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Abstract. We present a new numerical abstract domain for static analy-
sis of the errors introduced by the approximation by floating-point arith-
metic of real numbers computation, by abstract interpretation [3]. This
work extends a former domain [4,8], with an implicitly relational domain
for the approximation of the floating-point values of variables, based on
affine arithmetic [2]. It allows us to analyze non trivial numerical com-
putations, that no other abstract domain we know of can analyze with
such precise results, such as linear recursive filters of different orders,
Newton methods for solving non-linear equations, polynomial iterations,
conjugate gradient algorithms.

1 Introduction

The idea of the domain of [4,8]1 is to provide some information on the source
of numerical errors in the program. The origin of the main losses of precision
is most of the time very localized, so identifying the operations responsible for
these main losses, while bounding the total error, can be very useful. The analysis
follows the floating-point computation, and bounds at each operation the error
committed between the floating-point and the real result. It relies on a model of
the difference between the result x of a computation in real numbers, and the
result fx of the same computation using floating-point numbers, expressed as

x = fx +
∑

�∈L∪{hi}
ωx

� ϕ� . (1)

In this relation, a term ωx
� ϕ�, � ∈ L denotes the contribution to the global

error of the first-order error introduced by the operation labeled �. The value
of the error ωx

� ∈ R expresses the rounding error committed at label �, and its
propagation during further computations on variable x. Variable ϕ� is a formal
variable, associated to point �, and with value 1. Errors of order higher than
one, coming from non-affine operations, are grouped in one term associated to
special label hi. We refer the reader to [4,8] for the interpretation of arithmetic
operations on this domain.

A natural abstraction of the coefficients in expression (1), is obtained using
intervals. The machine number fx is abstracted by an interval of floating-point
1 Some notations are slightly different from those used in these papers, in order to

avoid confusion with the usual notations of affine arithmetic.
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numbers, each bound rounded to the nearest value in the type of variable x. The
error terms ωx

i ∈ R are abstracted by intervals of higher-precision numbers, with
outward rounding. However, results with this abstraction suffer from the over-
estimation problem of interval methods. If the arguments of an operation are
correlated, the interval computed with interval arithmetic may be significantly
wider than the actual range of the result.

Resembling forms, though used in a very different way, were introduced in
the interval community, under the name of affine arithmetic [2], to overcome
the problem of loss of correlation between variables in interval arithmetic. We
propose here a new relational domain, relying on affine arithmetic for the com-
putation of the floating-point value fx. Indeed, we cannot hope for a satisfying
computation of the bounds of the error without an accurate computation of the
value, even with very accurate domains for the errors. But affine arithmetic is
designed for the estimation of the result of a computation in real numbers. We
will show that it is tricky to accurately estimate from there the floating-point
result, and that the domain for computing fx had to be carefully designed.

In section 2, we introduce this new domain and establish the definition of
arithmetic operations over it. First ideas on these relational semantics were pro-
posed in [12,13]. In section 3, we present a computable abstraction of this domain,
including join and meet operations, and a short insight into practical aspects,
such as fixed-point computations, cost of the analysis, and comparison to other
domains such as polyhedra. For lack of space, we only give hints of proofs of
the correctness of the abstract semantics, in sections 2.3 and 3.1. Finally, we
present in section 4, results obtained with the implementation of this domain in
our static analyzer FLUCTUAT, that demonstrate its interest.

Notations: Let F be the set of IEEE754 floating-point numbers (with their infini-
ties), R the set of real numbers with ∞ and −∞. Let ↑◦: R → F be the function
that returns the rounded value of a real number x, with respect to the rounding
mode ◦. The function ↓◦: R → F that returns the roundoff error is defined by

∀x ∈ R, ↓◦ (x) = x− ↑◦ (x) .

We note IR the set of intervals with bounds in R. In the following, an interval will
be noted in bold, a, and its lower and upper bounds will be noted respectively
a and a. And we identify when necessary, a number with the interval with its
two bounds equal to this number. ℘(X) denotes the set of subsets of X .

2 New Domain for the Floating-Point Value fx

Affine arithmetic was proposed by De Figueiredo and Stolfi [2], as a solution to
the overestimation in interval arithmetic. It relies on forms that allow to keep
track of affine correlations between quantities. Noise symbols are used to express
the uncertainty in the value of a variable, when only a range is known. The
sharing of noise symbols between variables expresses dependencies. We present
here a domain using affine arithmetic for the floating-point computation.
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In section 2.1, we present briefly the principles of affine arithmetic for real
numbers computations. Then in section 2.2, we show on an example the chal-
lenges of its adaptation to the estimation of floating-point computations. In
sections 2.3 and 2.4, we present the solution we propose, and finally in section
2.5 we demonstrate this solution on the example introduced in section 2.2.

2.1 Affine Arithmetic for Computation in Real Numbers

In affine arithmetic, a quantity x is represented by an affine form, which is a
polynomial of degree one in a set of noise terms εi :

x̂ = αx
0 + αx

1ε1 + . . . + αx
nεn, with εi ∈ [−1, 1] and αx

i ∈ R.

