTION 31

Theorem 2.1.6 (Generation).

1. If Γ ` s : T then there is t such that (s, t) ∈ Ax and T =β t.

2. If Γ ` x : A then there is B such that Γ(x) = B and A =β B.

3. If Γ ` ΠxA.B : T then there are s1, s2, s3 such that Γ ` A : s1, Γ(x :
A) ` B : s2, (s1, s2, s3) ∈ Rel and T =β s3.

4. If Γ ` λxA.M : T then there are s1, s2, s3 and B such that Γ ` A : s1,
Γ(x : A) ` B : s2, Γ(x : A) ` M : B, (s1, s2, s3) ∈ Rel and T =β

ΠxA.B.

5. If Γ ` M N : T then there are A and B such that Γ ` M : ΠxA.B,
Γ ` N : A and T =β B[N/x].

As we previously said, terms and types can only be distinguished by their
use in the typing rules: in Γ `M : T , M is a “term” and T is a “type”, and
M is of type T , but one can wonder what the type of T is.

Lemma 2.1.7 (Type Correctness). If Γ ` M : T , then there is s such that
T ≡ s or Γ ` T : s.

We certainly would like to always be able to prove that T is well-typed,
but because of the generality behind PTSs, and especially because of the
definition of Ax, we can not guarantee this. There are some sorts that can
not be typed, that is any sort which do not appear in left position of any
pair in Ax (the top sorts that we previously introduced), like Type and �.

In the next chapter, we will often refer to two particular subclasses of
PTSs which enjoy some interesting properties about their types: the func-
tional and the semi-full PTSs.

Functional, Full and semi-Full PTSs

• A PTS is functional if:

1. for all s, t, t′, (s, t) ∈ Ax and (s, t′) ∈ Ax implies t ≡ t′.

2. for all s, t, u, u′, (s, t, u) ∈ Rel and (s, t, u′) ∈ Rel implies u ≡ u′.

• A PTS is semi-full if (s, t, u) ∈ Rel implies that for all t′, there is u′

such that (s, t′, u′) ∈ Rel.

32 CHAPTER 2. PURE TYPE SYSTEMS

• A PTS is full if for any s, t, there is u such that (s, t, u) ∈ Rel.
Obviously, a full PTS is also semi-full.

Let first take a loot at the functional class. All systems within Baren-
dregt’s λ-cube can be seen as functional PTSs, like the Simply Typed λ-
Calculus, or the Calculus of Constructions. Being functional implies that the
sorts have a unique type, and this property can be extended to the whole
system:

Lemma 2.1.8 (Type Uniqueness for functional PTSs).
In any functional PTS, if Γ `M : T and Γ `M : T ′ then T =β T

′.

Proof. By induction and generation, all the cases are trivial except for sort
and pi, but for them, the hypothesis of functionality allows to conclude di-
rectly.

This property is somehow useful and quite appealing: a term only lives in
a unique type. However, this restriction forbids us to add subtyping to our
system, and explore systems such as the Extended Calculus of Constructions
or the Calculus of Inductive Constructions.

The second interesting subclass is the semi-full fragment of PTSs. This
class has been first defined by Pollack [Pol92, Pol94] in order to find an
subclass of PTSs where type-checking was possible. Here we are interested
in this class (which is a bit more general than the class of full PTSs) because,
unlike the functional class, we can extend those systems with a subtyping
relation on sorts.

The Calculus of Constructions is also part of this class, but not the Sim-
ply Typed λ-Calculus. It is easier to first give an intuition about the full
subclass: in a full PTS, all the products are allowed, as soon as their domain
and co-domain are well-typed. For semi-full, the idea is a bit more subtle:
if a product ΠxA.B is well-typed, then any product ΠxA.D is well-typed as
soon as D is well-typed. We will call this property the functionality of Π-
types.

Let us go back to the general picture. The notion of β-reduction and
conversion can easily be extended to contexts since they are ordered lists of
terms

2.1. PURE TYPE SYSTEM IN NATURAL DEDUCTION 33

Context Reduction and Context Conversion

1. Reduction :

• If A→β B and x 6∈ Dom(Γ), then Γ(x : A)→β Γ(x : B).

• If Γ→β Γ′ and x 6∈ Dom(Γ), then Γ(x : A)→β Γ′(x : A).

2. Conversion:

• ∅ =β ∅.
• If Γ =β Γ′, A =β B and x 6∈ Dom(Γ), then Γ(x : A) =β Γ′(x : B).

Lemma 2.1.9 (Context Conversion in Judgments).

If Γ `M : A, Γ =β Γ′ and Γ′wf then Γ′ `M : A.

We still need to check that Γ′ is well-formed, even if we only do reduc-
tions, because we do not have Subject Reduction at hand yet.

Along with the conv rule, we have now some kind of liberty with our
types: we can change any type with a convertible one (and, of course, well-
formed) in the context or in typing position. With all those tools, we can now
prove the main property of PTSs, which states that computation preserves
typing:

Theorem 2.1.10 (Subject Reduction). If Γ ` M : A and M →β N , then
Γ ` N : A.

Proof. The proof can be found in [Bar92]. We just want to put forward that it
relies on Confluence, more precisely on the Π-injectivity of β-reduction for the
case where M is a redex (λxA

′
.P)N which reduces to P [N/x]: by induction,

we retrieve typing information about both subterms of M : Γ ` N : A and
Γ ` λxA′

.P : ΠxA.B. Our goal is to show that Γ ` P [N/x] : B[N/x]. Thanks
to Generation and Type Correctness, we can fetch information about A,A′, B
and M :

• there are s, t, u ∈ Sorts such that Γ ` A : s, Γ(x : A) ` B : t and
(s, t, u) ∈ Rel.

• there are s′, t′, u′ ∈ Sorts and B′ such that Γ ` A′ : s′, Γ(x : A′) ` B′ :
t′, Γ ` (x : A′) ` P : B′ and (s, t, u) ∈ Rel.

34 CHAPTER 2. PURE TYPE SYSTEMS

• ΠxA.B =β ΠxA
′
.B′.

We can not directly apply the Substitution Lemma for two reasons: N is
of type A and not A′, and P is of type B′, not B. However, thanks to Π-
injectivity, we have that A =β A

′ and B =β B
′, so we just need to use conv

and Context Conversion to be able to apply Substitution.

Now that we have Subject Reduction, we can prove that any use of the
conv rule is sound, even if the conversion path uses ill-typed terms. If this
is the case, we can find another path only made of well-typed terms.

Corollary 2.1.11 (Using conv is always sound). Any use of conv can be
broken into a sequence of reduction steps followed by a sequence of expansion
steps between well-typed terms only.

Proof. Let us suppose we have Γ ` M : T , Γ ` T ′ : s and T =β T
′. By

Confluence, there is T0 such that T �β T0 β� T ′. By Type Correctness,
there is t such that Γ ` T : t, or T ≡ t:

1. In the first case, by Subject Reduction, we know that any term that
appears in the reduction from T to T0 is typed by t, and any term that
appears in the reduction from T ′ to T0 is typed by s. So we have a
path from T to T ′ exactly made of well-typed terms.

2. In the second case, T ′ =β t and by Confluence, T ′ �β t. Subject
Reduction enforces Γ ` t : s. So this time also, the path from T (≡ t)
and T ′ is exactly made of well-typed terms.

It is here interesting to see that in the first case, the path between T
and T ′ is well-typed by sorts, but nothing guarantees that we can have the
same sort in both branches. If we wanted to do so, we would need to be in
a functional PTS.

About the shape of types in PTSs

Until now, we have seen some useful properties to deal with terms (Gener-
ation, Subject Reduction, . . .) but almost nothing to deal with types (Type
Correctness and, for functional PTSs only, Type Uniqueness). In [vBJ93],
Jutting made a deeper study of the types in PTSs to express a more general

2.1. PURE TYPE SYSTEM IN NATURAL DEDUCTION 35

property than Type Uniqueness. He started by splitting the terms in two
distinct families:

Terms Classifaction in PTSs There is a partition of terms in two sets Tv
and Ts:

• for all x ∈ V ars, x ∈ Tv.

• for all M ∈ Tv, for all A,N , λxA.M ∈ Tv and M N ∈ Tv.

• for all s ∈ Sorts, s ∈ Ts.

• for all A,B, ΠxA.B ∈ Ts.

• for all M ∈ Ts, for all A,N , λxA.M ∈ Ts and M N ∈ Ts.

The class Tv can be seen as a closure for the variables by abstraction and
application, and Ts as the same closure for sorts and Π-types. The former is
“informally” the set of values, which contains variables and functions, and the
latter is “informally” the set of types, which contains sorts and function types.
This is not totally true but it is the rough idea behind this classification.

Both families enjoy a very particular property about their types. But we
first need to define the notion of telescope

Telescopes A Π-telescope ΠΓ.B (resp. λ-telescope λΓ.M) is defined as :

• Π∅.B , B (resp. λ∅.M ,M).

• Π(x : A)Γ.B , ΠxAΠΓ.B (resp. λ(x : A)Γ.M , λxAλΓM).

Theorem 2.1.12 (The Shape of Types).
If Γ `M : A and Γ `M : B then:

• either M ∈ Tv and A =β B

• or M ∈ Ts and there are ∆, s and t such that A �β Π∆.s and B �β

Π∆.t

Proof. The proof looks very similar to the proof of Type Uniqueness. For the
first item, we just avoid the two problematic cases sort and pi since sorts
and Π-types are not in Tv. The second item may seem complicated but the
proof is straightforward thanks to the Confluence of β-reduction.

36 CHAPTER 2. PURE TYPE SYSTEMS

We can see now where the Uniqueness of Types comes from: with the
functional hypothesis, both sorts in the second case will always be equal,
and so in both cases, we have A =β B. However, in the general case, the two
types are telescopes which only differ by their very last sort.

There is a last property we need to present, but this time only for the
set Ts. We already have information on the type of a term in Ts, but what
about its shape ?

Lemma 2.1.13 (Shape of terms in Ts).
If M ∈ Ts, Γ `M : A and Γ `M : B, then there are ∆, K, s, t such that:

• M �β λ∆.K, A�β Π∆.s and B �β Π∆.t.

• Γ ` λ∆.K : A and Γ ` λ∆.K : B.

where K is a sort or a Π-type.

The purpose of this lemma is to exhibit the heart of a term in Ts. After
enough applications to get rid of the leading λ-abstraction, we always find a
sort or a Π-type, and the λ-telescope inside M is syntactically the same than
the Π-telescope inside its type.

These notions of Shape of Types and Shape of Terms are at the core of
the proof of Strengthening for PTSs by Jutting. This is a very technical
proof and we will not need it for our developments, so we will not detail it.
However, these properties on the shape of terms will be central to another
crucial proof in the next chapter.

2.2 Pure Type Systems in Sequent Calculus

As we have just seen, Pure Type Systems have been studied a lot through
the lens of natural deduction, but some attempts have been done in the
direction of sequent calculus, like the works on Cut Elimination or Expansion
Postponement by Gutierrez and Ruiz [GR02, GR03].

During our investigation on the meta-theory of PTSs, we also faced the
latter. Expansion Postponement [Pol92, Fan97] is a problem raised by Baren-
dregt and Pollack in the early 90’s. It arise from the fact that, during the
typing, doing only reductions seems most of the time enough (especially for

2.2. PURE TYPE SYSTEMS IN SEQUENT CALCULUS 37

the application case). So the intuitive idea is to try to postpone all the expan-
sion steps at the end of the derivation. The idea started from Pollack’s work
on finding a suitable type checking algorithm for Pure Type Systems [Pol92]
by splitting the conversion rule and replace it by two separate rules, one to
do reduction and one to do expansion:

Γ `M : A Γ ` B : s A =β B

Γ `M : B
conv

m
Γ `M : A A→β B Γ ` B : s

Γ `M : B
red

Γ `M : A B →β A Γ ` B : s

Γ `M : B
exp

With this presentation, he tried to get rid of the exp rule by pushing
it at the end of the derivations, hence the name Expansion Postponement.
Such a transformation of the type system allow to simply rely on reduction,
to get rid of the expansion steps and thus ensure that we do not have to
guess any type involved in the conversion process. Expansion Postponement
has been proved to be a necessary condition to be able to effectively type
check a Pure Type Systems, but not a sufficient one. Some partial results
(see [vBJMP93, GR03]), and especially the case of normalizing PTSs [Pol98]
have been proved correct, but the general question stays open.

Unfortunately, we do not give an answer to this question, but a new
approach and a new framework to the problem, which may lead to new ideas
in this field.

We describe in this section a presentation of Pure Type Systems based on
the λ-sequent calculus of Herbelin [Her94, Her95], which serves as a formal-
ization of Lengrand’s sequent-calculus [Len06] inside Coq [Silb]. Lengrand
already proved that both presentations are completely equivalent by present-
ing a translation from natural deduction into sequent calculus, and back. But
they are not really designed for the same purpose: As a natural deduction
system, PTSs really look like a programming language, but as a sequent cal-
culus, they seem more designed to do efficient proof-search, type inference or
design abstract machines, mainly because of the way applications are han-
dled, with explicit lists of arguments instead of the usual “unary” application
of natural deduction.

38 CHAPTER 2. PURE TYPE SYSTEMS

2.2.1 Terms and Reduction

The main difference between terms used in natural deduction and those used
in the λ of Herbelin is the explicit use of terms and lists of terms to build
the applications. Also, variables do not live by themselves, they are always
applied to such a list. Doing so, we can very easily define the set of normal
terms by removing the general application (M l) constructor from the terms
definition.

Structure of terms and contexts
s : Sorts
x : V ars
A,B,M ::= s | (x l) | (M l) | λxA.M | ΠxA.B
l ::= • | M :: l

Γ ::= ∅ | Γ(x : A)

The basic definitions about terms are the same as for natural deduction:
contexts are defined in the same way, variables and bindings behave the
same, and the set of Sorts is still a parameter of these PTSs. However,
we introduce a new syntactic family of terms: lists of terms. They are also
known as “spines” (see [CP03] for a formal definition of the Spine Calculus,
but one has just to recall that spines and lists of terms are the very same
thing). In natural deduction, when a function has more then one argument,
and is fully applied, we end up having a term like (((f x) y) z). Extracting
f from such a term can be costly: one needs to parse the term until the
last application. In λ, the head of an application is directly available: the
previous term can be encoded as (f x :: y :: z :: •). This syntax is quite useful
when doing proof search, unification, or in any situation where the head of
an application need to be checked before its arguments, e.g. to known how
many arguments needs to be applied, or to get the resulting type.

As for the syntax, the empty spine is denoted by •, and the concatenation
of two spines l1 and l2 is written l1@l2.

Lengrand and Herbelin added explicit substitutions to this definition, in
order to make the proof of Strong Normalization easier. Since we are not
interested in this property right now, it seems normal to reduce the number
of rules and to use an an external notion of substitution. We differ from

2.2. PURE TYPE SYSTEMS IN SEQUENT CALCULUS 39

Lengrand’s thesis on this point and use the same substitution as before, with
its natural extension to lists:

1. •[N/x] := •

2. (M :: l)[N/x] := M [N/x] :: l[N/x]

However, we will see in the next section that all the typing rules that deal
with substitutions in Lengrand’s work can be proved in our framework. The
usual notion of β-reduction also needs to be adapted to the concept of lists:

β-reduction in Sequent Calculus β-reduction is defined by the main re-
duction steps

• (λxA.M [N :: l]) →β (M [N/x] l)

• (M •) →β M

• (M l1) l2 →β (M l1@l2)

• (x l1) l2 →β (x l1@l2)

closed by congruence on our syntax.

The reduction in contexts Γ →β Γ′ is defined in the same way as for
natural deduction.

This reduction also enjoys the Confluence and Church-Rosser properties,
as shown in [Len06]. The proof relies on a translation of the system in
the natural deduction framework where the property is well-known. A direct
proof of those theorems can also be done by defining a parallel β-reduction for
λ, and use a variant of the classic approach with parallel reduction adapted
to sequent calculus.

2.2.2 Confluence of β-reduction in λ

The proof of β-confluence in natural deduction is a well-known property,
which can be easily achieved by building a “parallel” reduction [Bar84] in
the sense that it can reduce several independent redexes at the same time.
Lengrand proved it by simulating the β-reduction of sequent calculus through
the natural deduction’s version. A more direct approach, inspired by the
parallel reduction can be done directly in sequent calculus, but we need to
be really careful about the flattening rules for lists of terms:

40 CHAPTER 2. PURE TYPE SYSTEMS

(M l1) l2 →β (M l1@l2) and (x l1) l2 →β (x l1@l2).

If we allow too much power (or too few) to the parallel counterpart of
these rules, it can easily make the confluence property unprovable.

The main idea of building a parallel reduction is to build a reduction that
enjoys the diamond property:

Diamond Property if M →β// N and M →β// P , then there is a Q such
that N →β// Q and P →β// Q.

Then we only need a few closure lemmas to show that if the parallel ver-
sion enjoys the diamond property, then β-reduction enjoys the confluence
property.

We propose in Fig. 2.2 a simple presentation of the parallel β-reduction
in sequent calculus, where we are using the following function:

Definition The flat function
flat((x l1), l2) , (x l1@l2)

flat((M l1), l2) , (M l1@l2)

flat(M, •) , M

flat(M,N :: l) , (M N :: l)

Its main purpose is to remove the applications involving empty lists, along
with flattening the lists when the head of an application reduces itself to
an application. We need some properties on flat to achieve the diamond
property of the parallel reduction:

Lemma 2.2.1 (Properties of the flat function).

1. flat (flat M l1) l2 = flat M l1@l2.

2. (M l)�β flat M l.

3. If M →β// N and l1 →β// l2, then flat M l1 →β// flat N l2.

4. If M �β N and l2 �β l2, then flat M l1 �β flat N l2.

Proof. The proofs of 1 and 2 are straightforward by induction on M . The
proofs of 3 and 4 are done by induction on the first reduction but need an
additional property:

2.2. PURE TYPE SYSTEMS IN SEQUENT CALCULUS 41

M1 →β// M2 l1 →β// l2

(M1 l1)→β// (M2 l2)

l1 →β// l2

(x l1)→β// (x l2)

A1 →β// A2 M1 →β// M2

λxA1 .M1 →β// λx
A2 .M2

A1 →β// A2 B1 →β// B2

ΠxA1 .B1 →β// ΠxA2 .B2

M1 →β// M2 l1 →β// l2

(M1 l1)→β// flat M2 l2

M1 →β// M2 l1 →β// l2

M1 :: l1 →β// M2 :: l2

• →β// • s→β// s

M1 →β// M2

N1 →β// N2 l1 →β// l2

(λxA.M) (N :: l)→β// (M2[N2/x] l2)

Figure 2.2: Parallel β-reduction

1. If l1 �β l2 and k1 �β k2 then l1@k2 �β l2@k2 holds.

2. If l1 →β// l2 and k1 →β// k2 then l1@k2 →β// l2@k2 holds.

All these properties are the key point to prove the Diamond Property of
the parallel reduction:

Proof. The proof follows Takahashi’s approach [Tak95] except that we need
to use the correct properties of the flat function to close the cases involving
flattening. The main difficulty was to design the correct flat function, then
the proof is mainly induction.

If the one-step parallel reduction enjoys the Diamond Property, showing
that the multi-step reduction is confluent directly follows.

