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A combinatorial model

Graphs, surfaces and maps



Maps and surfaces. Definition

a map is an embedding of a graph in a surface with simply
connected faces, considered up to homeomorphisms of the surface.

6 o9

Rooted map = one edge is distinguished and oriented.

For the sphere, we make planar pictures,
taking the infinite face on the right hand

side of the root.



Maps and surfaces. Maps vs graphs

Distinct maps may share the same underlying graph.

+

map = graph + cyclic order of edges around vertices.

— Upon labelling %—edges, a map can be coded by these cyclic orders.

— The number of maps with n edges is finite

Unlike graphs, rooted maps are trivial to test for isomorphisms:
one can decide if M7 = M5 in linear time in the size.



Subfamilies. Maps as discrete surfaces

3-regular (or cubic) maps 4-regular maps




The number of planar maps

Tutte formulas and a bijection



Enumeration.

— What is the number of rooted planar maps with n edges ?
1, 2, 9, 54, 378,...

— What is the number of rooted triangulations with n triangles 7
1, 3, 13, 68, 399, ...

Questions raised by Tutte (60’s) in relation with the four color theorem.

The smallest maps: Ro={*}, Ri={ o> Q 1
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Maps, labels and roots.

R,,: rooted; L,,: labelled; M.,,: unrooted.

— A rooted map with n edges has (2n — 1)! distinct %—edge labellings

=  rooted = labelled

— A map M with n edges has +— t?M) possible roots

= rooted ~ unrooted

In other terms:

‘Rn‘ — (2n 1)! |£ | — ZMEM Aut?M)



Enumeration. Surprinsing exact results in the planar case

Theorem (Tutte’62)

2 - 3”(2%)' C9 n
#{planar maps, n edges} = T ~ =T 12
2”+1(3n)' C1

#{triangulations, 2n faces} (27/2)"

(2n 4 2)!n! T nb/2

and a few other nice formulas for other families.

+ about twenty families of maps have algebraic generating functions.
— Planar constellations. Bousquet-Mélou & S. ’99.

— S-connected triangulations. Gao & Wormald ’01.

Remark. Planar graphs are much harder to count: their asymptotic
number was only found this year (Noy & Gimenez '05).
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Planar quadrangulations. Tutte’s formula

Theorem (Tutte 62). The number of rooted quadrangulations

2 3" (2n
Cn] = n+2n+1 (n)

— Tutte’s proof through recursions and algebra on GF.

with n faces is

— Bessis-Itzykson-Zuber’78: through perturbative expansion of matrix integrals.
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Planar quadrangulations. Tutte’s formula

Reformulation. The number of rooted pointed quadrangulations
with n faces is

ol B 3" (2n
2l = m+2le.l =255 (7).

Observe the occurence of Catalan numbers n%rl (2:) ..
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Embedded trees.

A rooted plane tree is a rooted planar map with one face.

The number of rooted plane trees
with n edges is

1 2n
n+1\n

We miss a factor 3™.
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Embedded trees. Interpreting -2 (*").

An embedded tree is made of a rooted plane tree with vertices
embedded in Z.
More precisely, each edge is mapped independantly into {—1,0,+1}.

The number of embedded trees

with n edges is

-2-101 2

3" 2n
n+1\n

We shall exhibit a direct one-to-one correspondence between
— rooted pointed quadrangulations with n faces, and
— “twice” embedded trees with n edges.
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A bijection. Distances..

Let us label vertices by distances to the red vertex.

I+1 i+1

|+2

I+1 i+1

There are only two possible configurations around a face (bipartiteness).
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A bijection. Local rules

Consider the following two local rules.

Apply these rules to all faces.
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A bijection. Local rules

Consider the following two local rules.

I+1 i+1
|+2

I+1 i+1

Apply these rules to all faces.
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A bijection. Local rules

Consider the following two local rules.

I+1 i+1
|+2

I+1 i+1

Proposition: the edges produced by local rules form a tree.
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A bijection. Local rules

Proposition: the edges produced by local rules form a tree.