Let AR denote the set of such affine forms. Each noise symbol εi stands for an
independent component of the total uncertainty on the quantity x, its value is
unknown but bounded in [-1,1]; the corresponding coefficient αx

i is a known real
value, which gives the magnitude of that component. The idea is that the same
noise symbol can be shared by several quantities, indicating correlations among
them. These noise symbols can be used not only for modelling uncertainty in
data or parameters, but also uncertainty coming from computation.

Let E0 be the set of expressions on a given set V of variables (all possible
program variables) and constants (intervals of reals), built with operators +, −,
∗, / and √ . We note ĈA the set of abstract contexts in AR. We can now define,
inductively on the syntax of expressions, the evaluation function ˆeval : E0×ĈA →
AR. For lack of space, we only deal with a few operations. The assignment of a
variable x whose value is given in a range [a, b], introduces a noise symbol εi :

x̂ = (a + b)/2 + (b − a)/2 εi.

The result of linear operations on affine forms, applying polynomial arithmetic,
can easily be interpreted as an affine form. For example, for two affine forms x̂
and ŷ, and a real number r, we get

x̂ + ŷ = (αx
0 + αy

0) + (αx
1 + αy

1)ε1 + . . . + (αx
n + αy

n)εn

x̂ + r = (αx
0 + r) + αx

1ε1 + . . . + αx
nεn

rx̂ = rαx
0 + rαx

1ε1 + . . . + rαx
nεn

For non affine operations, the result applying polynomial arithmetic is not an
affine form : we select an approximate linear resulting form, and bounds for
the approximation error committed using this approximate form are computed,
that create a new noise term added to the linear form. For example, for the
multiplication of x̂ and ŷ, defined on the set of noise symbols ε1, . . . , εn, a first
over-approximation for the result (the one given in [2]), writes

x̂ × ŷ = αx
0αy

0 +
n∑

i=1

(αx
i αy

0 + αy
i αx

0)εi + (
n∑

i=1

|αx
i |.|

n∑

i=1

|αy
i |)εn+1.
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However, this new noise term can be a large over-estimation of the non-affine
part, the additional term is more accurately approximated by

n∑

i=1

|αx
i αy

i |[0, 1] +
∑

1≤i�=j≤n

|αx
i αy

j |[−1, 1].

This term is not centered on zero, the corresponding affine form then writes

x̂× ŷ = (αx
0αy

0 +
1
2

n∑

i=1

|αx
i αy

i |)+
n∑

i=1

(αx
i αy

0 +αy
i αx

0)εi +(
1
2

n∑

i=1

|αx
i αy

i |+
∑

i�=j

|αx
i αy

j |)εn+1.

For example, if x̂ = ε1 + ε2 and ŷ = ε2, we get with the first formulation,
x̂× ŷ = 2ε3 ∈ [−2, 2] and with the second formulation, x̂× ŷ = 1

2 + 3
2ε3 ∈ [−1, 2].

However, the exact range here is [-0.25,2] : indeed there could be a more accurate
computation for the multiplication, using Semi-Definite Programming2.

2.2 Motivation for the Affine Real Form Plus Error Term Domain

Using affine arithmetic for the estimation of floating-point values needs some
adaptation. Indeed, the correlations that are true on real numbers after an arith-
metic operation, are not exactly true on floating-point numbers.

Consider for example two independent variables x and y that both take their
value in the interval [0,2], and the arithmetic expression ((x+ y)− y)− x. Using
affine arithmetic in the classical way, we write x = 1 + ε1, y = 1 + ε2, and we
get zero as result of the expression. This is the expected result, provided this
expression is computed in real numbers. But if we take x as the nearest floating-
point value to 0.1, and y = 2, then the floating-point result is −9.685755e − 8.

In order to model the floating-point computation, a rounding error must thus
be added to the affine form resulting from each arithmetic operation. But we
show here on an example that the natural extensions of real affine arithmetic
are not fully satisfying. We consider an iterated computation x = x − a ∗ x, for
0 ≤ a < 1 and starting with x0 ∈ [0, 2].

- With interval arithmetic, x1 = x0 − ax0 = [−2a, 2], and iterating we get an
over-approximation (due to the use of floating-point numbers), of the already
unsatisfying interval xn = [(1 − a)n − (1 + a)n, (1 − a)n + (1 + a)n].

- We now consider affine arithmetic with an extra rounding error added for
each arithmetic operation. We suppose for simplicity’s sake that all coefficients
are exactly represented, and we unfold the iterations of the loop. We note u the
value ulp(1), which is the absolute value of the difference between 1 and the
nearest floating-point number, and u = [−u, u]. We note f̂n = x̂n + δn, where
x̂n is the affine form representing the result of the computation of xn in real
numbers, and δn the interval error term giving the floating-point number. We
have x̂0 = 1 + ε1 and, using affine arithmetic on real numbers, we get

x̂n = (1 − a)n + (1 − a)n ε1 , ∀n ≥ 0.

2 We thank Stéphane Gaubert who pointed out this to us.
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The rounding error on x0 is δ0 = 0. Using interval arithmetic for the propagation
of the error δn, and adding the rounding errors corresponding to the product
axn and to the subtraction xn − axn, we get

δn+1 = (1 + a)δn + a(1 − a)nu + (1 − a)n+1u = (1 + a)δn + (1 − a)nu (2)

In this computation, u denotes an unknown value in an interval, that can be
different at each occurrence of u. Using property (1 − a)n ≥ 1 − an, ∀a ∈
[0, 1] and n ≥ 1, we can easily prove that for all n, nu ⊂ δn . The error term
increases, and f̂n is not bounded independently of the iterate n.