Since the usual reduction and the parallel one have the same transitive
closure, we directly proved that β-reduction in sequent calculus is confluent
without translating to natural deduction and back.

42 CHAPTER 2. PURE TYPE SYSTEMS

A

β

����

β // // C

β

����

A

β//
��

β// +3 C

β//
��

B
β//

+3 D

B
β

// // D

Figure 2.3: Confluence Diagram

Now that we have stated the basic properties of the terms, we can define
the typing rules of sequent-calculus Pure Type Systems.

2.2.3 Typing Rules

The typing rules for sequent calculus PTSs are shown in Fig. 2.4. The system
is defined by mutual definitions of well formation of contexts, terms and lists
of terms.

The new judgment Γ;A ` l : B defines how we type the new class of lists
of terms. Lists of terms are like a bridge between a function and its result:
knowing the type A of the function to which a list will be applied (A is called
the stoup) and the final resulting type B one wants to reach (that is after
applying all the terms of the list), the list l is built so that, for any term M
of type A, M l is of type B.

2.2.4 Properties of the system

Following Lengrand’s thesis, we can derive the following theorems and rules.

Theorem 2.2.2 (Validity of Contexts).
If Γ `M : T or Γ;A ` l : B then Γwf .

Theorem 2.2.3 (Weakening).

1. If Γ1Γ2 ` M : B, Γ1 ` A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 `
M : B.

2.2. PURE TYPE SYSTEMS IN SEQUENT CALCULUS 43

2. If Γ1Γ2;C ` l : B, Γ1 ` A : s and x /∈ Dom(Γ1Γ2) then Γ1(x :
A)Γ2;C ` l : B.

3. If Γ1Γ2 wf , Γ1 ` A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 wf .

Theorem 2.2.4 (Substitution).

1. If Γ1(x : A)Γ2 ` M : B and Γ1 ` P : A then Γ1Γ2[P/x] ` M [P/x] :
B[P/x].

2. If Γ1(x : A)Γ2;C ` l : B and Γ1 ` P : A then Γ1Γ2[P/x];C[P/x] `
l[P/x] : B[P/x].

∅wf
empty

Γ ` A : s x /∈ Dom(Γ)

Γ(x : A)wf
extend

Γwf (s, t) ∈ Ax
Γ ` s : t

sorted
Γ;A ` l : B Γ(x) = A

Γ ` (x l) : B
selectx

Γ ` A : s1

Γ(x : A) ` B : s2 (s1, s2, s3) ∈ Rel
Γ ` ΠxA.B : s3

Πwf
Γ ` ΠxA.B : s Γ, x : A `M : B

Γ ` λxA.M : ΠxA.B
Πr

Γ `M : A Γ;A ` l : B

Γ ` (M l) : B
cut

Γ `M : A Γ ` B : s A =β B

Γ `M : B
convr

Γ ` A : s

Γ;A ` • : A
ax

Γ `M : A
Γ;B[M/x] ` l : C Γ ` ΠxA.B : s

Γ; ΠxA.B `M :: l : C
Πl

Γ;A ` l : B Γ ` C : s A =β C

Γ;C ` l : B
convl

Γ;A ` l : B Γ ` C : s B =β C

Γ;A ` l : C
conv’r

Figure 2.4: Typing Rules of SC-PTSs

44 CHAPTER 2. PURE TYPE SYSTEMS

3. If Γ1(x : A)Γ2 wf and Γ1 ` P : A then Γ1Γ2[P/x]wf .

Theorem 2.2.5 (Type and Stoup Correctness).

1. If Γ `M : A then A ≡ s or Γ ` A : s for some s ∈ Sorts.

2. If Γ;A ` l : B then Γ ` A : s and Γ ` B : s for some s, t ∈ Sorts.

Lemma 2.2.6 (List Concatenation).

If Γ;A ` l1 : B and Γ;B ` l2 : C then Γ;A ` l1@l2 : C.

The following Generation lemma gives the same amount of information
than the one we already proved for PTSs in natural deduction. However,
since sequent calculus involves more typing rules, leading to much more sub-
derivations, we will give here a shorter statement, inspired by Lengrand’s
work.

Derived without conversion
We write Γ `∗ M : A (resp. Γ;A `∗ l : B) whenever we can derive Γ `M : A
(resp. Γ;A ` l : B) and the last rule is not a conversion rule.

Since the last rule of a judgment in `∗ can not end by a conversion rule,
we can directly fetch the typing information of the sub-terms directly by
looking at the last rule used in the derivation:

Lemma 2.2.7 (Generation Lemma).

1. (a) If Γ ` s : C then there is t such that Γ `∗ s : t and C =β t.

(b) If Γ ` ΠxA.B : C then there is s such that Γ `∗ ΠxA.B : s and
C =β s.

(c) If Γ ` λxA.M : C then there is B such that Γ `∗ λxA.M : ΠxA.B
and C =β ΠxA.B.

(d) If M is not of the above forms and Γ `M : C, then Γ `∗ M : C.

2. (a) If Γ;A ` • : B then A =β B.

(b) If Γ;A ` M :: l : B then there are C,D such that A =β ΠxC .D
and Γ; ΠxC .D `∗ M :: l : B.

2.3. DELAYED PURE TYPE SYSTEM IN SEQUENT CALCULUS 45

We could use the translation back and forth to natural deduction to prove
the main properties of this presentation, but in fact there is no need to do
so, direct proofs are as easy as in the previous case. Subject Reduction is a
good example of this point, since it is done by a simple induction:

Theorem 2.2.8 (Subject and Context Reduction).

• If Γ `M : A then

– M →β N implies Γ ` N : A

– and Γ→β ∆ implies ∆ `M : A.

• If Γ;A ` l : B then

– l→β k implies Γ;A ` k : B

– Γ→β ∆ implies ∆;A ` l : B.

• If Γwf and Γ→β ∆ then ∆wf .

Proof. By mutual induction on lists, contexts and terms, we prove each time
that statements over term reduction and context reduction hold at the same
time.

Now that we have the basis for a sequent calculus PTSs, we can begin
to study the different ways to use the conversion, so that we can try to
understand its use and start to have control over it.

2.3 Delayed Pure Type System in Sequent

Calculus

In order to study the behavior of conversion, we need more atomic rules so
we can try to split them into reductions and expansions. For example, the
usual approach to Expansion Postponement is to embed the expansions in the
premises of the other rules. But then one gets stuck with the hypothesis of
the Πr rules which resists postponement. In order to explore a new approach
to the question of postponement, we choose here an other solution: embed
the reduction in some hypothesis such that only an expansion rule remains.

It introduces a kind of “delay” in the typing of the hypothesis as we do
not check the well-formation of types, but rather the well-formation of an

46 CHAPTER 2. PURE TYPE SYSTEMS

expanded version of those types. The motivation behind this choice is to
let some freedom to the reduction to change the shape of a type, but we
still need some guaranties that the types produced are well-formed. When
this strategy will have been proved valid by having the Subject Reduction
property, we will focus on testing whether we can postpone expansions in
this system.

2.3.1 Typing Rules

The typing rules of the alternative system are shown in Fig 2.5. It is inter-
esting to notice that we can make a variant of this system by replacing the
cutd with this one:

Γ `d M : A
Γ;A′ `d l : B Γ `d A′′ : s A′′ �β A

′ A′′ �β A

Γ `d (M l) : B
cut’d

Both presentations are strictly equivalent, and the use of the variant system
can actually ease the proof of the Substitution lemma. For the sake of clarity,
we kept the usual shape of the cut rule in our system, in order to keep the
delay where it is mandatory.

2.3.2 Properties of the system

In order to achieve the Subject Reduction property and validate our system,
we only need the usual lemmas, but the order changes a little, since we no
longer have the reduction rule at hand. Very few changes are made to the
statements, and the proof are mostly the same.

Weakening and Substitution are the same, but there is now a variant of
the substitution lemma which can be useful to prove Subject Reduction (but
not mandatory). We need Type Reduction (see below) to prove it, but it is
interesting to note that we can derive it directly in the variant system using
cut’d.

Theorem 2.3.1 (Variant Substitution with common expand).

1. If Γ1(x : A′)Γ2 `d M : B, Γ1 `d P : A, Γ1 `d A′′ : s, A′′ �β A and
A′′ �β A

′, then Γ1Γ2[P/x] `d M [P/x] : B[P/x].

2.3. DELAYED PURE TYPE SYSTEM IN SEQUENT CALCULUS 47

∅wfd
emptyd

Γ `d A : s x /∈ Dom(Γ)

Γ(x : A)wfd
extendd

Γwfd (s, t) ∈ Ax
Γ `d s : t

sortedd
Γ;A `d l : B Γ(x) = A

Γ `d (x l) : B
selectx d

Γ `d A : s1

Γ(x : A) `d B : s2 (s1, s2, s3) ∈ Rel
Γ `d ΠxA.B : s3

Πwfd
Γ `d M : A Γ;A `d l : B

Γ `d (M l) : B
cutd

Γ `d A′ : s1 Γ, x : A′ `d B′ : s2

Γ, x : A′ `d M : B A′ �β A B′ �β B (s1, s2, s3) ∈ Rel
Γ `d λxA

′
.M : ΠxA.B

Πrd

Γ `d M : A Γ `d B′ : s B′ �β B B �β A

Γ `d M : B
expd

Γ `d A′ : s A′ �β A

Γ;A `d • : A
axd

Γ `d M : A Γ;B[M/x] `d l : C Γ `d T : s T �β ΠxA.B

Γ; ΠxA.B `d M :: l : C
Πld

Γ;A `d l : B Γ `d C ′ : s C ′ �β C C �β A

Γ;C `d l : B
expl d

Γ;A `d l : B Γ `d C ′ : s C ′ �β C C �β B

Γ;A `d l : C
expr d

Figure 2.5: Typing Rules for the Delayed System

48 CHAPTER 2. PURE TYPE SYSTEMS

2. If Γ1(x : A′)Γ2;C `d l : B, Γ1 `d P : A , Γ1 `d A′′ : s, A′′ �β A and
A′′ �β A

′, then Γ1Γ2[P/x];C[P/x] `d l[P/x] : B[P/x].

3. If Γ1(x : A′)Γ2 wfd,Γ1 `d P : A, Γ1 `d A′′ : s, A′′ �β A and A′′ �β A
′,

then Γ1Γ2[P/x]wfd.

We cannot yet prove the Type and Stoup Correction theorems, we will
need Type Reduction to do so.

The Generation Lemma is changed accordingly to our news conversion
conventions:

Derived without conversion We write Γ `∗d M : A (resp. Γ;A `∗d l : B)
whenever we can derive Γ `d M : A (resp. Γ;A `d l : B) and the last rule is
not an expansion rule.

Lemma 2.3.2 (Generation lemmas).

1. (a) If Γ `d s : C then there is t such that Γ `∗d s : t and C �β t.

(b) If Γ `d ΠxA.B : C then there is s such that Γ `∗d ΠxA.B : s3 and
C �β s3.

(c) If Γ `d λxA.M : C then there are A′, B′, B′′, sA, sB such that

• Γ `∗d λxA.M : ΠxA
′
.B′, Γ `d A : sA and Γ, x : A `d B′′ : sA

• A�β A
′, B′′ �β B

′ and C �β ΠxA
′
.B′.

(d) If u is not of the above forms and Γ `d M : C, then Γ `∗d M : C.

2. (a) If Γ;A `d • : B then there are C,A′, B′, sA, sB such that

• Γ `d A′ : sA and Γ `d B′ : sB
• A′ �β A, B′ �β B, A�β C and B �β C

(b) If Γ;A `d M :: l : B then there are C,D, T, s such that

• Γ `d T : s and Γ; ΠxC .D `∗d M :: l : B

• T �β A and A�β Πx :C .D

Now we need to prove a multi-step Type Reduction lemma in order to get
one-step Subject Reduction and the rest of the usual propositions.

Theorem 2.3.3 (Type Reduction).

2.3. DELAYED PURE TYPE SYSTEM IN SEQUENT CALCULUS 49

1. If Γ `d M : A and A�β A
′ then Γ `d M : A′.

2. If Γ `d;A `d l : B, A�β A
′ and B �β B

′ then Γ;A′ `d l : B′.

Proof. By mutual induction on the typing judgment, most cases rely on the
confluence properties (sorts reduce to sorts and Π-types reduce to Π-types).
The proof is quite straightforward: since we removed the reduction part of
the conversion rules, we will use the delay introduced in the other rules to
simulate those reduction steps.

This lemma is the main tool to finish proving the meta-theory of this
delayed system: we removed the reduction part of the conversion in the
typing system, and in fact, this property shows that it is still admissible.

Lemma 2.3.4 (List Concatenation).
If Γ;A `d l : B and Γ;B `d l′ : C then Γ;A `d l@l′ : C.

Now we can prove Subject Reduction along with Context Reduction.

Theorem 2.3.5 (Subject and Context Reduction).

• If Γ `d M : A then

– M →β N implies Γ `d N : A.

– Γ→β Γ′ implies Γ′ `d M : A.

• If Γ;A `d l : B then

– l→β k implies Γ;A `d k : B.

– Γ→β Γ′ implies Γ′;A `d l : B.

• If Γwfd and Γ→β Γ′ then Γ′wfd.

Proof. By mutual induction on lists, contexts and terms, we prove each time
that statements over term reduction and context reduction hold at the same
time. But we can no longer tweak the types of derivations with the reduction
rule, that is why we needed to prove Type Reduction before doing this proof.

With all this, we can finally prove Type Correctness and Stoup Correction,
along with full type conversion for term, stoup and list.

50 CHAPTER 2. PURE TYPE SYSTEMS

Theorem 2.3.6 (Type Correctness).

• If Γ `d M : A then A ≡ s or Γ `d A : s for some s ∈ Sorts.

• If Γ;A `d l : B then Γ `d B : s for some s ∈ Sorts.

Theorem 2.3.7 (Stoup Correction).
If Γ;A `d l : B then there is s ∈ Sorts such that Γ `d A : s.

Theorem 2.3.8 (Type and Stoup Conversion).

• If Γ `d M : A, Γ `d B : s and A =β B, then Γ `d M : B.

• If Γ;A `d l : B, Γ `d C : s and A =β C, then Γ;C `d l : B.

• If Γ;A `d l : B, Γ `d C : s and B =β C, then Γ;A `d l : C.

Now that we have the Church-Rosser and Subject Reduction properties
in both system, we are able to prove that both systems are equivalent.

Theorem 2.3.9 (Equivalence of the Delayed SC-PTSs).
Γ `M : T ⇐⇒ Γ `d M : T
Γ;A ` l : B ⇐⇒ Γ;A `d l : B
Γwf ⇐⇒ Γwfd

Proof. By induction, on the judgment, we use Church-Rosser and Subject
Reduction to prove that delayed terms are in fact well-typed, or to split the
conversion hypothesis in reduction and expansion steps. The proof is quite
straightforward since we proved all kinds of conversion (in type or in stoup)
lemmas for both systems.

2.4 Expansion Postponement in Delayed Sys-

tem

With the system we developed in the previous section, we can achieve a
weaker form of postponement: we can prove that the `d system has the
Expansion Postponement property. However, we have to be careful, even if
this system is equivalent to the usual presentation, it does not mean that we
managed to prove Expansion Postponement for the general case. One has
to take into account that we still got the delay in our hypothesis, and if we

2.4. EXPANSION POSTPONEMENT IN DELAYED SYSTEM 51

remove the expansion rule in the delayed system, we will not be equivalent
to the first type system anymore. If we try to translate this proof of post-
ponement from the `d system into a proof of postponement of the ` system,
we will fail at the same point as Pollack: the type checking premises of the
Πr rule.

Even if we fail at giving an answer to the postponement problem in the
general case, it is still interesting to study such a system, and also to check
its natural deduction counterpart. By switching from natural deduction to
sequent calculus, we were able to find the properties of delay that were in-
visible in the natural deduction world. The system `d did not have any real
equivalent in natural deduction style, other than the standard presentation
of PTSs. But if we delay the expansion rules, it makes us except another
presentation in natural deduction where the weaker form of Expansion Post-
ponement also holds.

With all this, we can try to build an almost syntax directed system to do
type inference.

2.4.1 Postponement in Sequent Calculus

A nice property of this new system is that we can postpone all expansions
done in types at the end of the derivation tree.

Definition Let `d ep be a typing system similar to `d where the rules expd
and expr d have been removed.

Theorem 2.4.1 (Type Expansion Postponement).

1. If Γ `d M : B, there is a B′ such that B �β B
′ and Γ `d ep M : B′.

2. If Γ;A `d l : B, there is a B′ such that B �β B
′ and Γ;A `d ep l : B′.

Proof. This theorem needs some little steps to make this reorganization pos-
sible, which are:

1. Proving Type Reduction (without Stoup Reduction) for the system
`d ep.

2. Proving a modified Stoup Reduction for this system:

If Γ;A `d ep l : B and A�β A
′ then there is a B′ such that Γ;A′ `d ep

l : B′ and B �β B
′.

52 CHAPTER 2. PURE TYPE SYSTEMS

3. Then we prove a more complex postponement theorem which insures
that in the case of expansion postponement for lists, the expanded form
of the type is well-typed:

If Γ `d M : T , then there is a T ′ such that T �β T
′ and Γ `d ep M : T ′.

If Γ;A `d l : B, then there is s ∈ Sort, and B′, B′′ such that Γ `d ep
B′′ : s and Γ;A `d ep l : B′ and B′′ �β B �β B

′.

If Γwfd then Γwfd ep
.

With this last tool, it is trivial to prove our postponement statement.

All the delay we had to introduce in this system are here to be able to
prove the Type and Stoup Reduction theorems, which are the keys to prove
the equivalence between ` and `d, or the Expansion Postponement property
in `d ep. Since we removed every kind of reduction in the term derivation
rules and most of it in the lists derivation rules, if we remove one of those
delays, Type Reduction will fail even in the simple case of the axd typing
rule. And without Type Reduction, trying to prove Expansion Postponement
will break at the same spot than the standard tryouts: the Πr typing rule is
still the main issue.

2.4.2 Postponement in Natural Deduction

Now that we have identified a way to design a system that have the post-
ponement property, we can go back to the natural deduction world and try
to prove exactly the same postponement theorem for the standard presenta-
tion of the system with delayed typing on the lambda rule and just reduction
instead of the conversion rule. A summary of the several equivalences we
have proved so far can be found in Fig. 2.6.

↑↓ `sc↑↓ ⇐⇒ ↑ `scd↑ ⇐⇒ ↑ `scd + ↑postp

m

`nd↑↓ ⇐⇒ `ndd↓ + ↑postp

Figure 2.6: Equivalence between SC and ND systems

See Fig. 2.7 for the complete set of rules of the delayed system in natural
deduction. Since we do not have the stoup in natural deduction, we need to

2.4. EXPANSION POSTPONEMENT IN DELAYED SYSTEM 53

switch the stoup expansion on the other side of the sequent, that is why we
still need the reduction rule.

