Combinatorial Optimization in Bioinfo Lecture 3 – Graph algorithms and assembly

Yann Ponty

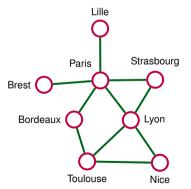
AMIBio Team CNRS & École Polytechnique

Why graphs?

$$G = (V, E)$$

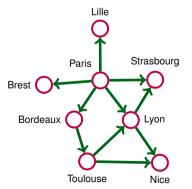
where $V \rightarrow \text{vertices/nodes}$, and $E \rightarrow \text{edges}$.

What for? Graphs model entities, and the way they are connected



where $V \rightarrow \text{vertices/nodes}$, and $E \rightarrow \text{edges}$.

What for? Graphs model entities, and the way they are connected



Graphs represent abstractions on which many problems can be formulated providing ready-to-use recipes for algorithm design:

Shortest path between two nodes

(Community detection; Biclustering)

Maximum clique

Max independent set

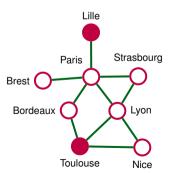
(Redundancy filtering)

(GPS)

Max matching

(RNA folding with PK) (Assembly)

Traveling salesperson/SuperString



¹ and even sometimes, if you're lucky, solved efficiently

Graphs represent abstractions on which many problems can be formulated providing ready-to-use recipes for algorithm design:

Shortest path between two nodes

(Community detection; Biclustering)

Maximum clique

Max independent set

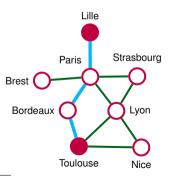
(Redundancy filtering)

(GPS)

Max matching

(RNA folding with PK) (Assembly)

Traveling salesperson/SuperString



¹ and even sometimes, if you're lucky, solved efficiently

Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

Shortest path between two nodes

(GPS)

Maximum clique

(Community detection; Biclustering)

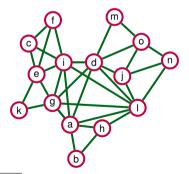
Max independent set

(Redundancy filtering)

Max matching

(RNA folding with PK)

Traveling salesperson/SuperString



¹ and even sometimes, if you're lucky, solved efficiently

Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

Shortest path between two nodes

(GPS)

Maximum clique

(Community detection; Biclustering)

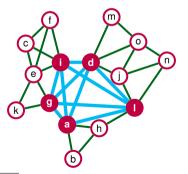
Max independent set

(Redundancy filtering)

Max matching

(RNA folding with PK)

Traveling salesperson/SuperString



¹and even sometimes, if you're lucky, solved efficiently

Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

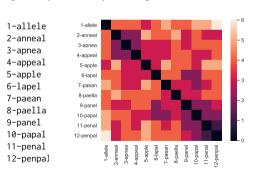
- Shortest path between two nodes
- Maximum clique
- Max independent set
- Max matching
- ► Traveling salesperson/SuperString

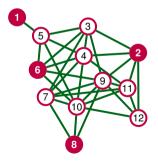
(GPS)

(Community detection; Biclustering)

(Redundancy filtering)

(RNA folding with PK)





¹ and even sometimes, if you're lucky, solved efficiently

Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

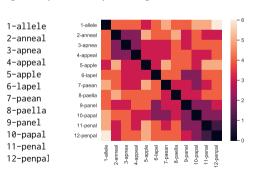
- Shortest path between two nodes
- Maximum clique
- Max independent set
- Max matching
- ► Traveling salesperson/SuperString

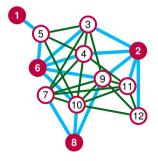
(GPS)

(Community detection; Biclustering)

(Redundancy filtering)

(RNA folding with PK)





¹ and even sometimes, if you're lucky, solved efficiently

Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

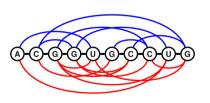
- Shortest path between two nodes
- Maximum clique
- Max independent set
- Max matching
- Traveling salesperson/SuperString

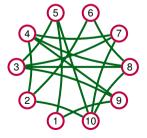
(GPS)