- Now, to take into account the dependencies also between the rounding errors,
we introduce new noise symbols. For a lighter presentation, these symbols are
created after the rounding errors of both multiplication ax and subtraction x −
ax, and not after each of them. Also, a new symbol is introduced at each iteration,
but it agglomerates both new and older errors. In the general case, it will be
necessary to keep as many symbols as iterations, each corresponding to a new
error introduced at a given iteration. The error term is now computed as an
affine form δ̂n = μnε2,n, with μ0 = 0 and

δ̂n+1 = (1 − a)μnε2,n + a(1 − a)nu + (1 − a)n+1u.

Introducing a new symbol ε2,n+1 ∈ [−1, 1], it is easy to prove that we can write

δ̂n = n(1 − a)n−1u ε2,n ∀n ≥ 1.

The error converges towards zero. However, we still loose the obvious information
that xn is always positive. Also the computation can be costly : in the general
case, one symbol per operation and iteration of the loop may be necessary.

We now propose a semantics that avoids the cost of extra noise symbols, and
with which we will show in section 2.5, that we can prove that xn ≥ 0, ∀n.

2.3 Semantics for the Floating-Point Value: Abstract Domain

Linear correlations between variables can be used directly on the errors or on
the real values of variables, but not on floating-point values. We thus propose
to decompose the floating-point value fx of a variable x resulting from a trace
of operations, in the real value of this trace of operations rx, plus the sum of
errors δx accumulated along the computation, fx = rx + δx. Other proposals
have been made to overcome this problem, most notably [10].

We present in this section an abstract domain, in the sense that we model
a program for sets of inputs and parameters (given in intervals). However, it is
not fully computable, as we still consider coefficients of the affine forms to be
real numbers. A more abstract semantics, and lattice operations, will be briefly
presented in the implementation section 3.

Real Part rx: Affine Arithmetic. We now index a noise symbol εi by the
label i ∈ L corresponding to the operation that created the symbol. The repre-
sentation is sparse, as all operations do not create symbols. In this section and for
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more simplicity, we suppose that at most one operation, executed once, is asso-
ciated to each label. The generalization will be discussed in the implementation
section.

The correctness of the semantics, defined by ˆeval, is as follows. We note rx the
smallest interval including r̂x and C, the set of concrete contexts, i.e. functions
from the variables to R, seen as a subset of ĈA. We have an obvious concretisation
function concR : ĈA → ℘(C), making all possible choices of values for the noise
symbols in the affine forms it is composed of. This also defines γ from affine
forms to intervals, which cannot directly define a strong enough correctness
criterion. Affine forms define implicit relations, we must prove that in whatever
expression we are using them, the concretisation as interval of this particular
expression contains the concrete values that this expression can take3. We have to
compare ˆeval with the evaluation function eval : E0 ×C → R which computes an
arithmetic expression in a given (real number) context. Formally, the semantics
of arithmetic expressions in AR, given by ˆeval, is correct because for all e ∈ E0,
for all Ĉ ∈ ĈA, we have property:

∀C ∈ concR(Ĉ), eval(e, C) ∈ γ ◦ ˆeval(e, Ĉ) (3)

Error Term δx : Errors on Bounds Combined with Maximum Error.
The rounding errors associated to the bounds rx and rx is the only informa-
tion needed to get bounds for the floating-point results. In the general case,
our semantics only gives ranges for these errors : we note δx

− and δx
+ the in-

tervals including the errors due to the successive roundings committed on the
bounds rx and rx. The set of floating-point numbers taken by variable x after
the computation then lies in the interval

fx = [rx + δx
−, rx + δx

+].

Note that δx
− can be greater for example than δx

+, so this is not equivalent to
fx = rx + (δx

− ∪ δx
+).

In affine arithmetic, the bounds of the set resulting from an arithmetic op-
eration x � y are not always got from the bounds of the operands x and y as
in interval arithmetic : in this case, the error inside the set of values is also
needed. We choose to represent it by an interval δx

M that bounds all possible
errors committed on the real numbers in interval rx.

This intuition can be formalized again using abstract interpretation [3]. We
define D = AR × IR

3 and γ̃ : D → ℘(R × F) by:

γ̃(d, δM , δ+, δ−) =

⎧
⎪⎨

⎪⎩

{(r, f) ∈ R × F/r ∈ γ(d), f − r ∈ δM}
∩

{
(r, f) ∈ R × F/f ≥ inf γ(d) + δ−

}

∩
{
(r, f) ∈ R × F/f ≤ sup γ(d) + δ+

}

The correctness criterion for the abstract semantics �� of an operator � (�R

in the real numbers, �F in the floating-point numbers) is then the classical:
3 This is reminiscent to observational congruences dating back to the λ-calculus.
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∀d̃, ẽ ∈ D, ∀rx, ry ∈ R, ∀fx, fy ∈ F such that (rx, fx) ∈ γ̃(d) and (ry , fy) ∈ γ̃(e),

