
Robustness Analysis of Finite Precision

Implementations

Eric Goubault and Sylvie Putot

CEA Saclay Nano-INNOV, CEA LIST, Laboratory for the Modelling and Analysis
of Interacting Systems, Point Courrier 174, 91191 Gif sur Yvette CEDEX

{Eric.Goubault,Sylvie.Putot}@cea.fr

Abstract. A desirable property of control systems is robustness to in-
puts, when small perturbations of the inputs of a system will cause only
small perturbations on outputs. This property should be maintained at
the implementation level, where close inputs can lead to different ex-
ecution paths. The problem becomes crucial for finite precision imple-
mentations, where any elementary computation is affected by an error.
In this context, almost every test is potentially unstable, that is, for a
given input, the finite precision and real numbers paths may differ. Still,
state-of-the-art error analyses rely on the stable test hypothesis, yielding
unsound error bounds when the conditional block is not robust to uncer-
tainties. We propose a new abstract-interpretation based error analysis
of finite precision implementations, which is sound in presence of unsta-
ble tests, by bounding the discontinuity error for path divergences. This
gives a tractable analysis implemented in the FLUCTUAT analyzer.

1 Introduction

In the analysis of numerical programs, a recurrent difficulty when we want to
assess the influence of finite precision on an implementation, is the possibility
for a test to be unstable: when, for a given input, the finite precision control
flow can differ from the control flow that would be taken by the same execution
in real numbers. Not taking this possibility into account may be unsound if the
difference of paths leads to a discontinuity in the computation, while taking it
into account without special care soon leads to large over-approximations.

This unstable test problem is thus closely related to the notion of continu-
ity/discontinuity in programs, first introduced in [13]. Basically, a program is
continuous if, when its inputs are slightly perturbed, its output is also only
slightly perturbed, very similarly to the concept of a continuous function. Dis-
continuity in itself can be a symptom of a major bug in some critical systems,
such as the one where a F22 Raptor military aircraft almost crashed after cross-
ing the international date line in 2007, due to a discontinuity in the treatment of
dates. We thus want to automatically characterize conditional blocks that per-
form a continuous treatment of inputs, and are thus robust, and those that do
not. Consider the program presented on the left hand side of Figure 1, where in-
put x takes its real value in [1, 3], with an error 0 < u << 1, that can come from

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 50–57, 2013.
c© Springer International Publishing Switzerland 2013

Robustness Analysis of Finite Precision Implementations 51

previous finite precision computations or from any uncertainty such as sensor
imperfection. The test is potentially unstable: for instance, if the real value of x
at control point [1] is rx[1] = 2, then its floating-point value is fx

[1] = 2 + u. Thus
the execution in real numbers would take the then branch and lead at control
point [2] to ry[2] = rx[1] + 2 = 4, whereas the floating-point execution would take

the else branch and lead to fy
[4] = fx

[1] = 2 + u. The test is not only unstable,

but also introduces a discontinuity around the test condition (x == 2). Indeed,
for rx[1] = 2, there is an error due to discontinuity of fy

[4] − ry[2] = −2 + u.

In the rest of the paper, we propose a new analysis, that enhances earlier
work by the authors [11], by computing and propagating bounds on those dis-
continuity errors. This previous work characterized the computation error due to
the implementation in finite precision, by comparing the computations in real-
numbers with the same computations in the floating-point semantics, relying on
the stable test assumption: the floating-point number control flow does not di-
verge from the real number control flow. When this assumption is not satisfied,
the comparison between the two semantics (the error bounds) could be unsound.
This issue appears in all other (static or dynamic) existing analyzes of numerical
error propagation; the expression unstable test is actually taken from CADNA
[4], a stochastic arithmetic instrumentation of programs, to assert their numer-
ical quality. In Hoare provers dealing with both real number and floating-point
number semantics, e.g. [1] this issue has to be sorted out by the user, through
suitable assertions and lemmas.

