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purpose in this paper is to ask whether there is an analogous theory for neutralevolutionary trees. In particular, we study whether the following two resultshave analogs for evolutionary trees.(a) Consistency characterization. A family (P (n); 1 � n < 1) satis�es thefollowing three conditions i� it is one of the (P (n)� ).(i) Exchangeability. For each n, the distribution is invariant under permu-tations of the labels f1; 2; : : :; ng.(ii) Sampling invariance. For each n, P (n) induces a distribution on parti-tions of f1; 2; : : : ; n� 1g by the action of deleting n: this distribution is P (n�1).(iii) Subset deletion. For each j < n, given that P (n) has fj+1; j+2; : : : ; ngas a set in the partition, the remaining partition of f1; 2; : : :; jg has distributionP (j).(b) Interpretation via time-evolution. Suppose there are k neutral alleles(an allele is a possible \type" of a gene; neutral means to confer no selectiveadvantage or disadvantage). Count the proportions (Xi(t); 1 � i � k) of apopulation with allele i in generation t. Then under natural models there is ak-dimensional di�usion ( ~Xi(t)) representing the limit (as population size tendsto in�nity and time is rescaled), where randomness comes from the randomnumber of copies of an individual allele which appear in the next generation.If we also allow random mutations to produce new alleles, we get an in�nite-dimensional di�usion (\the in�nitely-many-allelesmodel"). A random sample ofn individuals from the population can be partitioned into subsets with identicalalleles, and this random partition has distribution P (n)� , where the parameter �is related to the mean number of mutations per generation.2 Phylogenetic treesA phylogenetic tree is a visual representation of an assertion about relationshipsbetween species A;B;C; : : :. There are many varieties of such tree, di�ering inthe details of what exactly is being asserted { see Eldredge and Cracraft [10]for an extensive discussion. Figure 1 is a cladogram. The basic interpretationis the obvious one: amongst species fC;D;Eg, the most closely related are Dand E, and so on. The species are distinguished, i.e. switching A with D givesa di�erent cladogram. But there is no distinction between right and left edges,i.e. switching A with B gives the same cladogram. And there is no explicit timescale. 2



���������@@@ �������� @@@@@@@@@A B C D EFigure 1Biologists believe in evolution, and so implicitly believe there is a true \evo-lutionary tree" linking all living and extinct species, and that classi�cations ofspecies should be consistent with evolutionary history. The classical Linnaeanhierarchy (originally species, genus, order, class, kingdom but subsequently ex-tended to many more ranks) remains in practical use, but theoreticians haveconducted a vigorous debate about how classi�cation ought to be done.Figure 2 is one way to picture a true evolutionary tree. Species are repre-sented by vertical lines, from their time of origin to their time of extinction,with dotted horizontal lines indicating the origin of a species from its parentspecies. Implicit in such a picture are a set of generally-held beliefs about evo-lution (e.g. that species arise comparatively quickly and then remain largelyunchanged until extinction) which I won't go into.
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In practice one seldom has enough information about extinct species to beable to draw a tree as detailed as Figure 2, but it is useful to envisage sucha tree in order to avoid drawing unwarranted inferences from other representa-tions. To illustrate, consider the cladogram in Figure 1, which is consistent withthe evolutionary tree of Figure 2. >From the cladogram one might think, looselyspeaking, that A and B are more closely related to each other than are C andD. But the evolutionary tree indicates the opposite is possible, if we measurecloseness by either time of divergence or number of intermediate species. Moredramatically, a cladogram does not indicate ancestor-descendant pairs. In Fig-ure 1, A and B might be \cousins" (as Figure 2 shows), or one might be ano�spring of the other (as Figure 2 shows E to be an o�spring of D).A third type of picture, a phenogram, is often used, in particular in thecontext of molecular genetics analysis of living species.
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A B C D E?timepresent Figure 3A phenogram contains more information than the cladogram, in that thereis an absolute time scale. But the previous warning about casual inferences stillholds. >From Figure 3 one might assume that the common ancestor � of fA;Bglived earlier than the common ancestor  of fC;D;Eg, whereas Figure 2 showsit is possible that � both originated later than  and became extinct later than. Minor points. (a) We're going to assume cladograms have only binary splits,although actual cladograms exhibited in the literature usually have some higher-order splits also. One can interpret a higher-order split as a collection of binarysplits which cannot be resolved with the data available.(b) Drawing cladograms with diagonal lines is just a convention, but is usefulfor distinguishing them from phenograms or other kinds of evolutionary tree.2.1 Why consider probability models?There are two quite di�erent reasons for considering probability models of phy-logenic trees. The �rst reason concerns technical aspects of reconstructing treesfrom data. Molecular biologists in general have eschewed probability modelsin favor of parsimony (deterministic best-�t) methods, which have the advan-tage of telling you what tree to write down (up to often-serious non-uniquenessand computational tractability issues), but the disadvantage of not indicatingquantitative con�dence assertions. To implement a more classical statisticalmethodology involves a complex array of modeling problems, one of which isto specify an a priori model of evolutionary history. A related issue is testingthe actual algorithms used: given a hypothetical true phylogenetic tree and amodel for the mutation process underlying the observed data, how well does the5