∅wfd ep

emptyd ep

Γ `d ep A : s x /∈ Dom(Γ)

Γ(x : A)wfd ep

extendd ep

Γwfd ep
(s, t) ∈ Ax

Γ `d ep s : t
sortedd ep

Γwfd ep
Γ(x) = A

Γ `d ep x : A
vard ep

Γ `d ep A : s1 Γ(x : A) `d ep B : s2 (s1, s2, s3) ∈ Rel
Γ `d ep ΠxA.B : s3

Πwfd ep

Γ `d ep A : s1 Γ, x : A `d ep B′ : s2

Γ, x : A `d ep M : B B′ �β B (s1, s2, s3) ∈ Rel
Γ `d ep λxA.M : ΠxA.B

Πrd

Γ `d ep M : ΠxA.B Γ `d ep N : A

Γ `d ep M N : B[N/x]
cutd ep

Γ `d ep M : A A�β B

Γ `d ep M : B
expd ep

Figure 2.7: Typing rules for standard PTSs with delay

Theorem 2.4.2 (Expansion Postponement with delayed typing).

1. If Γ `M : T , then there is T ′ such that Γ `d ep M : T ′ and T �β T
′.

2. If Γwf then Γwfd ep
.

Proof. We could have done it by translating from the sequent calculus world,
but the several delayed typing rules in the application context part makes
this task quite complex. Since the new natural deduction system is not far
from the standard one, a more direct proof is quite simple.

To do the proof directly, we need to rephrase the generation lemmas in
the same way that we did in sequent calculus. With this, there are two steps
to the proof:

54 CHAPTER 2. PURE TYPE SYSTEMS

1. a variant of the Substitution Lemma:

If Γ1(x : A′)Γ2 `ep t : T ,Γ1 `ep P : A and A′ �β A

then there is T ′ such that Γ1Γ2[P/x] `ep t[P/x] : T ′[P/x] and T �β T
′.

2. a modified version of Subject Reduction:

If Γ `d ep M : T and M →β N , then there is T ′ such that Γ `d ep N : T ′

and T �β T
′.

With those new statements, the proof of our postponement theorem becomes
really simple.

We can notice that, in the natural deduction version, there are almost no
delays anymore in the hypotheses of the typing rules since the rule expd ep

is still in the system. But we still need to deal with the typing of B in the
rule Πrd which is the critical step toward full postponement in `.

2.5 Sequent Calculus and Type Inference

We have now at hand a system with delay and an expansion property. Based
on those two points, we are able to design a type inference algorithm. To
be fully usable, we still need our PTSs to have nice properties over Ax and
Rel. For example, in the following sortedti rule, we need a way to find all
the t that fits s, or in the Πwfti, we need to compute s3 from s1, s2 and Rel.
However, the main skeleton can be developed without those assumptions.

To do so, we need to make a separation between “inputs” and “outputs”:
the input should be checked before trying to compute the output, and this
leads us to make some simplification of `d ep. The `ti system is shown in
Fig. 2.8.

• Γ `M :�β B means that there is A such that Γ `M : A and A�β B.

• Γ `M :=β B means that there is A such that Γ `M : A and A =β B.

Delay in A of Πrti is still mandatory to have it equivalent (modulo post-
ponement, see below) to `d. If we try to remove it and try to prove equiv-
alence to `, we need a Type Reduction theorem, which does not hold in `ti
without delaying on A.

2.5. SEQUENT CALCULUS AND TYPE INFERENCE 55

(s, t) ∈ Ax
Γ `ti s : t

sortedti
Γ;A `ti l : B Γ(x) = A

Γ `ti (x l) : B
selectx ti

Γ `ti A :�β s1 Γ(x : A) `ti B :�β s2 (s1, s2, s3) ∈ Rel
Γ `ti ΠxA.B : s3

Πwfti

Γ `ti ΠxA
′
.B′ : s Γ, x : A′ `ti M :�β B A′ �β A B′ �β B

Γ `ti λxA
′
.M : ΠxA.B

Πrti

proviso(A) Γ `ti M : A Γ;A `ti l : B

Γ `ti (M l) : B
cutti

Where proviso(A) check that if A = s ∈ Sorts, there is t ∈ Sorts such that (s, t) ∈ Ax.

Γ;A `ti • : A
axti

Γ `ti M :�β A Γ;B[M/x] `ti l : C

Γ; ΠxA.B `ti M :: l : C
Πlti

Γ;A `ti l : B C �β A

Γ;C `ti l : B
expti

Figure 2.8: SC System for type inference

The main difference between our `ti system and the one developed by
Lengrand is the use of :�β instead of :=β. Since they are mainly used to
check the compatibility of two terms, we can work around using Church-
Rosser and the delay to split the conversion and just keep the reduction part
in the typing rule. However, if we want to stick to Lengrand’s framework,
we can remove the delay over A and switch the Completeness theorem from
�β to =β.

This system has been designed with type inference in mind, which leads
to a simplification of the rules. We do not check in the premises that the
contexts or the stoups are correctly build, but we rather assume that those
conditions have been already checked, as we would do in a practical im-

56 CHAPTER 2. PURE TYPE SYSTEMS

plementation. This assumption is easily proved sound since every time we
extend a context, we have already inferred all the information to check that
the extension is valid. Therefore, all the premises that were used to check
the validity of such “inputs” are removed from the typing rules.

By getting rid of these information, we are no longer able to prove some
basic property of the system, like Validity of Contexts, Type Correctness or
Stoup Correctness. However, as we said, we now take these information for
granted, and thus our lemmas will all start by assuming the correct forma-
tion of contexts and stoups. There is only one place where such assumptions
are not enough, during the checking of the cut rule. Since the stoup A is
an “output” of the type inference process, we cannot guarantees that it is
always typed by a sort, since there we may face top sorts (2.1.2). This is why
we added a proviso to this particular rule, which ensure that if the stoup A
is a sort, it can not be a top sort.

Thanks to the `ti system, given a term M (resp. a list l), we have a type
candidate we need to check. This type is computed given an already check
context Γ (resp. and a stoup A). So to prove that the type is valid, we need
the soundness proof.

Theorem 2.5.1 (Soundness of the delay).

1. If Γ `ti M : T and Γwf , then Γ `M : T .

2. If Γ;A `ti l : B and Γ ` A : s, then Γ;A ` l : B.

Proof. The proof goes by mutual induction on the judgments in `ti. It relies
on the property of Subject Reduction and Type Correctness and on the def-
inition of the proviso. Since the derivation in `ti do not have enough type
information to build a full derivation in the basic system, we need to extract
them using the usual theory of PTSs. However, in the case of the cutti rule,
even these properties are not enough, and the use of the proviso can not be
avoided.

Then we need to prove that, assuming that a context Γ (resp. a context
Γ and a stoup A) is valid, if a term M (resp. a list l) has a type T (resp.
B), then the one T ′ that the `ti would have computed (resp. B′) is correct
in the sense that T �β T

′ (resp B �β B
′).

Theorem 2.5.2 (Completeness).

2.6. A BRIEF LOOK BACKAT SYNTACTICAL PURE TYPE SYSTEMS57

1. If Γ `M : T , then there is T ′ such that Γ `ti M : T ′ and T �β T
′.

2. If Γ;A ` l : B, then there is B′ such that Γ;A `ti l : B′ and B �β B
′.

Proof. We could have done another proof by mutual induction, but there is a
better thing to do this time. This system is close to the delayed system with
expansion postponed, the `d ep system, so we are going to use the latter as an
intermediate system to our completeness result. We already have done half
of the work with Theorem 2.4.1. So proving the following property would be
enough:

• If Γ `d ep M : T , then Γ `ti M : T .

• If Γ : A `d ep l : B, then Γ;A `ti l : B.

The similarities between both systems make this proof straightforward,
leaving only one interesting point to prove: the proviso. To ensure that this
proviso is always true, we just have to rely on the Stoup Correctness2 for the
`d ep system, which conclude this proof.

With `ti, we join the work of Lengrand with small differences. The main
one is that he gave a full syntax directed system where we only give a partial
one: we still have the expti rule. However, this is not a problem, since doing
expansion in the stoup as to be understood as “doing reduction on the input”.
Therefore, we only need to apply convti when the input list is not empty,
and the type is not Π type, but only reduces to a Π type.

2.6 A brief look back at syntactical Pure Type

Systems

In this chapter, we saw several presentations of the PTSs with a common
equality: the untyped β-conversion. This equality was external to the typing
systems, but we had enough information about it (namely Confluence and
Subject Reduction) to ensure that each equality can be translated into another
that only involves well-typed terms.

2Which is stated in the proof of Theorem 2.4.1.

58 CHAPTER 2. PURE TYPE SYSTEMS

Another important point is that this equality was defined directly on
terms, without any typing constraints.

We tried to enlighten a few critical places in during the proofs to already
point out to the reader where will be the issues in the following chapter,
where we are going to focus on a typed version of β-conversion which mixes
typing and reduction.

Part III

Typed equality

59

61

Chapter 3

Judgmental Equality

Contents
3.1 PTSs with Judgmental Equality 63

3.1.1 Typing Rules . 63

3.1.2 Subject Reduction and Equivalence 65

3.2 Basic meta-theory of the annotated system . . 68

3.2.1 Definition of PTSs with Annotated Type Reduction 69

3.2.2 General properties of PTSatr 74

3.2.3 The Church-Rosser Property in PTSatr 79

3.2.4 Consequences of the Church-Rosser property . . . 81

3.3 Equivalence of PTSatr and PTSs 83

3.3.1 Confluence of the annotation process 83

3.3.2 Consequences of the Erased Confluence 86

3.3.3 Consequences of the equivalence 88

In this chapter, we are going to only focus our efforts toward a new de-
scription of PTSs in natural deduction. However, this time, we are going to
change the conversion rule, and have a more constraint equality by putting
together typing and reduction. Such an approach guarantee that each conver-
sion step is well-typed, just by construction. These Pure Type Systems are
often referred to as Pure Type Systems with Judgmental Equality (or PTSe),
and also as semantic PTSs [GW94] (as opposed to syntactical PTSs). This

62 CHAPTER 3. JUDGMENTAL EQUALITY

property about the equality is mandatory during the construction of a set-
theoretical model of a type system (as pointed out in [WL]): the whole
process of construction requires the equality to be typed (more precisely the
beta rule) in order to be able to build the model.

The consistency of type systems is usually achieved by means of nor-
malization, which can be proved by several techniques like Girard’s Re-
ducibility Sets [Gir71, Gir72], λ-sets [Alt93] or Normalization By Evalua-
tion [ACD07, Abe10] to quote the most popular ones. When one wants to
add some new axioms to a system, like the Excluded Middle or Proof Ir-
relevance, the previous techniques may not work, and one has to rely on
set-theory to build a coherence model.

This is the kind of insurance we want to have about the logic behind
proof assistant, to be sure we can not derive false proofs in those systems.
But the actual implementation of those software mostly relies on the untyped
equality we just presented. Therefore, the question to know whether both
presentations express the same theory is crucial : can we apply the model
built with a typed equality to the actual code of the proof assistant ? This is
the main reason why we want to study this equality and show the equivalence
between syntactical and semantic Pure Type Systems.

In this chapter, we are going to describe the whole process of the equiva-
lence, by building an intermediate system which will be the bridge between
PTSs and PTSe. In the first part, We start by describing the meta-theory of
PTSe along with the problems involved by the new notion of equality, then
we define a new system with more typing information, and explain how it
can be used to prove this equivalence. Besides giving a final answer to the
equivalence question, we also give a complete meta-theory for Pure Type
System with typed conversion, by being able to prove Subject Reduction and
Π-injectivity for the typed equality, even in the case of non-normalizing sys-
tems. However, the lack of direct proofs for these two lemmas is, according
to us, a serious issue and the reason why we consider that PTSe is not the
correct framework to deal with a typed conversion. We propose here a sys-
tem which is a better candidate to deal with such conversion, called Pure
Type System with Annotated Typed Reduction.

3.1. PTSS WITH JUDGMENTAL EQUALITY 63

∅wf
nil

Γ `e A : s x /∈ Dom(Γ)

Γ(x : A)wf
cons

Γwf (s, t) ∈ Ax
Γ `e s : t

sort

(s1, s2, s3) ∈ Rel
Γ `e A : s1 Γ(x : A) `e B : s2

Γ `e ΠxA.B : s3

pi

Γwf Γ(x) = A

Γ `e x : A
var

Γ `e A : s1 Γ(x : A) `e B : s2

(s1, s2, s3) ∈ Rel Γ(x : A) `e M : B

Γ `e λxA.M : ΠxA.B
lam

Γ `e M : A Γ `e A =β B : s

Γ `e M : B
conv

Γ `e M : ΠxA.B Γ `e N : A

Γ `e MN : B[N/x]
app

Figure 3.1: Typing Rules for PTSe: Terms

3.1 PTSs with Judgmental Equality

3.1.1 Typing Rules

There is another variant of the presentation of Pure Type System, by defining
an internal notion of equality: Pure Type System with Judgmental Equality,
where every conversion step is checked to be well-typed.

The typing rules for PTSe are given in Fig. 3.1 and Fig. 3.2. As you can
see in the two last parts of the figure, each conversion step Γ ` =β : is
given in detail and checked to be well-typed.

We can prove that some properties of PTSs also hold for PTSe, namely
Weakening, Substitution and Context Conversion. We can add to the list
the following reflexivity properties (also known as Equation Validity) which
need to be proved along with Type Correctness :

Lemma 3.1.1 (Type Correctness and, Left-Hand / Right-Hand reflexivity
of PTSe).

• If Γ `e M : T or Γ `e M = N : T , then there is s ∈ Sorts such that

64 CHAPTER 3. JUDGMENTAL EQUALITY

Γ `e M =β N : A Γ `e A =β B : s

Γ `e M =β N : B
conv-eq

Γ `e M =β M
′ : ΠxA.B Γ `e N =β N

′ : A

Γ `e MN =β M
′N ′ : B[N/x]

app-eq

Γwf (s, t) ∈ Ax
Γ `e s =β s : t

sort-eq

(s1, s2, s3) ∈ Rel
Γ `e A =β A

′ : s1 Γ(x : A) `e B =β B
′ : s2

Γ `e ΠxA.B =β ΠxA
′
, B′ : s3

pi-eq

Γwf Γ(x) = A

Γ `e x =β x : A
var-eq

Γ `e A =β A
′ : s1 Γ(x : A) `e B : s2

(s1, s2, s3) ∈ Rel Γ(x : A) `e M =β M
′ : B

Γ `e λxA.M =β λx
A′
.M ′ : ΠxA.B

lam-eq

Γ `e M : A

Γ `e M =β M : A
refl

(s1, s2, s3) ∈ Rel
Γ `e A : s1 Γ(x : A) `e B : s2

Γ `e N : A Γ(x : A) `e M : B

Γ `e (λxA.M)N =β M [N/x] : B[N/x]
beta

Γ `e N =β M : A

Γ `e M =β N : A
sym

Γ `e M =β N : A Γ `e N =β P : A

Γ `e M =β P : A
trans

Figure 3.2: Typing Rules for PTSe: Equalities

T ≡ s or Γ `e T : s.

• If Γ `e M =β N : A, then Γ `e M : A.

• If Γ `e M =β N : A, then Γ `e N : A.

Proof. We need to prove all these propositions at once for three main reasons:

1. to prove Type Correctness, we need the Right-Hand reflexivity for the
conv rule.

3.1. PTSS WITH JUDGMENTAL EQUALITY 65

2. to prove both reflexivity statement, we need Type Correctness for the
app-eq rule.

3. because of the sym rule, we need to prove both reflexivity statement
at once.

Then, Left-Hand reflexivity is simply done by induction: all the premises of
the typing rules of PTSe have been chosen to correctly type the left hand-side
of the equality in the current context. However, the Right-Hand reflexivity
needs a little more work: the proof relies on the Substitution Lemma (to type
the right part of beta), Left Reflexivity and Context Conversion.

It is interesting to notice that we could have removed the dependency
on Type Correctness just by adding more typing information (like the fact
that A and B are also well-typed, with the correct sorts) to the premises of
app-eq.

With these few results, we can prove half of the equivalence we are looking
for:

Theorem 3.1.2 (From PTSe to PTSs).

1. If Γ `e M : A then Γ `M : A.

2. If Γ `e M =β N : A then Γ `M : A, Γ ` N : A and M =β N .

Proof. The proof is a simple induction and relies on properties of PTSs: we
just “forget” some typing information when dealing with the typed equalities.

3.1.2 Subject Reduction and Equivalence

We previously saw that Subject Reduction and Π-injectivity were two im-
portant properties of PTSs: Subject Reduction allows us to freely compute
without having to check that typing is preserved at every reduction step, and
Π-injectivity is a crucial step to prove the latter. With the basic meta-theory
for PTSe at hand, we can now try to check if both properties also hold when
the equality is checked to be well-typed. If it is the case, we would be able to
prove that both presentations are in fact two different ways to describe the
same theory.

66 CHAPTER 3. JUDGMENTAL EQUALITY

Theorem 3.1.3 (Subject Reduction).
If Γ `e M : T and M →β N then Γ `e M =β N : T .

To prove this property for PTSe, we can try the same approach that was
used for PTSs, but this requires to have the Π-injectivity for PTSe. Since
we are using a typed equality, we can express this injectivity in several ways,
for example by completely getting rid of the types (as we did for PTSs), or
instead by trying to keep as much typing information as we can.

With the first solution, we lack too much type information to build the
typed equality needed by Subject Reduction. For the second one, we need to
find the correct statement for the injectivity. After proving the equivalence
between functional PTSs and PTSe, Adams did manage to prove a strong
version of injectivity, but was unsuccessful at doing it in the general case. In
fact, this statement is wrong in the general case. Since we did not find any
proof of this fact, we propose here a simple counter-example that prove our
point:

Lemma 3.1.4 (Strong Π-injectivity does not hold for all PTSe).
The following statement does not hold for all PTSe:

If Γ `e ΠxA.B =β ΠxC .D : u, then Γ `e A =β C : s, Γ(x : A) `e B =β

D : t for some s, t ∈ Sorts such that (s, t, u) ∈ Rel.

Proof. We are going to build a counterexample by selecting the right sets for
Sorts, Ax and Rel. Let us assume that strong injectivity (1) holds for all
PTSe, including the following one:

• Sorts ≡ {u, v, v′, w, w′}

• Ax ≡ {(u, v), (u, v′), (v, w), (v′, w′)}

• Rel ≡ {(w,w,w), (w′, w′, w′), (v, v, u), (v′, v′, u)}

Let us define two termsD1 ≡ (λxv.x) u ≡ idv u andD2 ≡ (λxv
′
.x) u ≡ idv′ u.

We add idv and idv′ in front of the sort u to put a constraint on its type,
they behave like coercion. We can prove the following properties:

1. ∅ `e D1 : v and for all T , ∅ `e D1 : T implies T =β v.

2. ∅ `e D2 : v′ and for all T , ∅ `e D2 : T implies T =β v
′.

3.1. PTSS WITH JUDGMENTAL EQUALITY 67

3. with both results and the fact that ∅ `e u : v and ∅ `e u : v′, we can
prove

∅ `e D1 =β u : v and ∅ `e D2 =β u : v′.

4. The correct choice of rules in Rel leads to ∅ `e ΠxD1.u =β Πxu.u : u
and ∅ `e Πxu.u : u =β ΠxD2.u : u, so by applying the transitivity rule,
we got ∅ `e ΠxD1.u =β ΠxD2.u : u.