Here as in previous work, we rely on the relational abstractions of real num-
ber and floating numbers semantics using affine sets (concretized as zonotopes)
[9,10,5,6,11]. But we now also, using these abstractions, compute and solve con-
straints on inputs such that the execution potentially leads to unstable tests,
and thus accurately bound the discontinuity errors, computed as the difference
of the floating-point value in one branch and the real value in another, when the
test distinguishing these two branches can be unstable.

x := [1,3] + u; // [1]
/* r̂x[1] = 2 + εr1; ê

x
[1] = u */

if (x ≤ 2)
y = x+2; // [2]
/* r̂y[2] = 4 + εr1;
êy[2] = u+ δεe2 */

else
y = x; // [3]
/* r̂y[4] = 2 + εr1;
/* êy[4] = u */

// [4] /* r̂y[4] = r̂y[2] � r̂y[4]
êy[4] = êy[2] � êy[3] + dy[4] */

εr1

-1 0−u 1

y

0

1

2

3

4

5

Φr:

Φf :

[then]: εr1 ≤ 0 [else]: εr1 > 0

[then]: εr1 ≤ −u [else]: εr1 > −u

Φr ∩ Φf : [unstable]: −u < εr1 ≤ 0

r̂y[2]

f̂y
[2] f̂y

[3]

r̂y[3]

Fig. 1. Running example

52 E. Goubault and S. Putot

Related Work. In [2], the authors introduce a continuity analysis of programs.
This approach is pursued in particular in [3], where several refinements of the
notion of continuity or robustness of programs are proposed, another one being
introduced in [14]. In [14], the algorithm proposed by the authors symbolically
traverses program paths and collects constraints on input and output variables.
Then for each pair of program paths, the algorithm determines values of input
variables that cause the program to follow these two paths and for which the
difference in values of the output variable is maximized. One difference between
the approaches is that we give extra information concerning the finite precision
flow divergence with respect to the real number control flow, potentially exhibit-
ing flawed behaviors. Also, their path-sensitive analysis can exhibit witnesses for
worst discontinuity errors, but at the expense of a much bigger combinatorial
complexity. Robustness has also been discussed in the context of synthesis and
validation of control systems, for instance in [16]. Indeed, robustness has long
been central in numerical mathematics, in particular in control theory. The field
of robust control is actually concerned in proving stability of controlled systems
where parameters are only known in range.

Contents. Our main contribution is a tractable analysis that generalizes both
the abstract domain of [11] and the continuity or robustness analyses: it ensures
the finite precision error analysis is now sound even in the presence of unstable
tests, by computing and propagating discontinuity error bounds for these tests.
More details on this analysis and further experiments are available in [12].

2 Preliminaries: Affine Sets for Real Valued Analysis

We sketch here some basics on the abstract domains based on affine sets for the
abstraction of real number semantics, necessary to understand the robustness
analysis presented here. We refer to [8,9,10,5,6] for more details.

Affine arithmetic is a more accurate extension of interval arithmetic, that takes
into account affine correlations between variables. An affine form is a formal sum

over a set of noise symbols εi, x̂
def
= αx

0 +
∑n

i=1 α
x
i εi, with αx

i ∈ R for all i. Each
noise symbol εi stands for an independent component of the total uncertainty
on the quantity x̂, its value is unknown but bounded in [-1,1]. The same noise
symbol can be shared by several quantities, indicating correlations among them.
The result of linear operations on affine forms is an affine form, and is thus
interpreted exactly. For non affine operations, an approximate linear resulting
form is computed, and bounds for the error committed using this approximate
form are used to define a new noise term that makes the resulting form a sound
over-approximation.

We use matrix notations to handle affine sets, that is tuples of affine forms. We
noteM(n, p) the space of matrices with n lines and p columns of real coefficients.
A tuple of affine forms expressing the set of values taken by p variables over n
noise symbols εi, 1 ≤ i ≤ n, is represented by a matrix A ∈ M(n+ 1, p).

Robustness Analysis of Finite Precision Implementations 53

Constrained Affine Sets. As described in [6], tests are interpreted by leaving
affine sets unchanged and adding some constraints on the εi noise symbols, in-
stead of having them vary freely into [-1,1]: we restrain ourselves to executions
(or inputs) that can take the considered branch. These constraints can be ab-
stracted in any abstract domain, the simplest being intervals. We note A for this
abstract domain, and use γ : A → ℘(Rn) for the concretisation operator, and
α : ℘(Rn) → A for some abstraction operator.