algorithm reconstruct the tree? Since these procedures are computationally in-tensive anyway, it would seem better to use a \good" a priorimodel (if we couldagree on one!) rather than a model chosen purely for mathematical simplicity.My own motivation comes from the more conceptual questionIf we had the true evolutionary tree of all species, what could we inferabout the relative roles of selectivity and neutrality in the patternof speciations and extinctions?Several disparate lines of relevant research appear in the literature. Gould,Raup et al [24, 12, 23] compared paleontological data with random models(essentially critical branching processes). 1 The recent book by Kau�man [15]contains a wide-ranging study of mathematical models of selectivity e�ects. Seealso the conference proceedings [22] and the work cited in the next section.But the bottom line is that (in contrast to neutral population genetics) there isno accepted de�nite notion, at either the conceptual or mathematical level, of\neutral evolution of species".One could discuss models of any of the varieties of tree discussed in section 2.For the technical issues mentioned above it is most natural to use phenograms,whereas for our purpose of extracting patterns from published trees we shall usecladograms, which are becoming the most common form of published phylogeny.2.2 Two particular probability distributions on phyloge-netic treesThere is a scattered (and mostly mathematically unsophisticated) biologicalliterature on a priori models of random phylogenetic trees. Brief surveys arecontained in [14, 19]. We describe below the two models which have been mostdiscussed in the biological literature. As noted later these models (under abewildering variety of di�erent names) have also been extensively studied inother contexts.The number of di�erent cladograms on n species iscn = (2n� 3)!! = (2n� 3)(2n� 5) � �3 � 1:One way to see this is to note that a cladogram on n species has 2n � 1 edges(for this purpose we add an edge upwards from the root) and that each choiceof edge at which to add a n + 1'st species leads to a di�erent cladogram onn + 1 species, so cn+1 = (2n � 1)cn. In the uniform model we assume eachcladogram is equally likely. The Yule model, considered as a phenogram, is justthe elementary continuous-time pure birth process started with one lineage.That is, each lineage persists for a random, exponential(1) time and then splitsinto two lineages. Continue the process until there are n lineages. The resulting1Their work focused on number of species as a function of time, whereas ours focuses onthe combinatorial structure of phylogenetic trees.6



random cladogram has an equivalent description as \random joinings", wherewe count time backwards from the present. Starting with n lines of descent, wechoose uniformly at random one of the n(n � 1)=2 pairs and join the pair, tomake n� 1 lines of descent, and continue until there is a unique line. In eithercase, throwing away the time scale leaves a random cladogram.2.3 Search treesSome probability distributions on cladograms can be associated with well-studiedrandom search trees in computer science. Let us explain the connection briey.###### cccccc������ AAAAA� ����� CCCCC� ����� AAAAA������ AAAAA������ CCCCC� ����� CCCCC�� � � � � � � � ����������@@@ �����@@ ��@@@@ @@@@@@@@Figure 4Figure 4 shows a subtree of the in�nite binary tree, i.e. a tree in whicha node has either zero children, a left child, a right child, or both a left and aright child. Such a \binary tree" can be described using either the n�1 internalnodes � or, as is customary in computer science, via the n external nodes �, i.e.those nodes outside the subtree whose parent is in the subtree. Such a tree canbe mapped to a cladogram on n leaves, as shown in Figure 5. Thus a probabilitydistribution on binary trees induces a probability distribution on cladograms,by randomly (uniformly) labeling the leaves 1; 2; : : :; n.The recent book Mahmoud [20] treats several models of random binary treefrom the viewpoint of search trees in computer science. Some of these models {precisely, the induced models on cladograms { occur later.A wide-ranging abstract study of trees as proximity indicators (but not em-phasizing probability models) can be found in Barthelemy and Guenoche [6].7



