Combinatorial Optimization in Bioinfo
Lecture 3 — Graph algorithms and assembly
Yann Ponty

AMIBio Team
CNRS & Ecole Polytechnique

in Bioinfo - 1/13

Yann Ponty (CNRS & F

Why graphs?

G=(V,E)

where V — vertices/nodes, and E — edges.
What for? Graphs model entities, and the way they are connected

Lille

Strasbourg

Brest

Bordeaux

Toulouse Nice

in Bioinfo - 2/13

Yann Ponty (CNRS & F

Why graphs?

G=(V,E)

where V — vertices/nodes, and E — edges.
What for? Graphs model entities, and the way they are connected

Lille

Strasbourg

Brest

Bordeaux

Toulouse Nice

in Bioinfo - 2/13

Yann Ponty (CNRS & F

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS
» Maximum clique (Community detection; Biclustering
» Max independent set (Redundancy filtering
» Max matching (RNA folding with PK
» Traveling salesperson/SuperString (Assembly
Lille
Paris Strasbourg
Brest
Bordeaux Lyon
Toulouse Nice

Tand even sometimes, if you're lucky, solved efficiently

)
)
)
)
)

in Bioinfo - 3/13

Yann Ponty (CNRS &

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS
» Maximum clique (Community detection; Biclustering
» Max independent set (Redundancy filtering
» Max matching (RNA folding with PK
» Traveling salesperson/SuperString (Assembly
Lille
Paris Strasbourg
Brest
Bordeaux Lyon
Toulouse Nice

Tand even sometimes, if you're lucky, solved efficiently

)
)
)
)
)

in Bioinfo - 3/13

Yann Ponty (CNRS &

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS)
» Maximum clique (Community detection; Biclustering)
» Max independent set (Redundancy filtering)
» Max matching (RNA folding with PK)
» Traveling salesperson/SuperString (Assembly)

Ponty (CNRS &

Yann

Tand even sometimes, if you're lucky, solved efficiently

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS)
» Maximum clique (Community detection; Biclustering)
» Max independent set (Redundancy filtering)
» Max matching (RNA folding with PK)
» Traveling salesperson/SuperString (Assembly)

in Bioinfo - 3/13

Yann Ponty (CNRS & F

Tand even sometimes, if you're lucky, solved efficiently

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

v

Maximum clique

Max matching

vvyyvyy

1-allele
2-anneal
3-apnea
4-appeal
5-apple
6-lapel
7-paean
8-paella
9-panel
10-papal
11-penal
12-penpal

Max independent set

1-allele
2-anneal
3-apnea
4-appeal
5-apple
6-lapel
7-paean
8-paella
9-panel
10-papal
11-penal
12-penpal

2
°
ki

2-anneal

3-apnea

4-appeal

and even sometimes, if you're lucky, solved efficiently

Shortest path between two nodes

Traveling salesperson/SuperString

5-apple

6-lapel

7-paean

8-paclla

9-panel

10-papal

11-penal

12-penpal

(GPS)

(Community detection; Biclustering)
(Redundancy filtering)

(RNA folding with PK)

(Assembly)

in Bioinfo - 3/13

Yann Ponty (CNRS & F

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use

recipes for algorithm design:
» Shortest path between two nodes
» Maximum clique
» Max independent set
»> Max matching
> Traveling salesperson/SuperString

1-allele T-allele
2-anneal Zanneal
3- 3-apnea
apnea 4-appeal
4-appeal s-apple
5-apple 6-lapel
6-lapel 7-paean
7-paean 8-paella
9 |
8-paella pane
10-papal
9-panel 11-penal
10-papal 12-penpal
11-penal 258323 E
_] s e85 888
12-penpa CEIES eSS

and even sometimes, if you're lucky, solved efficiently

10-papal

11-penal

12-penpal

(GPS)

(Community detection; Biclustering)
(Redundancy filtering)

(RNA folding with PK)

(Assembly)

in Bioinfo - 3/13

Yann Ponty (CNRS & F

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS)
» Maximum clique (Community detection; Biclustering)
» Max independent set (Redundancy filtering)
» Max matching (RNA folding with PK)
» Traveling salesperson/SuperString (Assembly)

