Combinatoire des polytopes
TD A — Basic notions

1 High dimension is counter-intuitive

Exercice 1 (Cochonnet paradox). Consider a box to store your “pétanque” blue balls with a place in
the middle for the red “cochonnet”; as illustrated in Figure 1.
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Figure 1: Placing the pétanque balls and cochonnet into the box in dimension 2 and 3.

(1) Compute the radius and area of the red cochonnet.

(2) What would be the radius and volume of the red cochonnet in dimension d?

[Hint: Along the long diagonal, one can fit 2 blue balls and 2 red cochonnets. The volume Vy of the
d-dimensional unit ball is given by
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If you never did this computation, consider the functions
00 1
I(z):= / t"le~tat and B(z,y) = / t*7 Y1 — t)V " tdxdy,
0 0

show that T'(z + 1) = zI'(z), that T'(x)I'(y) = T'(z + y)B(z,y), that T'(1/2) = /7, and that the
volume Vg satisfies the recurrence relation Vi1 = Vg - B(d/2+1,1/2) and conclude.|

(3) What happens in dimension 107

2 Convexity

Exercice 2 (Three convexity theorems).

(1) (Radon’s theorem). Show that any set A of d+2 points in R? admits two disjoint subsets A;, Ay C A
such that
conv(Aj) Nconv(Ag) # @.

(2) (Helly’s theorem). Let Cy,...,C, be n convex sets in R%, with n > d-+1. Show that if the intersection
of every d + 1 of these sets is non-empty, then the intersection of all the C; is non-empty.

[Hint: Use induction on n and Radon’s theorem.]



(3) (Centerpoint theorem). Let X C R? be a set of n points. A point T € R? is a centerpoint of X if
each closed half-space containing T contains at least # points of X. Prove that each finite point
set in R? has at least one centerpoint.

[Hint: For each closed half-space HT such that |HT N X| > #‘lln, consider conv(H* N X), and finish
using Helly’s theorem.|
3 Fourier-Motzkin elimination

Exercice 3 (Fourier-Motzkin elimination for polyhedra). The objective of this exercise is to provide an
algorithmic proof that an affine projection of a polyhedron is a polyhedron. This enables to show that a
V-polyhedron is an H-polyhedron since a V-polyhedron

conv(V) + cone(Y) = {7 € R? |3t € R, € R" such that t=1,1>0,u>0and 2= Vi +Yu}
can be interpreted as the projection of the H-polyhedron

{(@.t,u) eRM™™ | T=1,1>0,7

v

0and 7 = Vf+Yﬂ}.

(1) Let @ = {t € R | a;t <b; for i € [m]} be a polyhedron on the real line with a;, b; € R for i € [m].
Give a constructive way to check if QQ = @.

(2) Let mq : R* — R ! be the coordinate projection mq(x1,...,24-1,2q4) = (T1,...,2q-1). Let Q =
{z eRr? } (@; | T) < b; for i € [m]} be a polyhedron, with @; € R? and b; € R for i € [m]. For
y € R define Q= {T € R | (§,z) € Q}. Show that for all § € R, the set Qy is a polyhedron
and give an explicit inequality description in terms of the inequality description of Q).

(3) Argue (using (1)) that the image my(Q) = {y € R%! | Qg # @} is a polyhedron.

(4) Conclude that the image of a polyhedron by an affine map is a polyhedron.

4 Examples of polyhedral cones

Exercice 4 (Incidence configuration of an directed graph). The incidence configuration of a directed
graph G = (V, E) is the vector configuration I(G):= {&, — &, | (v,w) € E} C RV. Show that

(1) I(G) is independent if and only if G’ has no (not necessarily oriented) cycle, that is, if G is a forest,
(2) I(G) spans the hyperplane H:= {z € RV | (1| Z) = 0} if and only if G is connected,

(3) I(G) forms a basis of the hyperplane H if and only if G is a spanning tree.

Exercice 5 (Cones from directed graphs). The incidence cone of a directed graph G = (V, E) is the
polyhedral cone C(G):=Rx>oI(G) = R>¢ {ew — & | (v,w) € E} CRY.
(1) What is the polar cone of C'(G)?

(2)
(3)
(4) When C(G) is pointed, describe the rays of C'(G). When is C(G) a simplicial cone?
(5) Show that the facets of C'(G) correspond to minimal directed cuts of G.

(6)

connected components and such that the quotient directed graph G/H is acyclic.

Exercice 6 (Half-space containement). Let P:= {Z € R | (a; | T) < b; for i € [m]} be a non-empty
polyhedron, where @; € (R%)* and b; € R, for i € [m]. Show that, for @ € (R%)* and b € R, the inequality
(a@|Z) < bholds for each 7 € P if and only if there are reals A; > 0, for i € [m], such that @ =3¢, Aiti
and b > Zze[m] )\zbz

5 Examples of polytopes

Exercice 7 (Matching polytope). The matching polytope M(G) of a graph G = (V, E) is defined as the
convex hull of the characteristic vectors s € R of all matchings M on G.



(1) Show that the matching polytope is contained in the polytope N(G) defined by

Te >0 foralle€ E, and Zwegl forallveV.

esv

(2) If G is bipartite, show that the polytopes M(G) and N(G) coincide.

[Hint: Consider a point T € N(G). If T has integer coordinates, show that it is the characteristic
vector of a matching on G. Otherwise, show that one can slightly perturb the coordinates of T that
are not integer, and conclude that T is not a vertex of N(G).]

(3) Show that the result fails when G is not bipartite.

Exercice 8 (Transportation polytope). Given a supply function p : M — R>( on a source set M and
a demand function v : N — R>g on a sink set N, the transportation polytope P(u,v) is the polytope
of RM*N defined by:

Vme M, Yne€N, ., >0, Z ey Tmnt = u(m), and Z ey Tl = v(n).
n m

Call support of a point T € P(u, ) the subgraph of K s n consisting of the edges (m, n) for which z, , > 0.
Show the following properties:

(1) P(u,v) is non-empty if and only if >~ p(m) =3 -y v(n).
(2) Provided it is non-empty, P(u,v) has dimension (|M| —1)(|N|—1).

(3) A point of P(u,v) is a vertex of P(u,v) if and only if its support is a forest (i.e. contains no cycle).
Moreover, a vertex of P(u,v) is determined by its support.

(4) The supports of two adjacent vertices of P(u,v) differ by a cycle.

The Birkhoff polytope of size m is a particular example of transportation polytope, whose supply and
demand functions are both constant to m. Its vertices are precisely the permutation matrices.