. i
i
I+ I+
i+1 i+1 ! @ !

The root can be only in one of the two regions delimited by a cycle.

Taking 7 + 1 minimal on the cycle, a contradiction is obtained
between rules and labelling by distance.
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A bijection. back from the tree.

By construction, labels in the tree differ at most by one along edges.

Upon translating all labels so that the root is 0, the resulting tree
is an embedded tree.

Proposition. The quadrangulation can be recovered from the tree
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A bijection. back from the tree.

Starting from a translated embedded tree:

Missing edges are recovered by a greedy (¢ — ¢ — 1) matching
around the tree.
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A bijection. back from the tree.

Starting from a shifted embedded tree:

Missing edges are recovered by a greedy (¢ — ¢ — 1) matching
around the tree.

28



A bijection. back from the tree.

Starting from a shifted embedded tree:

Missing edges are recovered by a greedy (¢ — ¢ — 1) matching
around the tree.

29



A bijection. back from the tree.

Starting from a shifted embedded tree:

Missing edges are recovered by a greedy (¢ — ¢ — 1) matching
around the tree.

30



A bijection. back from the tree.

Starting from a shifted embedded tree:

Missing edges are recovered by a greedy (¢ — ¢ — 1) matching
around the tree.

31



A bijection. Conclusion.

< 2
4
3
2
1
The bijection proves |Q?| = 2n3:1 (2??), and thus allows to recover
Tutte’s formula |Q,,| = nL—|—2 n3—:2 (2??)

The local rule is a simplified variant of a recursive bijection (Cori-Vauquelin’83).

It was recently extended to general bipartite planar maps (Bouttier et al’05.)
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Random maps

as a discrete model of random geometries
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Uniform random maps. Definition.

Let R, be a family of rooted maps

say, for instance R, = {planar quadrangulations with n faces}.

Consider a r.v. X,, with uniform distribution on R,,:

1

—, for all R € R,,.
Ron]

Pr(X, =R) =

— This model is exactly equivalent to the dynamical triangulations that

are used in statistical physics to modelize 2d discretized quantum geometry.
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A gallery of random maps

35



How is the intrinsic geometry of these random surfaces 7

Random maps appear to be quite different from regular lattices.

— a fat tree structure 7

— branchings into baby universes 7
— Hausdorf dimension ?

— short separators 7

These questions have raised a lot of interest in statistical physics.
Today we present some results on distances in random quadrangulations.

36



Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of a random vertex
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

e r, is the radius (maximal distance from the red vertex)

In particular r,, < D,, < 2r,,, where D,, is the diameter.
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Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of the random vertex
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

X =3

e r, is the radius (maximal distance from the red vertex)

In particular r,, < D,, < 2r,,, where D,, is the diameter.
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Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of the random vertex
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

xM =3
X =
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Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of the random vertex
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

X =3
X =8
XM =6

e r, is the radius (maximal distance from the red vertex)

In particular r,, < D,, < 2r,,, where D,, is the diameter.
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Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of the random vertex
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

e r, is the radius (maximal distance from the red vertex)
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Profile and radius. On the grid ?

On a grid with n faces (1/n x y/n), the behaviour is clear:

— N
L _ o ®
— —

In particular,
xF = O(k) for k < n'/?2, and r, grows like n'/2.

How do these parameters behave on random quadrangulations ?
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Distances and embedded trees.

According to the previous bijection:

Uniform distribution on quadrangulations with n faces

Uniform distribution on embedded trees with n edges

Moreover the distribution of labels exactly encodes the profile!

In particular, the radius r,, = max(k | X&) > 0) is the difference
between the min and max labels of a random embedded tree.

These are identities in law, not just asymptotic results.
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Distances and random embedded trees. Typical labels.

Proposition. Branches of a uniform random plane tree with n edges
have typically lenght ©(/n)

Proposition. The labels along a branch form a random walk with

uniform increments in {—1,0,+1}.