3 Axiomatizing properties of random cladogramsWe seek probability models for \neutral evolution of species". By analogy withthe results in section 1 for neutral population genetics, it is natural to hopethere exists a one-parameter family of probability distributions on cladogramsfor which(a) random cladograms (Tn;n � 2) are in the family i� they satisfy somespeci�ed intrinsic compatibility conditions.(b) These random cladograms arise from some natural model of species evolv-ing with time.Let's start with idea (b). Consider the following class of models.At each time t there are a �nite number of species alive (startingwith one species at time 0). >From time to time there is an \event"which is either an extinction or a speciation, i.e. either some speciesB becomes extinct or some species A splits into species A and A0.The time from t until the next event, and the chance the next eventis an extinction rather than a speciation, may depend on the past inan arbitrary way. But if the next event is an extinction then eachspecies is equally likely to be the one to become extinct, and if thenext event is an speciation then each species is equally likely to bethe one to speciate.At �rst sight the arbitrariness should allow us to get a family of models, with aparameter representing (say) the ratio of speciation rate to extinction rate. Butthis is false, because it is easy to showLemma 1 For any model of the class above which ends with n living species, thecladogram of those species is distributed as the Yule model described in section2.2.Turning to idea (a), the following two compatibility conditions for a family(Tn;n � 2) of random cladograms seem to be the natural analogs of those insection 1.(i) Exchangeability. For each n, the random cladogram is exchangeable inthe labels of the n species, i.e. invariant under permutations.(ii) Group elimination. For each 1 � k < n, conditional on fk + 1; k +2; : : : ; ng being a group in Tn (i.e. being the set of descendants of some internalvertex), the cladogram restricted to f1; 2; : : :; kg is distributed as Tk.It is easy to check that the Yule model and the uniform model (described insection 2.2) satisfy these conditions, as does the family of combs, i.e. the familywith the deterministic \maximally unbalanced" shape below, and with the nspecies uniformly randomly distributed amongst positions.8



�����������������������������������������������������������������@@@@@@@@@@@Figure 5Unfortunately we have been unable to construct any more examples, soConjecture 2 The three families above are the only families satisfying (i)-(ii).Another open question in this \axiomatic" spirit will be mentioned in section6.3, but the bottom line is that our attempt to de�ne models of \neutral evolu-tion of species" by some close analogy with neutral population genetics seemscompletely unsuccessful. In the next section we resort to pulling a model out ofthin air.4 The beta-splitting modelSuppose that for each n � 2 we are given a probability distribution qn =(qn(i); i = 1; 2; : : : ; n� 1) which is symmetric (qn(i) = qn(n� i)). Then we cande�ne probability distributions on cladograms in the obvious way: the root-splithas i elements in the left branch and n�i elements in the right branch, where i ischosen at random according to the distribution qn and where each of the � ni �choices of elements for the left branch are equally likely. Repeat recursivelyin each branch. Interpret the resulting tree as a cladogram by removing theleft/right markers. Call these Markov branching models.To specialize this construction, consider a probability density f on (0; 1)which is symmetric (that is, f(x) = f(1 � x)), and de�neqn(i) = a�1n � ni � Z 10 xi(1 � x)n�i f(x)dx (1)for normalizing constantan = Z 10 (1� xn � (1� x)n)f(x)dx (2)= 1� 2 Z 10 xnf(x)dx :9