(Community detection; Biclustering)

(Redundancy filtering)

(RNA folding with PK)





¹ and even sometimes, if you're lucky, solved efficiently

Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

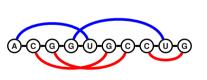
- Shortest path between two nodes
- ► Maximum clique
- Max independent set
- Max matching
- ► Traveling salesperson/SuperString

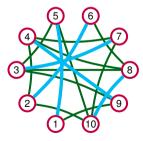
(GPS)

(Community detection; Biclustering)

(Redundancy filtering)

(RNA folding with PK)





¹ and even sometimes, if you're lucky, solved efficiently

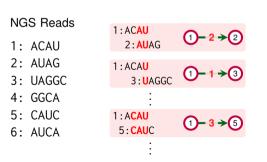
Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

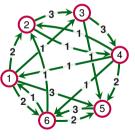
- Shortest path between two nodes
- Maximum clique
- Max independent set
- Max matching
- ► Traveling salesperson/SuperString

(GPS)

(Community detection; Biclustering)

(Redundancy filtering) (RNA folding with PK)





¹ and even sometimes, if you're lucky, solved efficiently

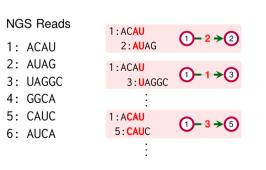
Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

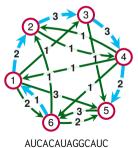
- Shortest path between two nodes
- Maximum clique
- Max independent set
- Max matching
- ► Traveling salesperson/SuperString

(GPS)

(Community detection; Biclustering)
(Redundancy filtering)

(RNA folding with PK)





¹ and even sometimes, if you're lucky, solved efficiently

Graphs represent abstractions on which many problems can be formulated¹ providing ready-to-use recipes for algorithm design:

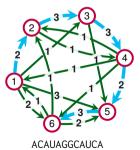
- Shortest path between two nodes
- Maximum clique
- Max independent set
- Max matching
- ► Traveling salesperson/SuperString

(GPS)

(Community detection; Biclustering)

(Redundancy filtering) (RNA folding with PK)

NGS Reads		
TTGG TTGGG	1:ACAU	1 - 2 → 2
1: ACAU	2: AUAG	0-276
2: AUAG	1:ACAU	0 10
3: UAGGC	3: UAGGC	1-1+3
4: GGCA	:	
5: CAUC	1:ACAU	0.20
6: AUCA	5:CAUC	1)-3 → (5)
	:	
	•	

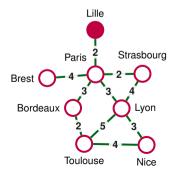


¹ and even sometimes, if you're lucky, solved efficiently

SHORTEST PATH problem

$$p = \operatorname*{argmin}_{\substack{p = (u_1, u_2, \dots u_k) \\ u_1 = s, u_k = t}} \sum_{i=1}^{k-1} \delta(u_i, u_{i+1})$$

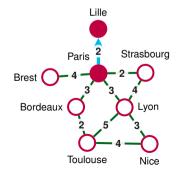
- ► Easy problem ⇔ Poly-time algo.
- ► Idea (Dijkstra):
 - ► Flood from *s*
 - At each step, extend closest non-visited vertex (priority queue)
 - ► Stop when *t* is reached
- ▶ Complexity: $\Theta(|V| + |E|)$
- Powerful but beware of |V|



SHORTEST PATH problem

$$p = \operatorname*{argmin}_{\substack{p = (u_1, u_2, \dots u_k) \\ u_1 = s, u_k = t}} \sum_{i=1}^{k-1} \delta(u_i, u_{i+1})$$

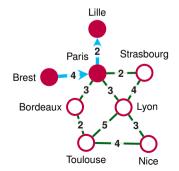
- ► Easy problem ⇔ Poly-time algo.
- ► Idea (Dijkstra):
 - ► Flood from s
 - At each step, extend closest non-visited vertex (priority queue)
 - ► Stop when *t* is reached
- ▶ Complexity: $\Theta(|V| + |E|)$
- Powerful but beware of |V|