Tand even sometimes, if you're lucky, solved efficiently

in Bioinfo - 3/13

Ponty (CNRS &

Yann

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS)
» Maximum clique (Community detection; Biclustering)
» Max independent set (Redundancy filtering)
» Max matching (RNA folding with PK)
» Traveling salesperson/SuperString (Assembly)

Tand even sometimes, if you're lucky, solved efficiently

in Bioinfo - 3/13

Yann Ponty (CNRS & F

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS)
» Maximum clique (Community detection; Biclustering)
» Max independent set (Redundancy filtering)
» Max matching (RNA folding with PK)
» Traveling salesperson/SuperString (Assembly)
NGS Reads
1:ACAU
1: ACAU A Oiag© 5
2: AUAG 1:ACAU ;
3: UAGGC 3uncec O~ 12O ;
4: GGCA :
5: CAUC 1:ACAU @
6: AUCA 5:CAUC ®-3

Ponty (CNRS &

Yann

Tand even sometimes, if you're lucky, solved efficiently

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS)
» Maximum clique (Community detection; Biclustering)
» Max independent set (Redundancy filtering)
» Max matching (RNA folding with PK)
» Traveling salesperson/SuperString (Assembly)

NGS Reads

1:ACAU
1: ACAU s O-220 -
2: AUAG 1:ACAU '
3: UAGGC sueee Q=120 :
4: GGCA : :
5: CAUC 1:ACAU @
6: AUCA 5:CAUC ®-3

AUCACAUAGGCAUC

Ponty (CNRS &

Yann

Tand even sometimes, if you're lucky, solved efficiently

Some graphs problems

Graphs represent abstractions on which many problems can be formulated' providing ready-to-use
recipes for algorithm design:

» Shortest path between two nodes (GPS)
» Maximum clique (Community detection; Biclustering)
» Max independent set (Redundancy filtering)
» Max matching (RNA folding with PK)
» Traveling salesperson/SuperString (Assembly)

NGS Reads

1:ACAU
1: ACAU sane 0220 -
2: AUAG 1:ACAU '
3: UAGGC sueee Q=120 :
4: GGCA : :
5: CAUC 1:ACAU @
6: AUCA 5:CAUC ®-3

ACAUAGGCAUCA

Ponty (CNRS &

Yann

Tand even sometimes, if you're lucky, solved efficiently

Shortest path

SHORTEST PATH problem
Input: (Di)graph G = (V, E); Origin s € E and Destination t € E; Distance function § : E — R*
Output: Minimal distance path from s to t, i.e. p* such that

k—1

p= argmin Z5(Uj,Ui+1)
p=(uy,Uz...U) ;3

up=s,u=t
. Lille
» Easy problem < Poly-time algo.
» Idea (Dijkstra): ’
> Flood from s Paris 2 Strasbourg
»> At each step, extend closest
non-visited vertex (priority queue) Brest O— 4 2 -Q
» Stop when t is reached 3 3 4
» Complexity: ©(|V|+ |E|) Bordeaux Q n Lyon
» Powerful but beware of |V/| 2 5 3

catling

Toulouse Nice

in Bioinfo - 4/13

Yann Ponty (CNRS &

Shortest path

SHORTEST PATH problem
Input: (Di)graph G = (V, E); Origin s € E and Destination t € E; Distance function § : E — R*
Output: Minimal distance path from s to t, i.e. p* such that
k—1
p= argmin Z(S(U,-, Uit1)

p=(uy,Uz...U) ;3
up=s,u=t

Lille
» Easy problem < Poly-time algo. ,

» Idea (Dijkstra):

> Flood from s Paris 2 Strasbourg

»> At each step, extend closest
non-visited vertex (priority queue) Brest O— 4 2 "Q
» Stop when t is reached 3 3 4
» Complexity: ©(|V|+ |E|) Bordeaux Q n Lyon