This means that abstract values X are now composed of a zonotope identified
with its matrix RX ∈ M(n + 1, p), together with an abstraction ΦX of the con-
straints on the noise symbols, X = (RX , ΦX). The concretisation of such con-
strained zonotopes or affine sets is γ(X) =

{
tCXε | ε ∈ γ(ΦX)

}
. For ΦX ∈ A, and

x̂ an affine form, we note ΦX(x̂) the interval [infε∈γ(ΦX) x̂(ε), supε∈γ(ΦX) x̂(ε)].

Example 1. On the running example from Figure 1, the real value of input x,
given in [1, 3], will be abstracted by the affine form r̂x[1] = 2 + εr1, where εr1 is a

symbolic variable with values in [−1, 1]. We associate the abstract value X with
RX = (2 1), i.e. x̂ = 2 + ε1, and γ(ΦX) = γ(ε1) = [−1, 1].

Note the functional abstraction: affine forms represent a function from inputs
to variable values. We will use this to interpret tests, and in particular to compute
unstable tests conditions. Here, the interpretation of the test if (x<=2) in the
then branch is translated into constraint 2+εr1 ≤ 2, that is εr1 ≤ 0, thus γ(ΦX) =
[−1, 0]. Then, the interval concretisation of x̂ is γ(x̂) = [2− 1, 2] = [1, 2].

We also need an upper bound operator to combine abstract values coming
from different branches. The computation of upper bounds (and if possible min-
imal ones) on constrained affine sets is a difficult task, already discussed in several
papers [9,10,6,7], and orthogonal to the robustness analysis presented here. We
will thus consider we have an upper bound operator on constrained affine sets
we note �, and focus on the additional term due to discontinuity in tests.

3 Robustness Analysis of Finite Precision Computations

We now introduce an analysis of finite precision computations, based on an ab-
straction similar to some previous work [11], but refined to be sound in presence
of unstable tests, and to exhibit the potential discontinuity errors due to these
tests. For more concision, we insist here on what is directly linked to an accurate
treatment of these discontinuities, and rely as much as possible on [11].

Floating-point computation is considered as a perturbation of the same com-
putation in real numbers, and we use zonotopic abstractions of real computations
and errors (introducing respectively noise symbols εri and εej), from which we get
an abstraction of floating point computations. But we make here no assumptions
on control flows in tests and will compute branch conditions independently on
the real value and the floating-point value. For each branch, we thus get two sets
of constraints: εr = (εr1, . . . , ε

r
n) ∈ ΦX

r for the real control flow (test computed
on real values RX), and (εr, εe) = (εr1, . . . , ε

r
n, ε

e
1, . . . , ε

e
m) ∈ ΦX

f for the finite

precision control flow (test computed on float values RX + EX).

54 E. Goubault and S. Putot

Definition 1. An abstract value X, defined at a given control point, for a pro-
gram with p variables x1, . . . , xp, is thus a tuple X = (RX , EX , DX , ΦX

r , ΦX
f)

composed of the following affine sets and constraints, for all k = 1, . . . , p:
⎧
⎪⎪⎨

⎪⎪⎩

RX : r̂Xk = rX0,k +
∑n

i=1 r
X
i,k ε

r
i where εr ∈ ΦX

r

EX : êXk = eX0,k +
∑n

i=1 e
X
i,k ε

r
i +

∑m
j=1 e

X
n+j,k ε

e
j where (εr, εe) ∈ ΦX

f

DX : d̂Xk = dX0,k +
∑o

i=1 d
X
i,k ε

d
i

f̂X
k = r̂Xk + êXk where (εr, εe) ∈ ΦX

f

where RX ∈ M(n+1, p) defines the real values of variables, and r̂Xk giving the real
value of xk is defined on the εri ; E

X ∈ M(n+m+1, p) defines the rounding errors
(or initial uncertainties) and their propagation through computations using the
εri which handle the uncertainty on the real value and the εei which handle the
uncertainty on the rounding errors; DX ∈ M(o+ 1, p) defines the discontinuity
errors, using noise symbols εdi ; Φ

X
r abstracts the set of constraints such that the

real control flow reaches the control point, εr ∈ ΦX
r , and ΦX

f abstracts the set of

constraints for the finite precision control flow, (εr, εe) ∈ ΦX
f .