SHORTEST PATH problem

$$p = \operatorname*{argmin}_{\substack{p = (u_1, u_2, \dots u_k) \\ u_1 = s, u_k = t}} \sum_{i=1}^{k-1} \delta(u_i, u_{i+1})$$

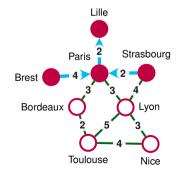
- ► Easy problem ⇔ Poly-time algo.
- ► Idea (Dijkstra):
 - ► Flood from s
 - At each step, extend closest non-visited vertex (priority queue)
 - ► Stop when t is reached
- ▶ Complexity: $\Theta(|V| + |E|)$
- ▶ Powerful but beware of |V|



SHORTEST PATH problem

$$p = \operatorname*{argmin}_{\substack{p = (u_1, u_2, \dots u_k) \\ u_1 = s, u_k = t}} \sum_{i=1}^{k-1} \delta(u_i, u_{i+1})$$

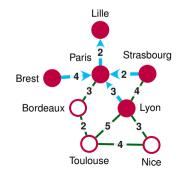
- ► Easy problem ⇔ Poly-time algo.
- ► Idea (Dijkstra):
 - ► Flood from s
 - At each step, extend closest non-visited vertex (priority queue)
 - ► Stop when t is reached
- ▶ Complexity: $\Theta(|V| + |E|)$
- Powerful but beware of |V|



SHORTEST PATH problem

$$p = \operatorname*{argmin}_{\substack{p = (u_1, u_2 \dots u_k) \\ u_1 = s, u_k = t}} \sum_{i=1}^{k-1} \delta(u_i, u_{i+1})$$

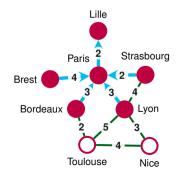
- ► Easy problem ⇔ Poly-time algo.
- ► Idea (Dijkstra):
 - ► Flood from s
 - At each step, extend closest non-visited vertex (priority queue)
 - Stop when t is reached
- ▶ Complexity: $\Theta(|V| + |E|)$
- ▶ Powerful but beware of |V|



SHORTEST PATH problem

$$p = \operatorname*{argmin}_{\substack{p = (u_1, u_2, \dots u_k) \\ u_1 = s, u_k = t}} \sum_{i=1}^{k-1} \delta(u_i, u_{i+1})$$

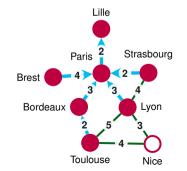
- ► Easy problem ⇔ Poly-time algo.
- ► Idea (Dijkstra):
 - ► Flood from s
 - At each step, extend closest non-visited vertex (priority queue)
 - Stop when t is reached
- ▶ Complexity: $\Theta(|V| + |E|)$
- ► Powerful but beware of |V|



SHORTEST PATH problem

$$p = \operatorname*{argmin}_{\substack{p = (u_1, u_2, \dots u_k) \\ u_1 = s, u_k = t}} \sum_{i=1}^{k-1} \delta(u_i, u_{i+1})$$

- ► Easy problem ⇔ Poly-time algo.
- ► Idea (Dijkstra):
 - ► Flood from s
 - At each step, extend closest non-visited vertex (priority queue)
 - ► Stop when t is reached
- ▶ Complexity: $\Theta(|V| + |E|)$
- ▶ Powerful but beware of |V|



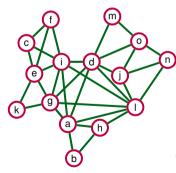
Community detection and Max clique

MAX CLIQUE problem

Input: Graph G = (V, E)

Output: Largest set of pairwise connected vertices.

Useful when trying to detect a group of highly interconnected elements (e.g. molecules)



In a nutshell: A hard problem!