» Powerful but beware of |V/| 2 5 3

catling

Toulouse Nice

in Bioinfo - 4/13

Yann Ponty (CNRS &

Shortest path

SHORTEST PATH problem
Input: (Di)graph G = (V, E); Origin s € E and Destination t € E; Distance function § : E — R*
Output: Minimal distance path from s to t, i.e. p* such that

k—1

p= argmin Z5(Uj,Ui+1)
p=(uy,Uz...U) ;3

up=s,u=t
) Lille
» Easy problem < Poly-time algo.
» Idea (Dijkstra): ,
> Flood from s Paris 2 Strasbourg

»> At each step, extend closest

non-visited vertex (priority queue) Brest .— 4y 2 -Q
3 3 4

» Stop when t is reached
» Complexity: ©(|V|+ |E|) Bordeaux Q n Lyon
» Powerful but beware of |V/| 2 5 3

catling

Toulouse Nice

in Bioinfo - 4/13

Yann Ponty (CNRS &

Shortest path

SHORTEST PATH problem
Input: (Di)graph G = (V, E); Origin s € E and Destination t € E; Distance function § : E — R*
Output: Minimal distance path from s to t, i.e. p* such that

k—1

p= argmin Z5(u;,uf+1)
p=(uy,Uz...U) ;3

up=s,u=t
) Lille
» Easy problem < Poly-time algo.
» Idea (Dijkstra): ,
> Flood from s Paris 2 Strasbourg

»> At each step, extend closest

non-visited vertex (priority queue) Brest .— a > "
3 3 4

» Stop when t is reached
» Complexity: ©(|V|+ |E|) Bordeaux Q n Lyon
» Powerful but beware of |V/| 2 5 3

catling

Toulouse Nice

in Bioinfo - 4/13

Yann Ponty (CNRS &

Shortest path

SHORTEST PATH problem
Input: (Di)graph G = (V, E); Origin s € E and Destination t € E; Distance function § : E — R*
Output: Minimal distance path from s to t, i.e. p* such that

k—1

p= argmin Z5(u;,uf+1)
p=(uy,Uz...U) ;3

up=s,u=t
) Lille
» Easy problem < Poly-time algo.
» Idea (Dijkstra): ,
> Flood from s Paris 2 Strasbourg

»> At each step, extend closest
non-visited vertex (priority queue) Brest .— A "
» Stop when t is reached 3 '3 4

» Complexity: ©(|V|+ |E|) Bordeaux Q x Lyon
» Powerful but beware of |V/| 2 5 3

catling

Toulouse Nice

in Bioinfo - 4/13

Yann Ponty (CNRS &

Shortest path

SHORTEST PATH problem
Input: (Di)graph G = (V, E); Origin s € E and Destination t € E; Distance function § : E — R*
Output: Minimal distance path from s to t, i.e. p* such that

k—1

p= argmin Z5(u;,uf+1)
p=(uy,Uz...U) ;3

up=s,u=t
) Lille
» Easy problem < Poly-time algo.
» Idea (Dijkstra): ,
> Flood from s Paris 2 Strasbourg

»> At each step, extend closest
non-visited vertex (priority queue) Brest .— > @2 "
» Stop when t is reached 3 '3 4

» Complexity: ©(|V|+ |E|) Bordeaux ‘ x Lyon
» Powerful but beware of |V/| 2 5 3

catling

Toulouse Nice

in Bioinfo - 4/13

Yann Ponty (CNRS &

Shortest path

SHORTEST PATH problem
Input: (Di)graph G = (V, E); Origin s € E and Destination t € E; Distance function § : E — R*
Output: Minimal distance path from s to t, i.e. p* such that

k—1

p= argmin Z5(u;,uf+1)
p=(uy,Uz...U) ;3

up=s,u=t
. Lille

» Easy problem < Poly-time algo.
» Idea (Dijkstra): ,

> Flood from s Paris 2 Strasbourg

»> At each step, extend closest

non-visited vertex (priority queue) Brest .— > @2

» Stop when t is reached 3 '3 4
» Complexity: ©(|V|+ |E|) Bordeaux ‘ Lyon
» Powerful but beware of |V/| 2 5 3

.5

Toulouse Nice

in Bioinfo - 4/13

Yann Ponty (CNRS &

Community detection and Max clique

MAX CLIQUE problem
Input: Graph G = (V, E)
Output: Largest set of pairwise connected vertices.