(rx�Rry, fx�Ffy) ∈ γ̃(d��e) (4)

Now the order4 on D is as follows: (d, δM , δ+, δ−) ≤D (d′, δ′
M , δ′

+, δ′
−) if

⎧
⎪⎨

⎪⎩

d ≤D d′

δM ⊆ δ′
M[

min γ(d) + δ−, max γ(d) + δ+

]
⊆

[
min γ(d′) + δ′

−, max γ(d′) + δ′
+

]

2.4 Arithmetic Operations on Floating-Point Numbers

The error on the result of a binary arithmetic operation x � y, with � ∈ {+, ×},
is defined as the sum of two terms :

δx�y
. = δx�y

.,p + δx�y
.,n ,

with . ∈ {−, +, M}. The propagated error δx�y
.,p is computed from the errors on

the operands, and δx�y
.,n expresses the rounding error due to current operation �.

Propagation of the Errors on the Operands. The propagation of the max-
imum error uses the maximum errors on the operands. For computing the errors
on the result, we need to compute the values of the noise symbols r̂x and r̂y for
which the bounds of rz are obtained. For that, we compute the values of the εi

that give the bounds of rz, and check if for these values, we are on bounds of
rx and ry.

Let bz
i , for i ∈ L such that αz

i �= 0, be the value of εi that maximizes r̂z . We
have

rz = αz
0 −

∑

i∈L, αz
i �=0

αz
i b

z
i = αz

0 −
∑

i∈L

|αz
i |

rz = αz
0 +

n∑

i∈L, αz
i �=0

αz
i b

z
i = αz

0 +
∑

i∈L

|αz
i |

We can then compute the values of x and y that lead to the bounds of rz (such
that rz = r̂x−(z) � r̂y

−(z) and rz = r̂x
+(z) � r̂y

+(z)) :

r̂x−(z) = αx
0 −

∑

{i, αz
i �=0}

αx
i bz

i +
∑

{i, αz
i =0}

αx
i εi

r̂x
+(z) = αx

0 +
∑

{i, αz
i �=0}

αx
i bz

i +
∑

{i, αz
i =0}

αx
i εi

We note ex
−(z) (resp ex

+(z)) the interval of error associated to r̂x−(z) (resp
r̂x
+(z)), used to get the lower bound rz (resp the upper bound rz) of the result :

4 Depending on the order on AR to be formally defined in section 3.1.
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ex
−(z) =

⎧
⎨

⎩

δx
− if rx

−(z) = rx
−(z) = rx,

δx
+ if rx

−(z) = rx
−(z) = rx,

δx
M otherwise.

ex
+(z) =

⎧
⎨

⎩

δx
+ if rx

+(z) = rx
+(z) = rx,

δx
− if rx

+(z) = rx
+(z) = rx,

δx
M otherwise.

We deduce the following determination of ex
−(z) and ex

+(z) :
- if ∀i ∈ L such that αx

i �= 0, αx
i αz

i > 0, then ex
−(z) = δx

− and ex
+(z) = δx

+
- else if ∀i ∈ L such that αx

i �= 0, αx
i αz

i < 0, then ex
−(z) = δx

+ and ex
+(z) = δx

−
- else ex

−(z) = ex
+(z) = δx

M .

Then, using these notations, we can state the propagation rules

δx+y
−,p = ex

−(x + y) + ey
−(x + y)

δx+y
+,p = ex

+(x + y) + ey
+(x + y)

δx+y
M,p = δx

M + δy
M

δx×y
−,p = ex

−(x × y)ry(x × y) + ey
−(x × y)rx(x × y) + ex

−(x × y)ey
−(x × y)

δx×y
+,p = ex

+(x × y)ry(x × y) + ey
+(x × y)rx(x × y) + ex

+(x × y)ey
+(x × y)

δx×y
M,p = δx

Mry + δy
Mrx + δx

Mδy
M

Addition of the New Rounding Error. Adding the propagation error to
the result of the computation in real numbers, we get the real result of the
computation of fx � fy. We then have to add a new error corresponding to the
rounding of this quantity to the nearest floating-point number.

We note ↓◦ (i), the possible rounding error on a real number in an interval i.
We suppose the rounding mode used for the execution is to the nearest floating-
point, and note it “n” as subscript.

↓n (i) =
{

↓n (i) if i = i,
1
2ulp(max(|i|, |i|))[−1, 1] otherwise.

Then, the new rounding error is defined by

δx�y
−,n = − ↓n (rx	y + δx	y

−,p)

δx�y
+,n = − ↓n (rx	y + δx	y

+,p)

δx�y
M,n = − ↓n (rx�y + δx�y

M,p)

Note that the new rounding errors on the bounds, δf�g
−,n and δf�g

+,n, are in fact
real numbers, identified to a zero-width interval.

These error computations are correct with respect to (4), section 2.3.