Let n = |V| + |E| & k max size of clique:

- ▶ NP-hard: No $\mathcal{O}(P(n))$ algo
- ▶ Not FPT (W[1]): No $\mathcal{O}(\alpha^k.P(n))$ algo
- ▶ XP: Trivial algo in $\mathcal{O}(n^k)$

(unless P=NP)

But many heuristic solutions, so still worth considering if natural (last resort)

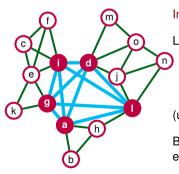
Community detection and Max clique

MAX CLIQUE problem

Input: Graph G = (V, E)

Output: Largest set of pairwise connected vertices.

Useful when trying to detect a group of highly interconnected elements (e.g. molecules)



In a nutshell: A hard problem!

Let n = |V| + |E| & k max size of clique:

- ▶ NP-hard: No $\mathcal{O}(P(n))$ algo
- ▶ Not FPT (W[1]): No $\mathcal{O}(\alpha^k.P(n))$ algo
- ightharpoonup XP: Trivial algo in $\mathcal{O}(n^k)$

(unless P=NP)

But many heuristic solutions, so still worth considering if natural (last resort)

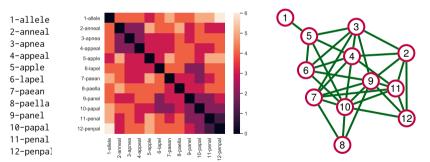
Max Independent Sets

MAX INDEPENDENT SETS problem

Input: Graph G = (V, E)

Output: Largest set of pairwise disconnected vertices.

Very natural while producing conflict-free collections of objects.



Unfortunately,

NP-hard (again), but can be solved in $\mathcal{O}(2^t \cdot |V| + |E|)$ time, *i.e.* efficiently for input graphs of low tree-width t.

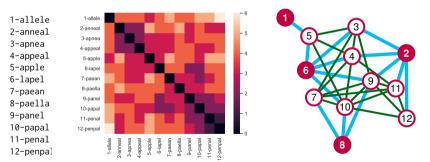
Max Independent Sets

MAX INDEPENDENT SETS problem

Input: Graph G = (V, E)

Output: Largest set of pairwise disconnected vertices.

Very natural while producing conflict-free collections of objects.



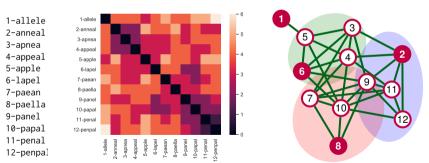
Unfortunately,

NP-hard (again), but can be solved in $\mathcal{O}(2^t \cdot |V| + |E|)$ time, *i.e.* efficiently for input graphs of low tree-width t.

Input: Graph G = (V, E)

Output: Largest set of pairwise disconnected vertices.

Very natural while producing conflict-free collections of objects.



Unfortunately,

NP-hard (again), but can be solved in $\mathcal{O}(2^t \cdot |V| + |E|)$ time, *i.e.* efficiently for input graphs of low tree-width t.

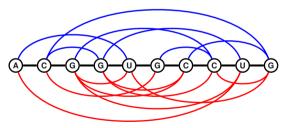
Max matching problem

Input: Graph G = (V, E)

Output: Largest set of edges such that each vertex is represented in \leq 1 edge.

Typical use-case: Simplify a *n*-body problem into a 2-body problem

ightarrow Useful for approximate solutions (guaranteed approx ratio)



At last, an easy problem! (∃ poly-time algo ⊕) Idea (Edmunds): Greedy optim. by swapping augmenting paths

Yields global max. in $\mathcal{O}(|E|\sqrt{|V|})$ from Micali and Vazirani

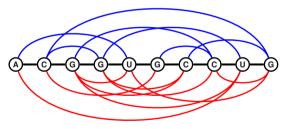
MAX MATCHING problem

Input: Graph G = (V, E)

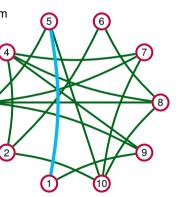
Output: Largest set of edges such that each vertex is represented in \leq 1 edge.