Useful when trying to detect a group of highly interconnected elements (e.g. molecules)

In a nutshell: A hard problem!

Let n = |V|+|E| & k max size of clique:
» NP-hard: No O(P(n)) algo

» Not FPT (W[1]): No O(a*.P(n)) algo
> XP: Trivial algo in O(n)

(unless P=NP)

But many heuristic solutions, so still worth consid-
ering if natural (last resort)

in Bioinfo - 5/13

Ponty (CNRS &

Yann

Community detection and Max clique

MAX CLIQUE problem
Input: Graph G = (V, E)

Output: Largest set of pairwise connected vertices.

Useful when trying to detect a group of highly interconnected elements (e.g. molecules)

In a nutshell: A hard problem!

Let n = |V|+|E| & k max size of clique:
» NP-hard: No O(P(n)) algo

» Not FPT (W[1]): No O(a*.P(n)) algo
> XP: Trivial algo in O(n)

(unless P=NP)

But many heuristic solutions, so still worth consid-
ering if natural (last resort)

in Bioinfo - 5/13

Yann Ponty (CNRS & F

Max Independent Sets

MAX INDEPENDENT SETS problem
Input: Graph G = (V, E)
Output: Largest set of pairwise disconnected vertices.

Very natural while producing conflict-free collections of objects.

1-allele T-allele
2-anneal Zanneal
3- 3-apnea
apnea 4-appeal
4-appeal s-apple
5-apple 6-lapel
PP
6-lapel 7-paean
7-paean 8-paella
9-panel
8-paella "
10-papal
9-panel 11-penal
10-papal 12-penpal
11-penal EEEE SRR R
BB EERE RS EE
12-penpal T EIFse i

Unfortunately,
NP-hard (again), but can be solved in O(2".|V| + |E|) time, i.e. efficiently for input graphs of low
tree-width ¢.

in Bioinfo - 6/13

Yann Ponty (CNRS & F

Max Independent Sets

MAX INDEPENDENT SETS problem
Input: Graph G = (V, E)
Output: Largest set of pairwise disconnected vertices.

Very natural while producing conflict-free collections of objects.

1-allele T-allele
2-anneal Zanneal
3-apnea j::::l
4-appeal s-apple
5-apple 6-lapel
6-lapel 7-pacan
7-paean 8-paella
8-paella 12::::
9-panel 11-penal
10-papal 12-penpal
11-penal H 5
12-penpal H H

Unfortunately,
NP-hard (again), but can be solved in O(2".|V| + |E|) time, i.e. efficiently for input graphs of low
tree-width ¢.

in Bioinfo - 6/13

Yann Ponty (CNRS & F

Max Independent Sets

MAX INDEPENDENT SETS problem
Input: Graph G = (V, E)
Output: Largest set of pairwise disconnected vertices.

Very natural while producing conflict-free collections of objects.

1-allele T-allele °
2-anneal Zanneal 5
3-apnea
3-apnea seappeal
4-appeal s-apple ¢
5-apple 6-lapel s
6-lapel 7-paean
7-paean 8-paella)
9-panel
8-paella Topmpal
9-panel 11-penal !
10-papal 12-penpal .
11-penal EEEE SRR R
2 EE 88888588 ¢
12-penpal PEEEIeis sl

Unfortunately,
NP-hard (again), but can be solved in O(2".|V| + |E|) time, i.e. efficiently for input graphs of low
tree-width ¢.

in Bioinfo - 6/13

Yann Ponty (CNRS & F

Max (weighted) matching

MAX MATCHING problem
Input: Graph G = (V, E)
Output: Largest set of edges such that each vertex is represented in < 1 edge.

Typical use-case: Simplify a n-body problem into a 2-body problem
— Useful for approximate solutions (guaranteed approx ratio)

At last, an easy problem! (3 poly-time algo ©)
Idea (Edmunds): Greedy optim. by swapping augmenting paths
Yields global max. in O(|E|+/|V]) from Micali and Vazirani

in Bioinfo - 7/13

Ponty (CNRS &

Yann

Max (weighted) matching

MAX MATCHING problem
Input: Graph G = (V, E)
Output: Largest set of edges such that each vertex is represented in < 1 edge.