2.5 Example

We consider again the example introduced in section 2.2, and we now use the
domain just described. The real part is computed using affine arithmetic, as in
section 2.2. We have δx0

− = δx0
+ = δx0

M = 0 , and, for n greater or equal than 1,
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δaxn

− = aδxn

− + ↓n (aδxn

− )
δaxn

+ = aδxn

+ + ↓n (2a(1 − a)n + aδxn

− )

Using δ−axn

− = −δaxn

+ , we deduce

δ
xn+1
− = δxn

− + δ−axn

+ + ↓n (δxn

− + δ−axn

+ )
= (1 − a)δxn

− − ↓n (aδxn

− )+ ↓n ((1 − a)δxn

− − ↓n (aδxn

− ))

As δx0
− is zero, the error on the lower bound of xn stays zero : δxn

− = 0 for all
n. This means in particular that fxn ≥ 0. The same computation for the error
on the upper bound leads to

δ
xn+1
+ = (1 − a)δxn

+ − ↓n (2a(1 − a)n + aδxn

+ )

+ ↓n (2(1 − a)n+1 + (1 − a)δxn

+ − ↓n (2a(1 − a)n + aδxn

+ ))

Using real numbers, errors on the lower and upper bounds could be computed
exactly. The maximum error on the interval is got by the same computation as
in section 2.2 with no extra noise symbols for the errors, that is by (2). Indeed,
we could also improve the computation of the maximum error this way, but it
will be no longer useful with the (future) relational computation of the errors,
to be published elsewhere.

The results got here and in section 2.2, are illustrated in figure 1. In 1 a), the
bounds of the computation in real numbers for interval (IA) and affine (AA)
arithmetic are compared : the computation by affine arithmetic gives the actual
result. In 1 b), we add to the affine arithmetic result the maximum rounding
error computed as an interval, and we see that after about 120 iterates, the
rounding error prevails and the result diverges. Then in 1 c), we represent the
maximum rounding error computed using extra noise symbols. And finally, in 1
d), we represent the rounding error computed on the higher bound of the real
interval : it is always negative. Remembering that the error on the lower bound
is zero, this proves that the floating-point computation is bounded by the result
obtained from the affine computation in real numbers. The fixpoint computation
is not presented, as it requires the join operator presented thereafter. However,
the analysis does converge to the actual fixpoint.

3 Implementation Within the Static Analyzer
FLUCTUAT

We define here a computable abstraction of the domain presented in section 2.3.
We now abstract further away from trace semantics : we need control-flow join
and meet operators, which must be designed with special care in order to get
an efficient analysis of loops. Also, the analyzer does not have access to real
numbers, we bound real coefficients by intervals. The semantics for arithmetic
operations presented in section 2.3 must thus be extended to interval coefficients.
Finally, we insist on the interest of our analysis, in terms of cost and accuracy,
compared to existing domains such as polyhedrons.
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Fig. 1. Evolution of xn and rounding errors with iterations

3.1 Extended Abstract Domain

We note AI the set of affine forms x̂ = αx
0 + αx

1ε1 + . . . + αx
nεn with αx

0 ∈ R

and αx
i ∈ IR (i > 0). AR is seen as a subset of AI. Let now E be the set of

expressions on variables in V , constant sets, and built with operators +, −, ∗,
/, √ , ∪ and ∩. The semantics we are going to define, through ˆeval generalized
to expressions in E and for AI, is correct with respect to criterion as (3), but
now with expressions in E . We will only need to define the additional join ∪ and
meet ∩ operations.

The set AI forms a poset, with the following order: f̂ ≤ ĝ if for all variables x,
for all abstract contexts Ĉ, calling Ĉf̂ (respectively Ĉĝ) the context which has

value Ĉ(y) for all variables y �= x, and value f̂ (respectively ĝ) for variable x, we
have:

concR ◦ ˆeval(e, Ĉf̂ ) ⊆ concR ◦ ˆeval(e, Ĉĝ)

Note this implies that the concretization as a subset of R of Ĉf̂ is included in
the concretization as a subset of R of Ĉĝ (take e = x). Note as well that this is
coherent with property (3), defining correctness: any bigger affine interval than a
correct one remains correct. Unfortunately, this does not define a lattice, and we
will only have approximate join and meet operations. Also, an important prop-
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erty is that concR does not always provide with an upper approximation of an
environment, i.e. intervals are not always less precise than affine forms, depend-
ing on the “continuation”. This can be true though, for instance if continuations
only contain linear expressions.

3.2 Join and Meet Operations

Affine Forms. Technically, we use a reduced product of the domain of affine
intervals with the domain of intervals. As we just saw, it is not true that the
evaluation of any expression using affine forms is always more accurate than the
evaluation of the same expression using intervals (i.e. f̂ ≤ γ(f̂)).

For any interval i, we note

mid(i) =↑◦
(

i + i

2

)
, dev(i) = max(↑◦ (i − mid(i)), ↑◦ (mid(i) − i))

the center and deviation of the interval, using finite precision numbers. Suppose
for instance αx

0 ≤ αy
0 . A natural join between affine forms r̂x and r̂y , associated

to a new label k is

r̂x∪y = mid([αx
0 , αy

0 ]) +
∑

i∈L

(αx
i ∪ αy

i ) εi + dev([αx
0 , αy

0 ]) εk (5)

This join operation is an upper bound of r̂x and r̂y in the order defined in
section 3, but might be greater than the union of the corresponding intervals.
However, if the over-approximation is not too large, it is still interesting to keep
the relational formulation for further computations.