5. Since we supposed (1), either ∅ `e D1 =β D2 : v or ∅ `e D1 =β D2 : v′.

6. In both case, one of the reflexivity lemmas and the first two items force
v =β v

′ which is impossible by Confluence (cf Lemma 2.1.2).

This is quite technical, but the idea of the proof is simple. We have three
versions of u: D1 which can only be typed by v, D2 which can only be typed
by v′ and u which can have both types. It is impossible to directly link D1
to D2, but it can be done by hiding them inside the domains of Π-types. By
using (1), we can extract an equality between D1 and D2 from the Π-types
and expose the contradiction.

To directly prove Subject Reduction, we need to find the correct injectiv-
ity statement that will give enough typing information to build the equality,
but not too much so that it is still provable in all cases. In the next sections,
we will see a statement that enjoys both properties, but we are not able to
prove it directly from the lemmas we have right now, so we will come back
to it later.

Renouncing to prove directly the Π-injectivity we need from within PTSe,
one may want to translate PTSe judgments in PTS ones to use their prop-
erties, but again one is stuck: even if the translation from PTSe to PTSs is
almost trivial, the only translation back from PTSs to PTSe we are aware of
relies itself on Subject Reduction in PTSe. What if we try naively to trans-
late a PTS judgment into a PTSe one ? If we proceed by induction on the
derivation tree, the most interesting case is the conv rule:

A =β B Γ `M : A Γ ` B : s

Γ `M : B
conv

68 CHAPTER 3. JUDGMENTAL EQUALITY

By induction, we can build two new judgments : Γ `e M : A and Γ `e B : s.
We now need a way to lift the equality A =β B into a typed equality in PTSe:
having Subject Reduction for PTSe would be sufficient. By Confluence, there
is C such that A�β C and B �β C, so by Subject Reduction, we would be
able to prove that Γ `e B =β C : s and Γ `e A =β C : t. It is now easy to
conclude by applying conv and sym:

Γ `e M : A Γ `e A =β C : t

Γ `e M : C Γ `e B =β C : s

Γ `e M : B

Unfortunately for us, we still do not have enough available material at
this point to prove Subject Reduction for PTSe. We will come back to this
proof after achieving the equivalence between PTSs and PTSe. In the next
sections, we explain our approach to prove the general equivalence, mostly
influenced by Adam’s TPOSR system. However, even if our new system
is very similar to TPOSR, the ways to build its meta-theory have major
differences.

3.2 Basic meta-theory of the annotated sys-

tem

On one side, we have PTSs which only use a untyped equality, but enjoy the
Subject Reduction property, and on the other side, we have PTSe which use
a more constraint equality which is built on top of the typing judgments, but
where we do not known how to prove Subject Reduction. In the middle, our
question: are both systems the same one ?

The real problem is that we do not have enough information about the
equality to keep track of the Π-types while performing a typed conversion.
Since injectivity of Π-types is usually achieved by first proving Confluence,
we can try to think about what the missing pieces of information we could
add inside our typing judgments.

We have to be really careful here: if we add annotations somewhere inside
the terms or the judgments, we will have to prove that the usual terms and
judgments of PTSs/PTSe can be annotated into this new system. We can
already try to guess what kind of property this new annotated have to verify:

3.2. BASIC META-THEORY OF THE ANNOTATED SYSTEM 69

let us consider a hypothetical typing system which is built on top of some
modified terms that we will write M∗. We are trying to build a translation
from a judgment Γ ` M : T into some judgment Γ∗ M∗ : T ∗. Several
typing rules of PTSs involve multiple premises, like the pi rule:

Γ ` A : s1 Γ(x : A) ` B : s2 (s1, s2, s3) ∈ Rel
Γ ` ΠxA.B : s3

pi

Trying to build the translation by induction on the derivation tree seems
reasonable, so we would end up having two new derivations: Γ∗1 A∗1 : s∗1
and Γ∗2(x : A∗2) B∗2 : s∗2. We do not have yet chosen what the system
will be, but we are clearly going to need a way to show that A∗1 and A∗2 are
somehow related.

We also have to remember what happened when we tried to directly
translate a PTS derivation into PTSe: we needed the latter system to verify
Subject Reduction, so our candidate will certainly have to enjoy it.

Having both problems in mind, we can now take a look at the solution
we found.

3.2.1 Definition of PTSs with Annotated Type Reduc-
tion

Let us go back to the question of lifting a typing judgment from PTSs to
PTSe. To do so, we need to be able to lift a conversion A =β B into a typed
equality judgment Γ `e A =β B : s and as said above, we would like to have
Subject Reduction for PTSe which itself requires the injectivity of Π-types.

A first proof of equivalence between PTSs and PTSe has been made by
Adams [Ada06] for the subclass of functional PTSs, a result that we later
extended to the subclasses of semi-full and full PTSs [SH10]. As expected,
the key step of these proofs is to build an intermediate system with two major
properties:

1. It has to be equivalent to both PTSs and PTSe.

2. It has to verify the Church-Rosser property.

With such a system, we can prove that it enjoys Π-injectivity and Subject
Reduction, and finally translate both properties into PTSe.

70 CHAPTER 3. JUDGMENTAL EQUALITY

This injectivity is a direct conclusion of the Church-Rosser property. But
since we are dealing with a typed equality, we need to build a typed version of
this property. The usual way to prove it for β-reduction is to define a parallel
reduction that enjoys the Diamond Property, and whose transitive-closure is
the same closure as β-reduction. So Adams defined a typed version of this
parallel reduction called Type Parallel One Step Reduction (TPOSR from
now on) to prove his result. However, the proof of the Church-Rosser prop-
erty for TPOSR is not so trivial to do: as we will see in more details later,
additional typing information are required to conclude the proof. Adams
decided to annotate applications by their co-domain, and to restrict to func-
tional PTSs so his system would also enjoy the Uniqueness of Types. We
used the same annotation system to show that the Church-Rosser property
also holds for semi-full and full systems. However, to be able to prove the
Church-Rosser property in the general framework, this was not enough.

To overcome this limitation to restricted versions of PTSs, we extended
Adams’ system by adding a second annotation to the applications. In his
paper, he rejected this solution because it introduces a new constraint one
has to check when one wants to reduce a β-redex, and he did not investigate
how to handle this additional complication. Such methods have already been
tried to prove normalization results for PTSs in [MW97] and for correctness
and completeness results in [Str91], but we had to adapt it without any nor-
malization requirement.

All of this has led us to define a variant of TPOSR that we call Pure Type
System based on Annotated Typed Reduction (or PTSatr for short), which is
the main contribution of this work. This system is built on a trade-off :
this additional annotation allows us to get more information from our typing
judgments, but it adds new constraints in the typed reduction that we will
have to face. We will now see in details how it is defined and what are the
difficulties introduced by this new annotation.

Structure of Annotated Terms
A,B,M,N ::= s | x | MΠxA.BN | λxA.M | ΠxA.B

All the other notions (context, substitution and untyped reduction) de-
scribed for the terms of PTSs are defined in the same way for PTSatr, with
their natural adaptation to the annotated applications. The notation for

3.2. BASIC META-THEORY OF THE ANNOTATED SYSTEM 71

untyped reductions in PTSatr are the same as before, with →p for untyped
parallel reduction over annotated terms, and � for its transitive closure
(since PTSatr is a parallel system, using a one-step parallel reduction will be
easier, but its closure is still the same as the usual one-step β-reduction).
We define an erasure procedure | | by induction on the structure of terms
that maps annotated PTSatr terms to non-annotated ones, by recursively
removing the additional typing information within the applications:

|s| , s

|x| , x

MΠxA.BN	,	M		N
λxA.M	, λx	A	.	M
ΠxA.B	, Πx	A	.	B

The typing rules of PTSatr are presented in Fig. 3.3 and Fig. 3.4. As a
shortcut, we will use the notations Γ ` M B N : A,B for “Γ ` M B N : A
and Γ ` M B N : B”, and Γ ` M B ? : A for “there is some N such that
Γ `M B N : A”.

The transitive-closure of B is written as B+, and the transitive-symmetric
closure of B as ∼=β, restricted to terms typed by sorts. We will not need a
full notion of equality since this new judgment already embeds a notion of
reduction. The ∼=β judgment has to be understood as an equality at “the level
of types”, where we do not demand to keep the same sort at every transitivity
step. We will need this to be able to state the Generation Lemmas correctly,
since we do not have the Uniqueness of Types in the general case.

So far, we are juggling with a few variants of β-equality, so we will now
recall all our notations as a remainder to avoid confusion:

Notation Terms Systems Meaning
M ≡ N all all syntactic (α-conversion)
M =β N non-annotated PTSs β-conversion

Γ `e M =β N : T non-annotated PTSe β with typing constraints
Γ `M ∼=β N annotated PTSatr β with typing constraints

Let us back off a while and take a look at the beta rule. The corre-
sponding rule in TPOSR is somehow simpler (remember, the annotation on
TPOSR’s applications is only the co-domain).

72 CHAPTER 3. JUDGMENTAL EQUALITY

Γwf (s, t) ∈ Ax
Γ ` s B s : t

sort
Γwf Γ(x) = A

Γ ` x B x : A
var

(s1, s2, s3) ∈ Rel
Γ ` A B A′ : s1 Γ(x : A) ` B B B′ : s2

Γ ` ΠxA.B B ΠxA
′
.B′ : s3

prod

Γ ` A B A′ : s1 (s1, s2, s3) ∈ Rel
Γ(x : A) ` B B ? : s2 Γ(x : A) `M BM ′ : B

Γ ` λxA.M B λxA
′
.M ′ : ΠxA.B

lam

(s1, s2, s3) ∈ Rel
Γ ` A B A′ : s1 Γ(x : A) ` B B B′ : s2

Γ `M BM ′ : ΠxA.B Γ ` N B N ′ : A

Γ `MΠxA.BN BM ′
ΠxA′ .B′N

′ : B[N/x]
app

Γ ` A B ? : s1 Γ ` A′ B ? : s1

Γ ` A0 B
+ A : s1 Γ ` A0 B

+ A′ : s1 (s1, s2, s3) ∈ Rel
Γ(x : A) ` B B B′ : s2

Γ(x : A) `M BM ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN BM ′[N ′/x] : B[N/x]
beta

Γ `M B N : A Γ ` A B B : s

Γ `M B N : B
red

Γ `M B N : A Γ ` B B A : s

Γ `M B N : B
exp

Figure 3.3: Typing Rules for the PTSatr system

Γ ` A B A′ : s1 Γ(x : A) ` B B B′ : s2

Γ(x : A) `M BM ′ : B Γ ` N B N ′ : A (s1, s2, s3) ∈ Rel
Γ ` (λxA.M)(x) BN BM ′[N ′/x] : B[N/x]

3.2. BASIC META-THEORY OF THE ANNOTATED SYSTEM 73

∅wf
empty

Γ ` A B ? : s x /∈ Dom(Γ)

Γ(x : A)wf
extend

Γ `M B N : A

Γ `M B+ N : A
r-intro

Γ `M B+ N : A Γ ` N B+ P : A

Γ `M B+ P : A
r-trans

Figure 3.4: Typing Rules for the PTSatr system

Γ ` A B B : s

Γ ` A ∼=β B
eq-intro

Γ ` B ∼=β A

Γ ` A ∼=β B
sym

Γ ` A ∼=β B Γ ` B ∼=β C

Γ ` A ∼=β C
trans

Figure 3.5: Type Equality in PTSatr

Why do we had to add this troublesome new condition on the domain ?
The reason is quite simple: to prove the Church-Rosser property of TPOSR
(and PTSatr), we need additional information about the possible domains of
a λ-abstraction. More precisely, from a judgment of the shape Γ ` λxA.M B
λxA

′
.M ′ : ΠxC .B, one would like to prove that Γ ` A ∼=β C, without using the

injectivity of Π-types. In the functional and semi-full cases, we managed to
infer this information from the available hypotheses during Church-Rosser.
However, in the general framework, we were not able to do it anymore, so
we had to add this additional annotation on the application to fix this issue.

Also, the reason why the beta rule may seem complicated at first is
because of a design choice: its meaning is to ensure that there is a conversion
path from the annotation A attached to the λ-connector, to the annotation
of the application A′, where each step is typed by the sort s1 (which is the
first sort of the triple). The equality ∼=β ensures that each step is typed by
a sort, but does not guarantee that each step use the same one, so we can
not use it directly. So we needed another kind of equality much like PTSe

74 CHAPTER 3. JUDGMENTAL EQUALITY

equality, that takes care to keep the same sort at every reduction step. But
such a solution gave us a lot more work to do: two equalities mean two sets
of rules to deal with during mutual induction, weird behavior when trying to
glue them together, and in the end, the new equality was only used for the
proof of Confluence, it becomes useless afterward since we always split it in
reductions.

So we chose to have a smaller system with only one kind of equality, and
to relate these annotations by means of reductions and expansions, where we
can still control the type. We will come back to the details on this annotation
in the proof for Church-Rosser

3.2.2 General properties of PTSatr

From now on, we consider the general case of PTSs, without any restrictions:
we can start to prove some properties of PTSatr (by mutual induction over
B and B+ at once):

Lemma 3.2.1 (Weakening).

1. If Γ1Γ2 ` M B N : B, Γ1 ` A B ? : s and x /∈ Dom(Γ1Γ2) then
Γ1(x : A)Γ2 `M B N : B.

2. If Γ1Γ2 `M B+ N : B, Γ1 ` A B ? : s and x /∈ Dom(Γ1Γ2) then

Γ1(x : A)Γ2 `M B+ N : B.

3. If Γ1Γ2 wf , Γ1 ` A B ? : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 wf .

Lemma 3.2.2 (Parallel Substitution).

1. If Γ1(x : A)Γ2 `M B N : B and Γ1 ` P B P ′ : A then

Γ1Γ2[P/x] `M [P/x] B N [P ′/x] : B[P/x].

2. If Γ1(x : A)Γ2 `M B+ N : B and Γ1 ` P B P ′ : A then

Γ1Γ2[P/x] `M [P/x] B+ N [P ′/x] : B[P/x].

3. If Γ1(x : A)Γ2 wf and Γ1 ` P B ? : A then Γ1Γ2[P/x]wf .

Lemma 3.2.3 (Validity of Contexts).

1. For all Γ,M,N and T , if Γ `M B N : T then Γwf .

3.2. BASIC META-THEORY OF THE ANNOTATED SYSTEM 75

2. For all Γ,M,N and T , if Γ `M B+ N : T then Γwf .

3. For all Γ, A and B, if Γ ` A ∼=β B then Γwf .

Proof. The two first points are done by mutual induction on the typing
derivations, just as we already did for PTSs. The third is a simple com-
bination of induction and the first conclusion.

We extend the notion of equality on terms to equality on contexts, which
are nothing but ordered lists of terms:

Context Conversion

• ∅ ∼=β ∅.

• If Γ ∼=β Γ′, Γ ` A ∼=β B and x 6∈ Dom(Γ), then Γ(x : A) ∼=β Γ′(x : B).

Lemma 3.2.4 (Conversion in Context).

• If Γ `M B N : A and Γ ∼=β Γ′ then Γ′ `M B N : A.

• If Γ `M B+ N : A and Γ ∼=β Γ′ then Γ′ `M B+ N : A.

• If Γ ` A ∼=β B and Γ ∼=β Γ′ then Γ′ ` A ∼=β B.

Lemma 3.2.5 (Left-Hand and Right-Hand Typability).

1. If Γ `M B N : A or Γ `M B+ N : A, then Γ `M BM : A.

2. If Γ `M B N : A or Γ `M B+ N : A, then Γ ` N B N : A.

3. If Γ ` A ∼=β B, then Γ ` A B A : s and Γ ` B B B : t for some sorts
s and t.

The following lemma is an adapted version of the Generation Lemma
introduced for PTSs. By adding both annotations, we do not have to “guess”
the domain and co-domain of an application anymore.

Lemma 3.2.6 (Generation).

1. If Γ ` s B N : T then N ≡ s and there is t such that (s, t) ∈ Ax and
either T ≡ t or Γ ` T ∼=β t.

76 CHAPTER 3. JUDGMENTAL EQUALITY

2. If Γ ` x B N : T then N ≡ x and there is A such that Γ(x) = A and
Γ ` T ∼=β A.

3. If Γ ` ΠxA.B B N : T then there are A′, B′, s1, s2, s3 such that N ≡
ΠxA

′
.B′,

(s1, s2, s3) ∈ Rel, Γ ` A B A′ : s1, Γ(x : A) ` B B B′ : s2 and either
T ≡ s3 or

Γ ` T ∼=β s3.

4. If Γ ` λxA.M B N : T then there are A′,M ′, B,B′, s1, s2, s3 such that
N ≡ λxA

′
.M ′, (s1, s2, s3) ∈ Rel, Γ ` A B A′ : s1, Γ(x : A) ` B B B′ :

s2, Γ(x : A) `M BM ′ : B and Γ ` T ∼=β ΠxA.B.

5. If Γ ` PΠxU .BQ B N : T then there are A,A′, B′, Q′, s1, s2, s3 such that
(s1, s2, s3) ∈ Rel,

Γ ` A B A′ : s1, Γ(x : A) ` B B B′ : t2, Γ ` Q B Q′ : A, Γ ` T ∼=β

B[Q/x] and

• either (app case) U ≡ A, Γ ` P B P ′ : ΠxA.B and N ≡
P ′

ΠxA′ .B′Q
′ for some P ′

• or (beta case) U ≡ A′′, P ≡ λxA.R, Γ(x : A) ` R B R′ : B,
N ≡ R′[Q′/x],

Γ ` A0 B+ A′′ : s1 and Γ ` A0 B+ A : s1 for some A0, A
′′, R,R′.

One of the key point to prove the Church-Rosser property for β-reduction
(more exactly, to prove that the usual reduction and the parallel one have
the same transitive closure) is that β enjoys some nice multi-step congruence
properties like:

• If A�β B and C �β D, then ΠxA.C �β ΠxB.D

• If A�β B and M �β N , then λxA.M �β λx
B.N

• . . .

However, to have the same properties in PTSatr, that is with type restrictions
to fulfill, those lemmas can be hard to prove, especially for the application
case. By only considering the functional case, which enjoys Type Uniqueness,
Adams got rid of this trouble and managed to prove those extensions to

3.2. BASIC META-THEORY OF THE ANNOTATED SYSTEM 77

TPOSR quite easily. Without this uniqueness property, we need another
way to be able to find the right typing information.

To prove those multi-step congruence results for PTSatr, we need to check
that some terms are typed by the correct sorts (for example in the application
case, we need to check that terms are typed by the triple of sorts in Rel).
One practical case is when we know that Γ ` A B ? : s and Γ ` A B+ A′ : t,
but we need the latter statement typed by s. With Type Uniqueness, we
would be able to prove that s ≡ t, but this is not true in the general case.
What we would like to do it to keep the reduction skeleton of the second
statement and use it with the types of the first judgment.

Surprisingly the key lemma to solve this problem appears to be the fol-
lowing:

Lemma 3.2.7 (Exchange of Types). If Γ `M B N : A and Γ `M B P : B,
then Γ `M B N : B and Γ `M B P : A.

Proof. By induction, there are no difficult cases since we have the co-domain
annotations on the applications.