Typical use-case: Simplify a *n*-body problem into a 2-body problem

→ Useful for approximate solutions (guaranteed approx ratio)



At last, an easy problem! (\exists poly-time algo =) Idea (Edmunds): Greedy optim. by swapping augmenting paths Yields global max. in $\mathcal{O}(|E|\sqrt{|V|})$ from Micali and Vazirani



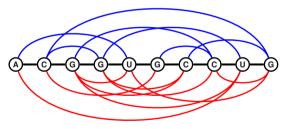
MAX MATCHING problem

Input: Graph G = (V, E)

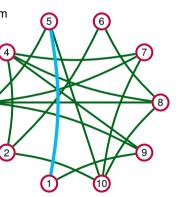
Output: Largest set of edges such that each vertex is represented in \leq 1 edge.

Typical use-case: Simplify a *n*-body problem into a 2-body problem

→ Useful for approximate solutions (guaranteed approx ratio)



At last, an easy problem! (\exists poly-time algo =) Idea (Edmunds): Greedy optim. by swapping augmenting paths Yields global max. in $\mathcal{O}(|E|\sqrt{|V|})$ from Micali and Vazirani



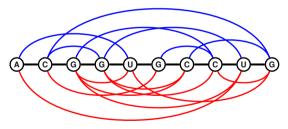
Max matching problem

Input: Graph G = (V, E)

Output: Largest set of edges such that each vertex is represented in ≤ 1 edge.

Typical use-case: Simplify a *n*-body problem into a 2-body problem

ightarrow Useful for approximate solutions (guaranteed approx ratio)



At last, an easy problem! (∃ poly-time algo ⊕)

Idea (Edmunds): Greedy optim. by swapping augmenting paths Yields global max. in $\mathcal{O}(|E|\sqrt{|V|})$ from Micali and Vazirani

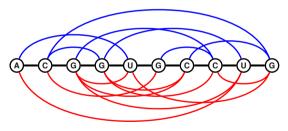
MAX MATCHING problem

Input: Graph G = (V, E)

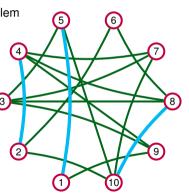
Output: Largest set of edges such that each vertex is represented in ≤ 1 edge.

Typical use-case: Simplify a *n*-body problem into a 2-body problem

→ Useful for approximate solutions (guaranteed approx ratio)



At last, an easy problem! (\exists poly-time algo =) Idea (Edmunds): Greedy optim. by swapping augmenting paths Yields global max. in $\mathcal{O}(|E|\sqrt{|V|})$ from Micali and Vazirani



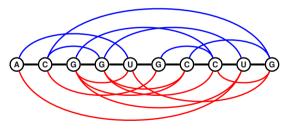
MAX MATCHING problem

Input: Graph G = (V, E)

Output: Largest set of edges such that each vertex is represented in \leq 1 edge.

Typical use-case: Simplify a *n*-body problem into a 2-body problem

→ Useful for approximate solutions (guaranteed approx ratio)



At last, an easy problem! (∃ poly-time algo ⊕)
Idea (Edmunds): Greedy optim. by swapping augmenting paths

Yields global max. in $\mathcal{O}(|E|\sqrt{|V|})$ from Micali and Vazirani

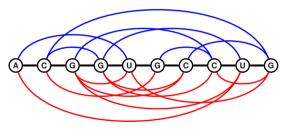
MAX MATCHING **problem**

Input: Graph G = (V, E)

Output: Largest set of edges such that each vertex is represented in \leq 1 edge.

Typical use-case: Simplify a *n*-body problem into a 2-body problem

→ Useful for approximate solutions (guaranteed approx ratio)



At last, an easy problem! (\exists poly-time algo =) Idea (Edmunds): Greedy optim. by swapping augmenting paths Yields global max. in $\mathcal{O}(|E|\sqrt{|V|})$ from Micali and Vazirani

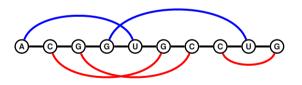
MAX MATCHING problem

Input: Graph G = (V, E)

Output: Largest set of edges such that each vertex is represented in \leq 1 edge.