Example 2. Let us consider the running example. We already saw that the real
value of input x is abstracted by the affine form r̂x[1] = 2+ εr1. Its error is ê

x
[1] = u

and its finite precision value is f̂x
[1] = r̂x[1] + êx[1] = 2 + εr1 + u.

Test Interpretation. A test e1 op e2, where e1 and e2 are two arithmetic
expressions, and op an operator among≤, <,≥, >,=, �=, is interpreted as z op 0,
where z is the abstraction of expression e1 - e2 with affine sets. We interpret
this test independently for real and floating-point value, relying on the test
interpretation on constrained affine sets introduced in [6]:

Definition 2. Let X = (RX , EX , DX , ΦX
r , ΦX

f) a constrained affine set. We

define Z = ([[xk op 0]]X by
⎧
⎪⎨

⎪⎩

(RZ , EZ , DZ) = (RX , EX , DX)
ΦZ

r = ΦX
r

⋂
α
(
εr | rX0,k +

∑n
i=1 r

X
i,kε

r
i op 0

)

ΦZ
f = ΦX

f

⋂
α
(
(εr, εe) | rX0,k + eX0,k +

∑n
i=1(r

X
i,k + eXi,k)ε

r
i +

∑m
j=1 e

X
n+j,kε

e
j op 0

)

Example 3. Consider the running example. We start with r̂x[1] = 2+ εr1, ê
x
[1] = u.

The condition for the real control flow to take the then branch is r̂x[1] = 2+εr1 ≤ 2,

thus Φr is εr1 ∈ [−1, 0]. The condition for the finite precision control flow to take

the then branch is f̂x
[1] = r̂x[1] + êx[1] = 2 + εr1 + u ≤ 2, thus Φf is εr1 ∈ [−1,−u].

Thus, the unstable test condition being that for the same input the real and float
control flow are different, this amounts to intersecting these two conditions on
εr1, and yields −u < εr1 ≤ 0. These constraints are illustrated on Figure 1, with
u = 0.2: Φr denotes the constraints on the real value, Φf , the constraints on the
finite precision value, and Φr ∩ Φf , the unstable test condition. For the other
possibility for an unstable test, that is the execution in real numbers takes the
else branch while the float execution takes the then branch, the constraints are
εr1 < 0 and εr1 ≤ −u, which are incompatible. This possibility is thus excluded.

Robustness Analysis of Finite Precision Implementations 55

Interval Concretisation. The interval concretisation of the value of program
variable xk defined by the abstract value X = (RX , EX , DX , ΦX

r , ΦX
f), is, with

the notations of Section 2:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γr(r̂
X
k) = ΦX

r (rX0,k +
∑n

i=1 r
X
i,k ε

r
i)

γe(ê
X
k) = ΦX

f (eX0,k +
∑n

i=1 e
X
i,k ε

r
i +

∑m
j=1 e

x
n+j,k ε

e
j)

γd(d̂
X
k) = ΦX

f (dX0,k +
∑o

l=1 d
x
l,k ε

d
l)

γf (f̂
X
k) = ΦX

f (rX0,k + eX0,k +
∑n

i=1(r
X
i,k + eXi,k) ε

r
i +

∑m
j=1 e

x
n+j,k ε

e
j)

Example 4. Take variable y in the running example. In the then branch, its
real value is r̂y[2] = r̂x[1] + 2 = 4 + εr1, the error êy[2] = êx[1] + δεe2, where δ is the

bound on the elementary rounding error on y, due to the addition, we deduce
f̂y
[2] = r̂y[2] + êy[2]. In the else branch, the real value is r̂y[3] = r̂x[1] = 2 + εr1,

the error êy[3] = êx[1], and we deduce f̂y
[3] = r̂y[3] + êy[3]. In Figure 1, we represent

in solid lines the real value of y and in dashed lines its finite precision value.
The interval concretisation of its real value on ΦX

r , is γr(r̂
y
[3]) = ΦX

r (2 + εr1) =

2 + [0, 1] = [2, 3]. The interval concretisation of its floating-point value on ΦX
f ,

is γf (f̂
y
[3]) = ΦX

f (r̂y[3] + u) = 2 + [−u, 1] + u = [2, 3 + u]. Actually, r̂y[3] is defined

on ΦX
r ∪ ΦX

f , as illustrated on Figure 1, because it is both used to abstract the
real value, or, perturbed by an error term, to abstract the finite precision value.