The heart of this theorem is to keep the reduction structure of a derivation
and allowing to change the type annotations inside, if we have a witness that
these annotations are correct. We can directly extend this result to multi-step
reduction:

Corollary 3.2.8 (Exchange of Types in multi-step reduction). If Γ `M B+

N : A and Γ `M B ? : B, then Γ `M B+ N : B.

It allows us to prove that the following transitivity rule for B+ is admis-
sible:

Γ `M B+ N : A Γ ` N B+ P : B

Γ `M B+ P : A
reds-trans-alt

This is the key lemma to prove our multi-step congruence lemma for PTSatr:

Lemma 3.2.9 (Multi-step Congruences and Generations).

• Congruences:

78 CHAPTER 3. JUDGMENTAL EQUALITY

– If Γ ` A B+ A′ : s1, Γ(x : A) ` B B+ B′ : s2 and (s1, s2, s3) ∈
Rel, then

Γ ` ΠxA.B B+ ΠxA
′
.B′ : s3.

– If Γ ` A B+ A′ : s1, Γ(x : A) ` M B+ M ′ : B, Γ(x : A) ` B B ? :
s2 and

(s1, s2, s3) ∈ Rel, then Γ ` λxA.M B+ λxA
′
,M ′ : ΠxA.B.

– If Γ ` A B+ A′ : s, Γ(x : A) ` B B+ B′ : t, Γ ` M B+ M ′ :
ΠxA.B, and

Γ ` N B+ N ′ : A, then Γ `MΠxA.BN B+ M ′
ΠxA

′
.B′N

′ : B[N/x].

• (Multi-step) Generation:

– If Γ ` ΠxA.B B+ N : T then there are A′, B′, s1, s2, s3 such that
(s1, s2, s3) ∈ Rel, N ≡ ΠxA

′
.B′, Γ ` A B+ A′ : s1, Γ(x : A) `

B B+ B′ : s2 and Γ ` T ∼=β s3 or T ≡ s3.

– If Γ ` λxA.M B+ N : T then there are A′,M ′, B, s1, s2, s3 such
that

(s1, s2, s3) ∈ Rel, N ≡ λxA
′
.M ′, Γ ` A B+ A′ : s1, Γ(x : A) `

M B+ M ′ : B,

Γ(x : A) ` B B ? : s2 and Γ ` T ∼=β ΠxA.B.

– If Γ ` s B+ N : T , then there is t such that N ≡ s, (s, t) ∈ Ax,
and Γ ` T ∼=β t or T ≡ t.

This exchange of types will also be used in the proof of the Church-Rosser
property to avoid building the right sets of sorts in Rel at some minor stage of
the proof. However, we will use it extensively while proving that well-typed
terms in PTSs can be correctly annotated into well-typed annotated terms
in PTSatr.

Lemma 3.2.10 (Type Correctness). If Γ ` M B N : A, then there is
s ∈ Sorts such as either: A ≡ s or Γ ` A B ? : s.

Theorem 3.2.11 (From PTSatr to PTSs and PTSe).

1. If Γ `M B N : A then |Γ| ` |M | : |A|,
|Γ| ` |N | : |A| and |M | =β |N |.

3.2. BASIC META-THEORY OF THE ANNOTATED SYSTEM 79

2. If Γ `M B N : A then |Γ| `e |M | : |A|,
|Γ| `e |N | : |A| and |Γ| `e |M | =β |N | : |A|.

Proof. This proof is much like the translation from PTSe to PTSs: we have
more typing in formations in PTSatr than in PTSs or PTSe, so we just need
to remove the additional annotations. Since B has been designed to mimic
the parallel reduction for β, it is quite easy to show that erased terms are
still connected by typed or untyped β-conversion.

Corollary 3.2.12 (Sort and Π-types incompatibility). It is impossible to
prove that Γ ` ΠxA.B ∼=β s for any Γ, A,B, s.

Proof. The proof relies on a translation of the equality judgment Γ ` ΠxA.B ∼=β

s in the PTSs by erasure of the annotations with the first part of Theo-
rem 3.2.11. The confluence of β-reduction forbids that Πx|A|.|B| =β s in any
way.

At this point we need to recall what we said about the order we used
to prove things in PTSs. We did not present any kind of confluence for
PTSatr. The reason is that, in a typed framework like PTSe or PTSatr, the
Confluence and the Church-Rosser properties are a blocking step. Since
they mix together typing and reduction, it is difficult to find a proof without
involving the Subject Reduction of the system, and the proof of this theorem
involves already knowing the Π-injectivity property (as required for PTSs in
the previous section) which comes from Confluence: we need to break this
loop.

3.2.3 The Church-Rosser Property in PTSatr

The next step in the meta-theory is to prove the Church-Rosser property by
proving that PTSatr enjoys the Diamond Property :

Theorem 3.2.13 (Diamond Property). If Γ ` M B N : A and Γ ` M B
P : B, then there is Q such that
Γ ` N B Q : A Γ ` N B Q : B
Γ ` P B Q : A Γ ` P B Q : B

We are trying to close the classic Church-Rosser diamond diagram in a
typed way. In all previous attempts [Ada06, SH10], the main issue was to
be able to close the cases involving an application constructor: app/app,

80 CHAPTER 3. JUDGMENTAL EQUALITY

app/beta and beta/app. We lacked information about the co-domain (say
D) of the application:

1. some types involved in the conclusion of those judgments are substi-
tuted (e.g. D[N/x]), so we lack the complete typing information for
D.

2. some induction hypotheses over the co-domain of types do not always
reflect the context of the hypothesis we actually have.

The first problem is “easily” solved by adding the D as an annotation. But it
is this additional annotation that makes the second problem arise: it forbids
us to use one of our induction hypothesis. During the proof, the induction hy-
pothesis requires the context to be the same in both branches of the theorem
and for the app case, we needed to prove that it was actually the case.

In his proof, Adams relies on the Uniqueness of Typing which comes
from the functionality, and in the semi-full case, we relied on the Shape of
Types [SH10] to make the contexts match. To get rid of both constraints
over the PTSs, we use here the new annotation in applications, that forces
the context to match: now in the app/app case, co-domain contexts are
syntactically the same, and in the other cases (where we actually perform a
β-reduction), we have enough typing information to type the resulting sub-
stitution.

We will not give more details about the second issue here since we no
longer face it (explanations and a concrete example can be found in [SH10].
However, since it is the first time that the new annotation comes in handy,
we can now explain our choices for it.

The annotation is here to have a full remainder of the function space: if
λxA.M of type ΠxA.B is applied to N of type A, we want to have both A
and B available while looking at the β-redex. Our first attempt was to put
syntactically the same A in the annotation, and thus allowing the reduction of
the redex only if the annotation matches exactly the domain of the function.
But this approach failed, and made us realized that we need to annotate by
any A′ convertible to A. However, this notion of conversion has to be more
strict than our ∼=β judgment: we need to enforce that each conversion step
stays in the same sort, much like the equality judgments for PTSe.

We could have used two different notions of conversion, one that cares
about the type, and one that only cares about the types being sorts, but

3.2. BASIC META-THEORY OF THE ANNOTATED SYSTEM 81

the first one was only needed for this new annotation, and as soon as we
proved Confluence, we will always break it into two multi-step reductions.
Instead, we tried to find another “self-contained” notion of strict conversion,
with the judgments we built so far around B, B+ and ∼=β. Having a common
expanded term satisfied all our requirements:

• all the steps between the domain and the annotation are well-typed,
by the very same sort.

• we do not have to introduce a new kind of judgment.

• it behaves nicely in the proof of the Church-Rosser property.

The main reason why this choice behaves so nicely is that PTSatr is a re-
duction system: it is directed. The domain and the annotation are always
reduced in the same direction. Informally, if A0 B+ A and A0 B+ A′, since
both A and A′ can only be reduced, we just have to append the new reduc-
tions steps to the sequences starting from A0. In short, we never need to
“guess” what is the common expanded term.

Doing so, the proof of the Diamond Property becomes quite straightfor-
ward by induction, since we pushed all the issues inside the new annotation.
However, those issues did not disappear: we will have to face them when
while proving that the annotations are correct.

3.2.4 Consequences of the Church-Rosser property

With the Church-Rosser property, we can finally settle with all the miss-
ing pieces of theory that we do not know how to prove directly in a typed
framework:

Lemma 3.2.14 (Confluence).
If Γ ` A ∼=β B, there are C, s, t such that Γ ` A B+ C : s and Γ ` B B+

C : t.

Lemma 3.2.15 (Weak Π-injectivity for PTSatr).
If Γ ` ΠxA.B ∼=β ΠxC .D then Γ ` A ∼=β C and Γ(x : A) ` B ∼=β D.

Since strong injectivity does not hold for PTSatr (the same counterexam-
ple we used for PTSe also works here), we stated a weaker form of injectivity.
However, this Π-injectivity for ∼=β along with the Exchange of Types prop-
erties are enough for the rest of the development.

82 CHAPTER 3. JUDGMENTAL EQUALITY

Theorem 3.2.16 (Subject Reduction).
If Γ `M B ? : A and M →p N then Γ `M B+ N : A.

Proof. This is the first place where we encounter the difficulties that we post-
poned in the proof of Church-Rosser property. It is interesting to notice that
we did not manage to prove the conclusion of Subject Reduction as a one step
PTSatr reduction: all the conversion we have to do to make the annotations
in the application match forced us to have a multi-step version of the con-
clusion. However, this will not be a problem for the following proofs.

The proof is done by induction on M →p N : as usual, most cases are
trivial. In the case of application congruence, some type conversions are
required, but everything is directly available. However, if M is a β-redex
which is reduced, we need to show that we have the right to do this reduc-
tion according to the typing rule beta. We will make an extensive use of
Confluence and Exchange of Types to show that everything is fine.

The situation is the following: we want to prove that

Γ ` (λxA.MΠxA′ .B′)N B+ M ′[N ′/x] : B′[N/x]

knowing that the β-redex is well-typed. By inversion, we have two choices:
either the redex is typed as an application, or it is typed with the beta
rule. In the second case, we directly have all the information to conclude.
However, in the first case, we need to use the Generation Lemma to retrieve
typing information from the application and from the λ-term. We get the
following judgments:

• Γ ` A B ? : s1, Γ(x : A) ` M B ? : B and Γ(x : A) ` B B ? : s2 where
(s1, s2, s3) ∈ Rel.

• Γ ` A′ B ? : t1, Γ(x : A′) ` B′ B ? : t2 where (t1, t2, t3) ∈ Rel.

• Γ ` N B ? : A′ and Γ ` ΠxA.B ∼=β ΠxA
′
.B′.

Using Π-injectivity, we can show that Γ ` A ∼=β A
′, but as we said before,

this is not enough to trigger the reduction of the redex, since A and A′ are
not typed by the same sort, and we do not know any common expanded form
for them. However, by Confluence, we can find common reduced terms for
A and A′ , and also for B and B′:

• Γ ` A B+ A0 : s and Γ ` A′ B+ A0 : t.

3.3. EQUIVALENCE OF PTSATR AND PTSS 83

• Γ ` B B+ B0 : s′ and Γ(x : A) ` B′ B+ B0 : t′.

Using the Exchange of Types, we can replace s by s1, t by t1, s′ by s2 and t′

by t2. Doing so, we can prove that Γ ` λxA.MΠxA
′ .B′N B+ λxA.MΠxA0 .B0

N :
B′[N/x]. With this new redex, we have everything at hand to fire the reduc-
tion and prove that

Γ ` λxA.MΠxA0 .B0
N BM [N/x] : B0[N/x].

With (reds-trans-alt), and the Substitution Lemma, we can now glue
both reductions and conclude the final case of Subject Reduction.

3.3 Equivalence of PTSatr and PTSs

3.3.1 Confluence of the annotation process

The last step to prove the equivalence is to prove the correctness of annota-
tions, i.e. to prove that every judgment Γ ` M : T can be annotated into a
valid PTSatr derivation Γ+ ` M+ B M+ : T+ where |Γ+| ≡ Γ, |M+| ≡ M
and |T+| ≡ T .

To do so, we need to show some basic properties of the annotation pro-
cess. Since there are several ways to annotate a term, we face some difficult
situations while performing induction. Let us go back to the simple example
with the construction of Π-types with the pi rule:

Γ ` A : s1 Γ(x : A) ` B : s2 (s1, s2, s3) ∈ Rel
Γ ` ΠxA.B : s3

pi

By induction, we get that Γ1 ` A1 B A1 : s1 and Γ2(x : A2) ` B2 B B2 : s2

with the equalities |Γ1| ≡ |Γ2| ≡ Γ, |B2| ≡ B and |A1| ≡ |A2| ≡ A. To
build a Π-type from those two judgments, we need to relate Γ1 to Γ2 and
A1 to A2 in PTSatr. More precisely, we need to show that if two annotated
types come from the same non-annotated term, and if they are well-typed
in PTSatr, they are equivalent in PTSatr. With such a property, we would
be able to state a similar lemma for contexts and prove that our annotation
procedure is correct.

However, we have to recall that what we call here types are just terms
typed by a sort, and their typing judgment may use β-redexes, which may
involve “non-types”. So we will state a more general lemma about the con-
version of different annotated versions of a same PTS term.

84 CHAPTER 3. JUDGMENTAL EQUALITY

Lemma 3.3.1 (Erased Confluence). If |M | ≡ |N | , Γ ` M B ? : A and
Γ ` N B ? : B , then there is R such that

Γ `M B+ R : A and Γ ` N B+ R : B.

Proof. The proof is done by induction on M , the only difficult part is again
the application case:

M ≡ PΠxA0 .DQ, N ≡ P ′
ΠxA

′
0 .D′

Q′ |P | ≡ |P ′|, |Q| ≡ |Q′|

By generation, we get that P, P ′, Q and Q′ are well-typed, so by induction,
there are P0, Q0 such that:

Γ ` P B+ P0 : ΠxC .D Γ ` Q B+ Q0 : C
Γ ` P ′ B+ P0 : ΠxC

′
.D′ Γ ` Q′ B+ Q0 : C ′

and some additional information relating A0 and A′0 to C and C ′ depending
on the way M was typed (beta or app).

In the functional case (where only one annotation is needed), this is quite
trivial : thanks to the Uniqueness of Types applied to P0 and Π-injectivity
we get that Γ(x : C) ` D ∼=β D

′. By Confluence, we get a common reduct
D0 for D and D′, so the common reduct of M and N is P0 D0Q0.

We need to be a little more subtle here: for the semi-full case (see [SH10,
Siles & Herbelin, 2010]), we showed that terms can be classified in two fami-
lies whose types have very particular shapes. Fortunately, the full generality
of this classification is not needed here:

Lemma 3.3.2 (Weak shape of types). If Γ `M B ? : A and Γ `M B ? : B,
then:

• either Γ ` A ∼=β B

• or we are in one of the following cases:

1. there are U and V such that Γ ` M B λxU .V : A and Γ ` M B
λxU .V : B.

2. there is s such that Γ `M B s : A and Γ `M B s : B.

3. there is U and V such that Γ ` M B ΠxU .V : A and Γ ` M B
ΠxU .V : B.

3.3. EQUIVALENCE OF PTSATR AND PTSS 85

The proof of this lemma is quite trivial by induction, and relies on the
fact that we have the annotation of co-domains at hand.

From now on, we will mainly focus on P0: we can apply the previous
lemma to it and, for the first part of the conclusion, conclude almost like the
functional case. By generation, we also got a way to prove that Γ ` A0

∼=β A
′
0,

depending on the constructor used. By Confluence, we can get a common
reduct A′′, and use P0 ΠxA′′ .D0

Q0 to close the whole confluence lemma.

In order to apply the Weak shape of types to P0, we need to show that
P0 appears on the left-hand side of an PTSatr typing judgment. However, at
the moment, it only appears at the right of B. To be able to do this switch,
we will rely on the Right-Hand reflexivity that we proved before. This step
may seem trivial at this point, but it will be in important point when we will
try to extend this proof to subtyping.

If we are in the second part of the conclusion, the only relevant case is
the first one: since P0 is typed by a Π-types, it can not reduce itself to a sort
or another Π-type. The reason is because with the Generation lemma, we
know that the type of a sort or a Π-type is always convertible to a sort. If
they could be typed by a Π-type, we would end up having a judgment of the
form Γ ` ΠxA.B ∼=β s which is impossible due to Corollary 3.2.12.

In the last remaining case, there are U and V such that:

• Γ ` P0 B λxU .V : ΠxC .D

• Γ ` P0 B λxU .V : ΠxC
′
.D′

We just created a β-redex since P0 is going to be applied, so this time, the
common reduced term will be the result of the β-reduction initiated by P0

instead of just a simple application.

Actually, we still need to show that we are allowed to reduce this redex,
just as we needed to show it for Subject Reduction: this is the second place
where we are facing quite technical points because of the new annotations.
There are four different cases to handle here, depending on how M and M ′

are originally typed (by beta or app), but each can be closed by extensive
use of Confluence and Exchange of Types. The main idea behind each case
is the same, and follows this scheme:

86 CHAPTER 3. JUDGMENTAL EQUALITY

Γ ` PΠxU .DQ B+ P0 ΠxU .DQ : D[Q/x]
B+ (λxU .V)ΠxU .DQ : D[Q/x]
B+ V [Q/x] : D[Q/x]
B+ V [Q0/x] : D[Q/x]

Γ ` P ′ΠxU .D′Q
′ B+ P0 ΠxU .D′Q′ : D′[Q′/x]
B+ (λxU .V)ΠxU .D′Q′ : D′[Q′/x]
B+ V [Q′/x] : D′[Q′/x]
B+ V [Q0/x] : D′[Q′/x]

In the end, we manage to find a common reduct in each type without having
to find a common reduct for the annotations, which concludes the proof of
this lemma.

3.3.2 Consequences of the Erased Confluence

With the general statement for all terms, we can now show what we needed
about types and contexts:

Lemma 3.3.3 (Erased Conversion). 1. If |A| ≡ |B|, Γ ` A B ? : s and
Γ ` B B ? : t then Γ ` A ∼=β B.

2. If |Γ1| ≡ |Γ2| and Γ1 `M B N : A, then Γ2 `M B N : A.

Proof. The first statement directly follows from Lemma 3.3.1. The second is
a consequence of the first one, by simple induction on the length of Γ1.

Now let us go back to the annotation of Π-types. With Lemma 3.3.3,
we can derive the fact that Γ1 ` A1

∼=β A2 and Γ1 ≡ Γ2. By context con-
version, we can exchange the contexts and we end up proving that Γ1(x :
A1) ` B2 B B2 : s2, and so we can finally build the annotated judgment
Γ1 ` ΠxA1 .B2 B ΠxA1 .B2 : s3, with |Γ1| ≡ Γ, |A1| ≡ A and |B2| ≡ B.

By doing the same process for each constructor, we can now conclude the
last missing piece of the whole equivalence process:

Theorem 3.3.4 (From PTSs to PTSatr). If Γ ` M : T , then there are
Γ+,M+, T+ such that Γ+ ` M+ B M+ : T+, |Γ+| ≡ Γ, |M+| ≡ M and
|T+| ≡ T .

3.3. EQUIVALENCE OF PTSATR AND PTSS 87

Proof. Since we have managed to prove Subject Reduction and Lemma 3.3.3,
the proof is almost the same as for Adams’ TPOSR. A few type exchanges
are needed in the beta case but it does not involve complicated nor technical
things.

Finally, all of this leads us to state that:

Theorem 3.3.5 (Equivalence of PTSs and PTSe).