Typical use-case: Simplify a n-body problem into a 2-body problem
— Useful for approximate solutions (guaranteed approx ratio)

At last, an easy problem! (3 poly-time algo ©)
Idea (Edmunds): Greedy optim. by swapping augmenting paths
Yields global max. in O(|E|+/|V]) from Micali and Vazirani

in Bioinfo - 7/13

Yann Ponty (CNRS &

Max (weighted) matching

MAX MATCHING problem
Input: Graph G = (V, E)
Output: Largest set of edges such that each vertex is represented in < 1 edge.

Typical use-case: Simplify a n-body problem into a 2-body problem
— Useful for approximate solutions (guaranteed approx ratio)

At last, an easy problem! (3 poly-time algo ©)
Idea (Edmunds): Greedy optim. by swapping augmenting paths
Yields global max. in O(|E|+/|V]) from Micali and Vazirani

in Bioinfo - 7/13

Yann Ponty (CNRS &

Max (weighted) matching

MAX MATCHING problem
Input: Graph G = (V, E)
Output: Largest set of edges such that each vertex is represented in < 1 edge.

Typical use-case: Simplify a n-body problem into a 2-body problem
— Useful for approximate solutions (guaranteed approx ratio)

At last, an easy problem! (3 poly-time algo ©)
Idea (Edmunds): Greedy optim. by swapping augmenting paths
Yields global max. in O(|E|+/|V]) from Micali and Vazirani

in Bioinfo - 7/13

Yann Ponty (CNRS &

Max (weighted) matching

MAX MATCHING problem
Input: Graph G = (V, E)
Output: Largest set of edges such that each vertex is represented in < 1 edge.

Typical use-case: Simplify a n-body problem into a 2-body problem
— Useful for approximate solutions (guaranteed approx ratio)

At last, an easy problem! (3 poly-time algo ©)
Idea (Edmunds): Greedy optim. by swapping augmenting paths
Yields global max. in O(|E|+/|V]) from Micali and Vazirani

in Bioinfo - 7 /13

Yann Ponty (CNRS & F

Max (weighted) matching

MAX MATCHING problem
Input: Graph G = (V, E)
Output: Largest set of edges such that each vertex is represented in < 1 edge.

Typical use-case: Simplify a n-body problem into a 2-body problem
— Useful for approximate solutions (guaranteed approx ratio)

At last, an easy problem! (3 poly-time algo ©)
Idea (Edmunds): Greedy optim. by swapping augmenting paths
Yields global max. in O(|E|+/|V]) from Micali and Vazirani

in Bioinfo - 7 /13

Yann Ponty (CNRS & F

Max (weighted) matching

MAX MATCHING problem
Input: Graph G = (V, E)
Output: Largest set of edges such that each vertex is represented in < 1 edge.

Typical use-case: Simplify a n-body problem into a 2-body problem
— Useful for approximate solutions (guaranteed approx ratio)

At last, an easy problem! (3 poly-time algo ©)
Idea (Edmunds): Greedy optim. by swapping augmenting paths
Yields global max. in O(|E|+/|V]) from Micali and Vazirani

in Bioinfo - 7 /13

Yann Ponty (CNRS & F

Max (weighted) matching

MAX MATCHING problem
Input: Graph G = (V, E)
Output: Largest set of edges such that each vertex is represented in < 1 edge.

Typical use-case: Simplify a n-body problem into a 2-body problem
— Useful for approximate solutions (guaranteed approx ratio)

0@‘@0 (©)
o —

At last, an easy problem! (3 poly-time algo ©)
Idea (Edmunds): Greedy optim. by swapping augmenting paths
Yields global max. in O(|E|+/|V]) from Micali and Vazirani

in Bioinfo - 7 /13

Yann Ponty (CNRS & F

Hamiltonian paths

HAMILTONIAN PATH problem
Input: (Di)graph G = (V, E)
Output: Path of G passing through vertex of V exactly once