Join. If the test distinguishing two branches can be unstable, then when we
join abstract values X and Y coming from the two branches, the difference
between the floating-point value of X and the real value of Y , (RX +EX)−RY ,
and the difference between the floating-point value of X and the real value of Y ,
(RY +EY)−RX , are also errors due to finite precision. The join of all error terms
can then be expressed as EZ +DZ , where EZ = EX �EY is the propagation of
classical rounding errors, and DZ expresses the discontinuity errors.

A key point for an accurate computation of these discontinuity terms, is to
express the unstable tests conditions as an intersection of constraints on the εri
noise symbols, yielding a restriction of the sets of inputs (or equivalently the εri).
It is thus crucial that these εri are shared by affine sets for real and float values.

Definition 3. We join two abstract values X and Y by Z = X � Y defined as
Z = (RZ , EZ , DZ , ΦX

r ∪ ΦY
r , Φ

X
f ∪ ΦY

f) where

⎧
⎨

⎩

(RZ , ΦZ
r ∪ ΦZ

f) = (RX , ΦX
r ∪ ΦX

f) � (RY , ΦY
r ∪ ΦY

f)

(EZ , ΦZ
f) = (EX , ΦX

f) � (EY , ΦY
f)

DZ = DX �DY � (RX −RY , ΦX
f
 ΦY

r) � (RY −RX , ΦY
f
 ΦX

r)

Example 5. Consider variable y in the example. We joinX = (r̂y[2] = 4+εr1, ê
y
[2] =

u + δεe2, 0, ε
r
1 ∈ [−1, 0], (εr1, ε

e
2) ∈ [−1,−u]× [−1, 1]) from the then branch with

Y = (r̂y[3] = 2 + εr1, ê
y
[3] = u, 0, εr1 ∈ [0, 1], εr1 ∈ [−u, 1]) from the else branch.

With the analysis of [11] that makes the stable test assumption, we get when
joining branches at control point [4], r̂y[4] = r̂y[2] � r̂y[3] = 3 + εr4 ∈ [2, 4] with new

56 E. Goubault and S. Putot

noise symbol εr4 (we do not detail here the upper bound operator on affine forms),

êy[4] = êy[2] � êy[3] = u+ δεe2 ∈ [u− δ, u+ δ], and f̂y
[4] = r̂y[4] + êy[4] = 3+ u+ εr4+ δεe2.

This is sound for the real and float values r̂y[4] and f̂y
[4], but unsound for the error.

The new analysis also computes bounds for discontinuity errors. The discon-
tinuity due to the first possible unstable test, when the real takes the then

branch and float takes the else branch is: r̂y[3] − r̂y[2] = 2 + εr1 − 4 + εr1 = −2,

for εr1 ∈ ΦY
f ∩ ΦX

r = [−u, 1] ∩ [−1, 0] = [−u, 0]. As already seen, the other

possibility of an unstable test is excluded. The error is now êy[4] + dy[4] where

dy[4] = −2χ[−u,0](ε1) and χ[a,b](x) equals 1 if x is in [a, b] and 0 otherwise.

4 Experiments

We experimented some small examples inspired by industrial codes, using our
implementation of this abstraction in our static analyzer FLUCTUAT. More
experiments are described in [12].

A Simple Interpolator. The following example implements an interpolator, affine
by sub-intervals, as classically found in critical embedded software. It is a ro-
bust implementation indeed. In the code below, we used the FLUCTUAT asser-
tion FREAL WITH ERROR(a,b,c,d) to denote an abstract value (of resulting type
float), whose corresponding real values are x ∈ [a, b], and whose corresponding
floating-point values are of the form x+ e, with e ∈ [c, d].

f loat R1 [3] , E, r e s ;
R1 [0] = 0 ; R1 [1] = 5 ∗ 2 . 2 5 ; R1 [2] = R1 [1] + 20 ∗ 1 . 1 ;
E = FREAL WITH ERROR(0 . 0 , 1 00 . 0 , - 0 . 00001 ,0 . 00001) ;
i f (E < 5)

r e s = E∗2.25 + R1 [0] ;
e lse i f (E < 25)

r e s = (E-5)∗1 .1 + R1 [1] ;
e lse

r e s = R1 [2] ;
return r e s ;

The analysis proves res in [-2.25e-5,33.2], with an error in [-3.5e-5,2.4e-5], thus
of the order of magnitude of the input error, despite unstable tests.