1. Γ `M : T iff Γ `e M : T .

2. Γ `e M =β N : T iff Γ `M : T , Γ ` N : T and M =β N .

Proof. This is just a combination of all the previous theorems:

• If Γ `e M : T , then by Theorem 3.1.2, we have Γ `M : T .

• If Γ `M : T , by Theorem 3.3.4 we know that

Γ+ ` M+ B M+ : T+ with |Γ+| ≡ Γ, |M+| ≡ M and |T+| ≡ T . By
Theorem 3.2.11, |Γ+| `e |M+| : |T+| which is equal to Γ `e M : T .

• If Γ `e M =β N : T , so we conclude by Theorem 3.1.2.

• If Γ ` M : T , Γ ` N : T and M =β N , by Confluence, there is P such
that M �β P and N �β P . By Theorem 3.3.4, there are Γ+,M+, T+

such that |Γ+| ≡ Γ, |M+| ≡ M , |T+| ≡ T and Γ+ ` M+ B M+ : T+.
Let us consider P+ such that |P+| ≡ P and M+ � P+ (such a term
always exists, the proof is a simple induction on the structure of M).

Γ+ `M+ BM+ : T+

⇒ Γ+ `M+ B+ P+ : T+ (Subject Reduction)
⇒ Γ `e M =β P : T (Theorem 3.2.11 and trans)

We do the same to conclude that Γ `e N =β P : T , so by sym and
trans, we finally have Γ `e M =β N : T .

88 CHAPTER 3. JUDGMENTAL EQUALITY

3.3.3 Consequences of the equivalence

Now that we have a way to go from PTSs to PTSe (and the other way
around), we can go back to the proof of Subject Reduction for PTSe.

Theorem 3.3.6 (Subject Reduction for PTSe). If Γ `e M : T and M →β N
then Γ `e M =β N : T .

Proof. By using the first part of Theorem 3.3.5 and Theorem 3.3.4, there are
Γ+, M+ and T+ such that Γ+ ` M+ B M+ : T+ and |Γ+| ≡ Γ, |M+| ≡ M
and |T+| ≡ T . Let us consider N+ such that |N+| ≡ N and M+ →p N

+ (N+

always exists, the proof is a simple induction on the structure of M). With
such a term, and using Theorem 3.2.16, we can prove that Γ+ ` M+ B+

N+ : T+. By erasing the annotations using the last part of Theorem 3.2.11,
we end up having |Γ+| `e |M+| =β |N+| : |T+| which is the exact result we
wanted.

The last missing piece of our development is to find the correct statement
for injectivity of products in PTSe. Subject Reduction for PTSatr relied on
the weak Π-injectivity for ∼=β and we choose such an equality to be able to
state the Generation lemmas for PTSatr. Since PTSatr is “enhanced” version
of PTSe with additional annotations, that may be the correct presentation
we were looking for:

Weak PTSe equality
Γ `e A =β B : s

Γ `e A =β B

Γ `e B =β A

Γ `e A =β B

Γ `e A =β B Γ `e B =β C

Γ `e A =β C

This weaker form of equality enjoys some nice properties:

• If Γ `e A =β B, then there are s and t such that Γ `e A : s and
Γ `e B : t.

• If Γ `e A =β B, then A =β B.

• This equality is compatible with conversion in PTSe context: if Γ1 `e
A =β B and Γ1(x : A)Γ2 `e M : T , then Γ1(x : B)Γ2 `e M : T .

All those properties are directly consequences of the usual equality for PTSe.
With this equality, we can directly state some generation lemmas for

PTSe without relying on the equivalence:

3.3. EQUIVALENCE OF PTSATR AND PTSS 89

Lemma 3.3.7 (Generation Lemmas for PTSe). Those properties are much
like PTSatr’s one, so we will only state the one that we will really need here:

1. If Γ `e ΠxA.B : T then there are s1, s2, s3 such that (s1, s2, s3) ∈ Rel,
Γ `e A : s1, Γ(x : A) `e B : s2, and T ≡ s3 or Γ `e T =β s3.

2. If Γ `e λxA.M : T then there are s1, s2, s3 and B such that (s1, s2, s3) ∈
Rel, Γ `e A : s1, Γ(x : A) `e M : B, Γ(x : A) `e B : s2 and
Γ `e T =β ΠxA.B.

3. If Γ `e M N : T then there are A and B such that Γ `e M : ΠxA.B,
Γ `e N : A and Γ `e T =β B[N/x].

Now that we have the Generation Lemmas and Subject Reduction, we can
prove what we consider to be the correct statement for injectivity of products
in PTSe.

Corollary 3.3.8 (Weak Π-injectivity for PTSe). If Γ `e ΠxA.B =β ΠxC .D
then Γ `e A =β C and Γ(x : A) `e B =β D.

Proof. By using the properties of weak equality that we just stated, there are
s3 and s′3 such that Γ ` ΠxA.B : s3, Γ ` ΠxC .D : s′3, and ΠxA.B =β ΠxC .D.
By Π-injectivity and Confluence for the usual untyped β, and Generation
for PTSe, we get:

• A�β U β� C and B �β V β� D

• Γ ` A : s1, Γ ` C : s′1, Γ(x : A) ` B : s2 and Γ(x : C) ` D : s′2 for
s1, s

′
1, s2, s

′
2 such that (s1, s2, s3) ∈ Rel and (s′1, s

′
2, s
′
3) ∈ Rel.

By using Subject Reduction for PTSe, we get that Γ `e A =β U : s1, Γ `e
C =β U : s′1, Γ(x : A) `e B =β V : s2 and Γ(x : C) `e D =β V : s′2.
It is now easy to glue everything together to obtain Γ `e A =β C and
Γ(x : A) `e B =β D.

The “good” notion of equality
The two following points are the main reasons why we think that this notion
of “weak” equality is the correct one for types:

• This proof of injectivity holds for any PTSe, even the non-functional
ones or the ones that do not enjoy normalization.

90 CHAPTER 3. JUDGMENTAL EQUALITY

• The Weak Π-injectivity for PTSe is enough to prove Subject Reduction
in the usual way (by a direct induction).

Until now, the equivalence between Subject Reduction and the Weak Π-
injectivity for PTSe was known, but we had no direct proof of any of them.
With the PTSatr type system, we successfully proved Subject Reduction and
thus managed to prove the injectivity as its consequence. As far as we know,
all the attempts to build a direct proof of the injectivity of products have
failed. The PTSatr system is significantly more complicated then the usual
presentation of PTSe but it contains much more useful information. Fur-
ther investigation should concentrate on PTSatr since most of its properties
directly apply to PTSs and PTSe.

91

Chapter 4

Formalization in Coq

Contents
4.1 Formal proof: paper or computer ? 92

4.1.1 What is a formal proof ? 92

4.1.2 Automatic resolution and induction schemes . . . 93

4.2 Encoding PTSs in a proof assistant 95

4.2.1 Questions about encodings of binders 95

4.2.2 Higher order encodings 97

4.2.3 Our final choice: de Bruijn indices 99

Now that we proved the equivalence for any kind of PTSs, we can con-
centrate our efforts to achieve the same result with more complex systems
than PTSs. The next chapter will be about such possible extensions of the
proof. By considering type systems that provide more expressiveness than
PTSs, we have to change the core definitions of our development (especially
the reduction rules and the typing judgments), and thus prevent ourselves
to directly use our previous results. Such modifications will force us to redo
the whole meta-theory for any new system.

However, as we previously said, we formalized the whole proof of equiv-
alence within the proof assistant Coq. Since we are currently interested in
extensions of PTSs, we could reuse our formalization as a basis from where
to start, and try to check what parts of the development easily scale and
what parts need a serious upgrade. In this chapter, we are going to detail

92 CHAPTER 4. FORMALIZATION IN COQ

some parts of the formalization techniques we used to check all these re-
sults within the proof assistant Coq1, as a full-scale example of some of the
currently available techniques in computer assisted reasoning.

4.1 Formal proof: paper or computer ?

4.1.1 What is a formal proof ?

One of the biggest achievement of the late 19th century is the work of Frege
about mathematical proofs. He introduced a formalism expressive enough to
(gradually) convince most mathematicians that his language of proofs could
capture the vast majority of mathematics. A formal proof is a sequence of
symbols linked together with inference rules. It is usually more convenient to
represent them as a tree-shape data structure, where the nodes of the tree are
the inference rules and the leaves are the axioms of the system. The validity
of such proofs is done by checking that each symbol and each rule is correctly
used with respect to a particular logical system (the “meaning” we attach to
the proof). In the late 1960’s, de Bruijn developed the first tool to automat-
ically check the correctness of inference rules, called Automath, which was
quickly followed by the Nqthm theorem prover by Boyer and Moore. They
exemplified that proofs can be efficiently checked, stored, and rechecked at
will by a computer. Another advantage is that, by mechanically checking
proofs, most usual mistakes disappear, like forgetting a subcase of a proof,
applying a hypothesis to an incorrect argument or making a mistake in a
numeric computation.

This formalism is considered more formal and more detailed on the con-
trary of the usual “pen and pencil” approach, which leaves statements like
“this is trivial” or “all the other cases are done in the same way” to the in-
tuition of the reader, without entering in the exact details that would make
a proof absolutely unquestionable. Nonetheless, being able to interpret such
sentences is still a crucial issue for the future of proof assistants.

Writing a formal proof is also a good way to be sure that nothing has
been forgotten. Even if sometimes, stating that “a simple induction is enough
to prove the lemma”, such behavior can lead to small mistakes, that could
have been avoided by the rigor of formal proof. The Type Correctness (see

1In this chapter, Coq has to be understood as Coq version 8.3.

4.1. FORMAL PROOF: PAPER OR COMPUTER ? 93

Lemma 2.1.7) is one of the best examples of a “not so wrong” lemma that
we found in the literature. As we said at the time, we are tempted to state
the following lemma:

If Γ `M : T , then there is s such that Γ ` T : s (1)

This particular statement can be found in a few papers about PTSs and,
disregarding the quality of these works, it is notably wrong in the general case
since some PTSs have top sorts (like Type in the Calculus of Constructions)
which are not typed by any sort. The proof is “a simple induction” on the
structure of the judgment Γ ` M : T , but the rigor induced by the use of
a formal proof would have spotted that when M is a sort, (1) is not always
true.

4.1.2 Automatic resolution and induction schemes

The kind of rigor which is required by formal proofs may seem reluctant at
first, by the amount of “administrative” things we need to provide, things
that were usually left aside to the intuition of the reader. However, since the
development of the first proof assistants, some improvement have been made
towards automation. Besides checking the validity of a proof, a proof assis-
tant can also provide other tools to ease the formalization process and help
the user to focus on the really meaningful parts of his work. As an example
of what is possible, Coq provides several ways to use automation within the
scripts, like heuristics for automatic resolution of goals, automatic schemes
generation for inductive types, mathematical computation, type classes. . .

In this development we only used the first two possibilities. Automatic
resolution is mainly used to solve “easy” parts of the development. For exam-
ple, in the Type Correctness lemma, the only relevant cases are the typing of
variables and sorts. For all the other cases, we would have written something
close to “trivial by applying the induction hypothesis”. This is the kind of
automation that Coq can provide, by the way of resolution tactics like auto,

eauto, firstorder, intuition or tauto. Intuitively, these tactics use the
available hypotheses of the current goal along with some previous knowledge
that the user stored in hint databases to do a proof search in the same way
Prolog would have done.

This use of automation is an appealing thing that allows the user to focus
only on the difficult parts of its development. The resulting scripts are clearer

94 CHAPTER 4. FORMALIZATION IN COQ

since we can directly see what was the interesting part of a proof, but that
also means that the other parts are “hidden” to the user. In our opinion, this
behavior should be saved for a time when a proof is really well understood,
not while it is still under development. The main reason is that, during the
design of a system, we often need to go back to the very first definitions and
slightly modify them. After such modifications, we can simply run again our
scripts and see what fails and what succeeds. However, if a failure happens
during an automatic resolution (e.g. auto previously solved a goal and can
not do it anymore), we will not have any meaningful information to patch the
proof. On the contrary, when a proof is finally done and correctly understood,
some use of automation is clearly a way to enhance the final version of this
proof to put forward its core and hide the less relevant parts.

Some tactics can be used to give a more robust structure to a proof script,
by failing if the current goal is not completely solved. Tactics like assumption
or solve behave pretty much like check-points, that fail if the current goal is
not completely solved by the tactics. This way, we can explicitly mark the
end of a goal in our scripts, and any modifications that may break the proof
should fail at more meaningful places.

The second point is more about the confidence we have in ourselves. Let
us consider the following inductive type named Term that we use to encode
the terms of syntactic PTSs:

Inductive Term : Set:=

| Var : Vars -> Term

| Sort : Sorts -> Term

| App : Term -> Term -> Term

| Pi : Term -> Term -> Term

| La : Term -> Term -> Term

.

To perform a proof by induction on an object of type Term, we need
an induction principle for this type. Coq is able to automatically derive it
for us each time we define a new inductive type, but in the case of Term,
it is still easy to do “by hand” since Term is a quite simple tree-shaped
datatype. What happens if we face more complicated structures, like the
mutual family wf/typ (for PTSs) or the even more complicated one made of
wf/typ/typ reds (for PTSatr)? Building a correct mutual inductive princi-

4.2. ENCODING PTSS IN A PROOF ASSISTANT 95

ple for these kinds of type families is a difficult exercise prone to introduce
mistakes. Coq also provides a way to derive such a mutual principle, but we
need to specifically ask it with the Scheme Induction and Combined Scheme

command. This way, we can ask Coq to build these complex schemes and
check that they are effectively correct, which is much more time saving that
trying to build the mutual statements ourselves. However, in particular sit-
uations, we still need to provide the induction principle by hand because the
automatic schemes provided by Coq does not exactly suit our needs (see the
typ annot.v file for a particular example).

4.2 Encoding PTSs in a proof assistant

4.2.1 Questions about encodings of binders

In order to have more confidence in our proofs, we then chose to formalize
our work within a proof assistant. Even before choosing a particular proof
assistant, we need to choose a way to encode all the structures that appear
in our work. As we did in all the previous chapters, we first need to give the
definitions that describe the core of our development, which can be restricted
to four main categories: sorts, terms, contexts and typing judgments.

The most delicate part of these definitions is the way we deal with binders.
Let us consider the following term:

f (λx.g x) x
=α f (λz.g z) x

If we want to substitute the free occurrence of the variable x by a term M ,
the result will be f (λx.g x) M , leaving the bound occurrence of x unchanged
since we deal with capture avoiding substitution. Depending on the way we
are going to choose to encode binders, proving that the substitution is correct
and reasoning modulo α-conversion as we did in the previous sections can
become rather complicated. These two problems are known to be difficult
and have already been studied a lot [Sch24, dB72, Bar84]. The POPLmark
challenge [POP] is a good example of the practical use of several solutions
for handling binders, used to solve a common formalization problem.

The most basic solution is to use proper names as variables, like strings.
This way, it is easy to write terms “by hand”, but reasoning modulo α-
conversion will require extra work since we need to explain to the proof

96 CHAPTER 4. FORMALIZATION IN COQ

assistant why λx.x and λy.y are the same term (modulo α-conversion). The
substitution has to deal with a freshness condition to avoid the capture of
variables, which will also complicate the work of formalization.

Another solution, close to the first one, tries to avoid these problems by
enforcing a syntactical separation between bound and free variables and us-
ing two separate sets of names. This solution is known as the locally named
representation first implemented by McKinna and Pollack [MP93, MP99]. In
the case of the substitution of a bounded variable, capture could still happen
but in practice, such substitutions were always used in a safe way, avoiding
capture.

A canonical solution of both issues is the de Bruijn notation [dB72], which
replaces all names by indices that directly link a variable to its binding λ-
abstraction (see Fig. 4.1 for a simple illustration). Free variables are the ones

Figure 4.1: de Bruijn indices examples

whose indices are greater than the longest sequence of λ-abstraction, which
means that they are not bounded by any abstraction in the term but that
they are “bounded by the enclosing context”. This way, there is no problem
to deal with α-renaming since there is a unique representation of closed terms,
hence no ambiguity anymore. Furthermore, there is a simple and correct way
to specify a capture avoiding substitution, by using a shift [ACCL91] (also
known as lift [Hue02]) operator which does not require to check any freshness
condition2.

Such encoding of terms is completely uniform, and has proved its effi-
ciency by having been used to successfully formalize several meta-theories
(see [BW97] for example). The attempts to the POPLmark challenge that
went the further in the formalization of the problem are actually using de

2See the implementation of subst rec in the file ut term.v.

4.2. ENCODING PTSS IN A PROOF ASSISTANT 97

Bruijn indices (see the solutions of Berghofer and Vouillon in [POP]). This
solution is quite elegant to reason about binders, but writing a term “by
hand” is a difficult exercise, mainly because finding the correct index can
become complicated in big terms. This notation is also difficult to read since
we removed the names of the variables on the abstractions.

The locally nameless approach tries to have the good part of both names
for free variables and de Bruijn indices for bounded variables [ACP+08]. This
way, substitution can be described intuitively without having to rely on a shift
operator, α-equivalence is made trivial thanks to de Bruijn indices, and man-
ually handling terms is less complicated than with only indices. However, to
reason about terms in locally nameless form, we still have to deal with fresh-
ness side-conditions at some point of the development, to avoid collisions of
names in the typing judgments. In addition to that, every time we want to
“look” under a λ-abstraction, we need to open the body of the abstraction
by replacing the first de Bruijn index by a fresh name, and thus we need to
parse the whole term, which seems as costly as using the shift operator: we
loose the uniformity of the de Bruijn indices representation and we still have
to deal with troublesome operators to correctly handle bound variables and
the freshness condition.

All these encodings are aiming toward the same goal: allowing the user
of a proof assistant to write and read proofs without having to provide
more than he would have to while writing a proof with “pencil and pa-
per”. Nominal Isabelle [Urb08, HU10] is an implementation built on top of
Isabelle/HOL [NPW] that aims at this particular purpose. It provides the
use of names for bindings, and provides a way to safely handle α-conversion,
capture-avoiding substitution and a proper induction principle, so that the
user does not have to deal with this part of the encoding. This solution
is, according to us, maybe the most elegant solution to deal with binders
without having to deal with the issues we mentioned previously.

4.2.2 Higher order encodings

In all the previous solutions, terms and binders were all described as first-
order datatypes. Proof assistants can also be used as programming languages,
and embed functions. Since the λ-abstraction is a description of such func-
tions, we could be tempted to encode these abstractions using the functions

98 CHAPTER 4. FORMALIZATION IN COQ

of our language. Here is an example of how we could have done it in Coq3

for the untyped λ-Calculus :

first-order encoding higher-order encoding

Inductive fTerm := Inductive hTerm :=

| fVar: Vars -> fTerm

| fAbs: Vars -> fTerm -> fTerm | hAbs: (hTerm -> hTerm) -> hTerm

| fApp: fTerm -> fTerm -> fTerm | hApp: hTerm -> hTerm -> hTerm

. .

Definition fId := fAbs "x" (fVar "x").

Definition hId := hAbs (fun x => x).