= labels on a length ¢ branch are ©(\/¢)

Hence typical labels are of order ©(n'/4), and a typical label is
expected to be shared by ©(n3/4) vertices.

In terms of random quadrangulations this means that the typical

distance between two random vertices is O(n'/4).
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Profile and radius. Results

Much more precise results follow from the study of embedded trees.

For instance:

1/4

Theorem (Chassaing-S. 2002). The correct scaling is £ = tn"/*, and

1/4
_p3/ax i) Jaw, X(t), a process supported on RY,

~ the radius satisfies E(r,) ~ cte-n'/4

n—oo

The process underlying X (¢) is the Integrated Superbrownian Excusion,

introduced by Aldous to describe the continuum limit of embedded trees.

Our theorem is based on a description of the ISE in terms of Brownian
snakes due to Le Gall.
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Profile and radius. Comparison.

The previous results are in agreement with previous predictions

from physics.

For random triangulations:

e Two beautyful heuristic calculations by physicists Watabiki,
Ambjgrn et al. (1994). The Hausdorff dimension is 4 :

meaning for k < n'/?, E(fOk XY ~ k4,

for k> n'/*, E(X\™) is exp. decreasing
They had already proven the only possible scaling to be k = tn'/*.

Our correspondence between quadrangulations and embedded trees has lead to
many further results, see Marckert-Mokkadem’04, Bouttier et al.’04,
Bousquet-Melou’05, Marckert-Miermont’05.
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Random planar quadrangulations. A picture of distances.
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Maps on surfaces

The scheme of a map
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Local rules for higher genus?

The fact that local rules produce a green tree in the plane is
equivalent to saying that the dual red edges essentially form a tree:

In genus g > 0, local rules form cycles (the argument was based on
planarity). However it remains true that red edges do not form cycles.
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What happens on a surface?

During the growth of a dual tree on a surface of genus g, all faces

are slowly merged into one big face.

The final result is not a tree but a map with one face.

Theorem (Marcus-S. 05) The local rule yields a bijection between:
— rooted pointed quadrangulations with n faces and genus g,
— and embedded one face maps with n edges and genus g.
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What happens on a surface?

Embedded one face maps can be decomposed as follows:

— remove recursively vertices of degree 1,

— replace chains by superedges and normalize labels.

The resulting schemes are one face maps with vertices of degree > 3.

..

Proposition. The number of schemes of genus g is finite.

Proposition. The generating function of embedded one face maps
having a given scheme is a simple rational function of the

generating function of embedded trees.
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What happens on a surface? Asymptotic enumeration

— The dominant schemes of genus g (those producing most maps)
are made of 49 — 2 vertices of degree 3 and 6g — 3 edges.

— An embedded map of genus g + 1 can be produced from an
embedded map of genus g by gluying 3 points with the same label:

this creates generically 4 new vertices in the dominant scheme.

— There are ©(n'/4) labels and ©(n3/4) points share a given label

= there are O(n'/4(n3/4)3) = ©(n®/?) ways to increment the genus.

#{quad. n faces, genus g} = ns9. #{planar quad. n faces}.
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What happens on a surface. Asymptotic results

We have hence rederived combinatorially the following result:

Theorem (Bender-Canfield’94 / also independantly in physics)
The family of quadrangulations on surfaces satisfies

#{quadrangulations of genus g with n faces} = cgn%(g_l) o",

where p = 12.

The form n 3@~ D p" of the asymptotic formula is typical of families
of maps: the constant p depends on the family, but the polynomial
correction is “always” driven by the same “universal critical

exponent of pure 2d quantum gravity” 2 5(1—g).
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Conclusion.

The previous approach yields the first rigorous proof that distances
remain of order ©(n'/4) in quadrangulations with n faces on higher

genus surfaces.

Many questions remain open about the geometry of random

(planar) maps. In particular:

- Is it possible to separate a map of size n in 2 roughly equal parts
with a cycle of length < n'/4 ?

This would help us to understand whether planar map have cut
points in the continuum limit, or if there is a chance that they keep

the topology of the sphere.
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