NP-hard along with its optimization version

TRAVELING SALESPERSON (TSP) problem
Input: (Di)graph G = (V, E); Reward function p : E — R
Output: Hamiltonian path p maximizing reward -, , p(e)

Ponty (CNRS &

Yann

Hamiltonian paths

HAMILTONIAN PATH problem
Input: (Di)graph G = (V, E)
Output: Path of G passing through vertex of V exactly once

NP-hard along with its optimization version

TRAVELING SALESPERSON (TSP) problem
Input: (Di)graph G = (V, E); Reward function p : E — R
Output: Hamiltonian path p maximizing reward -, , p(e)

(0240220220220226) ;

Reward: 11

Ponty (CNRS &

Yann

Hamiltonian paths

HAMILTONIAN PATH problem
Input: (Di)graph G = (V, E)
Output: Path of G passing through vertex of V exactly once

NP-hard along with its optimization version

TRAVELING SALESPERSON (TSP) problem
Input: (Di)graph G = (V, E); Reward function p : E — R
Output: Hamiltonian path p maximizing reward -, , p(e)

in Bioinfo - 8/13

(0240220220220226) ;

Reward: 11

(0240220220220240

Reward: 13

Yann Ponty (CNRS &

TSP and Assembly

Assembly: Given set of NGS reads, find smallest (parsimonious) genome/transcript that explains
presence of each read in dataset

SUPERSTRING problem
Input: Strings wy, wa, ... wi
Output: String w of min. length, where each w; occurs as motif

Again a hard problem, but highly similar to TSP.

Concatenation always possible but costly .
NGS Reads ACAU AUAG UAGGC GGCA CAUC AUCA (len=25) 3
1: ACAU Compacting overlaps may be beneficial
2: AUAG ACAUAGGCAUCA (len=12) 8
3. UAGGC but savings depends on order.
4. GGCA Idea: Find order that maximizes overlaps
5. CAUC len(wy, we...) =" len(w;) — >, ov(Wi, Wit1)) é
6: AUCA Rem: Assumes no read contained into another %

Yann

Detailed constructs

NGS Reads

: ACAU
AUAG
UAGGC
GGCA
CAUC
AUCA

o O b W =

1:ACAU
2:AUAG

1:ACAU
3:UAGGC

1:ACAU
5:CAUC

0-2>0
©-1>0

@3>0

in Bioinfo - 10/ 13

Yann Ponty (CNRS & F

Detailed constructs

NGS Reads
1:ACAU
1: ACAU sang 9220
2: AUAG 1:ACAU
3: UAGGC 3:uacee. -0
4: GGCA :
5: CAUC 1:ACAU
6: AUCA 5:CAUC O3>0

(0240220220220226)

AU Cil!(:Elﬁhiiﬁélgra

C]
U

AUCACAUAGGCAU

§ 14

¥ OO

AUCACAUAGGCAUC

in Bioinfo - 10/ 13

Yann Ponty (CNRS & F

Detailed constructs

NGS Reads
1:ACAU
1: ACAU sang 9220
2: AUAG 1:ACAU
3: UAGGC 3:uacec. - 120
4: GGCA :
5: CAUC 1:ACAU
6: AUCA 5:CAUC O3>0

S

12

in Bioinfo - 10/ 13

Yann Ponty (CNRS & F

Detailed constructs

NGS Reads
1:ACAU
1: ACAU sang 9220
2: AUAG 1:ACAU
3: UAGGC 3:uacee. - 120
4: GGCA :
5: CAUC 1:ACAU
6: AUCA 5:CAUC O3>0

S

12

in Bioinfo - 10/ 13

Yann Ponty (CNRS & F

Eulerian paths

EULERIAN PATH problem
Input: Graph G = (V, E)
Output: Path p traversing every edge of E exactly once

3> 2
2 7® @4 ~
@ *@ Possible only if vertices balanced H
@ 5 (except possibly start & end)
(i) Algo: Build start—end greedy path,

8 extending until deadend
While edge(s) remain, iterate: build

o)
A ; .
6 12 cycle and insert it 8
®k b Build edge sequence from cycles
1 (any order— Possibly many!)
16 \ 7 y y
15 1

ey
Y
Ponty (CNRS &

Yann Pont

Eulerian paths

EULERIAN PATH problem
Input: Graph G = (V, E)
Output: Path p traversing every edge of E exactly once