As you can see, fId is just a first-order datatype that can be parsed as
the sequence of symbols fAbs, "x", (,) and fVar, whereas hId uses a
Coq level function to build the abstraction. This kind of encoding is known
as Higher Order Abstract Syntax, or HOAS for short. We got rid of this
kind of solution quite early in our choosing process since HOAS escapes the
framework of finite proofs. Even if hId can be parsed as the sequence made
of hAbs, fun, x, =>, (, and), by allowing functions inside our encoding,
we capture any kind of functions that exists in the logic (e.g. in Coq, that
would allow the use of any Coq function), without limiting to the ones that
we can build with just our encoding of the λ-terms. Such approach would
not be a correct encoding of the λ-calculus since it would capture more than
just the λ-terms.

However, some languages like Twelf [PS] have restrictions on the domain
of their functions which allow such an approach. The fragment of computable
functions is weaker than in other languages and exactly represent the func-
tions of the λ-calculus. Recent work in HOAS made it accessible to proof
assistants that do not embed it naturally, like Coq or Isabelle/HOL thanks
to Hybrid [FMCM].

3The type hTerm is actually rejected by Coq as a not well-formed inductive type, it is
described here just for illustrating our point.

4.2. ENCODING PTSS IN A PROOF ASSISTANT 99

4.2.3 Our final choice: de Bruijn indices

Coq in Coq [BW97] and previous formalization of PTSs [Bara] done by Bruno
Barras in Coq seemed a good starting point for our own work. Barras also
formalized the work of Adams (the particular case of TPOSR for the Cal-
culus of Constructions can be found at [Barb]) which is at the heart of this
dissertation, so we chose to follow his path and use the proof assistant Coq
with an encoding based on de Bruijn indices. As we said in our survey about
the encoding techniques, it is quite difficult to write particular λ-terms with
de Bruijn indices, but previous formalizations have shown that they are an
efficient way to deal with families of terms (all of our propositions are uni-
versally quantified over terms or judgments, like in “∀Γ,M, T if Γ ` M : T
then . . . ”).

In fact, from our experience during this past three years, we almost never
had to directly deal with de Bruijn indices, and by following Barras encod-
ing of contexts, we managed to deal with these indices as if they were an
abstract type or simple strings, everywhere but in two lemmas: Weakening
and Substitution. De Bruijn indices can describe bound variables without
any ambiguity, but free variables have to be dealt with carefully. In fact,
there is no free variable in our work, every time a variable is not bound by a
λ-abstraction, it is bound in the context of the derivation (see Fig. 4.2 for an
illustration of de Bruijn indices with contexts). In the following, by saying
that a variable is “free”, we mean that it is not bound by a λ-abstraction,
but simply by the context of the judgment.

Figure 4.2: Context and de Bruijn indices

If we could enforce such an invariant in our formalization, we could com-
pletely forget to check that all of the judgments we consider are closed. It is
quite easy to see that the only place where such check has to be done is in
the typing rule for variables:

100 CHAPTER 4. FORMALIZATION IN COQ

Γwf Γ(x) = A

Γ ` x : A
var

The second premise should read as “x is in the domain of Γ and its type
is A”, and behaves like a lookup function. Barras developed such a lookup
function4 for de Bruijn indices which has the same behavior, allowing us to
state our typing rule for variables in the same way as we would have done
on paper, hiding all the de Bruijn indices:

cVar : forall Γ A x, wf Γ -> A ↓ x ⊂ Γ -> Γ ` x : A

With this function, we are sure that every time we use the cVar rule, the
context is large enough to correctly bind the variable x. Now that we have
hidden the use of de Bruijn indices in the typing judgments, the only places
left where we may need to directly deal with indices manipulation are inside
the lemmas of our development. As we said, things are in fact easier than
we first expected: we only have to directly deal with de Bruijn indices in
two lemmas. The first one is the Weakening lemma, where we want to add
an additional hypothesis in a context. By doing so, we have to modify some
“free” indices in order to take into account the new shape of the context.
Thanks to the shift/lift operator5, it is quite easy to state this lemma, and
once the proof is done, it can be used without thinking of the manipulations
that happen inside.

Here is the actual statement of the Weakening lemma. The notation
ins in env ∆ A x Γ Γ′ is an inductive type that describes the insertion
of a type in a context and takes care of the de Bruijn manipulations: as-
suming A is a well-formed type in ∆ and that Γ is of the shape ∆∆0, then
Γ′ ≡ ∆(x : A)∆O.

Notation "! s" := (Sort s).

Notation " M ↑ n # k " := (lift rec n k M).

Theorem weakening: forall Γ M T, Γ ` M : T ->

forall ∆ A s x Γ′, ins in env ∆ A n Γ Γ′ -> ∆ ` A : !s ->

Γ′ ` M ↑ 1 # n : T ↑ 1 # n.

4In the Coq development, we write A ↓ x ⊂ Γ. for Γ(x) = A.
5In the Coq development, this operator is called lift rec.

4.2. ENCODING PTSS IN A PROOF ASSISTANT 101

In the particular case where the insertion happens at the beginning of the
context (which is the case most of the time), the statement is even easier to
read:

Theorem thinning: forall Γ M T, Γ ` M : T ->

forall A s, Γ ` A : !s -> A::Γ ` M ↑ 1 : T ↑ 1.

The second one is the Substitution lemma, where we want to replace a
“free” variable by a term of the same type. This action also needs to tweak
some indices (the substitution actually replaces one index by a term, so all
the indices above need to be adjusted) but again, once the proof is over,
we do not have to remember what happened inside. Moreover, all traces of
indices have disappeared from the statement itself, which exactly looks like a
statement in a nominal encoding. All the manipulations of de Bruijn indices
have been wrapped into the functions that perform the substitions.

Here is the actual statement for the Substitution lemma within Coq. The
notation sub in env ∆ P A x Γ Γ′ is an inductive type which means that,
assuming ∆ ` P : A is a valid judgment and Γ is of the shape ∆(x : A)∆0,
then Γ′ ≡ ∆(∆0[P/x]).

Theorem substitution : forall Γ M T ∆ P A Γ′ x,
Γ ` M : T -> ∆ ` P : A -> sub in env ∆ P A x Γ Γ′ ->
Γ′ ` M [x ← P] : T [x ← P].

Except from these two places, de Bruijn variables were transparent, and
behaved as if they were an abstract type. Our experience shows that, as long
as we only deal with general statements that quantify over all terms of some
kind, we never need to actually build a particular term by hand, and thus
we avoid the major troubles of the use of de Bruijn indices while retaining
only the interesting points: uniformity of the encoding, easy capture avoiding
substitution, and α-conversion for free.

102 CHAPTER 4. FORMALIZATION IN COQ

Part IV

Conclusion and Further
Research

103

105

Chapter 5

Extensions of PTS

Contents
5.1 Sorts, order and subtyping 107

5.2 Toward a typed conversion for CCω 110

5.2.1 The straightforward approach 110

5.2.2 Other attempts and possible leads 112

5.3 Other leads for future investigations 114

In the previous chapters, we have focused our efforts towards Pure Type
Systems for two main reasons:

1. We wanted to have the most general result we could achieve in order
to save us some work to adapt the results to different implementations:
since PTSs are a framework that describes the core of many typing
systems, we thought it was a good call.

2. PTSs have been used as a starting point for the elaboration of the
theory behind several proof assistants, which is our ultimate goal.

Right now, we have only considered β-equality as our conversion rule. In or-
der to get closer to the actual systems implemented in real software, we can
explore several different ways: we can extend the typing system itself, extend
the syntax of terms, or extend the power of the conversion. Since we are not
interested in using this language in practice (at least not yet), extending its
syntax (with pairs or primitive integers for example) seems pointless at the

106 CHAPTER 5. EXTENSIONS OF PTS

moment.

Extending the power of conversion was our first motivation to investigate
this question: we wanted to define a type system that can deal with βη-
conversion. Dealing with η-conversion is a difficult task, and all the results
we are aware of rely on normalization properties (see [Geu93, Wer94]) The
main issue of adding η to the conversion is that Church-Rosser is no longer
true on raw terms1, it is only true on well-typed terms. This property can
be clearly illustrated by the following counterexample due to Nederpelt:

λxA.(λyB.y)x →β λxA.x ≡ idA
λxA.(λyB.y)x →η λyB.y ≡ idB

If A and B are not equal, idA and idB are two separate normal forms,
and so the Church-Rosser diagram can not be closed.

As we said in the introduction, η-conversion was our first motivation to
investigate the use of typed conversion. If we consider η as an expansion, we
need to check that the term is actually a function (we do not want to expand
every term), and we also need to find the correct type to put in the domain:
we need to have the type of the term when performing the expansion. We
did a few tries in this direction, but to this day, all of our attempts at proving
Church-Rosser for such a typed β-reduction/η-expansion system have failed.
The main issue we faced during our attempts with η-expansion was to find
a correct statement for the Generation lemmas. Now that we are allowed to
expand terms which are typed by a Π-type, variables and applications can
be transformed to λ-abstraction by the reduction. To this day, we did not
find any formulation of these Generation lemmas that where suitable enough
to be used during the proof of Church-Rosser.

The final direction we can choose is to extend the level of types, by adding
inductive types or cumulativity. The first option does not seem too compli-
cated since it looks almost orthogonal to all the blocking steps we encountered
(even if we did not yet investigate the behavior of the guard condition for the
good formation of recursion on the syntax of annotated terms). Instead, we
have tried to extend Pure Type Systems with cumulativity in order to focus
on systems that can not be directly encoded into regular PTSs.

1A raw term is a term which type in unknown, so it can be typable, or not.

5.1. SORTS, ORDER AND SUBTYPING 107

5.1 Sorts, order and subtyping

As a first step towards the full meta-theory of Coq, we first turned to the
Calculus of Constructions with Universes [Miq01] (or CCω) whose meta-
theory is quite close to a full PTS with a simple universe hierarchy2.

Until now, we only considered systems where the conversion was an equal-
ity. This presentation is enough most of the time, but one could want to give
an order to the set of sorts, to build stratified layers of types. The type the-
ory of Russell and Whitehead [WR27] first introduced such a hierarchy in the
set of types to avoid the paradox (also known as the “set of all sets“ paradox)
that Russell found in Frege’s set theory. Another example of such layers is
the type theory of Martin-Löf, built from the “Type : Type” system [ML71]
which had been shown inconsistent by Girard [Gir71]. To fix this problem,
Martin-Löf presented a version with a hierarchy of universes [ML84], which
has since then inspired a lot of other type systems.

Actually, most of CCω can be directly embedded in a PTS by a wise
choice of Ax and Rel, but the cumulativity of Π-types prevent us to make a
complete embedding of CCω inside the PTSs. In order to add subtyping to
PTSs, we need to modify the conversion rule to allow the subtyping of sorts
and its natural extension to products:

Sorts and order in CCω

SortsCCω ::= {Prop} ∪ {Typei | i ∈ N}
AxCCω ::= {(Prop, Type0)} ∪ {(Typei, T ypei+1) | i ∈ N}
RelCCω ::= {(s, Prop, Prop), (Prop, s, s) | s ∈ SortsCCω}∪

{(Typei, T ypei, T ypei) | i ∈ N}
The definition of Axω allows use to consider a total order on sorts, defined
as:

• Prop < Type0 ∀i ∈ N, T ypei < Typei+1

• ∀s, t, u ∈ SortsCCω , if s < t and t < u, then s < u.

2The definition of CCω in [Miq01] is quite ambiguous about the definition of subtyping
and cumulativity. In the following, CCω has to be understood as the pure part of the
Extended Calculus of Constructions [Luo89] (without Σ-types). This is the definition that
is commonly found in the literature.

108 CHAPTER 5. EXTENSIONS OF PTS

Prop ≤β Type0

i ∈ N
Typei ≤β Typei+1

A =β C B ≤β D
ΠxA.B ≤β ΠxC .D

A =β B

A ≤β B
A ≤β B B ≤β C

A ≤β C

Figure 5.1: Subtyping relation of ECC

Subtyping in CCω is described in Fig. 5.1. The central rule is the one that
prevent to encode it as a PTS: two Π-types can be related by the subtyping
relation without being related by the =β equality. As for PTSs, we can
define the computation on raw terms, without any typing information, and
therefore keep a clean distinction between the behavior of cumulativity and
typing judgments: cumulativity does not rely on any typing rule. The typing
rules of CCω can be found in Fig. 5.2.

As you can see, the only difference with PTSs besides instantiation of
Ax and Rel is the conv rule which now involves cumulativity on top of
equality. This system has been designed (together with Σ-types and there
called Extended Calculus of Constructions, ECC for short) by Luo in is PhD
thesis [Luo89], where he proved central properties like Confluence, Subject
Reduction or Strong Normalization.

One interesting thing pointed out by Pollack when looking for a type
checking algorithm for semi-full PTSs and for ECC, is that ECC can be
changed into an equivalent syntax-directed system: it is possible to embed
the conv rule inside the other rules, so that it only remains exactly one typ-
ing rule for each type constructor. The exact same process can be applied to
CCω, which makes the construction of a correct type for a particular term
intuitive, one only has to apply the corresponding rule. Some examples of
syntax-directed systems can be found in [vBJMP93], together with explana-
tions on how to construct them from usual systems.

Even if the subtyping relation strictly extends the expressiveness of the

5.1. SORTS, ORDER AND SUBTYPING 109

∅wf
nil

Γ ` A : s x /∈ Dom(Γ)

Γ(x : A)wf
cons

Γwf (s, t) ∈ AxCCω

Γ ` s : t
sort

Γwf Γ(x) = A

Γ ` x : A
var

Γ ` A : s
Γ(x : A) ` B : t Γ(x : A) `M : B

Γ ` λxA.M : ΠxA.B
lam

Γ ` A : s
Γ(x : A) ` B : t (s, t, u) ∈ RelCCω

Γ ` ΠxA.B : u
pi

Γ `M : ΠxA.B Γ ` N : A

Γ `MN : B[N/x]
app

A ≤β B
Γ `M : A Γ ` B : s

Γ `M : B
conv

Figure 5.2: Typing Rules for CCω

typing system, CCω still enjoys almost the same property about Shape of
Types than PTSs: the only difference is that, in the Ts case, the two trailing
sorts can be strictly ordered :

Theorem 5.1.1 (The Shape of Types in CCω).
If Γ `M : A and Γ `M : B then:

• either M ∈ Tv and A =β B

• or M ∈ Ts and there are ∆, s and t such that A�β Π∆.s, B �β Π∆.t.

• Moreover, in the previous case, either s < t or t < s.

At this point, we are pretty confident that the equivalence between PTSs
and PTSe can be extended to a system with subtyping like CCω, but this is
not as easy as it sounds. In the next section, we are going to detail some of
our most promising attempts toward this result.

110 CHAPTER 5. EXTENSIONS OF PTS

5.2 Toward a typed conversion for CCω

5.2.1 The straightforward approach

The syntax of CCω is close enough to the syntax of PTSs to be able to build
a first system, CCω atr, in the same way we built PTSatr (see Fig. 3.3) from
PTSs: starting form PTSatr, we remove the rules red and exp, and replace
them by the following “typed” subtyping relation:

Γ `M B N : A Γ ` A ≤β B
Γ `M B N : B

sub

Γwf

Γ ` Prop ≤β Type0

Γwf i ∈ N
Γ ` Typei ≤β Typei+1

Γ ` A ∼=β C Γ(x : A) ` B ≤β D
Γ ` ΠxA.B ≤β ΠxC .D

Γ ` A ∼=β B

Γ ` A ≤β B
Γ ` A ≤β B Γ ` B ≤β C

Γ ` A ≤β C

Figure 5.3: Subtyping relation of CCω atr

This system is close enough from PTSatr to be able to prove that it enjoys
all the same properties: we were able to successfully prove that CCω atr enjoys
the Church-Rosser property, the injectivity of Π-types and Subject Reduction.
The only difficulty here is to be cautious during the proofs because of all the
dependencies: B-judgments depend on B+-judgments and ≤β-judgments,
which depend on =β-judgments, which depend on B-judgments. This is the
kind of place where using Coq as a safeguard for well-formed induction was
handy. The proofs are the same as for the usual PTSs, even if CCω is actually
full : the cumulativity added some constraints during the proof of Church-
Rosser that strictly requires to have the full annotation on applications, not
just the co-domain like it was the case for full PTSs.

However, until now, every attempt has failed at proving that CCω can be
annotated in CCω atr using the same process as for PTSs:

5.2. TOWARD A TYPED CONVERSION FOR CCω 111

Lemma 5.2.1. Erased Conversion does not hold in CCω atr.

Proof. Let us build a counterexample to the Erased Confluence (Lemma 3.3.1)
for CCω atr:
Γ = (f : Prop→ Prop, x : Prop) A = fΠxProp.P ropx B = fΠxProp.T ype0x

A and B are well-typed terms3 in CCω atr, under the context Γ:

Γ ` Prop B Prop : Type0 Γ, : Prop ` Prop B Prop : Type0

Γ ` f B f : Prop→ Prop Γ ` x B x : Prop

Γ ` A B A : Prop

Γ ` f B f : Prop→ Prop
Γ ` Prop→ Prop ≤ Prop→ Type0

Γ ` f B f : Prop→ Type0 Γ ` x B x : Prop · · ·
Γ ` B B B : Type0

They also have the same skeleton : |A| = |B| = f x. However, they are
not convertible in CCω atr: if it were the case, by Confluence, we could prove
that the annotations inside A and B both reduce to a same term P0:

Γ ` ΠxProp.P rop B+ P0 : s
Γ ` ΠxProp.T ype0 B+ P0 : t

By Generation, the first reduction entails P0 to be syntactically equal to
ΠxProp.P rop, and the second one to be syntactically equal to ΠxProp.T ype0.
From these two equations, it is possible to prove that Prop and Type0 are
equal, which in contradiction with the definition of sorts. Therefore, Erased
Confluence does not hold for CCω atr.

The issue arises in the annotation process that lifts term from CCω to
CCω atr, more precisely when applying a variable to a term: in the framework
of PTSs, the Weak shape of types property was here to force the head of
an application to either have a unique type modulo conversion, or to be a
λ-abstraction. We made a clever use of this property to show the Erased
Confluence property of PTSatr. If the head of an application was a variable,
we were always sure that its type was “unique” modulo β-conversion.

3The following derivations are shortened for the sake of simplicity, the complete typing
of annotations is not the important part of this counterexample.

112 CHAPTER 5. EXTENSIONS OF PTS

This is no more the case for CCω atr: we can use the sub rule between the
introduction of a variable and the app rule, like we did in the counterexample,
and change the type of the variable for a strictly greater one. This possibility
adds another conclusion to the second part of the conclusion of Weak shape
of types (see Lemma 3.3.2), where M can be a variable.

Lemma 5.2.2 (Weak shape of types in CCω atr). If Γ ` M B ? : A and
Γ `M B ? : B, then:

• either Γ ` A ∼=β B

• or we are in one of the following cases:

1. there are U and V such that Γ ` M B λxU .V : A and Γ ` M B
λxU .V : B.

2. there is s such that Γ `M B s : A and Γ `M B s : B.

3. there are U and V such that Γ ` M B ΠxU .V : A and Γ ` M B
ΠxU .V : B.

4. there is x such that Γ `M B x : A and Γ `M B x : B.