This specialization has a simple interpretation in terms of splitting intervals (atopic discussed from a di�erent viewpoint by Brennan and Durrett [7, 8]). Startwith n uniform random \particles" on the unit interval. Split the interval at arandom point with density f . Repeat recursively on subintervals, splitting eachinterval [a; b] at a point a+X(b�a) where the X's are independent with densityf , stopping when a subinterval contains only one particle.Figure 6 illustrates the construction and its interpretation as a cladogram.Note that a subinterval split in which all particles go into one side of the splitis suppressed.Note that for (1, 2) to make sense it is not necessary for f to be a probabilitydensity. It is enough to have f � 0 be symmetric and satisfy R0+ xf(x)dx <1.* * * * *2 5 3 1 4* * * * ** * * *Figure 6�����@@ �����@@@@@2 5 3 1 4We now specialize further to de�ne a one-parameter family (T (n)� ) of randomcladograms, parametrized by �2 � � � 1. For �1 < � <1 these are obtainedby the interval-splitting construction above with the beta densityf(x) = �(2� + 2)�2(� + 1)x�(1� x)�; 0 < x < 1: (3)Applying (1),qn(i) = 1an(�) �(� + i + 1)�(� + n� i + 1)�(i + 1)�(n � i + 1) ; 1 � i � n � 1 (4)where as at (2) �n(�) is the normalizing constant. For � = 1 we get theinterval-splitting construction where intervals are split deterministically at theircenter. For �2 < � � �1 the recursive construction with qn de�ned at (4)still makes sense, corresponding as mentioned above to the function f(x) =x�(1� x)� for which R0+ xf(x)dx < 1. Finally, for �xed n the � ! �2 limitis the \comb" described in section 3, so we take the comb as the � = �2 model.10



4.1 Special casesThree special case have been studied in the literature.� = 1. This is the \symmetric binary trie" studied in computer science,and surveyed in Chapter 5 of [20]. It has been briey considered in the biologicalliterature [19].� = 0. Here we haveqn(i) = 1n� 1 ; 1 � i � n� 1:This is the Yule model of section 2.2. It arises from the \binary search tree"in computer science, surveyed in Chapter 2 of [20]. It also arises from the\coalescent" in mathematical population genetics ([16, 26]). And as mentionedin section 2.2 it arises from the Yule process, i.e. the linear pure birth process.All these processes are di�erent as processes indexed by time, but the inducedrandom cladograms are identical.� = �3=2. This is the uniformmodel from section 2.2. To verify, a countingargument shows that the uniform model corresponds to a recursive constructionwith qn(i) = 12 � ni � cicn�icn : (5)where cn = (2n � 3)!! is the number of cladograms on n leaves. But we canwrite cn = 2n�1�(n � 12 )=�(12), which leads toqn(i) = �(n + 1)�(n� 12)�(12) �(i � 12 )�(n� i � 12)�(i+ 1)�(n� i + 1)which is indeed (4) for � = �3=2.This is the model of cladograms associated (in the sense of section 2.3)with the uniform random binary tree with n external leaves, which has beenstudied extensively in combinatorics and computer science (e.g. Knuth [17]).Its asymptotics can be studied via the continuum tree set-up of [2, 3].The beta-splitting model certainly satis�es the exchangeability condition (i)of section 3, but in general does not satisfy the group elimination property (ii).As a speci�c example, for � =1 the chance of the cladogram����@@ ��@@@@1 2 3 4 equals 1=7. But if we take the cladogram on 6 leavesand condition on f5; 6g being a group, then (by an elementary but tediouscalculation) the probability that the cladogram restricted to f1; 2; 3; 4g is thecladogram above equals 5�133�157. 11