There is no natural intersection on affine forms, except in particular cases.
In the general case, a possibility is to define the meet (at a new label k) of the
affine forms as the intersection of the corresponding intervals :

r̂x∩y = mid(rx ∩ ry) + dev(rx ∩ ry) εk

Another simple possibility is to take for r̂x∩y the smaller of the two affine forms
r̂x and r̂y, in the sense of the width of the concretized intervals rx and ry.

Also, a relation can sometimes be established between the noise symbols of
the two affine forms, that may be used in further computations.

Error Domain. The union on the intervals of possible errors due to successive
roundings is

δx∪y
M = δx

M ∪ δy
M .

For errors on the bounds, a natural and correct union is δx∪y
− = δx

− ∪ δy
− and

δx∪y
+ = δx

+ ∪ δy
+. However, the set of floating-point values coming from this

model can be largely overestimated in the cases when the union of affine forms
gives a larger set of values than rx ∪ ry would do. We thus propose to use a
more accurate model, still correct with respect to correctness criterion (4), where
δx∪y

− is no longer the error on the lower bound due to successive roundings, but
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the representation error between the minimum value represented by the affine
form, and the minimum of the floating-point value (same thing for the error on
the maximum bound) :

δx∪y
− =

(
δx

− + rx − rx∪y
) ⋃(

δy
− + ry − rx∪y

)

δx∪y
+ =

(
δx
+ + rx − rx∪y

)⋃(
δy
+ + ry − rx∪y

)

A disturbing aspect of this model is that we no longer have for all variable x,
δx

− ⊂ δx
M and δx

+ ⊂ δx
M . However, we still have δx− ≥ δx

M and δx
+ ≤ δx

M .
For the meet operation on errors, we define the obvious:

δx∩y
M = δx

M ∩ δy
M

δx∩y
− = δx

− if rx ≥ ry , else δy
−

δx∩y
+ = δx

+ if rx ≤ ry , else δy
+

3.3 Loops and Widening

In practice, a label may correspond not to a unique operation, but to sets of
operations (for example a line of program or a function). The semantics can be
easily extended to this case, creating noise symbols only when a label is met.

Moreover, in loops, different noise symbols will have to be introduced for the
same arithmetic operation at different iterations of the loop : a first solution,
accurate but costly, is to introduce each time a new symbol, that is εi,k for label
i in the loop and iteration k of the analyzer on the loop, and to keep all symbols.
A fixpoint is got when the error terms are stable, for each label j introduced out
of the loop, the interval coefficient αxn

j is stable, and for each label i introduced
in the loop, the sum of contributions

∑n
k=1 αxn

i,k[−1, 1] is stable5. That is, a
fixpoint of a loop is got at iteration n for variable x if

δxn

− ⊂ δ
xn−1
− , δxn

+ ⊂ δ
xn−1
+ , δxn

M ⊂ δ
xn−1
M

αxn

j ⊂ α
xn−1

j for all j outside the loop∑n
k=1 αxn

i,k[−1, 1] ⊂
∑n−1

k=1 α
xn−1

i,k [−1, 1] for all i in the loop

In the same way, a natural widening consists in applying a standard widening
componentwise on errors, on coefficients of the affine forms for labels outside
the loop, and on the sum

∑n
k=1 αxn

i,k[−1, 1] for a label i in the loop. However, in
some cases, reducing the affine form, or part of it, to an interval after a number
of iterations, allows to get a finite fixpoint while the complete form does not.

Another possible implementation is to keep only dependencies between a lim-
ited number of iterations of a loop, and agglomerate older terms introduced
in the loop. For example, a first order recurrence will need only dependencies
from one iteration to the next to get accurate results, while higher order recur-
5 This is a correct criterion with respect to the order defined in section 3.1, but weaker

conditions may be used as well.
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rences will need to keep more information. This problem has to be considered
again when getting out of the loop, for a good trade-off between efficiency and
accuracy.

3.4 Use of Finite Precision Numbers in the Analysis

The analyzer does not have access to real numbers, real coefficients in the affine
forms are abstracted using intervals with outward rounding. We use for this the
MPFR library [11] that provides arithmetic on arbitrary precision floating-point
numbers, with exact rounding. However, the abstract domain defined in 3.1 has
a real and not an interval coefficient αx

0 . Technically, this is achieved by creating
a new noise symbol whenever coefficient αx

0 can no longer be computed exactly
with the precision used. Morally, these additional noise symbols are used to keep
the maximum of correlations, even between errors introduced artificially because
of the imprecision of the analysis. Also, in some cases, using high precision
numbers is useful to get more accurate results.

3.5 Comparison with Related Abstract Domains

There is a concretisation operator from affine intervals to polyhedra, whose image
is the set of center-symmetric bounded polyhedra. Calling m the number of
variables, n the number of noise symbols, the joint range of the m variables is
a polyhedra with at most of the order of 2n faces within a n-dimensional linear
subspace of Rm (if m ≥ n). Conversely, there is no optimal way in general to
get an affine form containing a given polyhedra.