Typical use-case: Simplify a *n*-body problem into a 2-body problem

→ Useful for approximate solutions (guaranteed approx ratio)



At last, an easy problem! (\exists poly-time algo e) ldea (Edmunds): Greedy optim. by swapping augmenting paths Yields global max. in $\mathcal{O}(|E|\sqrt{|V|})$ from Micali and Vazirani

Hamiltonian paths

HAMILTONIAN PATH **problem**

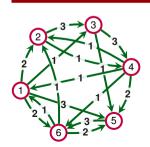
Input: (Di)graph G = (V, E)

Output: Path of G passing through vertex of V exactly once

NP-hard along with its optimization version

TRAVELING SALESPERSON (TSP) problem

Input: (Di)graph G = (V, E); Reward function $\rho : E \to \mathbb{R}$ **Output:** Hamiltonian path p maximizing reward $\sum_{e \in p} \rho(e)$



Hamiltonian paths

HAMILTONIAN PATH **problem**

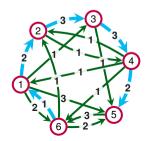
Input: (Di)graph G = (V, E)

Output: Path of G passing through vertex of V exactly once

NP-hard along with its optimization version

TRAVELING SALESPERSON (TSP) problem

Input: (Di)graph G = (V, E); Reward function $\rho : E \to \mathbb{R}$ **Output:** Hamiltonian path p maximizing reward $\sum_{e \in p} \rho(e)$



Reward: 11

Hamiltonian paths

HAMILTONIAN PATH **problem**

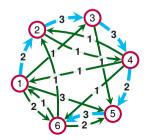
Input: (Di)graph G = (V, E)

Output: Path of G passing through vertex of V exactly once

NP-hard along with its optimization version

TRAVELING SALESPERSON (TSP) problem

Input: (Di)graph G = (V, E); Reward function $\rho : E \to \mathbb{R}$ **Output:** Hamiltonian path p maximizing reward $\sum_{e \in p} \rho(e)$



Reward: 11

$$0 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$$

Reward: 13

TSP and Assembly

Assembly: Given set of NGS reads, find smallest (parsimonious) genome/transcript that explains presence of each read in dataset

SUPERSTRING problem

Input: Strings $w_1, w_2, \ldots w_k$

Output: String w of min. length, where each w_i occurs as motif

Again a hard problem, but highly similar to TSP.

NGS Reads	Concatenation always possible but costly
	ACAU AUAG UAGGC GGCA CAUC AUCA (len=25)
1: ACAU	Compacting overlaps may be beneficial
2: AUAG	ACAUAGGCAUCA (len=12)
3: UAGGC	but savings depends on order.
4: GGCA	Idea: Find order that maximizes overlaps
5: CAUC	$len(w_1, w_2 \ldots) = \sum_i len(w_i) - \sum_i ov(w_i, w_{i+1})$
6: AUCA	Rem: Assumes no read contained into another

Detailed constructs

NGS Reads

1: ACAU

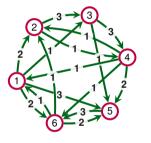
2: AUAG

3: UAGGC

4: GGCA

5: CAUC

6: AUCA



1: ACAU

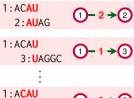
2: AUAG

3: UAGGC

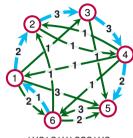
4: GGCA

5: CAUC

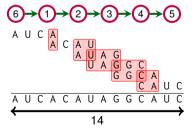
6: AUCA



÷



AUCACAUAGGCAUC



Detailed constructs

NGS Reads

1: ACAU 2: AUAG

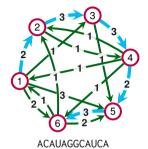
2. AUAG 2. UACC

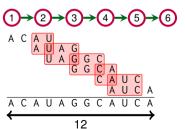
3: UAGGC

4: GGCA

5: CAUC

6: AUCA





Detailed constructs

NGS Reads

1: ACAU

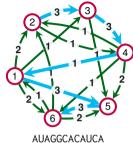
2: AUAG

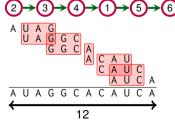
3: UAGGC

4: GGCA

5: CAUC

6: AUCA

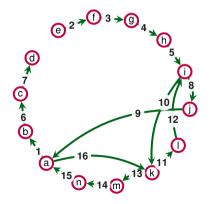




EULERIAN PATH **problem**

Input: Graph G = (V, E)