The special case � = �1 has apparently not been studied before, but turnsout to have interesting properties. Note that here we have qn(i) = an 1i(n�i) .Because n�1Xi�1 1i(n � i) = n�1Xi=1 1n �1i + 1n� i� = 2hn�1nwhere hn�1 is the harmonic sum, we can writeqn(i) = n2hn�1 1i(n� i) ; 1 � i � n� 1: (6)4.2 Is there an underlying process?We are introducing the beta-splitting models as the mathematically most natu-ral way to embed the Yule model and the uniform model into a one-parameterfamily. To make this convincing for biological applications one would like anunderlying continuous-time process of speciation and extinction for which thegeneral beta-splitting model was the associated cladogram. I do not know anatural candidate for such a process.It has often been asserted in the biological literature [14, 19] that the uniformmodel is unsatisfactory because there is no such underlying process. This is notentirely correct. Consider conditioned critical branching processes, which havebeen studied in the biological literature ([24, 12]) as models for neutral evolutionof large groups of species. One of the results from [2, 3] is that, for a randomsample of n species from a large such group, the cladogram on the sampledspecies will follow the uniform model.This observation makes it slightly more plausible that there might be somesubtle process underlying the general beta-splitting model.4.3 A data-setThe most famous datum in the subject (discussed in [14] and by many otherwriters) is (9672; 21), the split between bird species and crocodilian species.Under the Yule model (� = 0) the chance of a more unbalanced split is 0:004,whereas under the uniform model (� = �1:5) the chance is 0:878. Guyer andSlowinski ([14] table 1) consider the sizes of the smaller branch in the root splitin 30 large cladograms. It is clear from the raw data (and con�rmed in [14] bya test of signi�cance) that the splits are more unbalanced than predicted underthe Yule model, but more balanced than predicted under the uniform model.Figure 7 gives a visual display of the data under each model using the quantiletransform, (i.e. the bird-crocodile split would be plotted at 0:878 under theuniform model and at 0:004 under the Yule model.) So under a true model wewould see 30 independent uniform points.12



? ?unbalanced balanced� = �1:0� = 0:0� = �1:5Figure 7The �t to the � = �1 model is strikingly better than to the usual models.Is this just a uke?Let me also mention that two papers (Savage [25], Guyer and Slowinski [13])analyze data on small cladograms (4 � n � 7 and n = 5). [25] concludes thatthe Yule model gives a better �t than the uniformmodel, whereas [13] concludesthe opposite.5 Some asymptotics for the beta-splittingmodelThis section outlines some asymptotics for the beta-splitting family. Details ofsome of the more interesting results may be given elsewhere. In the three specialcases (� = �3=2; 0; 1) these results (and much more) are either explicitlyknown or can be proved by routine methods.5.1 Asymptotics of the root-split distributionThe top-most split in a cladogram splits it into two branches of sizes i and n� i.If we randomly call these \left" and \right" then the size Ln of the left branchhas the distribution qn at (4). And if we write Bn for the size of the branchcontaining a speci�ed leaf, then by exchangeabilityP (Bn = i) = 2in qn(i); 1 � i � n� 1: (7)It is straightforward to obtain the following asymptotics as n!1.Lemma 3 � =1. n�1Ln d! 12 ; n�1Bn d! 12 .�1 < � <1. n�1Ln d! X� and n�1Bn d! Y�, where X� has the betadistribution (3) and where Y� has densityf(x) = �(2� + 3)�(� + 1)�(� + 2) x�+1(1� x)� : (8)13



� = �1. logmin(Ln; n� Ln)logn d! U and log(n� Bn)logn d! Uwhere U has the uniform distribution on (0; 1).�2 < � < �1. For each �xed i � 1,P (min(Ln; n� Ln) = i)! �(i) and P (Bn = n� i)! �(i)where the limit distribution � is given by�(i) = ��1� Z 10 e�ttii! t� dt = ��1� �(i + 1 + �)�(i + 1)for normalizing constant�� = Z 10 (1� e�t)t�dt = ��(b) sin(�(�� � 1)) : (9)And if i � xn for 0 < x < 1,qn(i) � 12��1� x�(1 � x)�n� : (10)Note that the distribution � can also be expressed as�(i) = �0� iYj=2�1 + �j � ; i � 1for di�erent normalizing constants.5.2 Depth and height statisticsThe depth of a leaf in a cladogram is the number of branchpoints on the pathfrom that leaf to the root, where we include the root as a branchpoint. Thus inFigure 1, species A has depth 2 and species E has depth 3. We can de�ne thefollowing three numbers for a cladogram.� �d, the average depth of the leaves.� ~d, the depth of the leaf found by starting at the root and recursively choos-ing the larger branch at each branchpoint (averaging over possibilities ifan even split is encountered).� d�, the maximal depth of a leaf.So �d � ~d � d�. In many settings, statistics like these are called heights, and inparticular one could call d� the height of the cladogram.14