Zones [9] are particular center-symmetric bounded polyhedra, intersected with
hypercubes, so our domain is more general (since we always keep affine forms
together with an interval abstraction), even though less general than polyhedra.
It is more comparable to templates [7], where new relations are created along
the way, when needed through the evaluation of the semantic functional.

We illustrate this with the following simple program (labels are given as
comments):

x = [0,2] // 1
y = x+[0,2] // 2

z = xy; // 3
t = z-2*x-y; // 4

In the polyhedral approach, we find as invariants the following ones:

line 2 line 3 line 4

{
0 ≤ x ≤ 2
0 ≤ y − x ≤ 2

⎧
⎨

⎩

0 ≤ x ≤ 2
0 ≤ y − x ≤ 2
0 ≤ z ≤ 8

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ x ≤ 2
0 ≤ y − x ≤ 2
0 ≤ z ≤ 8
−8 ≤ t ≤ 8

At line 3, we used the concretisation of the invariant of line 2 on intervals to
get the bounds for z, as is customarily done in zones and polyhedra for non-
linear expressions. The particular polyhedra that affine intervals represent make
it possible to interpret precisely non-linear expressions, which are badly handled
in other linear relational domains:
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line 2 line 3 line 4

{
x = 1 + ε1
y = 2 + ε1 + ε2

⎧
⎨

⎩

x = 1 + ε1
y = 2 + ε1 + ε2
z = 5

2 + 3ε1 + ε2 + 3
2 ε3 ∈ [−3, 8]

⎧
⎪⎪⎨

⎪⎪⎩

x = 1 + ε1
y = 2 + ε1 + ε2
z = 5

2 + 3ε1 + ε2 + 3
2 ε3

t = − 3
2 + 3

2 ε3 ∈ [−3, 0]

Notice the polyhedral approach is momentarily, at line 3, better than the esti-
mate given by affine arithmetic 6, but the relational form we compute gives much
better results in subsequent lines: t has in fact exact range in [− 9

4 , 0] close to
what we found: [−3, 0]. This is because the representation of z contains implicit
relations that may prove useful in further computations, that one cannot guess
easily in the explicit polyhedral format (see the work [7] though).

Another interest of the domain is that the implicit formulation of relations
is very economical (in time and memory), with respect to explicit formulations,
which need closure operators, or expensive formulations (such as with polyhe-
dra). For instance: addition of two affine forms with n noise symbols costs n
elementary operations, independently of the number of variables. Multiplication
costs n2 elementary operations. Moreover, affine operations (addition and sub-
traction) do not introduce new noise symbols, and existing symbols can be easily
agglomerated to reduce this number n. This leads to an analysis whose cost can
be fairly well controlled.

It is well known that it is difficult to use polyhedra when dealing with more
than a few tens or of the order of one hundred variables. We actually used
this domain on programs containing of the order of a thousand variables (see
example CG10 where we deal with 189 variables already) with no help from any
partitioning technique.

4 Examples

Our static analyzer Fluctuat is used in an industrial context, mostly for validat-
ing instrumentation and control code. We refer the reader to [6] for more on our
research for industrial applications, but present here some analysis results. They
show that the new domain for the values of variables is of course more expensive
than interval arithmetic, but comparable to the domain used for the errors. And
it allows us to accurately analyze non trivial numerical computations.

Consider the program of figure 2 that computes the inverse of A by a Newton
method. The assertion A = BUILTIN DAED DBETWEEN(20.0,30.0) tells the an-
alyzer that the double precision input A takes its value between 20.0 and 30.0.
Then the operation PtrA = (signed int *) (&A) casts A into an array of two
integers. Its exponent exp is got from the first integer. Thus we have an initial
estimate of the inverse, xi, with 2−exp. Then a non linear iteration is computed
until the difference temp between two successive iterates is bounded by e-10.
6 However, as pointed out in section 2.1, we could use a more accurate semantics for the

multiplication. Note also that in our analyzer, we are maintaining a reduced product
between affine forms and intervals, hence we would find here the same enclosure for
z as with general polyhedra.
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Here, using the relational domain, Fluctuat proves that, for all inputs between
20.0 and 30.0, the algorithm terminates in a number of iterations between 5 and
9, and states that the output xi is in the interval [3.33e-2,5.00e-2] with an error
due to rounding in [-4.21e-13,4.21e-13]. Executions confirm that respectively
5 iterations for A = 20.0, and 9 iterations for A = 30.0, are needed. Exact
bounds for the number of iterations of this loop for a range of input values is a
difficult information to be synthetized by the analyzer : indeed, if we study the
same algorithm for simple precision floating-point numbers, instead of double
precision, there are cases in which the algorithm does not terminate. Also, the
interval for the values indeed is a tight enclosure of the inverse of the inputs.
The error is over-estimated, but this will be improved by the future relational
domain on the errors. More on this example can be found in [6].

Now, to demontrate the efficiency of our approach, we used it on several
typical examples, with performances shown on the table below. Column #l is the
number of lines of C code of the program, #v describes the number of variables
known to the main function (local variables are not counted). Column Int shows
the floating-point value plus global error result, using an interval abstraction of
the floating-point value. On the next line is the time spent by the analyzer, in
seconds (laptop PC, Pentium M 800MHz, 512Mb of memory), and the maximal
memory it had to use (which is allocated by big chunks, hence the round figures).
The same is done in column Aff, with the affine forms plus error domain.