A Simple Square Root Function. This example is a rewrite in some particular
case, of an actual implementation of a square root function, in an industrial
context:

double s q rt2 = 1.414213538169860839843750 ;
double S , I ; I = DREAL WITH ERROR(1 , 2 , 0 ,0 . 00 1) ;
i f (I>=2)

S = sqrt2 ∗(1+(I /2-1)∗ (. 5 -0 .125∗ (I /2- 1))) ;
el se
S = 1+(I-1)∗(.5+(I -1)∗(-.125+(I - 1)∗ . 0 62 5)) ;

With the former type of analysis within FLUCTUAT, we get the unsound re-
sult that S is proven in the real number semantics to be in [1,1.4531] with
a global error in [-0.0005312,0.00008592]. The function does not exhibit a big
discontinuity, but still larger than these bounds. For I=2 for instance, the then
branch computes sqrt2 which is approximately 1.4142, whereas the else branch
computes 1+0.5-0.125+0.0625=1.4375. With our present analysis, FLUCTUAT

Robustness Analysis of Finite Precision Implementations 57

proves that S in the real number semantics is in [1,1.4531] with an error in [-
0.0394,0.0389], the test discontinuity accounting for most of it ([-0.0389,0.0389],
coherent with the above rough estimate of 0.0233).

5 Conclusion

We have proposed an abstract interpretation based static analysis of the robust-
ness of finite precision implementations, as a generalization of both software ro-
bustness or continuity analysis and finite precision error analysis, by abstracting
the impact of finite precision in numerical computations and control flow diver-
gences. Future work includes going along the lines of [15] and resorting to more
sophisticated constraint solving: indeed our analysis can generate constraints on
noise symbols, which we only partially use for the time being.

References

1. Boldo, S., Filliâtre, J.-C.: Formal Verification of Floating-Point Programs. In: 18th
IEEE International Symposium on Computer Arithmetic (June 2007)

2. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In:
POPL, pp. 57–70 (2010)

3. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM 55(8), 107–115 (2012)

4. Chesneaux, J.-M., Lamotte, J.-L., Limare, N., Lebars, Y.: On the new cadna li-
brary. In: SCAN (2006)

5. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain taylor1+. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer,
Heidelberg (2009)

6. Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope
intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 212–226. Springer, Heidelberg (2010)

7. Goubault, E., Le Gall, T., Putot, S.: An accurate join for zonotopes, preserving affine
input/output relations. In: Proceedings of NSAD 2012. ENTCS, pp. 65–76 (2012)

8. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

9. Goubault, E., Putot, S.: Perturbed affine arithmetic for invariant computation in
numerical program analysis. CoRR, abs/0807.2961 (2008)

10. Goubault, E., Putot, S.: A zonotopic framework for functional abstractions. CoRR,
abs/0910.1763 (2009)

11. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011)

12. Goubault, E., Putot, S.: Robustness analysis of finite precision implementationss.
CoRR, abs/1309.3910 (2013)

13. Hamlet, D.: Continuity in software systems. In: ISSTA, pp. 196–200 (2002)
14. Majumdar, R., Saha, I.: Symbolic robustness analysis. In: RTSS (2009)
15. Ponsini, O., Michel, C., Rueher, M.: Refining abstract interpretation based value

analysis with constraint programming techniques. In: Milano, M. (ed.) CP 2012.
LNCS, vol. 7514, pp. 593–607. Springer, Heidelberg (2012)

16. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input-output
robustness for discrete systems. In: EMSOFT, pp. 217–226 (2012)

	Robustness Analysis of Finite Precision Implementations
	Introduction
	Preliminaries: Affine Sets for Real Valued Analysis
	Robustness Analysis of Finite Precision Computations
	Experiments
	Conclusion