Proposition 4 De�ne �Dn; ~Dn; D�n to be the random values of the statisticsabove for the beta-splitting model. Note that E �Dn = EDn, where Dn is thedepth of species 1. As n!1,�1 < � � 1. (E �Dn; E ~Dn; ED�n) � (��(�); ~�(�); ��(�)) lognand D0n=ED0n d! 1 for each of the four statistics, where (for X� ; Y� as inLemma 3 and � <1)1��(�) = �E logY� = �(2� + 3)�(� + 1)�(� + 2) Z 10 x�+1(1� x)� log(1=x)dx:1~�(�) = �E logmax(X� ; 1�X�) = 2�(2� + 2)�2(� + 1) Z 11=2 x�(1� x)� log(1=x)dx:��(�) = ��log 2EX�� ; where � = �(�) is the solution ofEX�� logX� = ��1(EX��) log(2EX��):� = �1. (E �Dn; E ~Dn) � (3��2; 6��2) log2 n:�2 < � < �1.(E �Dn; E ~Dn; ED�n) � (��(�); ~�(�); ��(�)) n���1where 1��(�) = ��1� Z 10 x�+1(1� x)�(1� x���1) dx1~�(�) = ��1� Z 11=2 x�(1� x)�(1 � x���1) dxfor � de�ned at (9), and where we do not have a simple expression for ��(�).For each of the four statistics we have a non-degenerate limit distribution forD0n=ED0n.Some numerical values are tabulated below. The unexplained decimal num-bers were obtained by numerical evaluation of the formulae above, and theothers (except for ��(�1:5), discussed later) by exact evaluation.� �0:5 0 1 1��(�) 12 log 2�1 = 2:59 2 127 = 1:71 1log 2 = 1:44~�(�) 4:55 11�log 2 = 3:26 11312�log 2 = 2:56 1log 2 = 1:44��(�) 6:38 4:31 3:19 1log 2 = 1:4415



� �2 �1:75 �1:5 �1:25��(�) 1=2 0:952 �1=2 = 1:77 8:13~�(�) 1 1:71 2�1=223=2�log(3+23=2) = 3:33 15:5��(�) 1 ? 2�1=2 = 3:54 ?Outline of proof.�1 < � � 1. Consider the process of splitting the unit interval intosubintervals. For these �rst-order results the issue is when the \relevant subin-terval" has length � 1=n. For Dn the relevant subinterval is the one containinga prespeci�ed point, and the lengths of such subintervals behave as an i.i.d.product of Y� 's. Similarly for ~Dn, the lengths of the relevant subintervals be-have as an i.i.d. product of max(X� ; 1�X�)'s. For D�n we are concerned withthe maximal-length subinterval after m splits, but here log (length) behavesas (a slight variation of) branching random walk, and the result comes fromthe usual large deviation analysis of the rightmost walker in branching randomwalk. (This is an elaboration of the known result ([20] section 2.7) that 1=��(0)is the solution of 2x = exp(x� 1)).� = �1. The recurrence for tn = EDn is (for any �)tn = 1 + n�1Xi=1 2in qn(i)ti: (11)In the case � = �1 this becomes0 = 1 + 1hn�1 n�1Xi=1 ti � tnn� i :Writing tn � c log2 n and approximating the sum by an integral,0 = 1 + 2c Z 10 log y1� y dy;and the integral equals �2=6.The analysis of E ~Dn is similar, leading to an equation0 = 1 + 2c Z 11=2 logyy(1 � y) dy;and the integral here equals �2=12.To explain intuitively the order of magnitude in this case, note that Dn isdistributed as the number of steps of the following Markov chain, started at nand run until absorption at 1.P (j; i) = 1hj�1 1j � i ; 1 � i � j � 1:16