Name #l #v Int Aff
(fl/int) (time/mem) (time/mem)

Poly 8 3 [-7,8] + [-3.04,3.04]e-6 ε [-2.19, 2.75] +[-2.2,2.2]e-6 ε
(3/0) (0s/4Mb) (0.01s/4Mb)

Inv 26 9 [-∞,∞] + [-∞,∞]ε [3.33,5]e-2 + [-4.2,4.2]e-13 ε
(4/5) (≥12000s/4Mb) (228s/4Mb)

F1a 29 8 [-∞,∞] + [-∞,∞]ε [-10,10] + [-∞,∞]ε
(6/2) (0.1s/4Mb) (0.63s/7Mb)

F1b 11 6 [-∞,∞] + [-∞,∞]ε [-0.95,0.95] + [-∞,∞]ε
(4/2) (0.03/4Mb) (0.26/4Mb)

idem [-1.9,1.9]e2 + [-4.8,4.8]e-3 ε
(9.66s/8Mb)

F2 19 7 [-2.5,2.5]e12 + [-2.3,2.3]e-2 ε [-1.22e-4,1.01] + [-9.4,9.4]e-4 ε
(6/1) (0.13s/4Mb) (0.45s/7Mb)

SA 164 32 [1.06,2.52] + [-4.4,4.4]e-5ε [1.39,2.03] + [-4.1,4.1]e-5 ε
(24/8) (24.96s/16Mb) (25.2s/16Mb)

SH 162 9 [-∞,∞] + [-∞,∞]ε [4.47,5.48] + [-1.4,1.4]e-4 ε
(7/2) (116.72s/4Mb) (54.07s/4Mb)

GC4 105 56 [-∞,∞] + [-∞,∞]ε [9.99,10.0] + [-3.2,3.1]e-5 ε
(53/3) (4.72s/10Mb) (1.11s/7Mb)

GC10 105 189 [-∞,∞] + [-∞,∞]ε [54.97,55.03] + [-∞,∞]ε
(186/3) (22.18s/15Mb) (15.6s/23Mb)

A2 576 75 [6.523,6.524] + [-5.5,5.6]e-6 ε [6.523,6.524] + [-5.5,5.6]e-6 ε
(59/16) (1.43s/9Mb) (2.4s/13Mb)
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double xi, xsi, A, temp;
signed int *PtrA, *Ptrxi, cond, exp, i;
A = __BUILTIN_DAED_DBETWEEN(20.0,30.0);
PtrA = (signed int *) (&A); Ptrxi = (signed int *) (&xi);
exp = (signed int) ((PtrA[0] & 0x7FF00000) >> 20) - 1023;
xi = 1; Ptrxi[0] = ((1023-exp) << 20);
cond = 1; i = 0;
while (cond) {
xsi = 2*xi-A*xi*xi; temp = xsi-xi;
cond = ((temp > e-10) || (temp < -e-10));
xi = xsi; i++; }

Fig. 2. Newton method for computing 1
A

Poly is the computation of a polynomial of degree 4, not in Horner form,
from an initial interval. Inv is the program we depicted above. F1a and F1b
are two linear recursive filters of order 1. F1b is almost ill-conditionned, and
needs an enormous amount of virtual unrollings to converge in interval seman-
tics (we use 5000 unfoldings of the main loop, in the line below the entry cor-
responding to F1b, named idem). The potentially infinite error found by our
current implementation of affine forms, in F1a and F1b, is due to the fact we
do not have a relational analysis on errors yet. F2 is a linear recursive filter of
order 2. SA and SH are two methods for computing the square root of a num-
ber, involving iterative computations of polynomials (in SH, of order 5). GC4
and GC10 are gradient conjugate algorithms (iterations on expressions involv-
ing division of multivariate polynomials of order 2), for a set of initial matrices
“around” the discretisation of a 1-dimensional Laplacian, with a set of initial con-
ditions, in dimensions 4x4 and 10x10 respectively in GC4 and GC10. A2 is a sam-
ple of an industrial program, involving filters, and mostly simple iterative linear
computations.

5 Conclusion

In this paper, we introduced a new domain which gives tight enclosures for both
floating-point and real value semantics of programs. This domain has been im-
plemented in our static analyzer Fluctuat, which is used in an industrial context.

As we see from the examples of section 4, it always provides much more precise
results than the interval based abstract domain of [4], at a small memory expense,
and sometimes even faster. Notice that our domain is in no way specialized, and
works also well on non-linear iterative schemes. As far as we know, no current
static analyzer is able to find as tight enclosures for such computations as we do,
not mentionning that we are also analyzing the difference between floating-point
and real number semantics. The only comparable work we know of, for bounding
the floating-point semantics, is the one of [1]. But the approach in [1] is more
specialized, and would probably compare only on first and second order linear
recursive filters.
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Current work includes relational methods for the error computation, as quick-
ly hinted in [13] (it should be noted that the computation of values will also
benefit from the relational computation of errors), and better heuristics for join,
meet and fixed point approximations in the domain of affine forms. We are also
working on underapproximations relying on the same kind of domains.
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