This lemma is proved in the same way we proved Weak shape of types
for PTSatr (see Lemma 3.3.2). Therefore, during the proof of Erased Conflu-
ence, we are no longer sure, in the difficult case, that the head is always an
abstraction: it can be a variable, what prevents us to erase the annotation
by reducing a β-redex.

5.2.2 Other attempts and possible leads

In order to avoid the previous trap, we first tried to restrain the possible oc-
currences of subtyping inside the typing derivations, especially before using
the application rule. As said earlier, CCω can be modified to become totally
syntax-directed, which would prevent to insert cumulativity between a var
and an app rule. Such a syntax-directed version of CCω atr enjoys almost all
the required properties to make a valid candidate to study, but in fact, it
lacks one major property, which is the Right-Hand Reflexivity lemma. As we
noticed while proving the Erased Confluence for PTSatr, without this reflex-
ivity lemma, there is no way we would be able to correctly apply the Weak
shape of type lemma to prove that the whole annotation process is valid, and

5.2. TOWARD A TYPED CONVERSION FOR CCω 113

so to validate our candidate intermediate system for the equivalence.

One has to remember the first reason we added those annotations on the
applications: we needed a remainder of the type information that were for-
gotten by an application, the type of the function. Since we can now modify
this type by cumulativity rather than equality, we need a way to reflect this
behavior into the annotations. This solution was our next attempt, by adding
a new rule that explicitly allows to change the sort level of an annotation:

Γ ` A B A′ : s Γ(x : A) ` Π∆ B Π∆′ : t
Γ `M BM ′ : ΠxA.∆v Γ ` N B N ′ : A v < u

Γ `MΠxA.∆uN BM ′
ΠxA′ .∆′v

N ′ : Π∆[N/x]
app2

Here, the ending sort on the annotation is strictly decreasing from u to
v. So the counterexample can be avoided by first making the sort of the
annotation go from Type0 to Prop, and then making the confluence happen.
This time, the system also enjoys the Right-Hand Reflexivity property, but
it is the diamond property which is failing. This app2 rule easily commutes
with app and itself, but does not behave well with the beta rule. Let us
take a look at this particular case:

1. We are considering two derivations starting form a β-redex:

Γ ` (λxA.M)ΠxC .∆uN BM ′[N ′/x] : Π∆[N/x]u is an instance of beta.

Γ ` (λxA.M)ΠxC .∆uN B (λxA
′′
.M ′′)ΠxC′ .∆′′vN

′′ : Π∆[N/x]u is an in-
stance of app2.

2. By induction hypothesis and Generation, we can find two ways to type
M (with v < u):

(a) Γ(x : A) `M BM ′ : Π∆u

(b) Γ ` λxA.M B λxA
′′
.M ′′ : ΠxA.∆v

By using Generation one more time, we can extract a typing judgment
about M from the second one:

Γ(x : A) `M BM ′′ : B and Γ ` ΠxA.B ≤β ΠxA.∆v (1)

114 CHAPTER 5. EXTENSIONS OF PTS

So we can apply the induction hypothesis to find a common reduct M0

(resp. N0) for M ′ and M ′′ (resp. N ′ and N ′′), and build a candidate to close
the diamond: M0[N0/x]. The next step is to prove that the following two
judgments are correct:

Γ `M ′[N ′/x] BM0[N0/x] : Π∆[N/x]u

Γ ` (λxA
′′
.M ′′)ΠxC

′ .∆′′vN
′′ BM0[N0/x] : Π∆[N/x]u

The first one is easy to prove since this system has the Substitution prop-
erty. However, to prove the second one, we have to apply the beta rule, which
will require the following judgment to hold: Γ(x : A′′) ` M ′′ B M0 : Π∆′′v.
Unfortunately, M0 is typed by B, not by Π∆v (which would be enough since
∆ reduces to ∆′′). At this point, we have no way to relate B and Π∆v
directly, they are hidden inside Π-types in (1).

To be able to prove that we can actually exchange app2 and beta, we
would need to already have the injectivity of Π-types in order to be able to
extract the missing piece of information from (1). Since we are trying to
prove the diamond property, we do not have this possibility at this point of
the development: we are still facing the loop between confluence and injec-
tivity of products.

Our most recent attempts are trying to break this loop by adding explicit
marks when using the strict cumulativity of Π-types during the conversion,
but this is still too early to enter into the details.

5.3 Other leads for future investigations

As we just saw, there is room for direct improvements of this work, but we
would like to explore new paths too, especially with different kinds of logics:

• The parallel between natural deduction and sequent calculus that we
saw in Chapter 2 seems to be a good way to explore the connexion
between inductive and co-inductive types in the Calculus of Inductive
Constructions. Besides the categorical duality, it seems there is an
alternative syntactic duality between these two kinds of type construc-
tions, and also between the guard conditions that we need to respect
if we want to prove that the calculus is terminating. A presentation

5.3. OTHER LEADS FOR FUTURE INVESTIGATIONS 115

inspired by the λµµ̃-calculus of Curien and Herbelin [CH00] seems pos-
sible.

• We saw that PTSs are a good way to build the meta-theory of type
systems and to factorize the work by abstracting some part of the type
system. However PTSs have always been looked at through the lens of
intuitionistic logic (or classical logic if one wants to add classical ax-
ioms). A new interesting approach may be to look at linear logics and
try to understand what could be a PTS in this framework, and what
kinds of new concept can emerge from such constructions. This idea to
translate a particular type system into a linear one as already been tried
(e.g. the Celf [SNS] language which is an extension of the LF frame-
work with linear types), but doing this translation to abstract systems
such as PTSs seems worth investigating, to extend our knownledge of
linearity with dependent types.

116 CHAPTER 5. EXTENSIONS OF PTS

Bibliography

[Abe10] Andreas Abel. Towards normalization by evaluation for the
betaeta-calculus of constructions. In FLOPS, pages 224–239,
2010.

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-
Jacques Lévy. Explicit substitutions. J. Funct. Program.,
1(4):375–416, 1991.

[ACD07] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normaliza-
tion by evaluation for Martin-Löf Type Theory with typed equal-
ity judgements. In 22nd IEEE Symposium on Logic in Computer
Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Pro-
ceedings, pages 3–12. IEEE Computer Society Press, 2007.

[ACP+08] Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce,
Randy Pollack, and Stephanie Weirich. Engineering formal
metatheory. In POPL, pages 3–15, 2008.

[Ada06] Robin Adams. Pure type systems with judgemental equality. J.
Funct. Program., 16(2):219–246, 2006.

[Alt93] Thorsten Altenkirch. Constructions, Inductive Types and Strong
Normalization. PhD thesis, University of Edinburgh, November
1993.

[Bara] Bruno Barras. Coq contribution: A formalisation of Pure Type
Systems. http://www.lix.polytechnique.fr/coq/contribs/
PTS.html.

[Barb] Bruno Barras. Sets in Coq, Coq in Sets. http://www.lix.

polytechnique.fr/~barras/proofs/sets/.

117

http://www.lix.polytechnique.fr/coq/contribs/PTS.html
http://www.lix.polytechnique.fr/coq/contribs/PTS.html
http://www.lix.polytechnique.fr/~barras/proofs/sets/
http://www.lix.polytechnique.fr/~barras/proofs/sets/

118 BIBLIOGRAPHY

[Bar84] H. P. Barendregt. The Lambda Calculus: its Syntax and Se-
mantics, volume 103 of Studies in Logic and the Foundations of
Mathematics. Elsevier, 1984.

[Bar92] H. P. Barendregt. Lambda calculi with types. In Handbook of
Logic in Computer Science, pages 117–309. Oxford University
Press, 1992.

[Ber88] Stefano Berardi. Type Dependence and Constructive mathemat-
ics. PhD thesis, Mathematical Institute Torino, 1988.

[BW97] Bruno Barras and Benjamin Werner. Coq in coq. Technical
report, 1997.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of compu-
tation. In ICFP, pages 233–243, 2000.

[Chu40] Alonzo Church. A Formulation of the Simple Theory of Types.
J. Symb. Log., 5(2):56–68, 1940.

[Chu51] Alonzo Church. The Calculi of Lambda-Conversion, volume 6
of Annals of Mathematical Studies. Princeton University Press,
Princeton, 1951. (second printing, first appeared 1941).

[Coq] Coq Development Team. The Coq Proof Assistant Reference
Manual. http://coq.inria.fr/refman/.

[Cor97] Cristina Cornes. Conception d’un langage de haut niveau de
representation de preuves: Récurrence par filtrage de motifs;
Unification en prsence de types inductifs primitifs; Synthèse de
lemmes d’inversion. PhD thesis, Université Paris 7, November
1997.

[CP03] Iliano Cervesato and Frank Pfenning. A linear spine calculus.
Journal of Logic and Computation, 13(5):639–688, 2003.

[dB72] N.G. de Bruijn. Lambda-calculus notation with nameless dum-
mies: a tool for automatic formula manipulation with applica-
tion to the Church-Rosser theorem. Indag. Math., 34(5):381–392,
1972.

http://coq.inria.fr/refman/

BIBLIOGRAPHY 119

[Fan97] Song Fangmin. Expansion postponement in pure type systems.
J. of Comput. Sci. & Technol., 12(6):555–563, 1997.

[FMCM] Amy Felty, Alan Martin, Roy Crole, and Alberto Momigliano.
Hybrid: a package for higher-order syntax in isabelle and coq.
http://hybrid.dsi.unimi.it/.

[Gal] Équipe Gallium. Le langage Caml. http://caml.inria.fr/.

[Geu93] Herman Geuvers. Logics and Type Systems. PhD thesis,
Katholieke Universiteit Nijmegen, 1993.

[Gir71] Jean-Yves Girard. Une extension de l’interprétation fonc-
tionelle de Gödel l’analyse et son application à l’élimination
des coupures dans l’analyse et la théorie des types. In Proceed-
ings of the Second Scandinavian Logic Symposium, pages 63–92,
1971.

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures dans l’arithmétique d’ordre supérieur. PhD thesis, Uni-
versité Paris 7, 1972.

[Gol81] Warren D. Goldfarb. The undecidability of the second-order
unification problem. Theor. Comput. Sci., 13:225–230, 1981.

[GR02] Francisco Gutiérrez and Blas C. Ruiz. A cut-free sequent cal-
culus for pure type systems verifying the structural rules of
gentzen/kleene. In LOPSTR, pages 17–31, 2002.

[GR03] Francisco Gutiérrez and Blas C. Ruiz. Cut elimination in a class
of sequent calculi for pure type systems. Electr. Notes Theor.
Comput. Sci., 84, 2003.

[GW94] Herman Geuvers and Benjamin Werner. On the church-rosser
property for expressive type systems and its consequences for
their metatheoretic study. In LICS, pages 320–329, 1994.

[HAS] Haskell programming language. http://www.haskell.org/.

[Her94] Hugo Herbelin. A lambda-calculus structure isomorphic to
gentzen-style sequent calculus structure. In CSL, pages 61–75,
1994.

http://hybrid.dsi.unimi.it/
http://caml.inria.fr/
http://www.haskell.org/

120 BIBLIOGRAPHY

[Her95] Hugo Herbelin. Séquents qu’on calcule. PhD thesis, Université
Paris 7, 1995.

[How80] W.A. Howard. The formulae-as-types notion of construction,
pages 479–490. Academic Press, London, New York, 1980.

[HU10] Brian Huffman and Christian Urban. A New Foundation for
Nominal Isabelle. In ITP, pages 35–50, 2010.

[Hue75] Gérard P. Huet. Unification in Typed Lambda Calculus. In
Lambda-Calculus and Computer Science Theory, pages 192–212,
1975.

[Hue02] Gérard Huet. Constructive computation theory. Course notes
on lambda calculus, University of Bordeaux I, 2002., 2002. http:
//yquem.inria.fr/~huet/PUBLIC/CCT.pdf.

[Len06] Stéphane Lengrand. Normalisation & Equivalence in Proof The-
ory & Type Theory. PhD thesis, Université Paris 7 & University
of St Andrews, 2006.

[Luo89] Z. Luo. ECC: An extended calculus of constructions. In Pro-
ceedings of the Fourth Annual Symposium on Logic in computer
science, pages 385–395, Piscataway, NJ, USA, 1989. IEEE Press.

[Mil91] Dale Miller. A logic programming language with lambda-
abstraction, function variables, and simple unification. In Pe-
ter Schroeder-Heister, editor, Extensions of Logic Programming:
International Workshop, Tübingen, volume 475 of LNAI, pages
253–281. Springer-Verlag, 1991.

[Miq01] Alexandre Miquel. Le calcul des constructions implicite: syntaxe
et sémantique. PhD thesis, Université Paris 7, December 2001.

[ML71] Per Martin-Löf. A Theory of Types. 1971.

[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[MP93] James McKinna and Robert Pollack. Pure Type Systems For-
malized. In TLCA, pages 289–305, 1993.

 http://yquem.inria.fr/~huet/PUBLIC/CCT.pdf
 http://yquem.inria.fr/~huet/PUBLIC/CCT.pdf

BIBLIOGRAPHY 121

[MP99] James McKinna and Robert Pollack. Some Lambda Calcu-
lus and Type Theory Formalized. J. Autom. Reasoning, 23(3-
4):373–409, 1999.

[MW97] P.-A. Melliès and B. Werner. A generic normalization proof
for pure type systems. In C. Paulin-Mohring and E. Gimenez,
editors, TYPES’96. LNCS, Springer-Verlag, 1997.

[NPW] Tobias Nipkow, Larry Paulson, and Makarius Wenzel. Isabelle
Proof Assistant. http://www.cl.cam.ac.uk/research/hvg/

Isabelle/.

[Pfe91] Frank Pfenning. Unification and anti-unification in the Calculus
of Constructions. In Sixth Annual IEEE Symposium on Logic in
Computer Science, pages 74–85, Amsterdam, The Netherlands,
July 1991.

[Pol92] R. Pollack. Typechecking in Pure Type Systems. In Informal
Proceedings of the 1992 Workshop on Types for Proofs and Pro-
grams, B̊astad, Sweden, pages 271–288, June 1992.

[Pol94] Robert Pollack. The Theory of LEGO: A Proof Checker for
the Extended Calculus of Constructions. PhD thesis, Univ. of
Edinburgh, 1994.

[Pol98] Erik Poll. Expansion postponement for normalising pure type
systems. J. Funct. Program., 8(1):89–96, 1998.

[POP] POPLmark Challenge. http://alliance.seas.upenn.

edu/~plclub/cgi-bin/poplmark/index.php?title=The_

POPLmark_Challenge.

[PS] Frank Pfenning and Carsten Schürmann. The twelf project.
twelf.plparty.org/.

[Sch24] Moses Schönfinkel. Über die Bausteine der mathematischen
Logik. Mathematische Annalen 92, pages 305–316, 1924.

[SH10] Vincent Siles and Hugo Herbelin. Equality is typable in semi-full
pure type systems. In Proceedings, 25th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS ’10), Edinburgh, UK,
11-14 July 2010. IEEE Computer Society Press, 2010.

http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://alliance.seas.upenn.edu/~plclub/cgi-bin/poplmark/index.php?title=The_POPLmark_Challenge
http://alliance.seas.upenn.edu/~plclub/cgi-bin/poplmark/index.php?title=The_POPLmark_Challenge
http://alliance.seas.upenn.edu/~plclub/cgi-bin/poplmark/index.php?title=The_POPLmark_Challenge
twelf.plparty.org/

122 BIBLIOGRAPHY

[Sila] Vincent Siles. Formalization of equivalence between PTS
and PTSe. http://www.lix.polytechnique.fr/~vsiles/

coq/PTSATR.html.

[Silb] Vincent Siles. Formalization of sequent calculus pure type
system. http://www.lix.polytechnique.fr/~vsiles/coq/

formalisation.html.

[SML] Standard ML of New Jersey. http://www.smlnj.org/.

[SNS] Anders Schack-Nielsen and Carsten Schürmann. The Celf lan-
guage. http://www.logosphere.org/~celf/pmwiki/index.

php.

[Str91] Thomas Streicher. Semantics of type theory: correctness, com-
pleteness, and independence results. Birkhauser Boston Inc.,
Cambridge, MA, USA, 1991.

[Tak95] Masako Takahashi. Parallel reductions in lambda-calculus. Inf.
Comput., 118(1):120–127, 1995.

[Urb08] Christian Urban. Nominal Techniques in Isabelle/HOL. J. Au-
tom. Reasoning, 40(4):327–356, 2008. http://isabelle.in.

tum.de/nominal/example.html.

[vBJ93] L. S. van Benthem Jutting. Typing in pure type systems. Inf.
Comput., 105(1):30–41, 1993.

[vBJMP93] L. S. van Benthem Jutting, James McKinna, and Robert Pollack.
Checking algorithms for pure type systems. In TYPES, pages
19–61, 1993.

[Wer94] Benjamin Werner. Une Théorie des Constructions Inductives.
PhD thesis, Université Paris 7, 1994.

[WL] Benjamin Werner and Gyesik Lee. A simple model of calculus of
inductive constructions with judgemental equality. unpublished
manuscript.

[WR27] Alfred North Whitehead and Bertrand Russell. Principia Math-
ematica. Cambridge University Press, 1925–1927.

http://www.lix.polytechnique.fr/~vsiles/coq/PTSATR.html
http://www.lix.polytechnique.fr/~vsiles/coq/PTSATR.html
http://www.lix.polytechnique.fr/~vsiles/coq/formalisation.html
http://www.lix.polytechnique.fr/~vsiles/coq/formalisation.html
http://www.smlnj.org/
http://www.logosphere.org/~celf/pmwiki/index.php
http://www.logosphere.org/~celf/pmwiki/index.php
http://isabelle.in.tum.de/nominal/example.html
http://isabelle.in.tum.de/nominal/example.html

	I Introduction
	Type systems in a nutshell
	The general setting
	The purpose of programming languages
	A practical example
	Computation on types
	Where to go next ?

	II Untyped equality
	Pure Type Systems
	Pure Type System in Natural Deduction
	Terms and Untyped Reductions
	Presentation of Pure Type Systems

	Pure Type Systems in Sequent Calculus
	Terms and Reduction
	Confluence of -reduction in
	Typing Rules
	Properties of the system

	Delayed Pure Type System in Sequent Calculus
	Typing Rules
	Properties of the system

	Expansion Postponement in Delayed System
	Postponement in Sequent Calculus
	Postponement in Natural Deduction

	Sequent Calculus and Type Inference
	A brief look back at syntactical Pure Type Systems

	III Typed equality
	Judgmental Equality
	PTSs with Judgmental Equality
	Typing Rules
	Subject Reduction and Equivalence

	Basic meta-theory of the annotated system
	Definition of PTSs with Annotated Type Reduction
	General properties of PTSatr
	The Church-Rosser Property in PTSatr
	Consequences of the Church-Rosser property

	Equivalence of PTSatr and PTSs
	Confluence of the annotation process
	Consequences of the Erased Confluence
	Consequences of the equivalence

	Formalization in Coq
	Formal proof: paper or computer ?
	What is a formal proof ?
	Automatic resolution and induction schemes

	Encoding PTSs in a proof assistant
	Questions about encodings of binders
	Higher order encodings
	Our final choice: de Bruijn indices

	IV Conclusion and Further Research
	Extensions of PTS
	Sorts, order and subtyping
	Toward a typed conversion for CC
	The straightforward approach
	Other attempts and possible leads

	Other leads for future investigations