The mean position after one step from j is about j(1� 1log j ), so it takes O(logn)steps to go from n to around n=2, and so it requires O(log2 n) steps until ab-sorption.�2 < � < �1. In the recurrence (11), writing tn � cn���1 and approxi-mating qn(i) by the asymptotic values (10),0 � 1 + ��1� cn� n�1Xi=1 � in��+1�n� in �� (i���1 � n���1):Approximating the sum by an integral gives the result for ��(�), and the ar-gument for ~�(�) is similar. Finally, �niteness of �� and the existence of non-degenerate limit distributions are consequences of the process approximationindicated in section 6.1.Remarks on Proposition 4 for � = �3=2. The � = �3=2 case �ts into along-studied line of work in probabilistic combinatorics, the \simply-generatedtrees" of Meir and Moon [21]. Many asymptotic results for these models havebeen proved by generating function methods, in particular the values of ��(�3=2)and ��(�3=2). See [2] for a brief discussion and the interpretation of the limitsin terms of Brownian excursion. Curiously, ~�(�3=2) has only recently beeninvestigated in that literature { see the preprints by Vatutin [27] and Luczak[18].6 Directions for further study6.1 More on the beta-splitting modelTwo features of the results outlined in section 5 seem su�ciently interesting(from the mathematical, rather than biological, point of view) to warrant morecareful study. In all models of random n-vertex trees known to me which dealwith \combinatorial" trees (rather than trees with vertices in d-dimensionalspace), the height statistics (c.f. Proposition 4) grow as either �(logn) or as�(n1=2). So our beta-splitting family exhibits two types of novel behavior. For� = �1 the mean depth grows as �(log2 n), and this immediately raises ahost of questions whose answers cannot be immediately guessed by analogy: isthe mean height also �(log2 n)? what are the spreads of the various statisticsDn; �Dn; ~Dn; D�n? are there other models for which these statistics are �(log2 n)with di�erent constants? I do not see any elegant probabilistic way of studyingthis case, but obviously one can try analytic techniques. Secondly, in the case�2 < � < �1 the mean depth grows as �(n���1). Randomly call edge-splits\left" and \right", thereby inducing a left-to-right ordering on the leaves. De�neHn(t); 0 � t � 1, byHn(i=n) = n�+1( depth of leaf i in the left-to-right ordering)17



with linear interpolation. Then one can see heuristically that as n ! 1 thereis some limiting stochastic process H1(t); 0 � t � 1 and that the quantities Dnconsidered in Proposition 4 have non-degenerate limit distributions expressiblein terms of H1. For � = �3=2 the limit process is Brownian excursion {this is part of the circle of ideas discussed in [2, 3]. But for general �2 <� < �1 the limit processes H1 seem novel and interesting stochastic processes.Informally, they can be constructed as processes in which intervals split andshrink continuously, as opposed to the discrete-step splitting of section 4 for� > �1. Details will be given in [4].6.2 Other one-parameter familiesWe introduced the beta-splitting models as a mathematically natural way toembed the Yule model and the uniform model into a one-parameter family.One can of course invent other such families. For instance, under the Yulemodel the chance of a particular cladogram t equals2n�1n! nYi=3(i � 1)�di(t)where di(t) is the number of internal nodes with exactly i descendant species.Thus we can de�ne a family (T (n) ) for whichP (T (n) = t) = an() nYi=3(i� 1)di(t):So  = 0 is the uniform model and  = �1 is the Yule model. This is a di�erentfamily, because (for instance) the  ! �1 limit is the uniform distribution onmaximally-balanced n-cladograms.The only one-parameter family in the literature which exhibits qualitativechange in behavior as the parameter varies are the randomly-growing binarytrees discussed in [1] and [5]. These contain the Yule model but not the uniformmodel.6.3 Another characterization questionConsider the \Markov branching" models (P (n);n � 1) de�ned at the start ofsection 4. These are automatically exchangeable, but do not necessarily havethe property (c.f. property (ii) in section 1)Sampling consistency. For each n, P (n) induces a distribution on cladogramson f1; 2; : : : ; n� 1g by the action of deleting n: this distribution is P (n�1).So it is natural to askOpen Problem 1 Characterize the subclass of Markov branching models whichsatisfy the sampling consistency property.18
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