Possible only if vertices balanced
(except possibly start & end)

Algo: Build start—end greedy path,
extending until deadend

While edge(s) remain, iterate: build
cycle and insert it

Build edge sequence from cycles
(any order— Possibly many!)

in Bioinfo - 11 /13

Yann Ponty (CNRS &

Eulerian paths

EULERIAN PATH problem
Input: Graph G = (V, E)
Output: Path p traversing every edge of E exactly once

Possible only if vertices balanced
(except possibly start & end)

Algo: Build start—end greedy path,
extending until deadend

While edge(s) remain, iterate: build
cycle and insert it

Build edge sequence from cycles
(any order— Possibly many!)

in Bioinfo - 11/13

Yann Ponty (CNRS & F

Eulerian paths

EULERIAN PATH problem
Input: Graph G = (V, E)
Output: Path p traversing every edge of E exactly once

Possible only if vertices balanced
(except possibly start & end)

Algo: Build start—end greedy path,
extending until deadend

While edge(s) remain, iterate: build
cycle and insert it

Build edge sequence from cycles
(any order— Possibly many!)

in Bioinfo - 11/13

Yann Ponty (CNRS & F

k-mers based assembly
NGS k-mers (k=4)

O©oOoONOOPRWN =

: ACAU
: AUAG
1 UAGG
T AGGC
1 GGCA
: CAUC
: AUCA
1 GCAC
: CACA
1 GCAG
: CAGC
- AGCA
: CAGA
1 AGAC
1 GACA
1 ACAG

in Bioinfo - 12/13

Yann Ponty (CNRS & F

k-mers based assembly
NGS k-mers (k=4)

OQoONOOOPR~WN =

: ACAU
: AUAG
1 UAGG
T AGGC
1 GGCA
: CAUC
: AUCA
1 GCAC
: CACA
1 GCAG
: CAGC
1 AGCA
: CAGA
1 AGAC
1 GACA
1 ACAG

AUAGGCACAUCA
AUAG-CACA---
-UAGG-ACAU--
--AGGC-CAUC-

~--GGCA-AUCA
----GCAC----

in Bioinfo - 12/13

Yann Ponty (CNRS & F

k-mers based assembly
NGS k-mers (k=4)

: ACAU
: AUAG
1 UAGG
T AGGC
1 GGCA
: CAUC
: AUCA
1 GCAC
: CACA
1 GCAG
: CAGC
1 AGCA
: CAGA
1 AGAC
1 GACA
1 ACAG

OQoONOOOPR~WN =

AUA

73 AGG
4y
(GGC]
AUAGGCAGCACAUCA -5

2

in Bioinfo - 12/13

Yann Ponty (CNRS & F

k-mers based assembly
NGS k-mers (k=4)

: ACAU
: AUAG
1 UAGG
T AGGC
1 GGCA
: CAUC
: AUCA
1 GCAC
: CACA
1 GCAG
: CAGC
1 AGCA
: CAGA
1 AGAC
1 GACA
1 ACAG

OQoONOOOPR~WN =

7 3>»(AGG

2

AUA N
(GGC)
AUAGGCAGACAGCACAUCA -5

in Bioinfo - 12/13

Yann Ponty (CNRS & F

Conclusions

» Graphs are awesome, and ubiquitous in Bioinformatics

» Faced with a new problem, finding formulation as graph problem allows to tap
into centuries of algorithmic design. ..

> ... to find efficient (poly time) algorithms . ..

» ... oridentify workarounds for hardness results
(FPT, approx, heuristics)

» It also enables efficient laziness through reuse of standard implementations for
algorithms and data structure — Lab work

» Knowing graphs algorithms informs choice of model/objective during method
development, to achieve good tradeoff between expressivity and tractability

But beware of using graphs just for the sake of using them?.

2From a Hammer’s perspective, everything looks like a nail. .. Don't be a Hammer!

in Bioinfo - 13/13

Yann Ponty (CNRS &