Output: Path p traversing every edge of E exactly once



Possible only if vertices balanced (except possibly start & end)

Algo: Build start→end greedy path, extending until deadend

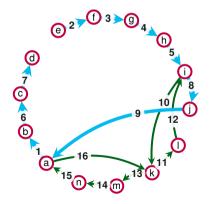
While edge(s) remain, iterate: build

cycle and insert it

EULERIAN PATH **problem**

Input: Graph G = (V, E)

Output: Path p traversing every edge of E exactly once



Possible only if vertices balanced (except possibly start & end)

Algo: Build start→end greedy path, extending until deadend

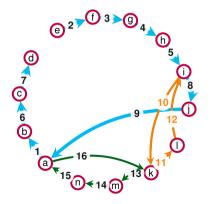
While edge(s) remain, iterate: build

cycle and insert it

EULERIAN PATH **problem**

Input: Graph G = (V, E)

Output: Path p traversing every edge of E exactly once



Possible only if vertices balanced (except possibly start & end)

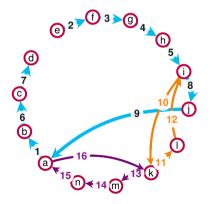
Algo: Build start→end greedy path, extending until deadend

While edge(s) remain, iterate: build cycle and insert it

EULERIAN PATH **problem**

Input: Graph G = (V, E)

Output: Path *p* traversing every edge of *E* exactly once



Possible only if vertices balanced (except possibly start & end)

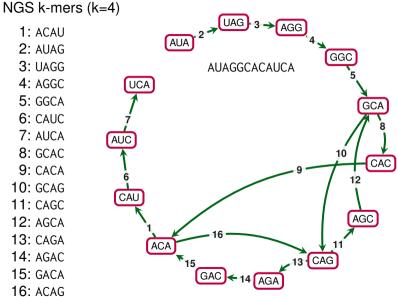
Algo: Build start→end greedy path, extending until deadend

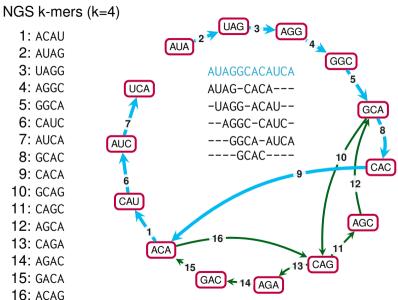
While edge(s) remain, iterate: build

cycle and insert it

NCC k more (k. 4)

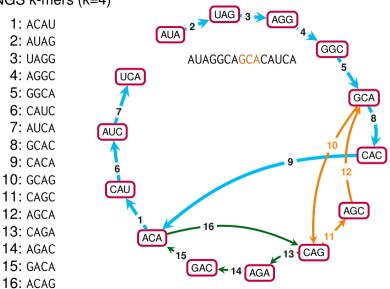
k-mers based assembly





NGS k-mers (k=4)

k-mers based assembly



Conclusions

- ► Graphs are awesome, and ubiquitous in Bioinformatics
- ► Faced with a new problem, finding formulation as graph problem allows to tap into centuries of algorithmic design...
- ▶ ... to find efficient (poly time) algorithms ...
- ▶ ... or identify workarounds for hardness results

(FPT, approx, heuristics)

- ▶ It also enables efficient laziness through reuse of standard implementations for algorithms and data structure
 → Lab work
- ► Knowing graphs algorithms informs choice of model/objective during method development, to achieve good tradeoff between expressivity and tractability But beware of using graphs just for the sake of using them².

²From a Hammer's perspective, everything looks like a nail... Don't be a Hammer!